1
|
Miao J, Chen B, Zhang L, Lu Z, Wang R, Wang C, Jiang X, Shen Q, Li Y, Shi D, Ouyang Y, Chen X, Deng X, Zhang S, Zou H, Chen S. Metabolic expression profiling analysis reveals pyruvate-mediated EPHB2 upregulation promotes lymphatic metastasis in head and neck squamous cell carcinomas. J Transl Med 2025; 23:316. [PMID: 40075431 PMCID: PMC11899055 DOI: 10.1186/s12967-025-06305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
Lymphatic metastasis is a well-known factor for initiating distant metastasis of head and neck squamous cell carcinoma (HNSCC), which caused major death in most patients with cancer. Meanwhile, metabolic reprogramming to support metastasis is regarded as a prominent hallmark of cancers. However, how metabolic disorders drive in HNSCC remains unclear. We firstly established a new classification of HNSCC patients based on metabolism gene expression profiles from the TCGA and GEO database, and identified an enriched carbohydrate metabolism subgroup which was significantly associated with lymphatic metastasis and worse clinical outcome. Moreover, we found that highly activated pyruvate metabolism endowed tumors with EPHB2 upregulation and promoted tumor lymphangiogenesis independently of VEGF-C/VEGFR3 signaling pathway. Mechanically, high nuclear acetyl-CoA production from pyruvate metabolism promoted histone acetylation, which in turn transcriptionally upregulated EPHB2 expression and secretion in tumor cells. EPHB2 bound with EFNB1 in lymphatic endothelial cells promoted YAP/TAZ cytoplasmic retention, which alleviated YAP/TAZ-mediated prospero homeobox protein 1 (PROX1) transcriptional repression, and then triggered tumor lymphangiogenesis. Importantly, combined treatment with EFNB1-Fc and VEGFR3 inhibitor synergistic abrogated lymphangiogenesis in vitro and in vivo, suggesting that targeting EPHB2 might be a potential strategy to patients with no or slight response to VEGFR3 inhibitor. These findings uncover the mechanism by which pyruvate metabolism is linked to lymphatic metastasis of tumor and provides a promising therapeutic strategy for the prevention of HNSCC metastasis.
Collapse
Affiliation(s)
- Jingjing Miao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Boyu Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Lu Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zhongming Lu
- Department of Otolaryngology Head and Neck Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P. R. China
| | - Rui Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chunyang Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510060, P. R. China
| | - Xingyu Jiang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Qi Shen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Zhejiang, 311402, P. R. China
| | - Yue Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Dongni Shi
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Ying Ouyang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xiangfu Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xiaowu Deng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Siyi Zhang
- Department of Otolaryngology Head and Neck Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P. R. China.
| | - Hequn Zou
- Medical School, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China.
| | - Shuwei Chen
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
2
|
Zheng Y, Cong L, Zhao L, Wang P, Xing L, Liu J, Xu H, Li N, Zhao Y, Yuan L, Shi Q, Sun X, Liang Q, Wang Y. Lymphatic platelet thrombosis limits bone repair by precluding lymphatic transporting DAMPs. Nat Commun 2025; 16:829. [PMID: 39827193 PMCID: PMC11742876 DOI: 10.1038/s41467-025-56147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/05/2025] [Indexed: 01/22/2025] Open
Abstract
In the musculoskeletal system, lymphatic vessels (LVs), which are interdigitated with blood vessels, travel and form an extensive transport network. Blood vessels in bone regulate osteogenesis and hematopoiesis, however, whether LVs in bone affect fracture healing is unclear. Here, we investigate the lymphatic draining function at the tibial fracture sites using near-infrared indocyanine green lymphatic imaging (NIR-ICG) and discover that lymphatic drainage insufficiency (LDI) starts on day one and persists for up to two weeks following the fracture in male mice. Sufficient lymphatic drainage facilitates fracture healing in male mice. Furthermore, we identify that lymphatic platelet thrombosis (LPT) blocks the draining lymphoid sinus and LVs, causes LDI, and inhibits fracture healing in male mice, which can be rescued by a blood thinner. Moreover, unblocked lymphatic drainage decreases neutrophils and increases M2-type macrophages of the hematoma niche to support osteoblast (OB) survival and bone marrow-derived mesenchymal stem cell (BMSC) proliferation via transporting damage-associated molecular patterns (DAMPs) in male rats. Lymphatic platelet thrombolysis also benefits senile fracture healing in female mice. These findings demonstrate that LPT limits bone regeneration by impeding lymphatic transporting DAMPs. Together, these findings represent a way forward in the treatment of bone repair.
Collapse
Affiliation(s)
- Yangkang Zheng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 227 Chongqing South Road, 200025, Shanghai, China
| | - Lin Cong
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Li Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Pengyu Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine and Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 227 Chongqing South Road, 200025, Shanghai, China
| | - Hao Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Ning Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Yongjian Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Luying Yuan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China
| | - Xueqing Sun
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 227 Chongqing South Road, 200025, Shanghai, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China.
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China.
| | - YongJun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China.
- Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, 200032, Shanghai, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), 1200 Cailun Road, 201203, Shanghai, China.
| |
Collapse
|
3
|
Crossey E, Carty S, Shao F, Henao-Vasquez J, Ysasi AB, Zeng M, Hinds A, Lo M, Tilston-Lunel A, Varelas X, Jones MR, Fine A. Influenza induces lung lymphangiogenesis independent of YAP/TAZ activity in lymphatic endothelial cells. Sci Rep 2024; 14:21324. [PMID: 39266641 PMCID: PMC11393066 DOI: 10.1038/s41598-024-72115-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
The lymphatic system consists of a vessel network lined by specialized lymphatic endothelial cells (LECs) that are responsible for tissue fluid homeostasis and immune cell trafficking. The mechanisms for organ-specific LEC responses to environmental cues are not well understood. We found robust lymphangiogenesis during influenza A virus infection in the adult mouse lung. We show that the number of LECs increases twofold at 7 days post-influenza infection (dpi) and threefold at 21 dpi, and that lymphangiogenesis is preceded by lymphatic dilation. We also show that the expanded lymphatic network enhances fluid drainage to mediastinal lymph nodes. Using EdU labeling, we found that a significantly higher number of pulmonary LECs are proliferating at 7 dpi compared to LECs in homeostatic conditions. Lineage tracing during influenza indicates that new pulmonary LECs are derived from preexisting LECs rather than non-LEC progenitors. Lastly, using a conditional LEC-specific YAP/TAZ knockout model, we established that lymphangiogenesis, fluid transport and the immune response to influenza are independent of YAP/TAZ activity in LECs. These findings were unexpected, as they indicate that YAP/TAZ signaling is not crucial for these processes.
Collapse
Affiliation(s)
- Erin Crossey
- Division of Pulmonary, Allergy, Sleep and Critical Care, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 East Concord St, R-304, Boston, MA, 02118, USA.
| | - Senegal Carty
- Division of Pulmonary, Allergy, Sleep and Critical Care, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 East Concord St, R-304, Boston, MA, 02118, USA
| | - Fengzhi Shao
- Division of Pulmonary, Allergy, Sleep and Critical Care, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 East Concord St, R-304, Boston, MA, 02118, USA
| | - Jhonatan Henao-Vasquez
- Division of Pulmonary, Allergy, Sleep and Critical Care, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 East Concord St, R-304, Boston, MA, 02118, USA
| | - Alexandra B Ysasi
- Division of Pulmonary, Allergy, Sleep and Critical Care, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 East Concord St, R-304, Boston, MA, 02118, USA
| | - Michelle Zeng
- Division of Pulmonary, Allergy, Sleep and Critical Care, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 East Concord St, R-304, Boston, MA, 02118, USA
| | - Anne Hinds
- Division of Pulmonary, Allergy, Sleep and Critical Care, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 East Concord St, R-304, Boston, MA, 02118, USA
| | - Ming Lo
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Comparative Pathology Laboratory, Boston University National Emerging and Infectious Disease Laboratories, Boston, MA, USA
| | - Andrew Tilston-Lunel
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Xaralabos Varelas
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Matthew R Jones
- Division of Pulmonary, Allergy, Sleep and Critical Care, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 East Concord St, R-304, Boston, MA, 02118, USA
| | - Alan Fine
- Division of Pulmonary, Allergy, Sleep and Critical Care, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 East Concord St, R-304, Boston, MA, 02118, USA
| |
Collapse
|
4
|
Fowler JWM, Song L, Tam K, Roth Flach RJ. Targeting lymphatic function in cardiovascular-kidney-metabolic syndrome: preclinical methods to analyze lymphatic function and therapeutic opportunities. Front Cardiovasc Med 2024; 11:1412857. [PMID: 38915742 PMCID: PMC11194411 DOI: 10.3389/fcvm.2024.1412857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
The lymphatic vascular system spans nearly every organ in the body and serves as an important network that maintains fluid, metabolite, and immune cell homeostasis. Recently, there has been a growing interest in the role of lymphatic biology in chronic disorders outside the realm of lymphatic abnormalities, lymphedema, or oncology, such as cardiovascular-kidney-metabolic syndrome (CKM). We propose that enhancing lymphatic function pharmacologically may be a novel and effective way to improve quality of life in patients with CKM syndrome by engaging multiple pathologies at once throughout the body. Several promising therapeutic targets that enhance lymphatic function have already been reported and may have clinical benefit. However, much remains unclear of the discreet ways the lymphatic vasculature interacts with CKM pathogenesis, and translation of these therapeutic targets to clinical development is challenging. Thus, the field must improve characterization of lymphatic function in preclinical mouse models of CKM syndrome to better understand molecular mechanisms of disease and uncover effective therapies.
Collapse
Affiliation(s)
| | | | | | - Rachel J. Roth Flach
- Internal Medicine Research Unit, Pfizer Research and Development, Cambridge, MA, United States
| |
Collapse
|
5
|
Wu X, Ma Y, Zhang Z, Hou T, He Y. New targets of nascent lymphatic vessels in ocular diseases. Front Physiol 2024; 15:1374627. [PMID: 38529484 PMCID: PMC10961382 DOI: 10.3389/fphys.2024.1374627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Recent advancements in the field of endothelial markers of lymphatic vessels and lymphangiogenic factors have shed light on the association between several ocular diseases and ocular nascent lymphatic vessels. The immune privilege of corneal tissue typically limits the formation of lymphatic vessels in a healthy eye. However, vessels in the eyes can potentially undergo lymphangiogenesis and be conditionally activated. It is evident that nascent lymphatic vessels in the eyes contribute to various ocular pathologies. Conversely, lymphatic vessels are present in the corneal limbus, ciliary body, lacrimal glands, optic nerve sheaths, and extraocular muscles, while a lymphatic vasculature-like system exists in the choroid, that can potentially cause several ocular pathologies. Moreover, numerous studies indicate that many ocular diseases can influence or activate nascent lymphatic vessels, ultimately affecting patient prognosis. By understanding the mechanisms underlying the onset, development, and regression of ocular nascent lymphatic vessels, as well as exploring related research on ocular diseases, this article aims to offer novel perspectives for the treatment of such conditions.
Collapse
Affiliation(s)
- Xuhui Wu
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yunkun Ma
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhaochen Zhang
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Tingting Hou
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yuxi He
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Crossey E, Carty S, Shao F, Henao-Vasquez J, Ysasi AB, Zeng M, Hinds A, Lo M, Tilston-Lunel A, Varelas X, Jones MR, Fine A. Influenza Induces Lung Lymphangiogenesis Independent of YAP/TAZ Activity in Lymphatic Endothelial Cells. RESEARCH SQUARE 2024:rs.3.rs-3951689. [PMID: 38463972 PMCID: PMC10925403 DOI: 10.21203/rs.3.rs-3951689/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The lymphatic system consists of a vessel network lined by specialized lymphatic endothelial cells (LECs) that are responsible for tissue fluid homeostasis and immune cell trafficking. The mechanisms for organ-specific LEC responses to environmental cues are not well understood. We found robust lymphangiogenesis during influenza A virus infection in the adult mouse lung. We show that the number of LECs increases 2-fold at 7 days post-influenza infection (dpi) and 3-fold at 21 dpi, and that lymphangiogenesis is preceded by lymphatic dilation. We also show that the expanded lymphatic network enhances fluid drainage to mediastinal lymph nodes. Using EdU labeling, we found that a significantly higher number of pulmonary LECs are proliferating at 7 dpi compared to LECs in homeostatic conditions. Lineage tracing during influenza indicates that new pulmonary LECs are derived from preexisting LECs rather than non-LEC progenitors. Lastly, using a conditional LEC-specific YAP/TAZ knockout model, we established that lymphangiogenesis, fluid transport and the immune response to influenza are independent of YAP/TAZ activity in LECs. These findings were unexpected, as they indicate that YAP/TAZ signaling is not crucial for these processes.
Collapse
Affiliation(s)
- Erin Crossey
- Boston University Chobanian and Avedisian School of Medicine
| | - Senegal Carty
- Boston University Chobanian and Avedisian School of Medicine
| | - Fengzhi Shao
- Boston University Chobanian and Avedisian School of Medicine
| | | | | | - Michelle Zeng
- Boston University Chobanian and Avedisian School of Medicine
| | - Anne Hinds
- Boston University Chobanian and Avedisian School of Medicine
| | - Ming Lo
- Boston University Chobanian and Avedisian School of Medicine
| | | | | | - Matthew R Jones
- Boston University Chobanian and Avedisian School of Medicine
| | - Alan Fine
- Boston University Chobanian and Avedisian School of Medicine
| |
Collapse
|
7
|
Hu Z, Zhao X, Wu Z, Qu B, Yuan M, Xing Y, Song Y, Wang Z. Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct Target Ther 2024; 9:9. [PMID: 38172098 PMCID: PMC10764842 DOI: 10.1038/s41392-023-01723-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Lymphatic vessels, comprising the secondary circulatory system in human body, play a multifaceted role in maintaining homeostasis among various tissues and organs. They are tasked with a serious of responsibilities, including the regulation of lymph absorption and transport, the orchestration of immune surveillance and responses. Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks. Lymphangiogenesis, as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins, is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo. However, abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases. Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis, to further modulate the progression of diseases. Actually, an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation. Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis, but improves the efficacy of diverse treatments. In conclusion, we present a comprehensive overview of lymphatic vessel development and physiological functions, and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases. Moreover, we summarize the targeting therapeutic values of abnormal lymphangiogenesis, providing novel perspectives for treatment strategy of multiple human diseases.
Collapse
Affiliation(s)
- Zhaoliang Hu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xushi Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Bicheng Qu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Minxian Yuan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yanan Xing
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
8
|
Montenegro-Navarro N, García-Báez C, García-Caballero M. Molecular and metabolic orchestration of the lymphatic vasculature in physiology and pathology. Nat Commun 2023; 14:8389. [PMID: 38104163 PMCID: PMC10725466 DOI: 10.1038/s41467-023-44133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023] Open
Abstract
Lymphangiogenesis refers to the generation of new lymphatic vessels from pre-existing ones. During development and particular adult states, lymphatic endothelial cells (LEC) undergo reprogramming of their transcriptomic and signaling networks to support the high demands imposed by cell proliferation and migration. Although there has been substantial progress in identifying growth factors and signaling pathways controlling lymphangiogenesis in the last decades, insights into the role of metabolism in lymphatic cell functions are just emerging. Despite numerous similarities between the main metabolic pathways existing in LECs, blood ECs (BEC) and other cell types, accumulating evidence has revealed that LECs acquire a unique metabolic signature during lymphangiogenesis, and their metabolic engine is intertwined with molecular regulatory networks, resulting in a tightly regulated and interconnected process. Considering the implication of lymphatic dysfunction in cancer and lymphedema, alongside other pathologies, recent findings hold promising opportunities to develop novel therapeutic approaches. In this review, we provide an overview of the status of knowledge in the molecular and metabolic network regulating the lymphatic vasculature in health and disease.
Collapse
Affiliation(s)
- Nieves Montenegro-Navarro
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
| | - Claudia García-Báez
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
| | - Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain.
| |
Collapse
|
9
|
Yang Y, Wang X, Wang P. Signaling mechanisms underlying lymphatic vessel dysfunction in skin aging and possible anti-aging strategies. Biogerontology 2023; 24:727-740. [PMID: 36680698 DOI: 10.1007/s10522-023-10016-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
Aging-related skin diseases are gradually increasing due to the imbalance of cutaneous homeostasis in the aging population. Skin aging-induced inflammation promotes systemic inflammation and may lead to whole-body aging. Lymphatic vessels play an important role in maintaining fluid and homeostasis balance. In intrinsically aged skin, the number of lymphatic vessels decrease and their functions decline, which is related to the reduced adhesion junctions between lymphatic endothelial cells, particularly VE-cadherin. VEGFC/VEGFR-3 signal pathway plays an important role in remodeling and expansion of lymphatic vessels; the downregulation of this pathway contributes to the dysfunction of lymphatic vessels. Meanwhile, we proposed some additional mechanisms. Decline of the pumping activity of lymphatic vessels might be related to age-related changes in extracellular matrix, ROS increase, and eNOS/iNOS disturbances. In extrinsically aged skin, the hyperpermeability of lymphatic vessels results from a decrease in endothelial-specific tight junction molecules, upregulation of VEGF-A, and downregulation of the VEGFC/VEGFR-3 signaling pathway. Furthermore, some of the Phyto therapeutics could attenuate skin aging by modulating the lymphatic vessels. This review summarized the lymphatic vessel dysfunction in skin aging and anti-aging strategies based on lymphatic vessel modulation.
Collapse
Affiliation(s)
- Yuling Yang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
10
|
Fernandes LM, Tresemer J, Zhang J, Rios JJ, Scallan JP, Dellinger MT. Hyperactive KRAS/MAPK signaling disrupts normal lymphatic vessel architecture and function. Front Cell Dev Biol 2023; 11:1276333. [PMID: 37842094 PMCID: PMC10571159 DOI: 10.3389/fcell.2023.1276333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Complex lymphatic anomalies (CLAs) are sporadically occurring diseases caused by the maldevelopment of lymphatic vessels. We and others recently reported that somatic activating mutations in KRAS can cause CLAs. However, the mechanisms by which activating KRAS mutations cause CLAs are poorly understood. Here, we show that KRASG12D expression in lymphatic endothelial cells (LECs) during embryonic development impairs the formation of lymphovenous valves and causes the enlargement of lymphatic vessels. We demonstrate that KRASG12D expression in primary human LECs induces cell spindling, proliferation, and migration. It also increases AKT and ERK1/2 phosphorylation and decreases the expression of genes that regulate the maturation of lymphatic vessels. We show that MEK1/2 inhibition with the FDA-approved drug trametinib suppresses KRASG12D-induced morphological changes, proliferation, and migration. Trametinib also decreases ERK1/2 phosphorylation and increases the expression of genes that regulate the maturation of lymphatic vessels. We also show that trametinib and Cre-mediated expression of a dominant-negative form of MEK1 (Map2k1 K97M) suppresses KRASG12D-induced lymphatic vessel hyperplasia in embryos. Last, we demonstrate that conditional knockout of wild-type Kras in LECs does not affect the formation or function of lymphatic vessels. Together, our data indicate that KRAS/MAPK signaling must be tightly regulated during embryonic development for the proper development of lymphatic vessels and further support the testing of MEK1/2 inhibitors for treating CLAs.
Collapse
Affiliation(s)
- Lorenzo M. Fernandes
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, United States
| | - Jeffrey Tresemer
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, United States
| | - Jing Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Jonathan J. Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, United States
- McDermott Center for Human Growth and Development, Dallas, TX, United States
| | - Joshua P. Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Michael T. Dellinger
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, United States
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
11
|
Jablon KL, Akerstrom VL, Li M, Braun SE, Norton CE, Castorena-Gonzalez JA. Isolation and short-term culturing of primary lymphatic endothelial cells from collecting lymphatics: A techniques study. Microcirculation 2023; 30:e12778. [PMID: 35879879 PMCID: PMC9873843 DOI: 10.1111/micc.12778] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To develop an experimental method for routine isolation and short-term culture of primary lymphatic endothelial cells from specific collecting vessels. METHODS Lymphatic endothelial cell tubes (LECTs) were isolated from micro-dissected collecting vessels. LECTs were allowed to attach and grow for ~3 weeks before being passaged. Non-purified cultures were partially characterized by immunofluorescence and RT-PCR at passages 1-2. RESULTS The method was validated in cultures of primary lymphatic endothelial cells (LECs) from male and female mice. After 1 or 2 passages, >60% of the LECs maintained expression of Prox1. Expression of 22 different genes was assessed using RT-PCR. Prox1, Vegfr3, eNos, Cdh5, Pecam1, Cx43, Cx37, and Cx47, among others, were expressed in these short-term cultured LECs, while Myh11, Cnn1, Desmin, and Cd11b were not detected. Prox1 expression, as determined by western blotting, was similar in cultured LECs from age-matched male and female mice. Confocal imaging of intracellular calcium in cultures of primary LECs from Cdh5-GCaMP8 mice demonstrated that a functional phenotype was maintained, similar to lymphatic endothelial cells in freshly isolated vessels. CONCLUSIONS This method provides an innovative tool for routine isolation and study of primary LECs from specific collecting lymphatic vessels from any mouse, and in fact, from other species.
Collapse
Affiliation(s)
- Kelli L. Jablon
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Victoria L. Akerstrom
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Min Li
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Stephen E. Braun
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
- Division of Immunology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Charles E. Norton
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| | | |
Collapse
|
12
|
Banerjee P, Kumaravel S, Roy S, Gaddam N, Odeh J, Bayless KJ, Glaser S, Chakraborty S. Conjugated Bile Acids Promote Lymphangiogenesis by Modulation of the Reactive Oxygen Species-p90RSK-Vascular Endothelial Growth Factor Receptor 3 Pathway. Cells 2023; 12:526. [PMID: 36831193 PMCID: PMC9953922 DOI: 10.3390/cells12040526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Conjugated bile acids (BA) are significantly elevated in several liver pathologies and in the metastatic lymph node (LN). However, the effects of BAs on pathological lymphangiogenesis remains unknown. The current study explores the effects of BAs on lymphangiogenesis. BA levels were elevated in the LN and serum of Mdr2-/- mice (model of sclerosing cholangitis) compared to control mice. Liver and LN tissue sections showed a clear expansion of the lymphatic network in Mdr2-/- mice, indicating activated lymphangiogenic pathways. Human lymphatic endothelial cells (LECs) expressed BA receptors and a direct treatment with conjugated BAs enhanced invasion, migration, and tube formation. BAs also altered the LEC metabolism and upregulated key metabolic genes. Further, BAs induced the production of reactive oxygen species (ROS), that in turn phosphorylated the redox-sensitive kinase p90RSK, an essential regulator of endothelial cell dysfunction and oxidative stress. Activated p90RSK increased the SUMOylation of the Prox1 transcription factor and enhanced VEGFR3 expression and 3-D LEC invasion. BA-induced ROS in the LECs, which led to increased levels of Yes-associated protein (YAP), a lymphangiogenesis regulator. The suppression of cellular YAP inhibited BA-induced VEGFR3 upregulation and lymphangiogenic mechanism. Overall, our data shows the expansion of the lymphatic network in presclerotic liver disease and establishes a novel mechanism whereby BAs promote lymphangiogenesis.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Subhashree Kumaravel
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Sukanya Roy
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Niyanshi Gaddam
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Johnny Odeh
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Kayla J. Bayless
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
13
|
Li J, Yu J, Huang W, Sang F, Li J, Ren Y, Huang H, Wang M, Li K, Zhang J, Li H, Cui X, Zhang J, Hu M, Yuan F, Guo W, Zhang F, Mu H, Hu Y. Extracellular HSP90 promotes differentiation of lens epithelial cells to fiber cells by activating LRP1-YAP-PROX1 axis. FASEB J 2023; 37:e22783. [PMID: 36705056 DOI: 10.1096/fj.202201187rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023]
Abstract
Capsular residual lens epithelial cells (CRLEC) undergo differentiation to fiber cells for lens regeneration or tansdifferentiation to myofibroblasts leading to posterior capsular opacification (PCO) after cataract surgery. The underlying regulatory mechanism remains unclear. Using human lens epithelial cell lines and the ex vivo cultured rat lens capsular bag model, we found that the lens epithelial cells secrete HSP90α extracellularly (eHSP90) through an autophagy-associated pathway. Administration of recombinant GST-HSP90α protein or its M-domain induces the elongation of rat CRLEC cells with concomitant upregulation of the crucial fiber cell transcriptional factor PROX1and its downstream targets, β- and γ-crystallins and structure proteins. This regulation is abolished by PROX1 siRNA. GST-HSP90α upregulates PROX1 by binding to LRP1 and activating LRP1-AKT mediated YAP degradation. The upregulation of GST-HSP90α on PROX1 expression and CRLEC cell elongation is inhibited by LRP1 and AKT inhibitors, but activated by YAP-1 inhibitor (VP). These data demonstrated that the capsular residue epithelial cells upregulate and secrete eHSP90α, which in turn drive the differentiation of lens epithelial cell to fiber cells. The recombinant HSP90α protein is a potential novel differentiation regulator during lens regeneration.
Collapse
Affiliation(s)
- Jing Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China.,Kaifeng Key Lab for Cataract and Myopia, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China
| | - Jingjing Yu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Weikang Huang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Fan Sang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Junmin Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Yanzhu Ren
- Kaifeng Key Lab for Cataract and Myopia, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China
| | - Huili Huang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Mingli Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Kejia Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Jun Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Hui Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Xiukun Cui
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Jing Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Mengyue Hu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Fengling Yuan
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Weikai Guo
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China
| | - Fengyan Zhang
- Department of ophthalmology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongmei Mu
- Kaifeng Key Lab for Cataract and Myopia, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China
| | - Yanzhong Hu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, China.,Kaifeng Key Lab for Cataract and Myopia, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China.,Department of ophthalmology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
González-Hernández S, Mukouyama YS. Lymphatic vasculature in the central nervous system. Front Cell Dev Biol 2023; 11:1150775. [PMID: 37091974 PMCID: PMC10119411 DOI: 10.3389/fcell.2023.1150775] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
The central nervous system (CNS) is considered as an immune privilege organ, based on experiments in the mid 20th century showing that the brain fails to mount an efficient immune response against an allogeneic graft. This suggests that in addition to the presence of the blood-brain barrier (BBB), the apparent absence of classical lymphatic vasculature in the CNS parenchyma limits the capacity for an immune response. Although this view is partially overturned by the recent discovery of the lymphatic-like hybrid vessels in the Schlemm's canal in the eye and the lymphatic vasculature in the outmost layer of the meninges, the existence of lymphatic vessels in the CNS parenchyma has not been reported. Two potential mechanisms by which lymphatic vasculature may arise in the organs are: 1) sprouting and invasion of lymphatic vessels from the surrounding tissues into the parenchyma and 2) differentiation of blood endothelial cells into lymphatic endothelial cells in the parenchyma. Considering these mechanisms, we here discuss what causes the dearth of lymphatic vessels specifically in the CNS parenchyma.
Collapse
|
15
|
Geng X, Srinivasan RS. Molecular Mechanisms Driving Lymphedema and Other Lymphatic Anomalies. Cold Spring Harb Perspect Med 2022; 12:a041272. [PMID: 35817543 PMCID: PMC9341459 DOI: 10.1101/cshperspect.a041272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lymphatic vasculature regulates fluid homeostasis by absorbing interstitial fluid and returning it to blood. Lymphatic vasculature is also critical for lipid absorption and inflammatory response. Lymphatic vasculature is composed of lymphatic capillaries, collecting lymphatic vessels, lymphatic valves, and lymphovenous valves. Defects in any of these structures could lead to lymphatic anomalies such as lymphedema, cystic lymphatic malformation, and Gorham-Stout disease. Basic research has led to a deeper understanding of the stepwise development of the lymphatic vasculature. VEGF-C and shear stress signaling pathways have evolved as critical regulators of lymphatic vascular development. Loss-of-function and gain-of-function mutations in genes that are involved in these signaling pathways are associated with lymphatic anomalies. Importantly, drugs that target these molecules are showing outstanding efficacy in treating certain lymphatic anomalies. In this article, we summarize these exciting developments and highlight the future challenges.
Collapse
Affiliation(s)
- Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73013, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73013, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, USA
| |
Collapse
|
16
|
Wang M, Yu W, Cao X, Gu H, Huang J, Wu C, Wang L, Sha X, Shen B, Wang T, Yao Y, Zhu W, Huang F. Exosomal CD44 Transmits Lymph Node Metastatic Capacity Between Gastric Cancer Cells via YAP-CPT1A-Mediated FAO Reprogramming. Front Oncol 2022; 12:860175. [PMID: 35359362 PMCID: PMC8960311 DOI: 10.3389/fonc.2022.860175] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
Background Lymph node metastasis (LNM) commonly occurs in gastric cancer (GC) and is tightly associated with poor prognosis. Exosome-mediated lymphangiogenesis has been considered an important driver of LNM. Whether exosomes directly transmit the LNM phenotype between GC cells and its mechanisms remain elusive. Methods A highly lymphatic metastatic GC cell line (HGC-27-L) was established by serial passage of parental HGC-27 cells in BALB/c nude mice. The capacities of migration, invasion and LNM; fatty acid oxidation (FAO) levels; and the role of exosome-transferred LNM phenotype were compared among HGC-27-L, HGC-27 and primary GC cell line AGS. Exosomes derived from GC cells and sera were separately isolated using ultracentrifugation and ExoQuick exosome precipitation solution, and were characterized by transmission electron microscopy, Nanosight and western blotting. Transwell assay and LNM models were conducted to evaluate the capacities of migration, invasion and LNM of GC cells in vitro and in vivo. β-oxidation rate and CPT1 activity were measured to assess FAO. CPT1A inhibitor etomoxir was used to determine the role of FAO. Label-free LC-MS/MS proteome analysis screened the differential protein profiling between HGC-27-exosomes and AGS-exosomes. Small interference RNAs and YAP inhibitor verteporfin were used to elucidate the role and mechanism of exosomal CD44. TCGA data analysis, immunochemistry staining and ELISA were performed to analyze the expression correlation and clinical significance of CD44/YAP/CPT1A. Results FAO was increased in lymphatic metastatic GC cells and indispensable for sustaining LNM capacity. Lymphatic metastatic GC cell-exosomes conferred LNM capacity on primary GC cells in an FAO-dependent way. Mechanistically, CD44 was identified to be enriched in HGC-27-exosomes and was a critical cargo protein regulating exosome-mediated transmission, possibly by modulating the RhoA/YAP/Prox1/CPT1A signaling axis. Abnormal expression of CD44/YAP/CPT1A in GC tissues was correlated with each other and associated with LNM status, stages, invasion and poor survival. Serum exosomal CD44 concentration was positively correlated with tumor burden in lymph nodes. Conclusions We uncovered a novel mechanism: exosomal CD44 transmits LNM capacity between GC cells via YAP-CPT1A-mediated FAO reprogramming from the perspective of exosomes-transferred LNM phenotype. This provides potential therapeutic targets and a non-invasive biomarker for GC patients with LNM.
Collapse
Affiliation(s)
- Mei Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wanjun Yu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Hongbing Gu
- Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China
| | - Jiaying Huang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chen Wu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lin Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xin Sha
- Department of Surgery, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Bo Shen
- Department of Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Ting Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yongliang Yao
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China
| | - Wei Zhu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Feng Huang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China
- Department of Clinical Laboratory, Maternal and Child Health Care Hospital of Kunshan, Suzhou, China
| |
Collapse
|
17
|
Xia Q, Dong H, Guo Y, Fang K, Hu M, Xu L, Lu F, Gong J. The role of lacteal integrity and junction transformation in obesity: A promising therapeutic target? Front Endocrinol (Lausanne) 2022; 13:1007856. [PMID: 36506056 PMCID: PMC9729342 DOI: 10.3389/fendo.2022.1007856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/08/2022] [Indexed: 11/26/2022] Open
Abstract
Lacteals are the central lymphatic vessels in the villi of the small intestine and perform nutrient absorption, especially dietary lipids, and the transportation of antigen and antigen-presenting cells. Remodeling, proliferation, and cell-cell junctions of lymphatic endothelial cells (LECs) in lacteals are the basis of the maintenance of lacteal integrity and dietary lipid absorption. Normal lipid absorption in the diet depends on sound lacteal development and proliferation, especially integrity maintenance, namely, maintaining the appropriate proportion of button-like and zipper-like junctions. Maintaining the integrity and transforming button-to-zipper junctions in lacteals are strongly connected with obesity, which could be regulated by intestinal flora and molecular signalings, such as vascular endothelial growth factor C-vascular endothelial growth receptor 3 (VEGFC-VEGFR3) signaling, Hippo signaling, Notch signaling, angiopoietin-TIE signaling, VEGF-A/VEGFR2 signaling, and PROX1. This manuscript reviews the molecular mechanism of development, integrity maintenance, and junction transformation in lacteal related to obesity.
Collapse
Affiliation(s)
- Qingsong Xia
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yujin Guo
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ke Fang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meilin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lijun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuer Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Jing Gong, ; Fuer Lu,
| | - Jing Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Jing Gong, ; Fuer Lu,
| |
Collapse
|
18
|
Tabrizi ZB, Ahmed NS, Horder JL, Storr SJ, Benest AV. Transcription Factor Control of Lymphatic Quiescence and Maturation of Lymphatic Neovessels in Development and Physiology. Front Physiol 2021; 12:672987. [PMID: 34795596 PMCID: PMC8593113 DOI: 10.3389/fphys.2021.672987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/30/2021] [Indexed: 11/25/2022] Open
Abstract
The lymphatic system is a vascular system comprising modified lymphatic endothelial cells, lymph nodes and other lymphoid organs. The system has diverse, but critical functions in both physiology and pathology, and forms an interface between the blood vascular and immune system. It is increasingly evident that remodelling of the lymphatic system occurs alongside remodelling of the blood microvascular system, which is now considered a hallmark of most pathological conditions as well as being critical for normal development. Much attention has focussed on how the blood endothelium undergoes phenotypic switching in development and disease, resulting in over two decades of research to probe the mechanisms underlying the resulting heterogeneity. The lymphatic system has received less attention, and consequently there are fewer descriptions of functional and molecular heterogeneity, but differential transcription factor activity is likely an important control mechanism. Here we introduce and discuss significant transcription factors of relevance to coordinating cellular responses during lymphatic remodelling as the lymphatic endothelium dynamically changes from quiescence to actively remodelling.
Collapse
Affiliation(s)
- Zarah B Tabrizi
- Endothelial Quiescence Group, University of Nottingham, Nottingham, United Kingdom
| | - Nada S Ahmed
- Endothelial Quiescence Group, University of Nottingham, Nottingham, United Kingdom
| | - Joseph L Horder
- Endothelial Quiescence Group, University of Nottingham, Nottingham, United Kingdom
| | - Sarah J Storr
- Nottingham Breast Cancer Research Centre, Centre for Cancer Sciences School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Andrew V Benest
- Endothelial Quiescence Group, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
19
|
Geng X, Srinivasan SR. Whole-mount Immunohistochemistry to Visualize Mouse Embryonic Dermal Lymphatic Vasculature. Bio Protoc 2021; 11:e4186. [PMID: 34761060 PMCID: PMC8554805 DOI: 10.21769/bioprotoc.4186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 11/02/2022] Open
Abstract
Lymphatic vessels are abundant in the skin where they regulate interstitial fluid uptake and immune surveillance. Defects in dermal lymphatic vessels, such as fewer vessels and abnormal lymphatic vessel coverage with mural cells, are frequently associated with lymphedema and other lymphatic disorders. Whole-mount immunohistochemistry allows the visualization of dermal lymphatic vessels and identifies morphogenetic defects. Most dermal lymphatic vessels start growing during embryogenesis from lymph sacs that are located close to the axilla towards the dorsal and ventral midlines. Here, we present an approach that we have developed to permeabilize, immunolabel, clear, and visualize the lymphatic vessels. These simple and inexpensive techniques reproducibly generate images of dermal lymphatic vessels with great clarity.
Collapse
Affiliation(s)
- Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73013, USA
| | - Sathish R. Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73013, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| |
Collapse
|
20
|
Martin-Almedina S, Mortimer PS, Ostergaard P. Development and physiological functions of the lymphatic system: insights from human genetic studies of primary lymphedema. Physiol Rev 2021; 101:1809-1871. [PMID: 33507128 DOI: 10.1152/physrev.00006.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Primary lymphedema is a long-term (chronic) condition characterized by tissue lymph retention and swelling that can affect any part of the body, although it usually develops in the arms or legs. Due to the relevant contribution of the lymphatic system to human physiology, while this review mainly focuses on the clinical and physiological aspects related to the regulation of fluid homeostasis and edema, clinicians need to know that the impact of lymphatic dysfunction with a genetic origin can be wide ranging. Lymphatic dysfunction can affect immune function so leading to infection; it can influence cancer development and spread, and it can determine fat transport so impacting on nutrition and obesity. Genetic studies and the development of imaging techniques for the assessment of lymphatic function have enabled the recognition of primary lymphedema as a heterogenic condition in terms of genetic causes and disease mechanisms. In this review, the known biological functions of several genes crucial to the development and function of the lymphatic system are used as a basis for understanding normal lymphatic biology. The disease conditions originating from mutations in these genes are discussed together with a detailed clinical description of the phenotype and the up-to-date knowledge in terms of disease mechanisms acquired from in vitro and in vivo research models.
Collapse
Affiliation(s)
- Silvia Martin-Almedina
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| | - Peter S Mortimer
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
- Dermatology and Lymphovascular Medicine, St. George's Universities NHS Foundation Trust, London, United Kingdom
| | - Pia Ostergaard
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| |
Collapse
|
21
|
Geng X, Ho YC, Srinivasan RS. Biochemical and mechanical signals in the lymphatic vasculature. Cell Mol Life Sci 2021; 78:5903-5923. [PMID: 34240226 PMCID: PMC11072415 DOI: 10.1007/s00018-021-03886-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022]
Abstract
Lymphatic vasculature is an integral part of the cardiovascular system where it maintains interstitial fluid balance. Additionally, lymphatic vasculature regulates lipid assimilation and inflammatory response. Lymphatic vasculature is composed of lymphatic capillaries, collecting lymphatic vessels and valves that function in synergy to absorb and transport fluid against gravitational and pressure gradients. Defects in lymphatic vessels or valves leads to fluid accumulation in tissues (lymphedema), chylous ascites, chylothorax, metabolic disorders and inflammation. The past three decades of research has identified numerous molecules that are necessary for the stepwise development of lymphatic vasculature. However, approaches to treat lymphatic disorders are still limited to massages and compression bandages. Hence, better understanding of the mechanisms that regulate lymphatic vascular development and function is urgently needed to develop efficient therapies. Recent research has linked mechanical signals such as shear stress and matrix stiffness with biochemical pathways that regulate lymphatic vessel growth, patterning and maturation and valve formation. The goal of this review article is to highlight these innovative developments and speculate on unanswered questions.
Collapse
Affiliation(s)
- Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73013, USA
| | - Yen-Chun Ho
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73013, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73013, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
22
|
Regulation of VEGFR Signalling in Lymphatic Vascular Development and Disease: An Update. Int J Mol Sci 2021; 22:ijms22147760. [PMID: 34299378 PMCID: PMC8306507 DOI: 10.3390/ijms22147760] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/02/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
The importance of lymphatic vessels in a myriad of human diseases is rapidly gaining recognition; lymphatic vessel dysfunction is a feature of disorders including congenital lymphatic anomalies, primary lymphoedema and obesity, while improved lymphatic vessel function increases the efficacy of immunotherapy for cancer and neurological disease and promotes cardiac repair following myocardial infarction. Understanding how the growth and function of lymphatic vessels is precisely regulated therefore stands to inform the development of novel therapeutics applicable to a wide range of human diseases. Lymphatic vascular development is initiated during embryogenesis following establishment of the major blood vessels and the onset of blood flow. Lymphatic endothelial progenitor cells arise from a combination of venous and non-venous sources to generate the initial lymphatic vascular structures in the vertebrate embryo, which are then further ramified and remodelled to elaborate an extensive lymphatic vascular network. Signalling mediated via vascular endothelial growth factor (VEGF) family members and vascular endothelial growth factor receptor (VEGFR) tyrosine kinases is crucial for development of both the blood and lymphatic vascular networks, though distinct components are utilised to different degrees in each vascular compartment. Although much is known about the regulation of VEGFA/VEGFR2 signalling in the blood vasculature, less is understood regarding the mechanisms by which VEGFC/VEGFD/VEGFR3 signalling is regulated during lymphatic vascular development. This review will focus on recent advances in our understanding of the cellular and molecular mechanisms regulating VEGFA-, VEGFC- and VEGFD-mediated signalling via VEGFRs which are important for driving the construction of lymphatic vessels during development and disease.
Collapse
|
23
|
Abstract
The lymphatic vasculature plays important role in regulating fluid homeostasis, intestinal lipid absorption, and immune surveillance in humans. Malfunction of lymphatic vasculature leads to several human diseases. Understanding the fundamental mechanism in lymphatic vascular development not only expand our knowledge, but also provide a new therapeutic insight. Recently, Hippo-YAP/TAZ signaling pathway, a key mechanism of organ size and tissue homeostasis, has emerged as a critical player that regulate lymphatic specification, sprouting, and maturation. In this review, we discuss the mechanistic regulation and pathophysiological significant of Hippo pathway in lymphatic vascular development.
Collapse
Affiliation(s)
- Boksik Cha
- Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Sungjin Moon
- Department of Biological Science, Kangwon National University, Chuncheon 24341, Korea
| | - Wantae Kim
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
24
|
Francois M, Oszmiana A, Harvey NL. When form meets function: the cells and signals that shape the lymphatic vasculature during development. Development 2021; 148:268989. [PMID: 34080610 DOI: 10.1242/dev.167098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The lymphatic vasculature is an integral component of the cardiovascular system. It is essential to maintain tissue fluid homeostasis, direct immune cell trafficking and absorb dietary lipids from the digestive tract. Major advances in our understanding of the genetic and cellular events important for constructing the lymphatic vasculature during development have recently been made. These include the identification of novel sources of lymphatic endothelial progenitor cells, the recognition of lymphatic endothelial cell specialisation and heterogeneity, and discovery of novel genes and signalling pathways underpinning developmental lymphangiogenesis. Here, we review these advances and discuss how they inform our understanding of lymphatic network formation, function and dysfunction.
Collapse
Affiliation(s)
- Mathias Francois
- The David Richmond Laboratory for Cardiovascular Development: Gene Regulation and Editing Program, The Centenary Institute, The University of Sydney, SOLES, 2006 Camperdown, Australia
| | - Anna Oszmiana
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide 5001, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide 5001, Australia
| |
Collapse
|
25
|
Hernández Vásquez MN, Ulvmar MH, González-Loyola A, Kritikos I, Sun Y, He L, Halin C, Petrova TV, Mäkinen T. Transcription factor FOXP2 is a flow-induced regulator of collecting lymphatic vessels. EMBO J 2021; 40:e107192. [PMID: 33934370 PMCID: PMC8204859 DOI: 10.15252/embj.2020107192] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/26/2022] Open
Abstract
The lymphatic system is composed of a hierarchical network of fluid absorbing lymphatic capillaries and transporting collecting vessels. Despite distinct functions and morphologies, molecular mechanisms that regulate the identity of the different vessel types are poorly understood. Through transcriptional analysis of murine dermal lymphatic endothelial cells (LECs), we identified Foxp2, a member of the FOXP family of transcription factors implicated in speech development, as a collecting vessel signature gene. FOXP2 expression was induced after initiation of lymph flow in vivo and upon shear stress on primary LECs in vitro. Loss of FOXC2, the major flow-responsive transcriptional regulator of lymphatic valve formation, abolished FOXP2 induction in vitro and in vivo. Genetic deletion of Foxp2 in mice using the endothelial-specific Tie2-Cre or the tamoxifen-inducible LEC-specific Prox1-CreERT2 line resulted in enlarged collecting vessels and defective valves characterized by loss of NFATc1 activity. Our results identify FOXP2 as a new flow-induced transcriptional regulator of collecting lymphatic vessel morphogenesis and highlight the existence of unique transcription factor codes in the establishment of vessel-type-specific endothelial cell identities.
Collapse
Affiliation(s)
| | - Maria H Ulvmar
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Alejandra González-Loyola
- Vascular and Tumor Biology Laboratory, Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Ioannis Kritikos
- Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Ying Sun
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Tatiana V Petrova
- Vascular and Tumor Biology Laboratory, Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
26
|
Mechanosensation and Mechanotransduction by Lymphatic Endothelial Cells Act as Important Regulators of Lymphatic Development and Function. Int J Mol Sci 2021; 22:ijms22083955. [PMID: 33921229 PMCID: PMC8070425 DOI: 10.3390/ijms22083955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Our understanding of the function and development of the lymphatic system is expanding rapidly due to the identification of specific molecular markers and the availability of novel genetic approaches. In connection, it has been demonstrated that mechanical forces contribute to the endothelial cell fate commitment and play a critical role in influencing lymphatic endothelial cell shape and alignment by promoting sprouting, development, maturation of the lymphatic network, and coordinating lymphatic valve morphogenesis and the stabilization of lymphatic valves. However, the mechanosignaling and mechanotransduction pathways involved in these processes are poorly understood. Here, we provide an overview of the impact of mechanical forces on lymphatics and summarize the current understanding of the molecular mechanisms involved in the mechanosensation and mechanotransduction by lymphatic endothelial cells. We also discuss how these mechanosensitive pathways affect endothelial cell fate and regulate lymphatic development and function. A better understanding of these mechanisms may provide a deeper insight into the pathophysiology of various diseases associated with impaired lymphatic function, such as lymphedema and may eventually lead to the discovery of novel therapeutic targets for these conditions.
Collapse
|
27
|
Marziano C, Genet G, Hirschi KK. Vascular endothelial cell specification in health and disease. Angiogenesis 2021; 24:213-236. [PMID: 33844116 PMCID: PMC8205897 DOI: 10.1007/s10456-021-09785-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/17/2021] [Indexed: 02/08/2023]
Abstract
There are two vascular networks in mammals that coordinately function as the main supply and drainage systems of the body. The blood vasculature carries oxygen, nutrients, circulating cells, and soluble factors to and from every tissue. The lymphatic vasculature maintains interstitial fluid homeostasis, transports hematopoietic cells for immune surveillance, and absorbs fat from the gastrointestinal tract. These vascular systems consist of highly organized networks of specialized vessels including arteries, veins, capillaries, and lymphatic vessels that exhibit different structures and cellular composition enabling distinct functions. All vessels are composed of an inner layer of endothelial cells that are in direct contact with the circulating fluid; therefore, they are the first responders to circulating factors. However, endothelial cells are not homogenous; rather, they are a heterogenous population of specialized cells perfectly designed for the physiological demands of the vessel they constitute. This review provides an overview of the current knowledge of the specification of arterial, venous, capillary, and lymphatic endothelial cell identities during vascular development. We also discuss how the dysregulation of these processes can lead to vascular malformations, and therapeutic approaches that have been developed for their treatment.
Collapse
Affiliation(s)
- Corina Marziano
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Gael Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Department of Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
28
|
Ma W, Gil HJ, Liu X, Diebold LP, Morgan MA, Oxendine-Burns MJ, Gao P, Chandel NS, Oliver G. Mitochondrial respiration controls the Prox1-Vegfr3 feedback loop during lymphatic endothelial cell fate specification and maintenance. SCIENCE ADVANCES 2021; 7:7/18/eabe7359. [PMID: 33931446 PMCID: PMC8087398 DOI: 10.1126/sciadv.abe7359] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/11/2021] [Indexed: 05/09/2023]
Abstract
Recent findings indicate that mitochondrial respiration regulates blood endothelial cell proliferation; however, its role in differentiating lymphatic endothelial cells (LECs) is unknown. We hypothesized that mitochondria could work as a sensor of LECs' metabolic specific needs by determining their functional requirements according to their differentiation status and local tissue microenvironment. Accordingly, we conditionally deleted the QPC subunit of mitochondrial complex III in differentiating LECs of mouse embryos. Unexpectedly, mutant mice were devoid of a lymphatic vasculature by mid-gestation, a consequence of the specific down-regulation of main LEC fate regulators, particularly Vegfr3, leading to the loss of LEC fate. Mechanistically, this is a result of reduced H3K4me3 and H3K27ac in the genomic locus of key LEC fate controllers (e.g., Vegfr3 and Prox1). Our findings indicate that by sensing the LEC differentiation status and microenvironmental metabolic conditions, mitochondrial complex III regulates the critical Prox1-Vegfr3 feedback loop and, therefore, LEC fate specification and maintenance.
Collapse
Affiliation(s)
- Wanshu Ma
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, USA
| | - Hyea Jin Gil
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, USA
| | - Xiaolei Liu
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, USA
| | - Lauren P Diebold
- Department of Medicine and Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marc A Morgan
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael J Oxendine-Burns
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, USA
| | - Peng Gao
- Robert H. Lurie Cancer Center Metabolomics Core, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Navdeep S Chandel
- Department of Medicine and Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Cancer Center Metabolomics Core, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
29
|
Cha B, Ho YC, Geng X, Mahamud MR, Chen L, Kim Y, Choi D, Kim TH, Randolph GJ, Cao X, Chen H, Srinivasan RS. YAP and TAZ maintain PROX1 expression in the developing lymphatic and lymphovenous valves in response to VEGF-C signaling. Development 2020; 147:dev195453. [PMID: 33060128 PMCID: PMC7758626 DOI: 10.1242/dev.195453] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/22/2020] [Indexed: 01/07/2023]
Abstract
Lymphatic vasculature is an integral part of digestive, immune and circulatory systems. The homeobox transcription factor PROX1 is necessary for the development of lymphatic vessels, lymphatic valves (LVs) and lymphovenous valves (LVVs). We and others previously reported a feedback loop between PROX1 and vascular endothelial growth factor-C (VEGF-C) signaling. PROX1 promotes the expression of the VEGF-C receptor VEGFR3 in lymphatic endothelial cells (LECs). In turn, VEGF-C signaling maintains PROX1 expression in LECs. However, the mechanisms of PROX1/VEGF-C feedback loop remain poorly understood. Whether VEGF-C signaling is necessary for LV and LVV development is also unknown. Here, we report for the first time that VEGF-C signaling is necessary for valve morphogenesis. We have also discovered that the transcriptional co-activators YAP and TAZ are required to maintain PROX1 expression in LVs and LVVs in response to VEGF-C signaling. Deletion of Yap and Taz in the lymphatic vasculature of mouse embryos did not affect the formation of LVs or LVVs, but resulted in the degeneration of these structures. Our results have identified VEGF-C, YAP and TAZ as a crucial molecular pathway in valve development.
Collapse
Affiliation(s)
- Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Yen-Chun Ho
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Md Riaj Mahamud
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Lijuan Chen
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Yeunhee Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Dongwon Choi
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tae Hoon Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Xinwei Cao
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| |
Collapse
|