1
|
Elorriaga V, Bouloudi B, Delberghe E, Saillour Y, Morel JS, Azzam P, Moreau MX, Stottmann R, Bahi-Buisson N, Pierani A, Spassky N, Causeret F. Differential contribution of P73+ Cajal-Retzius cells and Reelin to cortical morphogenesis. Development 2025; 152:dev204451. [PMID: 40207459 DOI: 10.1242/dev.204451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
Cajal-Retzius cells (CRs) are peculiar neurons in the developing mammalian cerebral cortex. They robustly secrete Reln, a glycoprotein essential for the establishment of cortical layers through the control of radial migration. We previously identified Gmnc as a crucial fate determinant for P73+ CR subtypes. In Gmnc-/- mutants, P73+ CRs are initially produced and cover the telencephalic vesicle but undergo massive apoptosis resulting in their complete depletion at mid-corticogenesis. Here, we investigated the consequences of such a CR depletion on dorsal cortex lamination and hippocampal morphogenesis. We found that preplate splitting normally occurs in Gmnc-/- mutants but is followed by defective radial migration arrest in the dorsal cortex, an altered cellular organization in the lateral cortex, aberrant hippocampal CA1 folding and lack of vasculature development in the hippocampal fissure. We then performed conditional Reln deletion in P73+ CRs to evaluate its relative contribution and found that only radial migration defects were recapitulated. We concluded that at mid-corticogenesis, CR-derived Reln is required for radial migration arrest and additionally identified Reln-independent functions for CRs in the control of hippocampal fissure formation and CA1 folding.
Collapse
Affiliation(s)
- Vicente Elorriaga
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France
| | - Benoît Bouloudi
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Elodie Delberghe
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France
| | - Yoann Saillour
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France
| | - Juliette S Morel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France
| | - Patrick Azzam
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France
| | - Matthieu X Moreau
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France
| | - Rolf Stottmann
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Nadia Bahi-Buisson
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France
| | - Alessandra Pierani
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Frédéric Causeret
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France
| |
Collapse
|
2
|
Yang Z. The Principle of Cortical Development and Evolution. Neurosci Bull 2025; 41:461-485. [PMID: 39023844 PMCID: PMC11876516 DOI: 10.1007/s12264-024-01259-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Human's robust cognitive abilities, including creativity and language, are made possible, at least in large part, by evolutionary changes made to the cerebral cortex. This paper reviews the biology and evolution of mammalian cortical radial glial cells (primary neural stem cells) and introduces the concept that a genetically step wise process, based on a core molecular pathway already in use, is the evolutionary process that has molded cortical neurogenesis. The core mechanism, which has been identified in our recent studies, is the extracellular signal-regulated kinase (ERK)-bone morphogenic protein 7 (BMP7)-GLI3 repressor form (GLI3R)-sonic hedgehog (SHH) positive feedback loop. Additionally, I propose that the molecular basis for cortical evolutionary dwarfism, exemplified by the lissencephalic mouse which originated from a larger gyrencephalic ancestor, is an increase in SHH signaling in radial glia, that antagonizes ERK-BMP7 signaling. Finally, I propose that: (1) SHH signaling is not a key regulator of primate cortical expansion and folding; (2) human cortical radial glial cells do not generate neocortical interneurons; (3) human-specific genes may not be essential for most cortical expansion. I hope this review assists colleagues in the field, guiding research to address gaps in our understanding of cortical development and evolution.
Collapse
Affiliation(s)
- Zhengang Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Dony L, Krontira AC, Kaspar L, Ahmad R, Demirel IS, Grochowicz M, Schäfer T, Begum F, Sportelli V, Raimundo C, Koedel M, Labeur M, Cappello S, Theis FJ, Cruceanu C, Binder EB. Chronic exposure to glucocorticoids amplifies inhibitory neuron cell fate during human neurodevelopment in organoids. SCIENCE ADVANCES 2025; 11:eadn8631. [PMID: 39951527 PMCID: PMC11827642 DOI: 10.1126/sciadv.adn8631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
Disruptions in the tightly regulated process of human brain development have been linked to increased risk for brain and mental illnesses. While the genetic contribution to these diseases is well established, important environmental factors have been less studied at molecular and cellular levels. Here, we used single-cell and cell type-specific techniques to investigate the effect of glucocorticoid (GC) exposure, a mediator of antenatal environmental risk, on gene regulation and lineage specification in unguided human neural organoids. We characterized the transcriptional response to chronic GC exposure during neural differentiation and studied the underlying gene regulatory networks by integrating single-cell transcriptomics with chromatin accessibility data. We found lasting cell type-specific changes that included autism risk genes and several transcription factors associated with neurodevelopment. Chronic GC exposure influenced lineage specification primarily by priming the inhibitory neuron lineage through transcription factors like PBX3. We provide evidence for convergence of genetic and environmental risk factors through a common mechanism of altering lineage specification.
Collapse
Affiliation(s)
- Leander Dony
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
- Institute of Computational Biology, Computational Health Center, Helmholtz Munich, 85764 Neuherberg, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
- German Center for Mental Health (DZPG), partner site Munich, Munich, Germany
| | - Anthi C. Krontira
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Lea Kaspar
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Ruhel Ahmad
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Ilknur Safak Demirel
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Tim Schäfer
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Fatema Begum
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Vincenza Sportelli
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- German Center for Mental Health (DZPG), partner site Munich, Munich, Germany
| | - Catarina Raimundo
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Maik Koedel
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Marta Labeur
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Silvia Cappello
- German Center for Mental Health (DZPG), partner site Munich, Munich, Germany
- Physiological Genomics, Biomedical Center (BMC), LMU Munich Faculty of Medicine, 82152 Planegg-Martinsried, Germany
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Fabian J. Theis
- Institute of Computational Biology, Computational Health Center, Helmholtz Munich, 85764 Neuherberg, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
- German Center for Mental Health (DZPG), partner site Munich, Munich, Germany
- TUM School of Computation, Information and Technology, Technical University of Munich, 85748 Garching bei München, Germany
| | - Cristiana Cruceanu
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Elisabeth B. Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- German Center for Mental Health (DZPG), partner site Munich, Munich, Germany
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| |
Collapse
|
4
|
Wu J, Yu H, Dou X, Yin B, Hou L, Xue Y, Qiang B, Shu P, Peng X. Posttranscriptional Control of Neural Progenitors Temporal Dynamics During Neocortical Development by Syncrip. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411732. [PMID: 39776340 PMCID: PMC11848603 DOI: 10.1002/advs.202411732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/12/2024] [Indexed: 01/11/2025]
Abstract
The development of the mammalian neocortex is precisely regulated by temporal gene expression, yet the temporal regulatory mechanisms of cortical neurogenesis, particularly how radial glial cells (RGCs) sequentially generate deep to superficial neurons, remain unclear. Here, the hnRNP family member Syncrip (hnRNP Q) is identified as a key modulator of superficial neuronal differentiation in neocortical neurogenesis. Syncrip knockout in RGCs disrupts differentiation and abnormal neuronal localization, ultimately resulting in superficial cortical layer defects as well as learning and memory impairments in mice. Single-cell RNA sequencing analysis demonstrated that the knockout of Syncrip disrupts the late-stage neurogenesis, stalling transcriptional progression in RGCs. Mechanistically, Syncrip maintains the transcription of temporal process-related transcription factors by recruiting stabilization complexes through phase separation, crucially regulating the Notch signaling pathway that determines the fate of RGCs. Furthermore, pathogenic human mutations in Syncrip weaken its phase-separation capability, failing to form stable complexes normally. Thus, Syncrip acts as a mediator of posttranscriptional regulatory mechanisms, governing the fate progression of RGCs and the advancement of intrinsic temporal programs. This study establishes an intracellular mechanism for posttranscriptional regulation of progressive fate determination in cortical neurogenesis.
Collapse
Affiliation(s)
- Jiarui Wu
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry & Molecular BiologyMedical Primate Research CenterNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Haoyang Yu
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry & Molecular BiologyMedical Primate Research CenterNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Xinyi Dou
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry & Molecular BiologyMedical Primate Research CenterNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Bin Yin
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry & Molecular BiologyMedical Primate Research CenterNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Lin Hou
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry & Molecular BiologyMedical Primate Research CenterNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Yuanchao Xue
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Boqin Qiang
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry & Molecular BiologyMedical Primate Research CenterNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
| | - Pengcheng Shu
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry & Molecular BiologyMedical Primate Research CenterNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
- Chinese Institute for Brain ResearchBeijing102206China
| | - Xiaozhong Peng
- State Key Laboratory of Common Mechanism Research for Major DiseasesDepartment of Biochemistry & Molecular BiologyMedical Primate Research CenterNeuroscience CenterInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijing100005China
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100021China
| |
Collapse
|
5
|
Rueda-Alaña E, Senovilla-Ganzo R, Grillo M, Vázquez E, Marco-Salas S, Gallego-Flores T, Ordeñana-Manso A, Ftara A, Escobar L, Benguría A, Quintas A, Dopazo A, Rábano M, Vivanco MDM, Aransay AM, Garrigos D, Toval Á, Ferrán JL, Nilsson M, Encinas-Pérez JM, De Pittà M, García-Moreno F. Evolutionary convergence of sensory circuits in the pallium of amniotes. Science 2025; 387:eadp3411. [PMID: 39946453 DOI: 10.1126/science.adp3411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/20/2024] [Indexed: 04/23/2025]
Abstract
The amniote pallium contains sensory circuits that are structurally and functionally equivalent, yet their evolutionary relationship remains unresolved. We used birthdating analysis, single-cell RNA and spatial transcriptomics, and mathematical modeling to compare the development and evolution of known pallial circuits across birds (chick), lizards (gecko), and mammals (mouse). We reveal that neurons within these circuits' stations are generated at varying developmental times and brain regions across species and found an early developmental divergence in the transcriptomic progression of glutamatergic neurons. Our research highlights developmental distinctions and functional similarities in the sensory circuit between birds and mammals, suggesting the convergence of high-order sensory processing across amniote lineages.
Collapse
Affiliation(s)
- Eneritz Rueda-Alaña
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Barrio Sarriena s/n, Leioa, Bizkaia, Spain
| | - Rodrigo Senovilla-Ganzo
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Barrio Sarriena s/n, Leioa, Bizkaia, Spain
| | - Marco Grillo
- Science for Life Laboratory, Department of Biophysics and Biochemistry, Stockholm University, Solna, Sweden
| | - Enrique Vázquez
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sergio Marco-Salas
- Science for Life Laboratory, Department of Biophysics and Biochemistry, Stockholm University, Solna, Sweden
| | - Tatiana Gallego-Flores
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitor Ordeñana-Manso
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Artemis Ftara
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Laura Escobar
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Alberto Benguría
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ana Quintas
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Miriam Rábano
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - María dM Vivanco
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Ana María Aransay
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Daniel Garrigos
- Department of Human Anatomy, Medical School, University of Murcia and Murcia Arrixaca Institute for Biomedical Research, Murcia, Spain
| | - Ángel Toval
- Department of Human Anatomy, Medical School, University of Murcia and Murcia Arrixaca Institute for Biomedical Research, Murcia, Spain
| | - José Luis Ferrán
- Department of Human Anatomy, Medical School, University of Murcia and Murcia Arrixaca Institute for Biomedical Research, Murcia, Spain
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biophysics and Biochemistry, Stockholm University, Solna, Sweden
| | - Juan Manuel Encinas-Pérez
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Barrio Sarriena s/n, Leioa, Bizkaia, Spain
- IKERBASQUE Foundation, Bilbao, Spain
| | - Maurizio De Pittà
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Barrio Sarriena s/n, Leioa, Bizkaia, Spain
- Basque Center for Applied Mathematics, Bilbao, Spain
- Computational Neuroscience Hub, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Barrio Sarriena s/n, Leioa, Bizkaia, Spain
- IKERBASQUE Foundation, Bilbao, Spain
| |
Collapse
|
6
|
MacDonald L, Elmesmari A, Somma D, Frew J, Di Mario C, Madhu R, Paoletti A, Simakou T, Hardy OM, Tolusso B, Campobasso D, Perniola S, Gessi M, Gigante MR, Petricca L, Bruno D, Coletto LA, Benvenuto R, Isaacs JD, Filby A, McDonald D, Sim JPX, Jamieson N, Wei K, D'Agostino MA, Millar NL, Milling S, McSharry C, Gremese E, Affleck K, Baker KF, McInnes IB, Otto TD, Korsunsky I, Alivernini S, Kurowska-Stolarska M. Synovial tissue myeloid dendritic cell subsets exhibit distinct tissue-niche localization and function in health and rheumatoid arthritis. Immunity 2024; 57:2843-2862.e12. [PMID: 39609125 DOI: 10.1016/j.immuni.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/11/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024]
Abstract
Current rheumatoid arthritis (RA) treatments do not restore immune tolerance. Investigating dendritic cell (DC) populations in human synovial tissue (ST) may reveal pathways to reinstate tolerance in RA. Using single-cell and spatial transcriptomics of ST biopsies, as well as co-culture systems, we identified condition- and niche-specific DC clusters with distinct functions. Healthy tissue contained tolerogenic AXL+ DC2s in the lining niche. In active RA, the hyperplasic lining niche was populated with inflammatory DC3s that activated CCL5-positive effector memory T cells, promoting synovitis. Lymphoid niches that emerged in the sublining layer were enriched with CCR7+ DC2s, which interacted with naive T cells, potentially driving the local expansion of new effector T cells. Remission saw the resolution of these pathogenic niches but lacked recovery of tolerogenic DC2s and exhibited activation of blood precursors of ST-DC3 clusters prior to flare-ups. Targeting pathogenic DC3s or restoring tolerogenic DC2s may help restore immune homeostasis in RA joints.
Collapse
Affiliation(s)
- Lucy MacDonald
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Aziza Elmesmari
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Domenico Somma
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Jack Frew
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Clara Di Mario
- Immunology Research Core Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Roopa Madhu
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Audrey Paoletti
- School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Theodoros Simakou
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Olympia M Hardy
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Barbara Tolusso
- Immunology Research Core Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Denise Campobasso
- Immunology Research Core Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Simone Perniola
- Immunology Research Core Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Division of Clinical Immunology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marco Gessi
- Institute of Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Rita Gigante
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Petricca
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Dario Bruno
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; Immunology Research Core Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Division of Clinical Immunology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Lavinia Agra Coletto
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; School of Infection & Immunity, University of Glasgow, Glasgow, UK; Immunology Research Core Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Roberta Benvenuto
- Institute of Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - John D Isaacs
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Musculoskeletal Unit, Newcastle-upon-Tyne Hospitals, Newcastle upon Tyne, UK
| | - Andrew Filby
- Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne, UK
| | - David McDonald
- Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne, UK
| | - Jasmine P X Sim
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nigel Jamieson
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - Neal L Millar
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Simon Milling
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Charles McSharry
- School of Infection & Immunity, University of Glasgow, Glasgow, UK; NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Elisa Gremese
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; Immunology Research Core Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Division of Clinical Immunology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Karen Affleck
- Respiratory and Immunology Research Unit, GSK, Stevenage, UK
| | - Kenneth F Baker
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Musculoskeletal Unit, Newcastle-upon-Tyne Hospitals, Newcastle upon Tyne, UK
| | - Iain B McInnes
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Thomas D Otto
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Ilya Korsunsky
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Stefano Alivernini
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; School of Infection & Immunity, University of Glasgow, Glasgow, UK; Immunology Research Core Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Mariola Kurowska-Stolarska
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, UK; School of Infection & Immunity, University of Glasgow, Glasgow, UK.
| |
Collapse
|
7
|
Lo Giudice Q, Wagener RJ, Abe P, Frangeul L, Jabaudon D. Developmental emergence of first- and higher-order thalamic neuron molecular identities. Development 2024; 151:dev202764. [PMID: 39348458 PMCID: PMC11463969 DOI: 10.1242/dev.202764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/18/2024] [Indexed: 10/02/2024]
Abstract
The thalamus is organized into nuclei that have distinct input and output connectivities with the cortex. Whereas first-order (FO) nuclei - also called core nuclei - relay input from sensory organs on the body surface and project to primary cortical sensory areas, higher-order (HO) nuclei - matrix nuclei - instead receive their driver input from the cortex and project to secondary and associative areas within cortico-thalamo-cortical loops. Input-dependent processes have been shown to play a crucial role in the emergence of FO thalamic neuron identity from a ground-state HO neuron identity, yet how this identity emerges during development remains unknown. Here, using single-cell RNA sequencing of the developing mouse embryonic thalamus, we show that, although they are born together, HO neurons start differentiating earlier than FO neurons. Within the FO visual thalamus, postnatal peripheral input is crucial for the maturation of excitatory, but not inhibitory, neurons. Our findings reveal different differentiation tempos and input sensitivities of HO and FO neurons, and highlight neuron type-specific molecular differentiation programs in the developing thalamus.
Collapse
Affiliation(s)
- Quentin Lo Giudice
- Department of Basic Neurosciences, University of Geneva, 1202 Geneva, Switzerland
| | - Robin J. Wagener
- Department of Basic Neurosciences, University of Geneva, 1202 Geneva, Switzerland
| | - Philipp Abe
- Department of Basic Neurosciences, University of Geneva, 1202 Geneva, Switzerland
| | - Laura Frangeul
- Department of Basic Neurosciences, University of Geneva, 1202 Geneva, Switzerland
- NeuroNA Human Cellular Neuroscience Platform (HCNP), Fondation Campus Biotech Geneva, 1202 Geneva, Switzerland
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, 1202 Geneva, Switzerland
- Clinic of Neurology, Geneva University Hospital, 1211 Geneva, Switzerland
- Université Paris Cité, Imagine Institute, 75015 Paris, France
| |
Collapse
|
8
|
Barão S, Xu Y, Llongueras JP, Vistein R, Goff L, Nielsen KJ, Bae BI, Smith RS, Walsh CA, Stein-O'Brien G, Müller U. Conserved transcriptional regulation by BRN1 and BRN2 in neocortical progenitors drives mammalian neural specification and neocortical expansion. Nat Commun 2024; 15:8043. [PMID: 39271675 PMCID: PMC11399407 DOI: 10.1038/s41467-024-52443-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The neocortex varies in size and complexity among mammals due to the tremendous variability in the number and diversity of neuronal subtypes across species. The increased cellular diversity is paralleled by the expansion of the pool of neocortical progenitors and the emergence of indirect neurogenesis during brain evolution. The molecular pathways that control these biological processes and are disrupted in neurological disorders remain largely unknown. Here we show that the transcription factors BRN1 and BRN2 have an evolutionary conserved function in neocortical progenitors to control their proliferative capacity and the switch from direct to indirect neurogenesis. Functional studies in mice and ferrets show that BRN1/2 act in concert with NOTCH and primary microcephaly genes to regulate progenitor behavior. Analysis of transcriptomics data from genetically modified macaques provides evidence that these molecular pathways are conserved in non-human primates. Our findings thus demonstrate that BRN1/2 are central regulators of gene expression programs in neocortical progenitors critical to determine brain size during evolution.
Collapse
Affiliation(s)
- Soraia Barão
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Yijun Xu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - José P Llongueras
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rachel Vistein
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Loyal Goff
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kristina J Nielsen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Byoung-Il Bae
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, 06032, USA
| | - Richard S Smith
- Northwestern University, Feinberg School of Medicine, Department of Pharmacology, Chicago, IL, 60611, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Genevieve Stein-O'Brien
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
9
|
Shimojo H, Masaki T, Kageyama R. The Neurog2-Tbr2 axis forms a continuous transition to the neurogenic gene expression state in neural stem cells. Dev Cell 2024; 59:1913-1923.e6. [PMID: 38772376 DOI: 10.1016/j.devcel.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/04/2024] [Accepted: 04/28/2024] [Indexed: 05/23/2024]
Abstract
Neural stem cells (NSCs) differentiate into neuron-fated intermediate progenitor cells (IPCs) via cell division. Although differentiation from NSCs to IPCs is a discrete process, recent transcriptome analyses identified a continuous transcriptional trajectory during this process, raising the question of how to reconcile these contradictory observations. In mouse NSCs, Hes1 expression oscillates, regulating the oscillatory expression of the proneural gene Neurog2, while Hes1 expression disappears in IPCs. Thus, the transition from Hes1 oscillation to suppression is involved in the differentiation of NSCs to IPCs. Here, we found that Neurog2 oscillations induce the accumulation of Tbr2, which suppresses Hes1 expression, generating an IPC-like gene expression state in NSCs. In the absence of Tbr2, Hes1 expression is up-regulated, decreasing the formation of IPCs. These results indicate that the Neurog2-Tbr2 axis forms a continuous transcriptional trajectory to an IPC-like neurogenic state in NSCs, which then differentiate into IPCs via cell division.
Collapse
Affiliation(s)
- Hiromi Shimojo
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Taimu Masaki
- RIKEN Center for Brain Science, Wako 351-0198, Japan; Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Ryoichiro Kageyama
- RIKEN Center for Brain Science, Wako 351-0198, Japan; Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
10
|
Sagner A. Temporal patterning of the vertebrate developing neural tube. Curr Opin Genet Dev 2024; 86:102179. [PMID: 38490162 DOI: 10.1016/j.gde.2024.102179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/29/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024]
Abstract
The chronologically ordered generation of distinct cell types is essential for the establishment of neuronal diversity and the formation of neuronal circuits. Recently, single-cell transcriptomic analyses of various areas of the developing vertebrate nervous system have provided evidence for the existence of a shared temporal patterning program that partitions neurons based on the timing of neurogenesis. In this review, I summarize the findings that lead to the proposal of this shared temporal program before focusing on the developing spinal cord to discuss how temporal patterning in general and this program specifically contributes to the ordered formation of neuronal circuits.
Collapse
Affiliation(s)
- Andreas Sagner
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstraße 17, 91054 Erlangen, Germany.
| |
Collapse
|
11
|
Barão S, Xu Y, Llongueras JP, Vistein R, Goff L, Nielsen K, Bae BI, Smith RS, Walsh CA, Stein-O'Brien G, Müller U. BRN1/2 Function in Neocortical Size Determination and Microcephaly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.02.565322. [PMID: 37961182 PMCID: PMC10635068 DOI: 10.1101/2023.11.02.565322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The mammalian neocortex differs vastly in size and complexity between mammalian species, yet the mechanisms that lead to an increase in brain size during evolution are not known. We show here that two transcription factors coordinate gene expression programs in progenitor cells of the neocortex to regulate their proliferative capacity and neuronal output in order to determine brain size. Comparative studies in mice, ferrets and macaques demonstrate an evolutionary conserved function for these transcription factors to regulate progenitor behaviors across the mammalian clade. Strikingly, the two transcriptional regulators control the expression of large numbers of genes linked to microcephaly suggesting that transcriptional deregulation as an important determinant of the molecular pathogenesis of microcephaly, which is consistent with the finding that genetic manipulation of the two transcription factors leads to severe microcephaly.
Collapse
|
12
|
Sonsalla G, Malpartida AB, Riedemann T, Gusic M, Rusha E, Bulli G, Najas S, Janjic A, Hersbach BA, Smialowski P, Drukker M, Enard W, Prehn JHM, Prokisch H, Götz M, Masserdotti G. Direct neuronal reprogramming of NDUFS4 patient cells identifies the unfolded protein response as a novel general reprogramming hurdle. Neuron 2024; 112:1117-1132.e9. [PMID: 38266647 PMCID: PMC10994141 DOI: 10.1016/j.neuron.2023.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/12/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
Mitochondria account for essential cellular pathways, from ATP production to nucleotide metabolism, and their deficits lead to neurological disorders and contribute to the onset of age-related diseases. Direct neuronal reprogramming aims at replacing neurons lost in such conditions, but very little is known about the impact of mitochondrial dysfunction on the direct reprogramming of human cells. Here, we explore the effects of mitochondrial dysfunction on the neuronal reprogramming of induced pluripotent stem cell (iPSC)-derived astrocytes carrying mutations in the NDUFS4 gene, important for Complex I and associated with Leigh syndrome. This led to the identification of the unfolded protein response as a major hurdle in the direct neuronal conversion of not only astrocytes and fibroblasts from patients but also control human astrocytes and fibroblasts. Its transient inhibition potently improves reprogramming by influencing the mitochondria-endoplasmic-reticulum-stress-mediated pathways. Taken together, disease modeling using patient cells unraveled novel general hurdles and ways to overcome these in human astrocyte-to-neuron reprogramming.
Collapse
Affiliation(s)
- Giovanna Sonsalla
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Graduate School of Systemic Neurosciences, BMC, LMU Munich, Planegg-Martinsried 82152 Germany
| | - Ana Belen Malpartida
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; International Max Planck Research School (IMPRS) for Molecular Life Sciences, Planegg-Martinsried 82152, Germany
| | - Therese Riedemann
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Mirjana Gusic
- Institute of Neurogenomics, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Ejona Rusha
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany
| | - Giorgia Bulli
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Graduate School of Systemic Neurosciences, BMC, LMU Munich, Planegg-Martinsried 82152 Germany
| | - Sonia Najas
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Aleks Janjic
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Bob A Hersbach
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Graduate School of Systemic Neurosciences, BMC, LMU Munich, Planegg-Martinsried 82152 Germany
| | - Pawel Smialowski
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Biomedical Center Munich, Bioinformatic Core Facility, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Micha Drukker
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Gorlaeus Building, 2333 CC RA, Leiden, the Netherlands
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany; Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Magdalena Götz
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Excellence Cluster of Systems Neurology (SYNERGY), Munich, Germany.
| | - Giacomo Masserdotti
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany.
| |
Collapse
|
13
|
Pérez Baca MDR, Jacobs EZ, Vantomme L, Leblanc P, Bogaert E, Dheedene A, De Cock L, Haghshenas S, Foroutan A, Levy MA, Kerkhof J, McConkey H, Chen CA, Batzir NA, Wang X, Palomares M, Carels M, Dermaut B, Sadikovic B, Menten B, Yuan B, Vergult S, Callewaert B. Haploinsufficiency of ZFHX3, encoding a key player in neuronal development, causes syndromic intellectual disability. Am J Hum Genet 2024; 111:509-528. [PMID: 38412861 PMCID: PMC10940049 DOI: 10.1016/j.ajhg.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) result from impaired development and functioning of the brain. Here, we identify loss-of-function (LoF) variation in ZFHX3 as a cause for syndromic intellectual disability (ID). ZFHX3 is a zinc-finger homeodomain transcription factor involved in various biological processes, including cell differentiation and tumorigenesis. We describe 42 individuals with protein-truncating variants (PTVs) or (partial) deletions of ZFHX3, exhibiting variable intellectual disability and autism spectrum disorder, recurrent facial features, relative short stature, brachydactyly, and, rarely, cleft palate. ZFHX3 LoF associates with a specific methylation profile in whole blood extracted DNA. Nuclear abundance of ZFHX3 increases during human brain development and neuronal differentiation. ZFHX3 was found to interact with the chromatin remodeling BRG1/Brm-associated factor complex and the cleavage and polyadenylation complex, suggesting a function in chromatin remodeling and mRNA processing. Furthermore, ChIP-seq for ZFHX3 revealed that it predominantly binds promoters of genes involved in nervous system development. We conclude that loss-of-function variants in ZFHX3 are a cause of syndromic ID associating with a specific DNA methylation profile.
Collapse
Affiliation(s)
- María Del Rocío Pérez Baca
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Eva Z Jacobs
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Lies Vantomme
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Pontus Leblanc
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Elke Bogaert
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Annelies Dheedene
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Laurenz De Cock
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Aidin Foroutan
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada; Children's Health Research Institute, Lawson Research Institute, London, ON N6C 2R5, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Chun-An Chen
- Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Nurit Assia Batzir
- Schneider Children's Medical Center of Israel, Petach Tikvah 4920235, Israel
| | - Xia Wang
- Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - María Palomares
- INGEMM, Instituto de Genética Médica y Molecular, IdiPAZ, Hospital Universitario la Paz, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Marieke Carels
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000 Ghent, Belgium; VIB UGent Center for Inflammation Research, Department for Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Bart Dermaut
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Björn Menten
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Bo Yuan
- Seattle Children's Hospital, Seattle and Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98105, USA
| | - Sarah Vergult
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
14
|
Morel JS, Causeret F. [How Cajal-Retzius cells hijacked a gene network involved in multiciliation to acquire their neuronal identity]. Med Sci (Paris) 2024; 40:107-109. [PMID: 38299914 DOI: 10.1051/medsci/2023184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Affiliation(s)
- Juliette S Morel
- Université Paris Cité, institut Imagine, équipe Génétique et développement du cortex cérébral, Paris, France - Université Paris Cité, institut de psychiatrie et neurosciences de Paris (IPNP), Inserm U1266, équipe Génétique et développement du cortex cérébral, Paris, France
| | - Frédéric Causeret
- Université Paris Cité, institut Imagine, équipe Génétique et développement du cortex cérébral, Paris, France - Université Paris Cité, institut de psychiatrie et neurosciences de Paris (IPNP), Inserm U1266, équipe Génétique et développement du cortex cérébral, Paris, France
| |
Collapse
|
15
|
Di Marco B, Vázquez-Marín J, Monyer H, Centanin L, Alfonso J. Spatial transcriptomics map of the embryonic mouse brain - a tool to explore neurogenesis. Biol Open 2023; 12:bio060151. [PMID: 37855382 PMCID: PMC10602001 DOI: 10.1242/bio.060151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
The developing brain has a well-organized anatomical structure comprising different types of neural and non-neural cells. Stem cells, progenitors and newborn neurons tightly interact with their neighbouring cells and tissue microenvironment, and this intricate interplay ultimately shapes the output of neurogenesis. Given the relevance of spatial cues during brain development, we acknowledge the necessity for a spatial transcriptomics map accessible to the neurodevelopmental community. To fulfil this need, we generated spatially resolved RNA sequencing (RNAseq) data from embryonic day 13.5 mouse brain sections immunostained for mitotic active neural and vascular cells. Unsupervised clustering defined specific cell type populations of diverse lineages and differentiation states. Differential expression analysis revealed unique transcriptional signatures across specific brain areas, uncovering novel features inherent to particular anatomical domains. Finally, we integrated existing single-cell RNAseq datasets into our spatial transcriptomics map, adding tissue context to single-cell RNAseq data. In summary, we provide a valuable tool that enables the exploration and discovery of unforeseen molecular players involved in neurogenesis, particularly in the crosstalk between different cell types.
Collapse
Affiliation(s)
- Barbara Di Marco
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Javier Vázquez-Marín
- Center for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Lázaro Centanin
- Center for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Julieta Alfonso
- Department of Clinical Neurobiology at the German Cancer Research Center (DKFZ) and the Medical Faculty of the Heidelberg University, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
16
|
Huilgol D, Levine JM, Galbavy W, Wang BS, He M, Suryanarayana SM, Huang ZJ. Direct and indirect neurogenesis generate a mosaic of distinct glutamatergic projection neuron types in cerebral cortex. Neuron 2023; 111:2557-2569.e4. [PMID: 37348506 PMCID: PMC10527425 DOI: 10.1016/j.neuron.2023.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/27/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023]
Abstract
Variations in size and complexity of the cerebral cortex result from differences in neuron number and composition, rooted in evolutionary changes in direct and indirect neurogenesis (dNG and iNG) that are mediated by radial glia and intermediate progenitors (IPs), respectively. How dNG and iNG differentially contribute to neuronal number, diversity, and connectivity are unknown. Establishing a genetic fate-mapping method to differentially visualize dNG and iNG in mice, we found that while both dNG and iNG contribute to all cortical structures, iNG contributes the largest relative proportions to the hippocampus and neocortex. Within the neocortex, whereas dNG generates all major glutamatergic projection neuron (PN) classes, iNG differentially amplifies and diversifies PNs within each class; the two pathways generate distinct PN types and assemble fine mosaics of lineage-based cortical subnetworks. Our results establish a ground-level lineage framework for understanding cortical development and evolution by linking foundational progenitor types and neurogenic pathways to PN types.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jesse M Levine
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience and Medical Scientist Training Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - William Galbavy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience, Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bor-Shuen Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Miao He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | | | - Z Josh Huang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
17
|
Moreau MX, Saillour Y, Elorriaga V, Bouloudi B, Delberghe E, Deutsch Guerrero T, Ochandorena-Saa A, Maeso-Alonso L, Marques MM, Marin MC, Spassky N, Pierani A, Causeret F. Repurposing of the multiciliation gene regulatory network in fate specification of Cajal-Retzius neurons. Dev Cell 2023; 58:1365-1382.e6. [PMID: 37321213 DOI: 10.1016/j.devcel.2023.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/06/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Cajal-Retzius cells (CRs) are key players in cerebral cortex development, and they display a unique transcriptomic identity. Here, we use scRNA-seq to reconstruct the differentiation trajectory of mouse hem-derived CRs, and we unravel the transient expression of a complete gene module previously known to control multiciliogenesis. However, CRs do not undergo centriole amplification or multiciliation. Upon deletion of Gmnc, the master regulator of multiciliogenesis, CRs are initially produced but fail to reach their normal identity resulting in their massive apoptosis. We further dissect the contribution of multiciliation effector genes and identify Trp73 as a key determinant. Finally, we use in utero electroporation to demonstrate that the intrinsic competence of hem progenitors as well as the heterochronic expression of Gmnc prevent centriole amplification in the CR lineage. Our work exemplifies how the co-option of a complete gene module, repurposed to control a distinct process, may contribute to the emergence of novel cell identities.
Collapse
Affiliation(s)
- Matthieu X Moreau
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Yoann Saillour
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Vicente Elorriaga
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Benoît Bouloudi
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Elodie Delberghe
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Tanya Deutsch Guerrero
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Amaia Ochandorena-Saa
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Laura Maeso-Alonso
- Instituto de Biomedicina, y Departamento de Biología Molecular, Universidad de León, 24071 Leon, Spain
| | - Margarita M Marques
- Instituto de Desarrollo Ganadero y Sanidad Animal, y Departamento de Producción Animal, Universidad de León, 24071 Leon, Spain
| | - Maria C Marin
- Instituto de Biomedicina, y Departamento de Biología Molecular, Universidad de León, 24071 Leon, Spain
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Département de Biologie, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Alessandra Pierani
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France
| | - Frédéric Causeret
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015 Paris, France; Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France.
| |
Collapse
|
18
|
Causeret F, Fayon M, Moreau MX, Ne E, Oleari R, Parras C, Cariboni A, Pierani A. Diversity within olfactory sensory derivatives revealed by the contribution of Dbx1 lineages. J Comp Neurol 2023. [PMID: 37125418 DOI: 10.1002/cne.25492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/06/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
In vertebrates, the embryonic olfactory epithelium contains progenitors that will give rise to distinct classes of neurons, including olfactory sensory neurons (OSNs; involved in odor detection), vomeronasal sensory neurons (VSNs; responsible for pheromone sensing), and gonadotropin-releasing hormone (GnRH) neurons that control the hypothalamic-pituitary-gonadal axis. Currently, these three neuronal lineages are usually believed to emerge from uniform pools of progenitors. Here, we found that the homeodomain transcription factor Dbx1 is expressed by neurogenic progenitors in the developing and adult mouse olfactory epithelium. We demonstrate that Dbx1 itself is dispensable for neuronal fate specification and global organization of the olfactory sensory system. Using lineage tracing, we characterize the contribution of Dbx1 lineages to OSN, VSN, and GnRH neuron populations and reveal an unexpected degree of diversity. Furthermore, we demonstrate that Dbx1-expressing progenitors remain neurogenic in the absence of the proneural gene Ascl1. Our work therefore points to the existence of distinct neurogenic programs in Dbx1-derived and other olfactory lineages.
Collapse
Affiliation(s)
- Frédéric Causeret
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Maxime Fayon
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Matthieu X Moreau
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Enrico Ne
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Carlos Parras
- Sorbonne Université, UPMC University Paris 06, Inserm U1127, CNRS UMR 7225, GH Pitié-Salpêtrière, Institut du Cerveau et de la Moelle Épinière, ICM, Paris, France
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Alessandra Pierani
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| |
Collapse
|
19
|
Elorriaga V, Pierani A, Causeret F. Cajal-retzius cells: Recent advances in identity and function. Curr Opin Neurobiol 2023; 79:102686. [PMID: 36774666 DOI: 10.1016/j.conb.2023.102686] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/29/2022] [Accepted: 01/08/2023] [Indexed: 02/12/2023]
Abstract
Cajal-Retzius cells (CRs) are a transient neuronal type of the developing cerebral cortex. Over the years, they have been shown or proposed to play important functions in neocortical and hippocampal morphogenesis, circuit formation, brain evolution and human pathology. Because of their short lifespan, CRs have been pictured as a purely developmental cell type, whose production and active elimination are both required for correct brain development. In this review, we present some of the findings that allow us to better appreciate the identity and diversity of this very special cell type, and propose a unified definition of what should be considered a Cajal-Retzius cell, especially when working with non-mammalian species or organoids. In addition, we highlight a flurry of recent studies pointing to the importance of CRs in the assembly of functional and dysfunctional cortical networks.
Collapse
Affiliation(s)
- Vicente Elorriaga
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, F-75014 Paris, France
| | - Alessandra Pierani
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, F-75014 Paris, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France.
| | - Frédéric Causeret
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, F-75014 Paris, France.
| |
Collapse
|
20
|
Hippenmeyer S. Principles of neural stem cell lineage progression: Insights from developing cerebral cortex. Curr Opin Neurobiol 2023; 79:102695. [PMID: 36842274 DOI: 10.1016/j.conb.2023.102695] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 02/28/2023]
Abstract
How to generate a brain of correct size and with appropriate cell-type diversity during development is a major question in Neuroscience. In the developing neocortex, radial glial progenitor (RGP) cells are the main neural stem cells that produce cortical excitatory projection neurons, glial cells, and establish the prospective postnatal stem cell niche in the lateral ventricles. RGPs follow a tightly orchestrated developmental program that when disrupted can result in severe cortical malformations such as microcephaly and megalencephaly. The precise cellular and molecular mechanisms instructing faithful RGP lineage progression are however not well understood. This review will summarize recent conceptual advances that contribute to our understanding of the general principles of RGP lineage progression.
Collapse
Affiliation(s)
- Simon Hippenmeyer
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
21
|
Choe K, Pak U, Pang Y, Hao W, Yang X. Advances and Challenges in Spatial Transcriptomics for Developmental Biology. Biomolecules 2023; 13:biom13010156. [PMID: 36671541 PMCID: PMC9855858 DOI: 10.3390/biom13010156] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 01/15/2023] Open
Abstract
Development from single cells to multicellular tissues and organs involves more than just the exact replication of cells, which is known as differentiation. The primary focus of research into the mechanism of differentiation has been differences in gene expression profiles between individual cells. However, it has predominantly been conducted at low throughput and bulk levels, challenging the efforts to understand molecular mechanisms of differentiation during the developmental process in animals and humans. During the last decades, rapid methodological advancements in genomics facilitated the ability to study developmental processes at a genome-wide level and finer resolution. Particularly, sequencing transcriptomes at single-cell resolution, enabled by single-cell RNA-sequencing (scRNA-seq), was a breath-taking innovation, allowing scientists to gain a better understanding of differentiation and cell lineage during the developmental process. However, single-cell isolation during scRNA-seq results in the loss of the spatial information of individual cells and consequently limits our understanding of the specific functions of the cells performed by different spatial regions of tissues or organs. This greatly encourages the emergence of the spatial transcriptomic discipline and tools. Here, we summarize the recent application of scRNA-seq and spatial transcriptomic tools for developmental biology. We also discuss the limitations of current spatial transcriptomic tools and approaches, as well as possible solutions and future prospects.
Collapse
Affiliation(s)
- Kyongho Choe
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Unil Pak
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Yu Pang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Wanjun Hao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Correspondence: ; Tel.: +86-451-55191738
| |
Collapse
|
22
|
Douceau S, Deutsch Guerrero T, Ferent J. Establishing Hedgehog Gradients during Neural Development. Cells 2023; 12:225. [PMID: 36672161 PMCID: PMC9856818 DOI: 10.3390/cells12020225] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/07/2023] Open
Abstract
A morphogen is a signaling molecule that induces specific cellular responses depending on its local concentration. The concept of morphogenic gradients has been a central paradigm of developmental biology for decades. Sonic Hedgehog (Shh) is one of the most important morphogens that displays pleiotropic functions during embryonic development, ranging from neuronal patterning to axon guidance. It is commonly accepted that Shh is distributed in a gradient in several tissues from different origins during development; however, how these gradients are formed and maintained at the cellular and molecular levels is still the center of a great deal of research. In this review, we first explored all of the different sources of Shh during the development of the nervous system. Then, we detailed how these sources can distribute Shh in the surrounding tissues via a variety of mechanisms. Finally, we addressed how disrupting Shh distribution and gradients can induce severe neurodevelopmental disorders and cancers. Although the concept of gradient has been central in the field of neurodevelopment since the fifties, we also describe how contemporary leading-edge techniques, such as organoids, can revisit this classical model.
Collapse
Affiliation(s)
- Sara Douceau
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| | - Tanya Deutsch Guerrero
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| | - Julien Ferent
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| |
Collapse
|
23
|
Khodosevich K, Sellgren CM. Neurodevelopmental disorders-high-resolution rethinking of disease modeling. Mol Psychiatry 2023; 28:34-43. [PMID: 36434058 PMCID: PMC9812768 DOI: 10.1038/s41380-022-01876-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022]
Abstract
Neurodevelopmental disorders arise due to various risk factors that can perturb different stages of brain development, and a combinatorial impact of these risk factors programs the phenotype in adulthood. While modeling the complete phenotype of a neurodevelopmental disorder is challenging, individual developmental perturbations can be successfully modeled in vivo in animals and in vitro in human cellular models. Nevertheless, our limited knowledge of human brain development restricts modeling strategies and has raised questions of how well a model corresponds to human in vivo brain development. Recent progress in high-resolution analysis of human tissue with single-cell and spatial omics techniques has enhanced our understanding of the complex events that govern the development of the human brain in health and disease. This new knowledge can be utilized to improve modeling of neurodevelopmental disorders and pave the way to more accurately portraying the relevant developmental perturbations in disease models.
Collapse
Affiliation(s)
- Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Carl M Sellgren
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm Health Care Services, Stockholm County Council, Karolinska Institutet, Stockholm, Sweden.
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
24
|
Woych J, Ortega Gurrola A, Deryckere A, Jaeger ECB, Gumnit E, Merello G, Gu J, Joven Araus A, Leigh ND, Yun M, Simon A, Tosches MA. Cell-type profiling in salamanders identifies innovations in vertebrate forebrain evolution. Science 2022; 377:eabp9186. [PMID: 36048957 PMCID: PMC10024926 DOI: 10.1126/science.abp9186] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The evolution of advanced cognition in vertebrates is associated with two independent innovations in the forebrain: the six-layered neocortex in mammals and the dorsal ventricular ridge (DVR) in sauropsids (reptiles and birds). How these innovations arose in vertebrate ancestors remains unclear. To reconstruct forebrain evolution in tetrapods, we built a cell-type atlas of the telencephalon of the salamander Pleurodeles waltl. Our molecular, developmental, and connectivity data indicate that parts of the sauropsid DVR trace back to tetrapod ancestors. By contrast, the salamander dorsal pallium is devoid of cellular and molecular characteristics of the mammalian neocortex yet shares similarities with the entorhinal cortex and subiculum. Our findings chart the series of innovations that resulted in the emergence of the mammalian six-layered neocortex and the sauropsid DVR.
Collapse
Affiliation(s)
- Jamie Woych
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Alonso Ortega Gurrola
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.,Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Astrid Deryckere
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Eliza C B Jaeger
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Elias Gumnit
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Gianluca Merello
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Jiacheng Gu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Alberto Joven Araus
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | - Nicholas D Leigh
- Molecular Medicine and Gene Therapy, Wallenberg Centre for Molecular Medicine, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Maximina Yun
- Technische Universität Dresden, CRTD/Center for Regenerative Therapies Dresden, 01307 Dresden, Germany.,Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | |
Collapse
|
25
|
Rhodes CT, Thompson JJ, Mitra A, Asokumar D, Lee DR, Lee DJ, Zhang Y, Jason E, Dale RK, Rocha PP, Petros TJ. An epigenome atlas of neural progenitors within the embryonic mouse forebrain. Nat Commun 2022; 13:4196. [PMID: 35858915 PMCID: PMC9300614 DOI: 10.1038/s41467-022-31793-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
A comprehensive characterization of epigenomic organization in the embryonic mouse forebrain will enhance our understanding of neurodevelopment and provide insight into mechanisms of neurological disease. Here we collected single-cell chromatin accessibility profiles from four distinct neurogenic regions of the embryonic mouse forebrain using single nuclei ATAC-Seq (snATAC-Seq). We identified thousands of differentially accessible peaks, many restricted to distinct progenitor cell types or brain regions. We integrated snATAC-Seq and single cell transcriptome data to characterize changes of chromatin accessibility at enhancers and promoters with associated transcript abundance. Multi-modal integration of histone modifications (CUT&Tag and CUT&RUN), promoter-enhancer interactions (Capture-C) and high-order chromatin structure (Hi-C) extended these initial observations. This dataset reveals a diverse chromatin landscape with region-specific regulatory mechanisms and genomic interactions in distinct neurogenic regions of the embryonic mouse brain and represents an extensive public resource of a 'ground truth' epigenomic landscape at this critical stage of neurogenesis.
Collapse
Affiliation(s)
- Christopher T Rhodes
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Joyce J Thompson
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Dhanya Asokumar
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.,Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Dongjin R Lee
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Daniel J Lee
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.,Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Yajun Zhang
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Eva Jason
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.,National Cancer Institute (NCI), NIH, Bethesda, MD, 20982, USA
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
26
|
Cossart R, Garel S. Step by step: cells with multiple functions in cortical circuit assembly. Nat Rev Neurosci 2022; 23:395-410. [DOI: 10.1038/s41583-022-00585-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2022] [Indexed: 12/23/2022]
|
27
|
Lee DR, Rhodes C, Mitra A, Zhang Y, Maric D, Dale RK, Petros TJ. Transcriptional heterogeneity of ventricular zone cells in the ganglionic eminences of the mouse forebrain. eLife 2022; 11:71864. [PMID: 35175194 PMCID: PMC8887903 DOI: 10.7554/elife.71864] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
The ventricular zone (VZ) of the nervous system contains radial glia cells that were originally considered relatively homogenous in their gene expression, but a detailed characterization of transcriptional diversity in these VZ cells has not been reported. Here, we performed single-cell RNA sequencing to characterize transcriptional heterogeneity of neural progenitors within the VZ and subventricular zone (SVZ) of the ganglionic eminences (GEs), the source of all forebrain GABAergic neurons. By using a transgenic mouse line to enrich for VZ cells, we characterize significant transcriptional heterogeneity, both between GEs and within spatial subdomains of specific GEs. Additionally, we observe differential gene expression between E12.5 and E14.5 VZ cells, which could provide insights into temporal changes in cell fate. Together, our results reveal a previously unknown spatial and temporal genetic diversity of VZ cells in the ventral forebrain that will aid our understanding of initial fate decisions in the forebrain.
Collapse
Affiliation(s)
- Dongjin R Lee
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Christopher Rhodes
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Yajun Zhang
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Dragan Maric
- Flow and Imaging Cytometry Core, National Institute of Neurological Disease and Stroke, Bethesda, United States
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States
| |
Collapse
|
28
|
Fang C, Wang H, Naumann RK. Developmental Patterning and Neurogenetic Gradients of Nurr1 Positive Neurons in the Rat Claustrum and Lateral Cortex. Front Neuroanat 2021; 15:786329. [PMID: 34924965 PMCID: PMC8675902 DOI: 10.3389/fnana.2021.786329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022] Open
Abstract
The claustrum is an enigmatic brain structure thought to be important for conscious sensations. Recent studies have focused on gene expression patterns, connectivity, and function of the claustrum, but relatively little is known about its development. Interestingly, claustrum-enriched genes, including the previously identified marker Nurr1, are not only expressed in the classical claustrum complex, but also embedded within lateral neocortical regions in rodents. Recent studies suggest that Nurr1 positive neurons in the lateral cortex share a highly conserved genetic expression pattern with claustrum neurons. Thus, we focus on the developmental progression and birth dating pattern of the claustrum and Nurr1 positive neurons in the lateral cortex. We comprehensively investigate the expression of Nurr1 at various stages of development in the rat and find that Nurr1 expression first appears as an elongated line along the anterior-posterior axis on embryonic day 13.5 (E13.5) and then gradually differentiates into multiple sub-regions during prenatal development. Previous birth dating studies of the claustrum have led to conflicting results, therefore, we combine 5-ethynyl-2'-deoxyuridine (EdU) labeling with in situ hybridization for Nurr1 to study birth dating patterns. We find that most dorsal endopiriform (DEn) neurons are born on E13.5 to E14.5. Ventral claustrum (vCL) and dorsal claustrum (dCL) are mainly born on E14.5 to E15.5. Nurr1 positive cortical deep layer neurons (dLn) and superficial layer neurons (sLn) are mainly born on E14.5 to E15.5 and E15.5 to E17.5, respectively. Finally, we identify ventral to dorsal and posterior to anterior neurogenetic gradients within vCL and DEn. Thus, our findings suggest that claustrum and Nurr1 positive neurons in the lateral cortex are born sequentially over several days of embryonic development and contribute toward charting the complex developmental pattern of the claustrum in rodents.
Collapse
Affiliation(s)
| | | | - Robert Konrad Naumann
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
29
|
Sagner A, Zhang I, Watson T, Lazaro J, Melchionda M, Briscoe J. A shared transcriptional code orchestrates temporal patterning of the central nervous system. PLoS Biol 2021; 19:e3001450. [PMID: 34767545 PMCID: PMC8612522 DOI: 10.1371/journal.pbio.3001450] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/24/2021] [Accepted: 10/20/2021] [Indexed: 01/13/2023] Open
Abstract
The molecular mechanisms that produce the full array of neuronal subtypes in the vertebrate nervous system are incompletely understood. Here, we provide evidence of a global temporal patterning program comprising sets of transcription factors that stratifies neurons based on the developmental time at which they are generated. This transcriptional code acts throughout the central nervous system, in parallel to spatial patterning, thereby increasing the diversity of neurons generated along the neuraxis. We further demonstrate that this temporal program operates in stem cell-derived neurons and is under the control of the TGFβ signaling pathway. Targeted perturbation of components of the temporal program, Nfia and Nfib, reveals their functional requirement for the generation of late-born neuronal subtypes. Together, our results provide evidence for the existence of a previously unappreciated global temporal transcriptional program of neuronal subtype identity and suggest that the integration of spatial and temporal patterning mechanisms diversifies and organizes neuronal subtypes in the vertebrate nervous system.
Collapse
Affiliation(s)
- Andreas Sagner
- The Francis Crick Institute, London, United Kingdom
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Isabel Zhang
- The Francis Crick Institute, London, United Kingdom
| | | | - Jorge Lazaro
- The Francis Crick Institute, London, United Kingdom
| | | | | |
Collapse
|
30
|
Medina L, Abellán A, Desfilis E. Evolving Views on the Pallium. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:181-199. [PMID: 34657034 DOI: 10.1159/000519260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
The pallium is the largest part of the telencephalon in amniotes, and comparison of its subdivisions across species has been extremely difficult and controversial due to its high divergence. Comparative embryonic genoarchitecture studies have greatly contributed to propose models of pallial fundamental divisions, which can be compared across species and be used to extract general organizing principles as well as to ask more focused and insightful research questions. The use of these models is crucial to discern between conservation, convergence or divergence in the neural populations and networks found in the pallium. Here we provide a critical review of the models proposed using this approach, including tetrapartite, hexapartite and double-ring models, and compare them to other models. While recognizing the power of these models for understanding brain architecture, development and evolution, we also highlight limitations and comment on aspects that require attention for improvement. We also discuss on the use of transcriptomic data for understanding pallial evolution and advise for better contextualization of these data by discerning between gene regulatory networks involved in the generation of specific units and cell populations versus genes expressed later, many of which are activity dependent and their expression is more likely subjected to convergent evolution.
Collapse
Affiliation(s)
- Loreta Medina
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida's Institute for Biomedical Research - Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida's Institute for Biomedical Research - Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida's Institute for Biomedical Research - Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| |
Collapse
|
31
|
Tosches MA. From Cell Types to an Integrated Understanding of Brain Evolution: The Case of the Cerebral Cortex. Annu Rev Cell Dev Biol 2021; 37:495-517. [PMID: 34416113 DOI: 10.1146/annurev-cellbio-120319-112654] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the discovery of the incredible diversity of neurons, Cajal and coworkers laid the foundation of modern neuroscience. Neuron types are not only structural units of nervous systems but also evolutionary units, because their identities are encoded in the genome. With the advent of high-throughput cellular transcriptomics, neuronal identities can be characterized and compared systematically across species. The comparison of neurons in mammals, reptiles, and birds indicates that the mammalian cerebral cortex is a mosaic of deeply conserved and recently evolved neuron types. Using the cerebral cortex as a case study, this review illustrates how comparing neuron types across species is key to reconciling observations on neural development, neuroanatomy, circuit wiring, and physiology for an integrated understanding of brain evolution.
Collapse
|