1
|
Papadopoulos Z, Smyth LC, Smirnov I, Gibson DA, Herz J, Kipnis J. Differential impact of lymphatic outflow pathways on cerebrospinal fluid homeostasis. J Exp Med 2025; 222:e20241752. [PMID: 39777434 PMCID: PMC11708779 DOI: 10.1084/jem.20241752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Dysfunctional lymphatic drainage from the central nervous system (CNS) has been linked to neuroinflammatory and neurodegenerative disorders, but our understanding of the lymphatic contribution to CNS fluid autoregulation remains limited. Here, we studied forces that drive the outflow of the cerebrospinal fluid (CSF) into the deep and superficial cervical lymph nodes (dcLN and scLN) and tested how the blockade of lymphatic networks affects CNS fluid homeostasis. Outflow to the dcLN occurred spontaneously in the absence of lymphatic pumping and was coupled to intracranial pressure (ICP), whereas scLN drainage was driven by pumping. Impaired dcLN drainage led to elevated CSF outflow resistance and delayed CSF-to-blood efflux despite the recruitment of the nasal-to-scLN pathway. Fluid regulation was better compensated after scLN obstruction. The dcLN pathway exhibited steady, consistent drainage across conditions, while the nasal-to-scLN pathway was dynamically activated to mitigate perturbances. These findings highlight the complex physiology of CSF homeostasis and lay the groundwork for future studies aimed at assessing and modulating CNS lymphatic function.
Collapse
Affiliation(s)
- Zachary Papadopoulos
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Neuroscience Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Leon C.D. Smyth
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Igor Smirnov
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Daniel A. Gibson
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Jasmin Herz
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Jonathan Kipnis
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Neuroscience Graduate Program, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
2
|
Aspelund A, Alitalo K. Yoda1 opens the lymphatic path for craniosynostosis therapy. J Clin Invest 2024; 134:e176858. [PMID: 38357924 PMCID: PMC10866666 DOI: 10.1172/jci176858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
The rediscovery of meningeal lymphatic vessels (MLVs) has sparked research interest in their function in numerous neurological pathologies. Craniosynostosis (CS) is caused by a premature fusion of cranial sutures during development. In this issue of the JCI, Matrongolo and colleagues show that Twist1-haploinsufficient mice that develop CS exhibit raised intracranial pressure, diminished cerebrospinal fluid (CSF) outflow, and impaired paravascular CSF-brain flow; all features that were associated with MLV defects and exacerbated pathology in mouse models of Alzheimer's disease. Activation of the mechanosensor Piezo1 with Yoda1 restored MLV function and CSF perfusion in CS models and in aged mice, opening an avenue for further development of therapeutics.
Collapse
Affiliation(s)
- Aleksanteri Aspelund
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Department of Ophthalmology, Helsinki University Hospital, Helsinki, Finland
| | - Kari Alitalo
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Ma L, Chang Q, Pei F, Liu M, Zhang W, Hong YK, Chai Y, Chen JF. Skull progenitor cell-driven meningeal lymphatic restoration improves neurocognitive functions in craniosynostosis. Cell Stem Cell 2023; 30:1472-1485.e7. [PMID: 37863055 PMCID: PMC10842404 DOI: 10.1016/j.stem.2023.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/21/2023] [Accepted: 09/27/2023] [Indexed: 10/22/2023]
Abstract
The meninges lie in the interface between the skull and brain, harboring lymphatic vasculature and skull progenitor cells (SPCs). How the skull and brain communicate remains largely unknown. We found that impaired meningeal lymphatics and brain perfusion drive neurocognitive defects in Twist1+/- mice, an animal model of craniosynostosis recapitulating human Saethre-Chotzen syndrome. Loss of SPCs leads to skull deformities and elevated intracranial pressure (ICP), whereas transplanting SPCs back into mutant mice mitigates lymphatic and brain defects through two mechanisms: (1) decreasing elevated ICP by skull correction and (2) promoting the growth and migration of lymphatic endothelial cells (LECs) via SPC-secreted vascular endothelial growth factor-C (VEGF-C). Treating Twist1+/- mice with VEGF-C promotes meningeal lymphatic growth and rescues defects in ICP, brain perfusion, and neurocognitive functions. Thus, the skull functionally integrates with the brain via meningeal lymphatics, which is impaired in craniosynostosis and can be restored by SPC-driven lymphatic activation via VEGF-C.
Collapse
Affiliation(s)
- Li Ma
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Qing Chang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Fei Pei
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Mengmeng Liu
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Wei Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Young-Kwon Hong
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
4
|
Matrongolo MJ, Ang PS, Wu J, Jain A, Thackray JK, Reddy A, Sung CC, Barbet G, Hong YK, Tischfield MA. Piezo1 agonist restores meningeal lymphatic vessels, drainage, and brain-CSF perfusion in craniosynostosis and aged mice. J Clin Invest 2023; 134:e171468. [PMID: 37917195 PMCID: PMC10866656 DOI: 10.1172/jci171468] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Skull development coincides with the onset of cerebrospinal fluid (CSF) circulation, brain-CSF perfusion, and meningeal lymphangiogenesis, processes essential for brain waste clearance. How these processes are affected by craniofacial disorders such as craniosynostosis are poorly understood. We report that raised intracranial pressure and diminished CSF flow in craniosynostosis mouse models associate with pathological changes to meningeal lymphatic vessels that affect their sprouting, expansion, and long-term maintenance. We also show that craniosynostosis affects CSF circulatory pathways and perfusion into the brain. Further, craniosynostosis exacerbates amyloid pathology and plaque buildup in Twist1+/-:5xFAD transgenic Alzheimer's disease models. Treating craniosynostosis mice with Yoda1, a small molecule agonist for Piezo1, reduces intracranial pressure and improves CSF flow, in addition to restoring meningeal lymphangiogenesis, drainage to the deep cervical lymph nodes, and brain-CSF perfusion. Leveraging these findings, we show that Yoda1 treatments in aged mice with reduced CSF flow and turnover improve lymphatic networks, drainage, and brain-CSF perfusion. Our results suggest that CSF provides mechanical force to facilitate meningeal lymphatic growth and maintenance. Additionally, applying Yoda1 agonist in conditions with raised intracranial pressure and/or diminished CSF flow, as seen in craniosynostosis or with ageing, is a possible therapeutic option to help restore meningeal lymphatic networks and brain-CSF perfusion.
Collapse
Affiliation(s)
- Matt J. Matrongolo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Phillip S. Ang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Junbing Wu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Aditya Jain
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Joshua K. Thackray
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Akash Reddy
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Chi Chang Sung
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
- Department of Pediatrics and
| | - Gaëtan Barbet
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
- Department of Pediatrics and
- Department of Pharmacology, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Young-Kwon Hong
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Max A. Tischfield
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
5
|
Jain A, Ang PS, Matrongolo MJ, Tischfield MA. Understanding the development, pathogenesis, and injury response of meningeal lymphatic networks through the use of animal models. Cell Mol Life Sci 2023; 80:332. [PMID: 37872442 PMCID: PMC11072018 DOI: 10.1007/s00018-023-04984-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/25/2023]
Abstract
Meningeal lymphatic vessels (MLVs) help maintain central nervous system (CNS) homeostasis via their ability to facilitate macromolecule waste clearance and neuroimmune trafficking. Although these vessels were overlooked for centuries, they have now been characterized in humans, non-human primates, and rodents. Recent studies in mice have explored the stereotyped growth and expansion of MLVs in dura mater, the various transcriptional, signaling, and environmental factors regulating their development and long-term maintenance, and the pathological changes these vessels undergo in injury, disease, or with aging. Key insights gained from these studies have also been leveraged to develop therapeutic approaches that help augment or restore MLV functions to improve brain health and cognition. Here, we review fundamental processes that control the development of peripheral lymphatic networks and how these might apply to the growth and expansion of MLVs in their unique meningeal environment. We also emphasize key findings in injury and disease models that may reveal additional insights into the plasticity of these vessels throughout the lifespan. Finally, we highlight unanswered questions and future areas of study that can further reveal the exciting therapeutic potential of meningeal lymphatics.
Collapse
Affiliation(s)
- Aditya Jain
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
- Child Health Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Phillip S Ang
- University of Chicago Pritzker School of Medicine, Chicago, IL, 60637, USA
| | - Matthew J Matrongolo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
- Child Health Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Max A Tischfield
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA.
- Child Health Institute of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
6
|
Matrongolo MJ, Ang PS, Wu J, Jain A, Thackray JK, Reddy A, Sung CC, Barbet G, Hong YK, Tischfield MA. Piezo1 agonist restores meningeal lymphatic vessels, drainage, and brain-CSF perfusion in craniosynostosis and aged mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559761. [PMID: 37808775 PMCID: PMC10557676 DOI: 10.1101/2023.09.27.559761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Skull development coincides with the onset of cerebrospinal fluid (CSF) circulation, brain-CSF perfusion, and meningeal lymphangiogenesis, processes essential for brain waste clearance. How these processes are affected by craniofacial disorders such as craniosynostosis are poorly understood. We report that raised intracranial pressure and diminished CSF flow in craniosynostosis mouse models associates with pathological changes to meningeal lymphatic vessels that affect their sprouting, expansion, and long-term maintenance. We also show that craniosynostosis affects CSF circulatory pathways and perfusion into the brain. Further, craniosynostosis exacerbates amyloid pathology and plaque buildup in Twist1 +/- :5xFAD transgenic Alzheimer's disease models. Treating craniosynostosis mice with Yoda1, a small molecule agonist for Piezo1, reduces intracranial pressure and improves CSF flow, in addition to restoring meningeal lymphangiogenesis, drainage to the deep cervical lymph nodes, and brain-CSF perfusion. Leveraging these findings, we show Yoda1 treatments in aged mice with reduced CSF flow and turnover improve lymphatic networks, drainage, and brain-CSF perfusion. Our results suggest CSF provides mechanical force to facilitate meningeal lymphatic growth and maintenance. Additionally, applying Yoda1 agonist in conditions with raised intracranial pressure and/or diminished CSF flow, as seen in craniosynostosis or with ageing, is a possible therapeutic option to help restore meningeal lymphatic networks and brain-CSF perfusion.
Collapse
|
7
|
Matrongolo MJ, Ho-Nguyen KT, Jain M, Ang PS, Reddy A, Schaper S, Tischfield MA. Loss of Twist1 and balanced retinoic acid signaling from the meninges causes cortical folding in mice. Development 2023; 150:dev201381. [PMID: 37590085 PMCID: PMC11296311 DOI: 10.1242/dev.201381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
Secondary lissencephaly evolved in mice due to effects on neurogenesis and the tangential distribution of neurons. Signaling pathways that help maintain lissencephaly are still poorly understood. We show that inactivating Twist1 in the primitive meninges causes cortical folding in mice. Cell proliferation in the meninges is reduced, causing loss of arachnoid fibroblasts that express Raldh2, an enzyme required for retinoic acid synthesis. Regionalized loss of Raldh2 in the dorsolateral meninges is first detected when folding begins. The ventricular zone expands and the forebrain lengthens at this time due to expansion of apical radial glia. As the cortex expands, regionalized differences in the levels of neurogenesis are coupled with changes to the tangential distribution of neurons. Consequentially, cortical growth at and adjacent to the midline accelerates with respect to more dorsolateral regions, resulting in cortical buckling and folding. Maternal retinoic acid supplementation suppresses cortical folding by normalizing forebrain length, neurogenesis and the tangential distribution of neurons. These results suggest that Twist1 and balanced retinoic acid signaling from the meninges are required to maintain normal levels of neurogenesis and lissencephaly in mice.
Collapse
Affiliation(s)
- Matt J. Matrongolo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Khue-Tu Ho-Nguyen
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Manav Jain
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Phillip S. Ang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
- University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Akash Reddy
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Samantha Schaper
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Max A. Tischfield
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
8
|
Como CN, Kim S, Siegenthaler J. Stuck on you: Meninges cellular crosstalk in development. Curr Opin Neurobiol 2023; 79:102676. [PMID: 36773497 PMCID: PMC10023464 DOI: 10.1016/j.conb.2023.102676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023]
Abstract
The spatial and temporal development of the brain, overlying meninges (fibroblasts, vasculature and immune cells) and calvarium are highly coordinated. In particular, the timing of meningeal fibroblasts into molecularly distinct pia, arachnoid and dura subtypes coincides with key developmental events in the brain and calvarium. Further, the meninges are positioned to influence development of adjacent structures and do so via depositing basement membrane and producing molecular cues to regulate brain and calvarial development. Here, we review the current knowledge of how meninges development aligns with events in the brain and calvarium and meningeal fibroblast "crosstalk" with these structures. We summarize outstanding questions and how the use of non-mammalian models to study the meninges will substantially advance the field of meninges biology.
Collapse
Affiliation(s)
- Christina N Como
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. https://twitter.com/ChristinaComo
| | - Sol Kim
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Julie Siegenthaler
- Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; University of Colorado, School of Medicine Department of Pediatrics 12800 East 19th Ave MS-8313 Aurora, CO 80045, USA.
| |
Collapse
|
9
|
Rustenhoven J, Kipnis J. Brain borders at the central stage of neuroimmunology. Nature 2022; 612:417-429. [PMID: 36517712 PMCID: PMC10205171 DOI: 10.1038/s41586-022-05474-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/24/2022] [Indexed: 12/16/2022]
Abstract
The concept of immune privilege suggests that the central nervous system is isolated from the immune system. However, recent studies have highlighted the borders of the central nervous system as central sites of neuro-immune interactions. Although the nervous and immune systems both function to maintain homeostasis, under rare circumstances, they can develop pathological interactions that lead to neurological or psychiatric diseases. Here we discuss recent findings that dissect the key anatomical, cellular and molecular mechanisms that enable neuro-immune responses at the borders of the brain and spinal cord and the implications of these interactions for diseases of the central nervous system.
Collapse
Affiliation(s)
- Justin Rustenhoven
- Center for Brain immunology and Glia (BIG), Washington University in St Louis, School of Medicine, St Louis, MO, USA.
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, MO, USA.
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand.
- Center for Brain Research, The University of Auckland, Auckland, New Zealand.
| | - Jonathan Kipnis
- Center for Brain immunology and Glia (BIG), Washington University in St Louis, School of Medicine, St Louis, MO, USA.
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, MO, USA.
| |
Collapse
|
10
|
Ang PS, Matrongolo MJ, Zietowski ML, Nathan SL, Reid RR, Tischfield MA. Cranium growth, patterning and homeostasis. Development 2022; 149:dev201017. [PMID: 36408946 PMCID: PMC9793421 DOI: 10.1242/dev.201017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Craniofacial development requires precise spatiotemporal regulation of multiple signaling pathways that crosstalk to coordinate the growth and patterning of the skull with surrounding tissues. Recent insights into these signaling pathways and previously uncharacterized progenitor cell populations have refined our understanding of skull patterning, bone mineralization and tissue homeostasis. Here, we touch upon classical studies and recent advances with an emphasis on developmental and signaling mechanisms that regulate the osteoblast lineage for the calvaria, which forms the roof of the skull. We highlight studies that illustrate the roles of osteoprogenitor cells and cranial suture-derived stem cells for proper calvarial growth and homeostasis. We also discuss genes and signaling pathways that control suture patency and highlight how perturbing the molecular regulation of these pathways leads to craniosynostosis. Finally, we discuss the recently discovered tissue and signaling interactions that integrate skull and cerebrovascular development, and the potential implications for both cerebrospinal fluid hydrodynamics and brain waste clearance in craniosynostosis.
Collapse
Affiliation(s)
- Phillip S. Ang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Matt J. Matrongolo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| | | | - Shelby L. Nathan
- Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Russell R. Reid
- Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | - Max A. Tischfield
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
11
|
Blei F. Update February 2022. Lymphat Res Biol 2022; 20:89-114. [PMID: 35167345 DOI: 10.1089/lrb.2021.29118.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Francine Blei
- NYU Langone Health, Grossman School of Medicine, New York, NY, USA
| |
Collapse
|