1
|
Zhou J, Liao S, Zhang C, Luo J, Li G, Li H. Expression profiling of N6-methyladenosine-modified mRNA in PC12 cells in response to unconjugated bilirubin. Mol Biol Rep 2023; 50:6703-6715. [PMID: 37378749 PMCID: PMC10374823 DOI: 10.1007/s11033-023-08576-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Abnormal methylation of N6-methyladenosine (m6A) is reportedly associated with central nervous system disorders. However, the role of m6A mRNA methylation in unconjugated bilirubin (UCB) neurotoxicity requires further research. METHODS Rat pheochromocytoma PC12 cells treated with UCB were used as in vitro models. After the PC12 cells were treated with UCB (0, 12, 18, and 24 µM) for 24 h, the total RNA m6A levels were measured using an m6A RNA methylation quantification kit. The expression of m6A demethylases and methyltransferases was detected through western blotting. We determined the m6A mRNA methylation profile in PC12 cells exposed to UCB (0 and 18 µM) for 24 h using methylated RNA immunoprecipitation sequencing (MeRIP-seq). RESULTS Compared with the control group, UCB (18 and 24 µM) treatment decreased the expression of the m6A demethylase ALKBH5 and increased the expression of the methyltransferases METTL3 and METTL14, which resulted in an increase in the total m6A levels in PC12 cells. Furthermore, 1533 m6A peaks were significantly elevated and 1331 peaks were reduced in the UCB (18 µM)-treated groups compared with those in the control group. Genes with differential m6A peaks were mainly enriched in protein processing in the endoplasmic reticulum, ubiquitin-mediated proteolysis, cell cycle, and endocytosis. Through combined analysis of the MeRIP-seq and RNA sequencing data, 129 genes with differentially methylated m6A peaks and differentially expressed mRNA levels were identified. CONCLUSION Our study suggests that the modulation of m6A methylation modifications plays a significant role in UCB neurotoxicity.
Collapse
Affiliation(s)
- Jinfu Zhou
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Sining Liao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Chenran Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Jinying Luo
- Obstetrics and Gynecology Department, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Guilin Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
- Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
| |
Collapse
|
2
|
Ellis JL, Evason KJ, Zhang C, Fourman MN, Liu J, Ninov N, Delous M, Vanhollebeke B, Fiddes I, Otis JP, Houvras Y, Farber SA, Xu X, Lin X, Stainier DYR, Yin C. A missense mutation in the proprotein convertase gene furinb causes hepatic cystogenesis during liver development in zebrafish. Hepatol Commun 2022; 6:3083-3097. [PMID: 36017776 PMCID: PMC9592797 DOI: 10.1002/hep4.2038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/28/2022] [Accepted: 06/17/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatic cysts are fluid-filled lesions in the liver that are estimated to occur in 5% of the population. They may cause hepatomegaly and abdominal pain. Progression to secondary fibrosis, cirrhosis, or cholangiocarcinoma can lead to morbidity and mortality. Previous studies of patients and rodent models have associated hepatic cyst formation with increased proliferation and fluid secretion in cholangiocytes, which are partially due to impaired primary cilia. Congenital hepatic cysts are thought to originate from faulty bile duct development, but the underlying mechanisms are not fully understood. In a forward genetic screen, we identified a zebrafish mutant that developed hepatic cysts during larval stages. The cyst formation was not due to changes in biliary cell proliferation, bile secretion, or impairment of primary cilia. Instead, time-lapse live imaging data showed that the mutant biliary cells failed to form interconnecting bile ducts because of defects in motility and protrusive activity. Accordingly, immunostaining revealed a disorganized actin and microtubule cytoskeleton in the mutant biliary cells. By whole-genome sequencing, we determined that the cystic phenotype in the mutant was caused by a missense mutation in the furinb gene, which encodes a proprotein convertase. The mutation altered Furinb localization and caused endoplasmic reticulum (ER) stress. The cystic phenotype could be suppressed by treatment with the ER stress inhibitor 4-phenylbutyric acid and exacerbated by treatment with the ER stress inducer tunicamycin. The mutant liver also exhibited increased mammalian target of rapamycin (mTOR) signaling. Treatment with mTOR inhibitors halted cyst formation at least partially through reducing ER stress. Conclusion: Our study has established a vertebrate model for studying hepatic cystogenesis and illustrated the contribution of ER stress in the disease pathogenesis.
Collapse
Affiliation(s)
- Jillian L. Ellis
- Division of Gastroenterology, Hepatology, and NutritionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Kimberley J. Evason
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Huntsman Cancer Institute and Department of PathologyUniversity of UtahSalt Lake CityUtahUSA
| | - Changwen Zhang
- Division of Gastroenterology, Hepatology, and NutritionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Makenzie N. Fourman
- Division of Gastroenterology, Hepatology, and NutritionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Jiandong Liu
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- McAllister Heart InstituteDepartment of Pathology and Laboratory MedicineSchool of MedicineThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Nikolay Ninov
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Center for Regenerative Therapies TU DresdenDresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus of TU DresdenGerman Center for Diabetes ResearchDresdenGermany
| | - Marion Delous
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Equipe GENDEVCentre de Recherche en Neurosciences de LyonInserm U1028CNRS UMR5292Universite Lyon 1Universite St EtienneLyonFrance
| | - Benoit Vanhollebeke
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Laboratory of Neurovascular SignalingDepartment of Molecular BiologyULB Neuroscience InstituteUniversite Libre de BruxellesGosseliesBelgium
| | - Ian Fiddes
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Jessica P. Otis
- Department of EmbryologyCarnegie Institution for ScienceBaltimoreMarylandUSA
- Department of BiologyJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Molecular and Cellular Biology and BiochemistryBrown UniversityProvidenceRhode IslandUSA
| | - Yariv Houvras
- Weill Cornell Medical College and New York Presbyterian HospitalNew YorkNew YorkUSA
| | - Steven A. Farber
- Department of EmbryologyCarnegie Institution for ScienceBaltimoreMarylandUSA
- Department of BiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular BiologyDepartment of Cardiovascular MedicineMayo ClinicRochesterMinnesotaUSA
| | - Xueying Lin
- Department of Biochemistry and Molecular BiologyDepartment of Cardiovascular MedicineMayo ClinicRochesterMinnesotaUSA
| | - Didier Y. R. Stainier
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology, and NutritionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Department of Biochemistry and BiophysicsProgram in Developmental and Stem Cell BiologyLiver Center and Diabetes CenterUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Division of Developmental BiologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| |
Collapse
|
3
|
Katoch S, Patial V. Zebrafish: An emerging model system to study liver diseases and related drug discovery. J Appl Toxicol 2021; 41:33-51. [PMID: 32656821 DOI: 10.1002/jat.4031] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/31/2020] [Accepted: 06/11/2020] [Indexed: 01/03/2023]
Abstract
The zebrafish has emerged as a powerful vertebrate model for studying liver-associated disorders. Liver damage is a crucial problem in the process of drug development and zebrafish have proven to be an important tool for the high-throughput screening of drugs for hepatotoxicity. Although the structure of the zebrafish liver differs to that of mammals, the fundamental physiologic processes, genetic mutations and manifestations of pathogenic responses to environmental insults exhibit much similarity. The larval transparency of the zebrafish is a great advantage for real-time imaging in hepatic studies. The zebrafish has a broad spectrum of cytochrome P450 enzymes, which enable the biotransformation of drugs via similar pathways as mammals, including oxidation, reduction and hydrolysis reactions. In the present review, we appraise the various drugs, chemicals and toxins used to study liver toxicity in zebrafish and their similarities to the rodent models for liver-related studies. Interestingly, the zebrafish has also been effectively used to study the pathophysiology of nonalcoholic and alcoholic fatty liver disease. The genetic models of liver disorders and their easy manipulation provide great opportunity in the area of drug development. The zebrafish has proven to be an influential model for the hepatic system due to its invertebrate-like advantages coupled with its vertebrate biology. The present review highlights the pivotal role of zebrafish in bridging the gap between cell-based and mammalian models.
Collapse
Affiliation(s)
- Swati Katoch
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
4
|
Otani Y, Ohno N, Cui J, Yamaguchi Y, Baba H. Upregulation of large myelin protein zero leads to Charcot-Marie-Tooth disease-like neuropathy in mice. Commun Biol 2020; 3:121. [PMID: 32170207 PMCID: PMC7070019 DOI: 10.1038/s42003-020-0854-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 02/24/2020] [Indexed: 01/01/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a hereditary neuropathy mainly caused by gene mutation of peripheral myelin proteins including myelin protein zero (P0, MPZ). Large myelin protein zero (L-MPZ) is an isoform of P0 that contains an extended polypeptide synthesized by translational readthrough at the C-terminus in tetrapods, including humans. The physiological role of L-MPZ and consequences of an altered L-MPZ/P0 ratio in peripheral myelin are not known. To clarify this, we used genome editing to generate a mouse line (L-MPZ mice) that produced L-MPZ instead of P0. Motor tests and electrophysiological, immunohistological, and electron microscopy analyses show that homozygous L-MPZ mice exhibit CMT-like phenotypes including thin and/or loose myelin, increased small-caliber axons, and disorganized axo-glial interactions. Heterozygous mice show a milder phenotype. These results highlight the importance of an appropriate L-MPZ/P0 ratio and show that aberrant readthrough of a myelin protein causes neuropathy.
Collapse
Affiliation(s)
- Yoshinori Otani
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan
| | - Jingjing Cui
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Yoshihide Yamaguchi
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan.
| | - Hiroko Baba
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| |
Collapse
|
5
|
Wang D, Weng Y, Guo S, Qin W, Ni J, Yu L, Zhang Y, Zhao Q, Ben J, Ma J. microRNA-1 Regulates NCC Migration and Differentiation by Targeting sec63. Int J Biol Sci 2019; 15:2538-2547. [PMID: 31754327 PMCID: PMC6854364 DOI: 10.7150/ijbs.35357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background/Aims: Neural crest cells play a vital role in craniofacial development, microRNA-1 (miR-1) is essential in development and disease of the cardiac and skeletal muscle, the objective of our study is to investigate effects of miR-1 on neural crest cell in the craniofacial development and its molecular mechanism. Methods: We knocked down miR-1 in zebrafish by miR-1 morpholino (MO) microinjection and observed phenotype of neural crest derivatives. We detected neural crest cell migration by time-lapse. Whole-mount in situ hybridization was used to monitor the expressions of genes involved in neural crest cell induction, specification, migration and differentiation. We performed a quantitative proteomics study (iTRAQ) and bioinformatics prediction to identify the targets of miR-1 and validate the relationship between miR-1 and its target gene sec63. Results: We found defects in the tissues derived from neural crest cells: a severely reduced lower jaw and delayed appearance of pigment cells. miR-1 MO injection also disrupted neural crest cell migration. At 24 hours post fertilization (hpf), reduced expression of tfap2a, dlx2, dlx3b, ngn1 and crestin indicated that miR-1 deficiency affected neural crest cell differentiation. iTRAQ and luciferase reporter assay identified SEC63 as a direct target gene of miR-1. The defects of miR-1 deficiency could be reversed, at least in part, by specific suppression of sec63 expression. Conclusion: miR-1 is involved in the regulation of neural crest cell development, and that it acts, at least partially, by targeting sec63 expression.
Collapse
Affiliation(s)
- Dongyue Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Yajuan Weng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Shuyu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Wenhao Qin
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Jieli Ni
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Lei Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Yuxin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| | - Qingshun Zhao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210029, China
| | - Jingjing Ben
- Department of Pathophysiology, Key laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 210029, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210019, China
| |
Collapse
|
6
|
Ishikawa Y, Fedeles S, Marlier A, Zhang C, Gallagher AR, Lee AH, Somlo S. Spliced XBP1 Rescues Renal Interstitial Inflammation Due to Loss of Sec63 in Collecting Ducts. J Am Soc Nephrol 2019; 30:443-459. [PMID: 30745418 PMCID: PMC6405156 DOI: 10.1681/asn.2018060614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/07/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND SEC63 encodes a resident protein in the endoplasmic reticulum membrane that, when mutated, causes human autosomal dominant polycystic liver disease. Selective inactivation of Sec63 in all distal nephron segments in embryonic mouse kidney results in polycystin-1-mediated polycystic kidney disease (PKD). It also activates the Ire1α-Xbp1 branch of the unfolded protein response, producing Xbp1s, the active transcription factor promoting expression of specific genes to alleviate endoplasmic reticulum stress. Simultaneous inactivation of Xbp1 and Sec63 worsens PKD in this model. METHODS We explored the renal effects of postnatal inactivation of Sec63 alone or with concomitant inactivation of Xbp1 or Ire1α, specifically in the collecting ducts of neonatal mice. RESULTS The later onset of inactivation of Sec63 restricted to the collecting duct does not result in overt activation of the Ire1α-Xbp1 pathway or cause polycystin-1-dependent PKD. Inactivating Sec63 along with either Xbp1 or Ire1α in this model causes interstitial inflammation and associated fibrosis with decline in kidney function over several months. Re-expression of XBP1s in vivo completely rescues the chronic kidney injury observed after inactivation of Sec63 with either Xbp1 or Ire1α. CONCLUSIONS In the absence of Sec63, basal levels of Xbp1s activity in collecting ducts is both necessary and sufficient to maintain proteostasis (protein homeostasis) and protect against inflammation, myofibroblast activation, and kidney functional decline. The Sec63-Xbp1 double knockout mouse offers a novel genetic model of chronic tubulointerstitial kidney injury, using collecting duct proteostasis defects as a platform for discovery of signals that may underlie CKD of disparate etiologies.
Collapse
Affiliation(s)
| | | | | | | | | | - Ann-Hwee Lee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Stefan Somlo
- Departments of Internal Medicine and
- Genetics, Yale University School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
7
|
Saraswat Ohri S, Mullins A, Hetman M, Whittemore SR. Activating Transcription Factor-6α Deletion Modulates the Endoplasmic Reticulum Stress Response after Spinal Cord Injury but Does Not Affect Locomotor Recovery. J Neurotrauma 2017; 35:486-491. [PMID: 26842780 DOI: 10.1089/neu.2015.3993] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The endoplasmic reticulum stress response (ERSR) is activated in a variety of neurodegenerative diseases and/or traumatic injuries. Subsequent restoration of ER homeostasis may contribute to improvement in the functional outcome of these diseases. We recently demonstrated improvements in hindlimb locomotion after thoracic spinal cord injury (SCI) and implicated oligodendrocyte survival as a potential mechanism using genetic and pharmacological inhibition of the protein kinase ribonucleic acid-like ER kinase- CCAAT/enhancer binding homologous protein (PERK-CHOP) arm of the ERSR. Here, we investigated the contribution of activating transcription factor-6 (ATF6), an ERSR signaling effector comprising the second arm of ERSR, in the pathogenesis of SCI. In contrast to what was seen after attenuation of PERK-CHOP signaling, genetic ablation of ATF6 results in modulation of ERSR and decreased survival in oligodendrocyte precursor cells against ER stress. Further, ATF6 loss delays the ERSR after SCI, potentiates PERK-ATF4-CHOP signaling and fails to improve locomotor deficits. These data suggest that deleting ATF6 levels is unlikely to be a viable therapeutic target to improve functional recovery after SCI.
Collapse
Affiliation(s)
- Sujata Saraswat Ohri
- 1 Kentucky Spinal Cord Injury Research Center, University of Louisville , Louisville, Kentucky.,2 Department of Neurological Surgery, University of Louisville , Louisville, Kentucky
| | - Ashley Mullins
- 1 Kentucky Spinal Cord Injury Research Center, University of Louisville , Louisville, Kentucky.,2 Department of Neurological Surgery, University of Louisville , Louisville, Kentucky
| | - Michal Hetman
- 1 Kentucky Spinal Cord Injury Research Center, University of Louisville , Louisville, Kentucky.,2 Department of Neurological Surgery, University of Louisville , Louisville, Kentucky.,3 Department of Pharmacology and Toxicology, University of Louisville , Louisville, Kentucky.,4 Department of Anatomical Sciences and Neurobiology, University of Louisville , Louisville, Kentucky
| | - Scott R Whittemore
- 1 Kentucky Spinal Cord Injury Research Center, University of Louisville , Louisville, Kentucky.,2 Department of Neurological Surgery, University of Louisville , Louisville, Kentucky.,4 Department of Anatomical Sciences and Neurobiology, University of Louisville , Louisville, Kentucky
| |
Collapse
|
8
|
Santos-Ledo A, Garcia-Macia M, Campbell PD, Gronska M, Marlow FL. Kinesin-1 promotes chondrocyte maintenance during skeletal morphogenesis. PLoS Genet 2017; 13:e1006918. [PMID: 28715414 PMCID: PMC5536392 DOI: 10.1371/journal.pgen.1006918] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/31/2017] [Accepted: 07/11/2017] [Indexed: 01/03/2023] Open
Abstract
During skeletal morphogenesis diverse mechanisms are used to support bone formation. This can be seen in the bones that require a cartilage template for their development. In mammals the cartilage template is removed, but in zebrafish the cartilage template persists and the bone mineralizes around the cartilage scaffold. Remodeling of unmineralized cartilage occurs via planar cell polarity (PCP) mediated cell rearrangements that contribute to lengthening of elements; however, the mechanisms that maintain the chondrocyte template that supports perichondral ossification remain unclear. We report double mutants disrupting two zebrafish kinesin-I genes (hereafter kif5Blof) that we generated using CRISPR/Cas9 mutagenesis. We show that zygotic Kif5Bs have a conserved function in maintaining muscle integrity, and are required for cartilage remodeling and maintenance during craniofacial morphogenesis by a PCP-distinct mechanism. Further, kif5Blof does not activate ER stress response genes, but instead disrupts lysosomal function, matrix secretion, and causes deregulated autophagic markers and eventual chondrocyte apoptosis. Ultrastructural and transplantation analysis reveal neighboring cells engulfing extruded kif5Blof chondrocytes. Initial cartilage specification is intact; however, during remodeling, kif5Blof chondrocytes die and the cartilage matrix devoid of hypertrophic chondrocytes remains and impedes normal ossification. Chimeric and mosaic analyses indicate that Kif5B functions cell-autonomously in secretion, nuclear position, cell elongation and maintenance of hypertrophic chondrocytes. Interestingly, large groups of wild-type cells can support elongation of neighboring mutant cells. Finally, mosaic expression of kif5Ba, but not kif5Aa in cartilage rescues the chondrocyte phenotype, further supporting a specific requirement for Kif5B. Cumulatively, we show essential Kif5B functions in promoting cartilage remodeling and chondrocyte maintenance during zebrafish craniofacial morphogenesis.
Collapse
Affiliation(s)
- Adrian Santos-Ledo
- Department of Developmental and Molecular Biology. Albert Einstein College of Medicine, Bronx, New York, United States of America
- Institute of Genetic Medicine. Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Marina Garcia-Macia
- Institute for Cellular and Molecular Biosciences. Newcastle University, Newcastle Upon Tyne, United Kingdom
- Institute of Cellular Medicine. Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Philip D Campbell
- Department of Developmental and Molecular Biology. Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Marta Gronska
- Department of Neuroscience. Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Florence L Marlow
- Department of Developmental and Molecular Biology. Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neuroscience. Albert Einstein College of Medicine, Bronx, New York, United States of America
- Cell Developmental and Regenerative Biology Department. Icahn School of Medicine at Mount Sinai. New York, New York, United States of America
| |
Collapse
|
9
|
Pham DH, Zhang C, Yin C. Using zebrafish to model liver diseases-Where do we stand? CURRENT PATHOBIOLOGY REPORTS 2017; 5:207-221. [PMID: 29098121 DOI: 10.1007/s40139-017-0141-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose of Review The liver is the largest internal organ and performs both exocrine and endocrine function that is necessary for survival. Liver failure is among the leading causes of death and represents a major global health burden. Liver transplantation is the only effective treatment for end-stage liver diseases. Animal models advance our understanding of liver disease etiology and hold promise for the development of alternative therapies. Zebrafish has become an increasingly popular system for modeling liver diseases and complements the rodent models. Recent Findings The zebrafish liver contains main cell types that are found in mammalian liver and exhibits similar pathogenic responses to environmental insults and genetic mutations. Zebrafish have been used to model neonatal cholestasis, cholangiopathies, such as polycystic liver disease, alcoholic liver disease, and non-alcoholic fatty liver disease. It also provides a unique opportunity to study the plasticity of liver parenchymal cells during regeneration. Summary In this review, we summarize the recent work of building zebrafish models of liver diseases. We highlight how these studies have brought new knowledge of disease mechanisms. We also discuss the advantages and challenges of using zebrafish to model liver diseases.
Collapse
Affiliation(s)
- Duc-Hung Pham
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Changwen Zhang
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| |
Collapse
|
10
|
Abstract
Myelin is a lipid-rich sheath formed by the spiral wrapping of specialized glial cells around axon segments. Myelinating glia allow for rapid transmission of nerve impulses and metabolic support of axons, and the absence of or disruption to myelin results in debilitating motor, cognitive, and emotional deficits in humans. Because myelin is a jawed vertebrate innovation, zebrafish are one of the simplest vertebrate model systems to study the genetics and development of myelinating glia. The morphogenetic cellular movements and genetic program that drive myelination are conserved between zebrafish and mammals, and myelin develops rapidly in zebrafish larvae, within 3-5days postfertilization. Myelin ultrastructure can be visualized in the zebrafish from larval to adult stages via transmission electron microscopy, and the dynamic development of myelinating glial cells may be observed in vivo via transgenic reporter lines in zebrafish larvae. Zebrafish are amenable to genetic and pharmacological screens, and screens for myelinating glial phenotypes have revealed both genes and drugs that promote myelin development, many of which are conserved in mammalian glia. Recently, zebrafish have been employed as a model to understand the complex dynamics of myelinating glia during development and regeneration. In this chapter, we describe these key methodologies and recent insights into mechanisms that regulate myelination using the zebrafish model.
Collapse
Affiliation(s)
- M D'Rozario
- Washington University School of Medicine, St. Louis, MO, United States
| | - K R Monk
- Washington University School of Medicine, St. Louis, MO, United States; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | | |
Collapse
|
11
|
Ravera S, Bartolucci M, Garbati P, Ferrando S, Calzia D, Ramoino P, Balestrino M, Morelli A, Panfoli I. Evaluation of the Acquisition of the Aerobic Metabolic Capacity by Myelin, during its Development. Mol Neurobiol 2015; 53:7048-7056. [PMID: 26676569 DOI: 10.1007/s12035-015-9575-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/29/2015] [Indexed: 12/15/2022]
Abstract
Our previous reports indicate that the electron transfer chain and FoF1-ATP synthase are functionally expressed in myelin sheath, performing an extra-mitochondrial oxidative phosphorylation (OXPHOS), which would provide energy to the nerve axon. This supports the idea that myelin plays a trophic role for the axon. Although the four ETC complexes and ATP synthase are considered exquisite mitochondrial proteins, they are found ectopically expressed in several membranous structures. This study was designed to understand when and how the mitochondrial OXPHOS machinery is embedded in myelin, following myelinogenesis in the rat, which starts at birth and continues until the first month of age. Rats were sacrificed at different time points (from day 5 to 90 post birth). Western blot, immunofluorescence microscopy, luminometric, and oximetric analyses show that the isolated myelin starts to show OXPHOS components around the 11th day after birth and increases proportionally to the rat age, becoming similar to those of adult rat around the 30-third day. Interestingly, WB data show the same temporal relationship between myelinogenesis and appearance of proteins involved in mitochondrial fusion and cellular trafficking. It may be speculated that the OXPHOS complexes may be transferred to the endoplasmic reticulum membrane (known to interact with mitochondria) and from there through the Golgi apparatus to the forming myelin membrane.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Pharmacy (DIFAR), Biochemistry Laboratory, University of Genova, Viale Benedetto XV 3, 16132, Genova, Italy.
| | - Martina Bartolucci
- Department of Pharmacy (DIFAR), Biochemistry Laboratory, University of Genova, Viale Benedetto XV 3, 16132, Genova, Italy
| | - Patrizia Garbati
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Via de Toni 5, 16132, Genova, Italy
| | - Sara Ferrando
- DISTAV, University of Genova, C.so Europa 26, 16132, Genova, Italy
| | - Daniela Calzia
- Department of Pharmacy (DIFAR), Biochemistry Laboratory, University of Genova, Viale Benedetto XV 3, 16132, Genova, Italy
| | - Paola Ramoino
- DISTAV, University of Genova, C.so Europa 26, 16132, Genova, Italy
| | - Maurizio Balestrino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Via de Toni 5, 16132, Genova, Italy
| | - Alessandro Morelli
- Department of Pharmacy (DIFAR), Biochemistry Laboratory, University of Genova, Viale Benedetto XV 3, 16132, Genova, Italy
| | - Isabella Panfoli
- Department of Pharmacy (DIFAR), Biochemistry Laboratory, University of Genova, Viale Benedetto XV 3, 16132, Genova, Italy
| |
Collapse
|
12
|
Li J, Chen Z, Gao LY, Colorni A, Ucko M, Fang S, Du SJ. A transgenic zebrafish model for monitoring xbp1 splicing and endoplasmic reticulum stress in vivo. Mech Dev 2015; 137:33-44. [PMID: 25892297 DOI: 10.1016/j.mod.2015.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 12/26/2022]
Abstract
Accumulation of misfolded or unfolded proteins in the endoplasmic reticulum (ER) triggers ER stress that initiates unfolded protein response (UPR). XBP1 is a transcription factor that mediates one of the key signaling pathways of UPR to cope with ER stress through regulating gene expression. Activation of XBP1 involves an unconventional mRNA splicing catalyzed by IRE1 endonuclease that removes an internal 26 nucleotides from xbp1 mRNA transcripts in the cytoplasm. Researchers have taken advantage of this unique activation mechanism to monitor XBP1 activation, thereby UPR, in cell culture and transgenic models. Here we report a Tg(ef1α:xbp1δ-gfp) transgenic zebrafish line to monitor XBP1 activation using GFP as a reporter especially in zebrafish oocytes and developing embryos. The Tg(ef1α:xbp1δ-gfp) transgene was constructed using part of the zebrafish xbp1 cDNA containing the splicing element. ER stress induced splicing results in the cDNA encoding a GFP-tagged partial XBP1 without the transactivation activation domain (XBP1Δ-GFP). The results showed that xbp1 transcripts mainly exist as the spliced active isoform in unfertilized oocytes and zebrafish embryos prior to zygotic gene activation at 3 hours post fertilization. A strong GFP expression was observed in unfertilized oocytes, eyes, brain and skeletal muscle in addition to a weak expression in the hatching gland. Incubation of transgenic zebrafish embryos with (dithiothreitol) DTT significantly induced XBP1Δ-GFP expression. Collectively, these studies unveil the presence of maternal xbp1 splicing in zebrafish oocytes, fertilized eggs and early stage embryos. The Tg(ef1α:xbp1δ-gfp) transgenic zebrafish provides a useful model for in vivo monitoring xbp1 splicing during development and under ER stress conditions.
Collapse
Affiliation(s)
- Junling Li
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Shandong Medicinal and Biotechnology Center, Shandong Academy of Medical Sciences, Jinan 250062, Shandong Province, China
| | - Zhiliang Chen
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lian-Yong Gao
- Department of cell Biology and Molecular genetics, University of Maryland, College Park, MD 20742, USA
| | - Angelo Colorni
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat 88112, Israel
| | - Michal Ucko
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat 88112, Israel
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Shao Jun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
13
|
Xiao Y, Faucherre A, Pola-Morell L, Heddleston JM, Liu TL, Chew TL, Sato F, Sehara-Fujisawa A, Kawakami K, López-Schier H. High-resolution live imaging reveals axon-glia interactions during peripheral nerve injury and repair in zebrafish. Dis Model Mech 2015; 8:553-64. [PMID: 26035865 PMCID: PMC4457030 DOI: 10.1242/dmm.018184] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 03/24/2015] [Indexed: 12/22/2022] Open
Abstract
Neural damage is a devastating outcome of physical trauma. The glia are one of the main effectors of neuronal repair in the nervous system, but the dynamic interactions between peripheral neurons and Schwann cells during injury and regeneration remain incompletely characterized. Here, we combine laser microsurgery, genetic analysis, high-resolution intravital imaging and lattice light-sheet microscopy to study the interaction between Schwann cells and sensory neurons in a zebrafish model of neurotrauma. We found that chronic denervation by neuronal ablation leads to Schwann-cell death, whereas acute denervation by axonal severing does not affect the overall complexity and architecture of the glia. Neuronal-circuit regeneration begins when Schwann cells extend bridging processes to close the injury gap. Regenerating axons grow faster and directionally after the physiological clearing of distal debris by the Schwann cells. This might facilitate circuit repair by ensuring that axons are guided through unoccupied spaces within bands of Büngner towards their original peripheral target. Accordingly, in the absence of Schwann cells, regenerating axons are misrouted, impairing the re-innervation of sensory organs. Our results indicate that regenerating axons use haptotaxis as a directional cue during the reconstitution of a neural circuit. These findings have implications for therapies aimed at neurorepair, which will benefit from preserving the architecture of the peripheral glia during periods of denervation. Summary: Schwann cells are important components of the peripheral glia. We use microsurgery and high-resolution live imaging to show how Schwann cells control the regeneration of a sensorineural circuit.
Collapse
Affiliation(s)
- Yan Xiao
- Research Unit Sensory Biology & Organogenesis, Helmholtz Zentrum München, 85764 Munich, Germany
| | - Adèle Faucherre
- Cell & Developmental Biology, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | - Laura Pola-Morell
- Cell & Developmental Biology, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | - John M Heddleston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Tsung-Li Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Teng-Leong Chew
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Fuminori Sato
- Institute for Frontier Medical Sciences, Kyoto University, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Atsuko Sehara-Fujisawa
- Institute for Frontier Medical Sciences, Kyoto University, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, The Graduate University for Advanced Studies (Sokendai), 1111 Yata, Mishima, Shizuoka 411-8540, Japan Department of Genetics, The Graduate University for Advanced Studies (Sokendai), 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hernán López-Schier
- Research Unit Sensory Biology & Organogenesis, Helmholtz Zentrum München, 85764 Munich, Germany Cell & Developmental Biology, Centre for Genomic Regulation, 08003 Barcelona, Spain
| |
Collapse
|
14
|
Ohri SS, Mullins A, Hetman M, Whittemore SR. Inhibition of GADD34, the stress-inducible regulatory subunit of the endoplasmic reticulum stress response, does not enhance functional recovery after spinal cord injury. PLoS One 2014; 9:e109703. [PMID: 25386686 PMCID: PMC4227638 DOI: 10.1371/journal.pone.0109703] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/11/2014] [Indexed: 11/30/2022] Open
Abstract
Activation of the endoplasmic reticulum stress response (ERSR) is a hallmark of various pathological diseases and/or traumatic injuries. Restoration of ER homeostasis can contribute to improvement in the functional outcome of these diseases. Using genetic and pharmacological inhibition of the PERK-CHOP arm of the ERSR, we recently demonstrated improvements in hindlimb locomotion after spinal cord injury (SCI) and implicated oligodendrocyte survival as a potential mechanism. Here, we investigated the contribution of stress-inducible PPP1R15A/GADD34, an ERSR signaling effector downstream of CHOP that dephosphorylates eIF2α, in the pathogenesis of SCI. We show that although genetic ablation of GADD34 protects oligodendrocyte precursor cells (OPCs) against ER stress-mediated cell death in vitro and results in differential ERSR attenuation in vivo after SCI, there is no improvement in hindlimb locomotor function. Guanabenz, a FDA approved antihypertensive drug, was recently shown to reduce the burden of misfolded proteins in the ER by directly targeting GADD34. Guanabenz protected OPCs from ER stress-mediated cell death in vitro and attenuated the ERSR in vivo after SCI. However, guanabenz administration failed to rescue the locomotor deficits after SCI. These data suggest that deletion of GADD34 alone is not sufficient to improve functional recovery after SCI.
Collapse
Affiliation(s)
- Sujata Saraswat Ohri
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States of America; Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, United States of America
| | - Ashley Mullins
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States of America; Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, United States of America
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States of America; Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, United States of America; Department of Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky, United States of America; Department of Anatomical Sciences & Neurobiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Scott R Whittemore
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States of America; Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, United States of America; Department of Anatomical Sciences & Neurobiology, University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|
15
|
Vacaru AM, Unlu G, Spitzner M, Mione M, Knapik EW, Sadler KC. In vivo cell biology in zebrafish - providing insights into vertebrate development and disease. J Cell Sci 2014; 127:485-95. [PMID: 24481493 PMCID: PMC4007761 DOI: 10.1242/jcs.140194] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Over the past decades, studies using zebrafish have significantly advanced our understanding of the cellular basis for development and human diseases. Zebrafish have rapidly developing transparent embryos that allow comprehensive imaging of embryogenesis combined with powerful genetic approaches. However, forward genetic screens in zebrafish have generated unanticipated findings that are mirrored by human genetic studies: disruption of genes implicated in basic cellular processes, such as protein secretion or cytoskeletal dynamics, causes discrete developmental or disease phenotypes. This is surprising because many processes that were assumed to be fundamental to the function and survival of all cell types appear instead to be regulated by cell-specific mechanisms. Such discoveries are facilitated by experiments in whole animals, where zebrafish provides an ideal model for visualization and manipulation of organelles and cellular processes in a live vertebrate. Here, we review well-characterized mutants and newly developed tools that underscore this notion. We focus on the secretory pathway and microtubule-based trafficking as illustrative examples of how studying cell biology in vivo using zebrafish has broadened our understanding of the role fundamental cellular processes play in embryogenesis and disease.
Collapse
Affiliation(s)
- Ana M. Vacaru
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| | - Gokhan Unlu
- Division of Genetic Medicine, Department of Medicine, and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Marie Spitzner
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Marina Mione
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Ela W. Knapik
- Division of Genetic Medicine, Department of Medicine, and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kirsten C. Sadler
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Department of Medicine/Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1020, New York, NY 10029, USA
| |
Collapse
|
16
|
Servas C, Römisch K. The Sec63p J-domain is required for ERAD of soluble proteins in yeast. PLoS One 2013; 8:e82058. [PMID: 24324744 PMCID: PMC3852996 DOI: 10.1371/journal.pone.0082058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/28/2013] [Indexed: 12/02/2022] Open
Abstract
How misfolded proteins are exported from the ER to the cytosol for degradation (ER-associated Degradation, ERAD) and which proteins are participating in this process is not understood. Several studies using a single, leaky mutant indicated that Sec63p might be involved in ERAD. More recently, Sec63p was also found strongly associated with proteasomes attached to the protein-conducting channel in the ER membrane which presumably form part of the export machinery. These observations prompted us to reinvestigate the role of Sec63p in ERAD by generating new mutants which were selected in a screen monitoring the intracellular accumulation of the ERAD substrate CPY*. We show that a mutation in the DnaJ-domain of Sec63p causes a defect in ERAD, whereas mutations in the Brl, acidic, and transmembrane domains only affect protein import into the ER. Unexpectedly, mutations in the acidic domain which mediates interaction of Sec63p with Sec62p also caused defects in cotranslational import. In contrast to mammalian cells where SEC63 expression levels affect steady-state levels of multi-spanning transmembrane proteins, the sec63 J-domain mutant was only defective in ERAD of soluble substrates.
Collapse
Affiliation(s)
- Christina Servas
- Department of Microbiology, Faculty of Natural Sciences and Technology VIII, Saarland University, Saarbrücken, Germany
| | | |
Collapse
|
17
|
Komoike Y, Matsuoka M. Exposure to tributyltin induces endoplasmic reticulum stress and the unfolded protein response in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 142-143:221-229. [PMID: 24055755 DOI: 10.1016/j.aquatox.2013.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/22/2013] [Accepted: 08/27/2013] [Indexed: 06/02/2023]
Abstract
Tributyltin (TBT) is a major marine contaminant and causes endocrine disruption, hepatotoxicity, immunotoxicity, and neurotoxicity. However, the molecular mechanisms underlying the toxicity of TBT have not been fully elucidated. We examined whether exposure to TBT induces the endoplasmic reticulum (ER) stress response in zebrafish, a model organism. Zebrafish-derived BRF41 fibroblast cells were exposed to 0.5 or 1 μM TBT for 0.5-16 h and subsequently lysed and immunoblotted to detect ER stress-related proteins. Zebrafish embryos, grown until 32 h post fertilization (hpf), were exposed to 1 μM TBT for 16 h and used in whole mount in situ hybridization and immunohistochemistry to visualize the expression of ER chaperones and an ER stress-related apoptosis factor. Exposure of the BRF41 cells to TBT caused phosphorylation of the zebrafish homolog of protein kinase RNA-activated-like ER kinase (PERK), eukaryotic translation initiation factor 2 alpha (eIF2α), and inositol-requiring enzyme 1 (IRE1), characteristic splicing of X-box binding protein 1 (XBP1) mRNA, and enhanced expression of activating transcription factor 4 (ATF4) protein. In TBT-exposed zebrafish embryos, ectopic expression of the gene encoding zebrafish homolog of the 78 kDa glucose-regulating protein (GRP78) and gene encoding CCAAT/enhancer-binding protein homologous protein (CHOP) was detected in the precursors of the neuromast, which is a sensory organ for detecting water flow and vibration. Our in vitro and in vivo studies revealed that exposure of zebrafish to TBT induces the ER stress response via activation of both the PERK-eIF2α and IRE1-XBP1 pathways of the unfolded protein response (UPR) in an organ-specific manner.
Collapse
Affiliation(s)
- Yuta Komoike
- Department of Hygiene and Public Health I, School of Medicine, Tokyo Women's Medical University, 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan.
| | | |
Collapse
|
18
|
Asaoka Y, Terai S, Sakaida I, Nishina H. The expanding role of fish models in understanding non-alcoholic fatty liver disease. Dis Model Mech 2013; 6:905-14. [PMID: 23720231 PMCID: PMC3701210 DOI: 10.1242/dmm.011981] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a condition in which excessive fat accumulates in the liver of an individual who has not consumed excessive alcohol. Non-alcoholic steatohepatitis (NASH), a severe form of NAFLD, can progress to hepatic cirrhosis and/or hepatocellular carcinoma (HCC). NAFLD is considered to be a hepatic manifestation of metabolic syndrome, and its incidence has risen worldwide in lockstep with the increased global prevalence of obesity. Over the last decade, rodent studies have yielded an impressive list of molecules associated with NAFLD and NASH pathogenesis. However, the identification of currently unknown metabolic factors using mammalian model organisms is inefficient and expensive compared with studies using fish models such as zebrafish (Danio rerio) and medaka (Oryzias latipes). Substantial advances in unraveling the molecular pathogenesis of NAFLD have recently been achieved through unbiased forward genetic screens using small fish models. Furthermore, these easily manipulated organisms have been used to great advantage to evaluate the therapeutic effectiveness of various chemical compounds for the treatment of NAFLD. In this Review, we summarize aspects of NAFLD (specifically focusing on NASH) pathogenesis that have been previously revealed by rodent models, and discuss how small fish are increasingly being used to uncover factors that contribute to normal hepatic lipid metabolism. We describe the various types of fish models in use for this purpose, including those generated by mutation, transgenesis, or dietary or chemical treatment, and contrast them with rodent models. The use of small fish in identifying novel potential therapeutic agents for the treatment of NAFLD and NASH is also addressed.
Collapse
Affiliation(s)
- Yoichi Asaoka
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | |
Collapse
|
19
|
Tietz Bogert PS, Huang BQ, Gradilone SA, Masyuk TV, Moulder GL, Ekker SC, Larusso NF. The zebrafish as a model to study polycystic liver disease. Zebrafish 2013; 10:211-7. [PMID: 23668934 DOI: 10.1089/zeb.2012.0825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the polycystic liver diseases (PLD), genetic defects initiate the formation of cysts in the liver and kidney. In rodent models of PLD (i.e., the PCK rat and Pkd2(WS25/-) mouse), we have studied hepatorenal cystic disease and therapeutic approaches. In this study, we employed zebrafish injected with morpholinos against genes involved in the PLD, including sec63, prkcsh, and pkd1a. We calculated the liver cystic area, and based on our rodent studies, we exposed the embryos to pasireotide [1 μM] or vitamin K3 [100 μM] and assessed the endoplasmic reticulum (ER) in cholangiocytes in embryos treated with 4-phenylbutyrate (4-PBA). Our results show that (a) morpholinos against sec63, prkcsh, and pkd1a eliminate expression of the respective proteins; (b) phenotypic body changes included curved tail and the formation of hepatic cysts in zebrafish larvae; (c) exposure of embryos to pasireotide inhibited hepatic cystogenesis in the zebrafish models; and (d) exposure of embryos to 4-PBA resulted in the ER in cholangiocytes resolving from a curved to a smooth appearance. Our results suggest that the zebrafish model of PLD may provide a means to screen drugs that could inhibit hepatic cystogenesis.
Collapse
Affiliation(s)
- Pamela S Tietz Bogert
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine , Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
D'Antonio M, Musner N, Scapin C, Ungaro D, Del Carro U, Ron D, Feltri ML, Wrabetz L. Resetting translational homeostasis restores myelination in Charcot-Marie-Tooth disease type 1B mice. ACTA ACUST UNITED AC 2013; 210:821-38. [PMID: 23547100 PMCID: PMC3620355 DOI: 10.1084/jem.20122005] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Reduction of the CHOP target Gadd34 restores motor function in P0S63del mice with demyelinating neuropathy. P0 glycoprotein is an abundant product of terminal differentiation in myelinating Schwann cells. The mutant P0S63del causes Charcot-Marie-Tooth 1B neuropathy in humans, and a very similar demyelinating neuropathy in transgenic mice. P0S63del is retained in the endoplasmic reticulum of Schwann cells, where it promotes unfolded protein stress and elicits an unfolded protein response (UPR) associated with translational attenuation. Ablation of Chop, a UPR mediator, from S63del mice completely rescues their motor deficit and reduces active demyelination by half. Here, we show that Gadd34 is a detrimental effector of CHOP that reactivates translation too aggressively in myelinating Schwann cells. Genetic or pharmacological limitation of Gadd34 function moderates translational reactivation, improves myelination in S63del nerves, and reduces accumulation of P0S63del in the ER. Resetting translational homeostasis may provide a therapeutic strategy in tissues impaired by misfolded proteins that are synthesized during terminal differentiation.
Collapse
Affiliation(s)
- Maurizio D'Antonio
- Division of Genetics and Cell Biology and 2 Division of Neuroscience, San Raffaele Scientific Institute, DIBIT, 20132 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|