1
|
Nath SR, Dasgupta A, Dubey D, Kokesh E, Beecher G, Fadra N, Liewluck T, Pittock S, Doles JD, Litchy W, Milone M. Unraveling calcium dysregulation and autoimmunity in immune mediated rippling muscle disease. Acta Neuropathol Commun 2025; 13:11. [PMID: 39819455 PMCID: PMC11736958 DOI: 10.1186/s40478-025-01926-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
Rippling Muscle Disease (RMD) is a rare skeletal myopathy characterized by abnormal muscular excitability manifesting with wave-like muscle contractions and percussion-induced muscle mounding. Hereditary RMD is associated with caveolin-3 or cavin-1 mutations. Recently, we identified cavin 4 autoantibodies as a biomarker of immune-mediated RMD (iRMD), though the underlying disease-mechanisms remain poorly understood. Transcriptomic studies were performed on muscle biopsies of 8 patients (5 males; 3 females; ages 26-to-80) with iRMD. Subsequent pathway analysis compared iRMD to human non-disease control and disease control (dermatomyositis) muscle samples. Transcriptomic studies demonstrated changes in key pathways of muscle contraction and development. All iRMD samples had significantly upregulated cavin-4 expression compared to controls, likely compensatory for autoantibody-mediated protein degradation. Proteins involved in muscle relaxation (including SERCA1, PMCA and PLN) were significantly increased in iRMD compared to controls. Comparison of iRMD to dermatomyositis transcriptomics demonstrated significant overlap in immune pathways, and the IL-6 signaling pathway was markedly increased in all iRMD patient muscle biopsies and increased in the majority of iRMD patients' serum. This study represents the first muscle transcriptomic analysis of iRMD patients and dissects underlying disease mechanisms. Increase of sarcolemmal and cellular calcium channels as well as PLN, an inhibitor of the SERCA pump for calcium into the sarcoplasm, likely alters the calcium dynamics in iRMD. These changes in crucial components of muscle relaxation may underlie rippling by altering calcium flux. Our findings provide crucial insights into the differential expression of genes regulating muscle relaxation and highlight potential disease pathomechanisms.
Collapse
Affiliation(s)
- Samir R Nath
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Aneesha Dasgupta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Divyanshu Dubey
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Eileen Kokesh
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Grayson Beecher
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Numrah Fadra
- Division of Computational Biology, Department of Quantitative Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Teerin Liewluck
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sean Pittock
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jason D Doles
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - William Litchy
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | | |
Collapse
|
2
|
Braun JL, Fajardo VA. Spaceflight increases sarcoplasmic reticulum Ca 2+ leak and this cannot be counteracted with BuOE treatment. NPJ Microgravity 2024; 10:78. [PMID: 39030182 PMCID: PMC11271499 DOI: 10.1038/s41526-024-00419-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Spending time in a microgravity environment is known to cause significant skeletal muscle atrophy and weakness via muscle unloading, which can be partly attributed to Ca2+ dysregulation. The sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) pump is responsible for bringing Ca2+ from the cytosol into its storage site, the sarcoplasmic reticulum (SR), at the expense of ATP. We have recently demonstrated that, in the soleus of space-flown mice, the Ca2+ uptake ability of the SERCA pump is severely impaired and this may be attributed to increases in reactive oxygen/nitrogen species (RONS), to which SERCA is highly susceptible. The purpose of this study was therefore to investigate whether treatment with the antioxidant, Manganese(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin, MnTnBuOE-2-PyP5+ (BuOE), could attenuate muscle atrophy and SERCA dysfunction. We received soleus muscles from the rodent research 18 mission which had male mice housed on the international space station for 35 days and treated with either saline or BuOE. Spaceflight significantly reduced the soleus:body mass ratio and significantly increased SERCA's ionophore ratio, a measure of SR Ca2+ leak, and 4-HNE content (marker of RONS), none of which could be rescued by BuOE treatment. In conclusion, we find that spaceflight induces significant soleus muscle atrophy and SR Ca2+ leak that cannot be counteracted with BuOE treatment. Future work should investigate alternative therapeutics that are specifically aimed at increasing SERCA activation or reducing Ca2+ leak.
Collapse
Affiliation(s)
- Jessica L Braun
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada.
| |
Collapse
|
3
|
Pu S, Liu Y, Wu W, Sun F, Lu H, Xu X, Su Y, Cheng W, Wang H. Aging related obesity and type 2 diabetes mellitus suppress neuromuscular communication and aggravate skeletal muscle dysfunction in rhesus monkeys. Heliyon 2024; 10:e28549. [PMID: 38586358 PMCID: PMC10998128 DOI: 10.1016/j.heliyon.2024.e28549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Age-related functional deterioration in skeletal muscle raises the risk for falls, disability, and mortality in the elderly, particularly in obese people or those with type 2 diabetes mellitus (T2D). However, the response of the skeletal muscle to transitioning from obesity to diabetes remains poorly defined, despite that obesity is classified as a stage of pre-diabetes. We screened and selected spontaneously obese and diabetic rhesus monkeys and examined altered protein expression in skeletal muscle of healthy aging (CON), obesity aging (OB), and type 2 diabetes mellitus aging (T2D) rhesus monkeys using Tandem Mass Tags (TMT)-based quantitative proteomic analysis. In total, we identified 142 differentially expressed proteins. Muscle-nerve communication proteins were firstly suppressed at obese-stage. With the disintegration of skeletal muscle, mitochondrial complex I and other energy homeostasis relate proteins were significantly disordered at T2D stage. Indicating that aging related obesity suppressed muscle-nerve communication and contribute to T2D related functional deterioration of skeletal muscles in elderly rhesus monkeys. Some alterations of muscular functional regulator are detected in both obesity and T2D samples, suggesting some T2D related skeletal muscular hypofunctions are occurring at obesity or pre-obesity stage. Muscle-nerve communication proteins and muscular function related proteins could be potential therapy target or early diagnose marker of for skeletal muscular hypofunctions in aging obesity populations.
Collapse
Affiliation(s)
- Shaoxia Pu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Yaowen Liu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Wenjun Wu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Fei Sun
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Hongsheng Lu
- School of Life Science, Yunnan University, Kunming, China
| | - Xiaocui Xu
- Fuwai Yunnan Cardiovascular Hospital of Kunming Medical University, Kunming, China
| | - Yanhua Su
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Wenming Cheng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Haizhen Wang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
4
|
Valentim M, Brahmbhatt A, Tupling A. Skeletal and cardiac muscle calcium transport regulation in health and disease. Biosci Rep 2022; 42:BSR20211997. [PMID: 36413081 PMCID: PMC9744722 DOI: 10.1042/bsr20211997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022] Open
Abstract
In healthy muscle, the rapid release of calcium ions (Ca2+) with excitation-contraction (E-C) coupling, results in elevations in Ca2+ concentrations which can exceed 10-fold that of resting values. The sizable transient changes in Ca2+ concentrations are necessary for the activation of signaling pathways, which rely on Ca2+ as a second messenger, including those involved with force generation, fiber type distribution and hypertrophy. However, prolonged elevations in intracellular Ca2+ can result in the unwanted activation of Ca2+ signaling pathways that cause muscle damage, dysfunction, and disease. Muscle employs several calcium handling and calcium transport proteins that function to rapidly return Ca2+ concentrations back to resting levels following contraction. This review will detail our current understanding of calcium handling during the decay phase of intracellular calcium transients in healthy skeletal and cardiac muscle. We will also discuss how impairments in Ca2+ transport can occur and how mishandling of Ca2+ can lead to the pathogenesis and/or progression of skeletal muscle myopathies and cardiomyopathies.
Collapse
Affiliation(s)
- Mark A. Valentim
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Aditya N. Brahmbhatt
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - A. Russell Tupling
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
5
|
Baraldo M, Zorzato S, Dondjang AHT, Geremia A, Nogara L, Dumitras AG, Canato M, Marcucci L, Nolte H, Blaauw B. Inducible deletion of raptor and mTOR from adult skeletal muscle impairs muscle contractility and relaxation. J Physiol 2022; 600:5055-5075. [PMID: 36255030 DOI: 10.1113/jp283686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 01/05/2023] Open
Abstract
Skeletal muscle weakness has been associated with different pathological conditions, including sarcopenia and muscular dystrophy, and is accompanied by altered mammalian target of rapamycin (mTOR) signalling. We wanted to elucidate the functional role of mTOR in muscle contractility. Most loss-of-function studies for mTOR signalling have used the drug rapamycin to inhibit some of the signalling downstream of mTOR. However, given that rapamycin does not inhibit all mTOR signalling completely, we generated a double knockout for mTOR and for the scaffold protein of mTORC1, raptor, in skeletal muscle. We found that double knockout in mice results in a more severe phenotype compared with deletion of raptor or mTOR alone. Indeed, these animals display muscle weakness, increased fibre denervation and a slower muscle relaxation following tetanic stimulation. This is accompanied by a shift towards slow-twitch fibres and changes in the expression levels of calcium-related genes, such as Serca1 and Casq1. Double knockout mice show a decrease in calcium decay kinetics after tetanus in vivo, suggestive of a reduced calcium reuptake. In addition, RNA sequencing analysis revealed that many downregulated genes, such as Tcap and Fhod3, are linked to sarcomere organization. These results suggest a key role for mTOR signalling in maintaining proper fibre relaxation in skeletal muscle. KEY POINTS: Skeletal muscle wasting and weakness have been associated with different pathological conditions, including sarcopenia and muscular dystrophy, and are accompanied by altered mammalian target of rapamycin (mTOR) signalling. Mammalian target of rapamycin plays a crucial role in the maintenance of muscle mass and functionality. We found that the loss of both mTOR and raptor results in contractile abnormalities, with severe muscle weakness and delayed relaxation following tetanic stimulation. These results are associated with alterations in the expression of genes involved in sarcomere organization and calcium handling and with an impairment in calcium reuptake after contraction. Taken together, these results provide a mechanistic insight into the role of mTOR in muscle contractility.
Collapse
Affiliation(s)
- Martina Baraldo
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Sabrina Zorzato
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Achille Homère Tchampda Dondjang
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Alessia Geremia
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Leonardo Nogara
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ana Georgia Dumitras
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marta Canato
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Center for Biosystems Dynamics Research, RIKEN, Suita, Japan
| | - Hendrik Nolte
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Nemirovskaya TL, Sharlo KA. Roles of ATP and SERCA in the Regulation of Calcium Turnover in Unloaded Skeletal Muscles: Current View and Future Directions. Int J Mol Sci 2022; 23:ijms23136937. [PMID: 35805949 PMCID: PMC9267070 DOI: 10.3390/ijms23136937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
A decrease in skeletal muscle contractile activity or its complete cessation (muscle unloading or disuse) leads to muscle fibers’ atrophy and to alterations in muscle performance. These changes negatively affect the quality of life of people who, for one reason or another, are forced to face a limitation of physical activity. One of the key regulatory events leading to the muscle disuse-induced changes is an impairment of calcium homeostasis, which leads to the excessive accumulation of calcium ions in the sarcoplasm. This review aimed to analyze the triggering mechanisms of calcium homeostasis impairment (including those associated with the accumulation of high-energy phosphates) under various types of muscle unloading. Here we proposed a hypothesis about the regulatory mechanisms of SERCA and IP3 receptors activity during muscle unloading, and about the contribution of these mechanisms to the excessive calcium ion myoplasmic accumulation and gene transcription regulation via excitation–transcription coupling.
Collapse
|
7
|
Chambers PJ, Juracic ES, Fajardo VA, Tupling AR. The role of SERCA and sarcolipin in adaptive muscle remodeling. Am J Physiol Cell Physiol 2022; 322:C382-C394. [PMID: 35044855 DOI: 10.1152/ajpcell.00198.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sarcolipin (SLN) is a small integral membrane protein that regulates the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pump. When bound to SERCA, SLN reduces the apparent Ca2+ affinity of SERCA and uncouples SERCA Ca2+ transport from its ATP consumption. As such, SLN plays a direct role in altering skeletal muscle relaxation and energy expenditure. Interestingly, the expression of SLN is dynamic during times of muscle adaptation, where large increases in SLN content are found in response to development, atrophy, overload and disease. Several groups have suggested that increases in SLN, especially in dystrophic muscle, are deleterious to muscle function and exacerbate already abhorrent intracellular Ca2+ levels. However, there is also significant evidence to show that increased SLN content is a beneficial adaptive mechanism which protects the SERCA pump and activates Ca2+ signaling and adaptive remodeling during times of cell stress. In this review, we first discuss the role for SLN in healthy muscle during both development and overload, where SLN has been shown to activate Ca2+ signaling to promote mitochondrial biogenesis, fibre type shifts and muscle hypertrophy. Then, with respect to muscle disease, we summarize the discrepancies in the literature as to whether SLN upregulation is adaptive or maladaptive in nature. This review is the first to offer the concept of SLN hormesis in muscle disease, wherein both too much and too little SLN are detrimental to muscle health. Finally, the underlying mechanisms which activate SLN upregulation are discussed, specifically acknowledging a potential positive feedback loop between SLN and Ca2+ signaling molecules.
Collapse
Affiliation(s)
- Paige J Chambers
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Emma S Juracic
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Val A Fajardo
- Department Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - A Russell Tupling
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
8
|
Braun JL, Ryoo J, Goodwin K, Copeland EN, Geromella MS, Baranowski RW, MacPherson REK, Fajardo VA. The effects of neurogranin knockdown on SERCA pump efficiency in soleus muscles of female mice fed a high fat diet. Front Endocrinol (Lausanne) 2022; 13:957182. [PMID: 36072929 PMCID: PMC9441848 DOI: 10.3389/fendo.2022.957182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/05/2022] [Indexed: 11/26/2022] Open
Abstract
The sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) pump is responsible for the transport of Ca2+ from the cytosol into the sarcoplasmic reticulum at the expense of ATP, making it a regulator of both muscle relaxation and muscle-based energy expenditure. Neurogranin (Ng) is a small protein that negatively regulates calcineurin signaling. Calcineurin is Ca2+/calmodulin dependent phosphatase that promotes the oxidative fibre type in skeletal muscle and regulates muscle-based energy expenditure. A recent study has shown that calcineurin activation reduces SERCA Ca2+ transport efficiency, ultimately raising energy expenditure. Since the biomedical view of obesity states that it arises as an imbalance between energy intake and expenditure which favors the former, we questioned whether heterozygous Ng deletion (Ng+/- ) would reduce SERCA efficiency and increase energy expenditure in female mice fed a high-fat diet (HFD). Young (3-4-month-old) female wild type (WT) and Ng+/- mice were fed a HFD for 12 weeks with their metabolic profile being analyzed using metabolic cages and DXA scanning, while soleus SERCA efficiency was measured using SERCA specific Ca2+ uptake and ATPase activity assays. Ng+/- mice showed significantly less cage ambulation compared to WT mice but this did not lead to any added weight gain nor changes in daily energy expenditure, glucose or insulin tolerance despite a similar level of food intake. Furthermore, we observed significant reductions in SERCA's apparent coupling ratio which were associated with significant reductions in SERCA1 and phospholamban content. Thus, our results show that Ng regulates SERCA pump efficiency, and future studies should further investigate the potential cellular mechanisms.
Collapse
Affiliation(s)
- Jessica L. Braun
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
- Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
| | - Jisook Ryoo
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Kyle Goodwin
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Emily N. Copeland
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
- Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
| | - Mia S. Geromella
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Ryan W. Baranowski
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Rebecca E. K. MacPherson
- Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Val A. Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
- Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
- *Correspondence: Val A. Fajardo,
| |
Collapse
|
9
|
Characterizing SERCA Function in Murine Skeletal Muscles after 35-37 Days of Spaceflight. Int J Mol Sci 2021; 22:ijms222111764. [PMID: 34769190 PMCID: PMC8584217 DOI: 10.3390/ijms222111764] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
It is well established that microgravity exposure causes significant muscle weakness and atrophy via muscle unloading. On Earth, muscle unloading leads to a disproportionate loss in muscle force and size with the loss in muscle force occurring at a faster rate. Although the exact mechanisms are unknown, a role for Ca2+ dysregulation has been suggested. The sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) pump actively brings cytosolic Ca2+ into the SR, eliciting muscle relaxation and maintaining low intracellular Ca2+ ([Ca2+]i). SERCA dysfunction contributes to elevations in [Ca2+]i, leading to cellular damage, and may contribute to the muscle weakness and atrophy observed with spaceflight. Here, we investigated SERCA function, SERCA regulatory protein content, and reactive oxygen/nitrogen species (RONS) protein adduction in murine skeletal muscle after 35–37 days of spaceflight. In male and female soleus muscles, spaceflight led to drastic impairments in Ca2+ uptake despite significant increases in SERCA1a protein content. We attribute this impairment to an increase in RONS production and elevated total protein tyrosine (T) nitration and cysteine (S) nitrosylation. Contrarily, in the tibialis anterior (TA), we observed an enhancement in Ca2+ uptake, which we attribute to a shift towards a faster muscle fiber type (i.e., increased myosin heavy chain IIb and SERCA1a) without elevated total protein T-nitration and S-nitrosylation. Thus, spaceflight affects SERCA function differently between the soleus and TA.
Collapse
|
10
|
Braun JL, Teng ACT, Geromella MS, Ryan CR, Fenech RK, MacPherson REK, Gramolini AO, Fajardo VA. Neuronatin promotes SERCA uncoupling and its expression is altered in skeletal muscles of high-fat diet-fed mice. FEBS Lett 2021; 595:2756-2767. [PMID: 34693525 DOI: 10.1002/1873-3468.14213] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 11/09/2022]
Abstract
Neuronatin (NNAT) is a transmembrane protein in the endoplasmic reticulum involved in metabolic regulation. It shares sequence homology with sarcolipin (SLN), which negatively regulates the sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA) that maintains energy homeostasis in muscles. Here, we examined whether NNAT could uncouple the Ca2+ transport activity of SERCA from ATP hydrolysis, similarly to SLN. NNAT significantly reduced Ca2+ uptake without altering SERCA activity, ultimately lowering the apparent coupling ratio of SERCA. This effect of NNAT was reversed by the adenylyl cyclase activator forskolin. Furthermore, soleus muscles from high fat diet (HFD)-fed mice showed a significant downregulation in NNAT content compared with chow-fed mice, whereas an upregulation in NNAT content was observed in fast-twitch muscles from HFD- versus chow- fed mice. Therefore, NNAT is a SERCA uncoupler in cells and may function in adaptive thermogenesis.
Collapse
Affiliation(s)
- Jessica L Braun
- Department of Kinesiology, Brock University, St. Catharines, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, Canada.,Centre for Neuroscience, Brock University, St. Catharines, Canada
| | - Allen C T Teng
- Department of Physiology, University of Toronto, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
| | - Mia S Geromella
- Department of Kinesiology, Brock University, St. Catharines, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, Canada.,Centre for Neuroscience, Brock University, St. Catharines, Canada
| | - Chantal R Ryan
- Centre for Neuroscience, Brock University, St. Catharines, Canada.,Department of Health Sciences, Brock University, St. Catharines, Canada
| | - Rachel K Fenech
- Centre for Neuroscience, Brock University, St. Catharines, Canada.,Department of Health Sciences, Brock University, St. Catharines, Canada
| | - Rebecca E K MacPherson
- Centre for Neuroscience, Brock University, St. Catharines, Canada.,Department of Health Sciences, Brock University, St. Catharines, Canada
| | - Anthony O Gramolini
- Department of Physiology, University of Toronto, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, Canada.,Centre for Neuroscience, Brock University, St. Catharines, Canada
| |
Collapse
|
11
|
Phospholamban and sarcolipin prevent thermal inactivation of sarco(endo)plasmic reticulum Ca2+-ATPases. Biochem J 2020; 477:4281-4294. [PMID: 33111944 DOI: 10.1042/bcj20200346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022]
Abstract
Na+-K+-ATPase from mice lacking the γ subunit exhibits decreased thermal stability. Phospholamban (PLN) and sarcolipin (SLN) are small homologous proteins that regulate sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs) with properties similar to the γ subunit, through physical interactions with SERCAs. Here, we tested the hypothesis that PLN and SLN may protect against thermal inactivation of SERCAs. HEK-293 cells were co-transfected with different combinations of cDNAs encoding SERCA2a, PLN, a PLN mutant (N34A) that cannot bind to SERCA2a, and SLN. One-half of the cells were heat stressed at 40°C for 1 h (HS), and one-half were maintained at 37°C (CTL) before harvesting the cells and isolating microsomes. Compared with CTL, maximal SERCA activity was reduced by 25-35% following HS in cells that expressed either SERCA2a alone or SERCA2a and mutant PLN (N34A) whereas no change in maximal SERCA2a activity was observed in cells that co-expressed SERCA2a and either PLN or SLN following HS. Increases in SERCA2a carbonyl group content and nitrotyrosine levels that were detected following HS in cells that expressed SERCA2a alone were prevented in cells co-expressing SERCA2a with PLN or SLN, whereas co-expression of SERCA2a with mutant PLN (N34A) only prevented carbonyl group formation. In other experiments using knock-out mice, we found that thermal inactivation of SERCA was increased in cardiac left ventricle samples from Pln-null mice and in diaphragm samples from Sln-null mice, compared with WT littermates. Our results show that both PLN and SLN form a protective interaction with SERCA pumps during HS, preventing nitrosylation and oxidation of SERCA and thus preserving its maximal activity.
Collapse
|
12
|
Braun JL, Geromella MS, Hamstra SI, Fajardo VA. Neuronatin regulates whole-body metabolism: is thermogenesis involved? FASEB Bioadv 2020; 2:579-586. [PMID: 33089074 PMCID: PMC7566048 DOI: 10.1096/fba.2020-00052] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022] Open
Abstract
Neuronatin (NNAT) was originally discovered in 1995 and labeled as a brain developmental gene due to its abundant expression in developing brains. Over the past 25 years, researchers have uncovered NNAT in other tissues; notably, the hypothalamus, pancreatic β‐cells, and adipocytes. Recent evidence in these tissues indicates that NNAT plays a significant role in metabolism whereby it regulates food intake, insulin secretion, and adipocyte differentiation. Furthermore, genetic deletion of Nnat in mice lowers whole‐body energy expenditure and increases susceptibility to diet‐induced obesity and glucose intolerance; however, the underlying cellular mechanisms remain unknown. Based on its sequence homology with phospholamban, NNAT has a purported role in regulating the sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) pump. However, NNAT also shares sequence homology with sarcolipin, which has the unique property of uncoupling the SERCA pump, increasing whole‐body energy expenditure and thus promoting adaptive thermogenesis in states of caloric excess or cold exposure. Thus, in this article, we discuss the accumulating evidence suggestive of NNAT’s role in whole‐body metabolic regulation, while highlighting its potential to mediate adaptive thermogenesis via SERCA uncoupling.
Collapse
Affiliation(s)
- Jessica L Braun
- Department of Kinesiology Brock University St. Catharines ON USA.,Centre for Bone and Muscle Health Brock University St. Catharines ON USA.,Centre for Neuroscience Brock University St. Catharines ON USA
| | - Mia S Geromella
- Department of Kinesiology Brock University St. Catharines ON USA.,Centre for Bone and Muscle Health Brock University St. Catharines ON USA
| | - Sophie I Hamstra
- Department of Kinesiology Brock University St. Catharines ON USA.,Centre for Bone and Muscle Health Brock University St. Catharines ON USA
| | - Val A Fajardo
- Department of Kinesiology Brock University St. Catharines ON USA.,Centre for Bone and Muscle Health Brock University St. Catharines ON USA.,Centre for Neuroscience Brock University St. Catharines ON USA
| |
Collapse
|
13
|
Hamstra SI, Kurgan N, Baranowski RW, Qiu L, Watson CJF, Messner HN, MacPherson REK, MacNeil AJ, Roy BD, Fajardo VA. Low-dose lithium feeding increases the SERCA2a-to-phospholamban ratio, improving SERCA function in murine left ventricles. Exp Physiol 2020; 105:666-675. [PMID: 32087034 DOI: 10.1113/ep088061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/21/2020] [Indexed: 12/24/2022]
Abstract
NEW FINDINGS What is the central question of this study? Inhibition of glycogen synthase kinase-3 (GSK3) has been shown to improve cardiac SERCA2a function. Lithium can inhibit GSK3, but therapeutic doses used in treating bipolar disorder can have toxic effects. It has not been determined whether subtherapeutic doses of lithium can improve cardiac SERCA function. What is the main finding and its importance? Using left ventricles from wild-type mice, we found that subtherapeutic lithium feeding for 6 weeks decreased GSK3 activity and increased cardiac SERCA function compared with control-fed mice. These findings warrant the investigation of low-dose lithium feeding in preclinical models of cardiomyopathy and heart failure to determine the therapeutic benefit of GSK3 inhibition. ABSTRACT The sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA) pump is responsible for regulating calcium (Ca2+ ) within myocytes, with SERCA2a being the dominant isoform in cardiomyocytes. Its inhibitor, phospholamban (PLN), acts by decreasing the affinity of SERCA for Ca2+ . Changes in the SERCA2a:PLN ratio can cause Ca2+ dysregulation often seen in patients with dilated cardiomyopathy and heart failure. The enzyme glycogen synthase kinase-3 (GSK3) is known to downregulate SERCA function by decreasing the SERCA2a:PLN ratio. In this study, we sought to determine whether feeding mice low-dose lithium, a natural GSK3 inhibitor, would improve left ventricular SERCA function by altering the SERCA2a:PLN ratio. To this end, male wild-type C57BL/6J mice were fed low-dose lithium via drinking water (10 mg kg-1 day-1 LiCl for 6 weeks) and left ventricles were harvested. GSK3 activity was significantly reduced in LiCl-fed versus control-fed mice. The apparent affinity of SERCA for Ca2+ was also increased (pCa50 ; control, 6.09 ± 0.03 versus LiCl, 6.26 ± 0.04, P < 0.0001) along with a 2.0-fold increase in SERCA2a:PLN ratio in LiCl-fed versus control-fed mice. These findings suggest that low-dose lithium supplementation can improve SERCA function by increasing the SERCA2a:PLN ratio. Future studies in murine preclinical models will determine whether GSK3 inhibition via low-dose lithium could be a potential therapeutic strategy for dilated cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Sophie I Hamstra
- Department of Kinesiology, Brock University, St. Catharines, ON, L2S 3A1, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Nigel Kurgan
- Department of Kinesiology, Brock University, St. Catharines, ON, L2S 3A1, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Ryan W Baranowski
- Department of Kinesiology, Brock University, St. Catharines, ON, L2S 3A1, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Liqun Qiu
- Department of Chemistry, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Colton J F Watson
- Department of Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Holt N Messner
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | | | - Adam J MacNeil
- Department of Health Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Brian D Roy
- Department of Kinesiology, Brock University, St. Catharines, ON, L2S 3A1, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON, L2S 3A1, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, L2S 3A1, Canada
| |
Collapse
|
14
|
Kurgan N, Whitley KC, Maddalena LA, Moradi F, Stoikos J, Hamstra SI, Rubie EA, Kumar M, Roy BD, Woodgett JR, Stuart JA, Fajardo VA. A Low-Therapeutic Dose of Lithium Inhibits GSK3 and Enhances Myoblast Fusion in C2C12 Cells. Cells 2019; 8:cells8111340. [PMID: 31671858 PMCID: PMC6912290 DOI: 10.3390/cells8111340] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/23/2019] [Accepted: 10/26/2019] [Indexed: 12/14/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) slows myogenic differentiation and myoblast fusion partly by inhibiting the Wnt/β-catenin signaling pathway. Lithium, a common medication for bipolar disorder, inhibits GSK3 via Mg+ competition and increased Ser21 (GSK3α) or Ser9 (GSK3β) phosphorylation, leading to enhanced myoblast fusion and myogenic differentiation. However, previous studies demonstrating the effect of lithium on GSK3 have used concentrations up to 10 mM, which greatly exceeds concentrations measured in the serum of patients being treated for bipolar disorder (0.5–1.2 mM). Here, we determined whether a low-therapeutic (0.5 mM) dose of lithium could promote myoblast fusion and myogenic differentiation in C2C12 cells. C2C12 myotubes differentiated for three days in media containing 0.5 mM lithium chloride (LiCl) had significantly higher GSK3β (ser9) and GSK3α (ser21) phosphorylation compared with control myotubes differentiated in the same media without LiCl (+2–2.5 fold, p < 0.05), a result associated with an increase in total β-catenin. To further demonstrate that 0.5 mM LiCl inhibited GSK3 activity, we also developed a novel GSK3-specific activity assay. Using this enzyme-linked spectrophotometric assay, we showed that 0.5 mM LiCl-treated myotubes had significantly reduced GSK3 activity (−86%, p < 0.001). Correspondingly, 0.5 mM LiCl treated myotubes had a higher myoblast fusion index compared with control (p < 0.001) and significantly higher levels of markers of myogenesis (myogenin, +3-fold, p < 0.001) and myogenic differentiation (myosin heavy chain, +10-fold, p < 0.001). These results indicate that a low-therapeutic dose of LiCl is sufficient to promote myoblast fusion and myogenic differentiation in muscle cells, which has implications for the treatment of several myopathic conditions.
Collapse
Affiliation(s)
- Nigel Kurgan
- Department of Kinesiology, Brock University 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada; (N.K.); (K.C.W.); (J.S.); (S.I.H.); (B.D.R.)
- Centre for Bone and Muscle Health, Brock University 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Kennedy C. Whitley
- Department of Kinesiology, Brock University 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada; (N.K.); (K.C.W.); (J.S.); (S.I.H.); (B.D.R.)
- Centre for Bone and Muscle Health, Brock University 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Lucas A. Maddalena
- Department of Biological Sciences, Brock University 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada; (L.A.M.); (F.M.); (J.A.S.)
| | - Fereshteh Moradi
- Department of Biological Sciences, Brock University 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada; (L.A.M.); (F.M.); (J.A.S.)
| | - Joshua Stoikos
- Department of Kinesiology, Brock University 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada; (N.K.); (K.C.W.); (J.S.); (S.I.H.); (B.D.R.)
| | - Sophie I. Hamstra
- Department of Kinesiology, Brock University 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada; (N.K.); (K.C.W.); (J.S.); (S.I.H.); (B.D.R.)
- Centre for Bone and Muscle Health, Brock University 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Elizabeth A. Rubie
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada; (E.A.R.); (M.K.); (J.R.W.)
| | - Megha Kumar
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada; (E.A.R.); (M.K.); (J.R.W.)
| | - Brian D. Roy
- Department of Kinesiology, Brock University 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada; (N.K.); (K.C.W.); (J.S.); (S.I.H.); (B.D.R.)
- Centre for Bone and Muscle Health, Brock University 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - James R. Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON M5G 1X5, Canada; (E.A.R.); (M.K.); (J.R.W.)
| | - Jeffrey A. Stuart
- Department of Biological Sciences, Brock University 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada; (L.A.M.); (F.M.); (J.A.S.)
| | - Val A. Fajardo
- Department of Kinesiology, Brock University 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada; (N.K.); (K.C.W.); (J.S.); (S.I.H.); (B.D.R.)
- Centre for Bone and Muscle Health, Brock University 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
- Correspondence:
| |
Collapse
|
15
|
Gamu D, Juracic ES, Hall KJ, Tupling AR. The sarcoplasmic reticulum and SERCA: a nexus for muscular adaptive thermogenesis. Appl Physiol Nutr Metab 2019; 45:1-10. [PMID: 31116956 DOI: 10.1139/apnm-2019-0067] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We are currently facing an "obesity epidemic" worldwide. Promoting inefficient metabolism in muscle represents a potential treatment for obesity and its complications. Sarco(endo)plasmic reticulum (SR) Ca2+-ATPase (SERCA) pumps in muscle are responsible for maintaining low cytosolic Ca2+ concentration through the ATP-dependent pumping of Ca2+ from the cytosol into the SR lumen. SERCA activity has the potential to be a critical regulator of body mass and adiposity given that it is estimated to contribute upwards of 20% of daily energy expenditure. More interestingly, this fraction can be modified physiologically in the face of stressors, such as ambient temperature and diet, through its physical interaction with several regulators known to inhibit Ca2+ uptake and muscle function. In this review, we discuss advances in our understanding of Ca2+-cycling thermogenesis within skeletal muscle, focusing on SERCA and its protein regulators, which were thought previously to only modulate muscular contractility. Novelty ATP consumption by SERCA pumps comprises a large proportion of resting energy expenditure in muscle and is dynamically regulated through interactions with small SERCA regulatory proteins. SERCA efficiency correlates significantly with resting metabolism, such that individuals with a higher resting metabolic rate have less energetically efficient SERCA Ca2+ pumping in muscle (i.e., lower coupling ratio). Futile Ca2+ cycling is a versatile heat generating mechanism utilized by both skeletal muscle and beige fat.
Collapse
Affiliation(s)
- Daniel Gamu
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.,Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Emma Sara Juracic
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.,Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Karlee J Hall
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.,Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.,Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
16
|
Ito A, Ohnuki Y, Suita K, Ishikawa M, Mototani Y, Shiozawa K, Kawamura N, Yagisawa Y, Nariyama M, Umeki D, Nakamura Y, Okumura S. Role of β-adrenergic signaling in masseter muscle. PLoS One 2019; 14:e0215539. [PMID: 30986276 PMCID: PMC6464212 DOI: 10.1371/journal.pone.0215539] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 04/03/2019] [Indexed: 02/07/2023] Open
Abstract
In skeletal muscle, the major isoform of β-adrenergic receptor (β-AR) is β2-AR and the minor isoform is β1-AR, which is opposite to the situation in cardiac muscle. Despite extensive studies in cardiac muscle, the physiological roles of the β-AR subtypes in skeletal muscle are not fully understood. Therefore, in this work, we compared the effects of chronic β1- or β2-AR activation with a specific β1-AR agonist, dobutamine (DOB), or a specific β2-AR agonist, clenbuterol (CB), on masseter and cardiac muscles in mice. In cardiac muscle, chronic β1-AR stimulation induced cardiac hypertrophy, fibrosis and myocyte apoptosis, whereas chronic β2-AR stimulation induced cardiac hypertrophy without histological abnormalities. In masseter muscle, however, chronic β1-AR stimulation did not induce muscle hypertrophy, but did induce fibrosis and apoptosis concomitantly with increased levels of p44/42 MAPK (ERK1/2) (Thr-202/Tyr-204), calmodulin kinase II (Thr-286) and mammalian target of rapamycin (mTOR) (Ser-2481) phosphorylation. On the other hand, chronic β2-AR stimulation in masseter muscle induced muscle hypertrophy without histological abnormalities, as in the case of cardiac muscle, concomitantly with phosphorylation of Akt (Ser-473) and mTOR (Ser-2448) and increased expression of microtubule-associated protein light chain 3-II, an autophagosome marker. These results suggest that the β1-AR pathway is deleterious and the β2-AR is protective in masseter muscle. These data should be helpful in developing pharmacological approaches for the treatment of skeletal muscle wasting and weakness.
Collapse
Affiliation(s)
- Aiko Ito
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kenji Suita
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Misao Ishikawa
- Department of Oral Anatomy, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kouichi Shiozawa
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Naoya Kawamura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yuka Yagisawa
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Megumi Nariyama
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Daisuke Umeki
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshiki Nakamura
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- * E-mail:
| |
Collapse
|
17
|
Gamu D, Juracic ES, Fajardo VA, Rietze BA, Tran K, Bombardier E, Tupling AR. Phospholamban deficiency does not alter skeletal muscle SERCA pumping efficiency or predispose mice to diet-induced obesity. Am J Physiol Endocrinol Metab 2019; 316:E432-E442. [PMID: 30601702 DOI: 10.1152/ajpendo.00288.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pump is a major contributor to skeletal muscle Ca2+ homeostasis and metabolic rate. SERCA activity can become adaptively uncoupled by its regulator sarcolipin (SLN) to increase the energy demand of Ca2+ pumping, preventing excessive obesity and glucose intolerance in mice. Several other SERCA regulators bear structural and functional resemblance to SLN, including phospholamban (PLN). Here, we sought to examine whether endogenous levels of skeletal muscle PLN control SERCA Ca2+ pumping efficiency and whole body metabolism. Using PLN-null mice ( Pln-/-), we found that soleus (SOL) muscle's SERCA pumping efficiency (measured as an apparent coupling ratio: Ca2+ uptake/ATP hydrolysis) was unaffected by PLN. Expression of Ca2+-handling proteins within the SOL, including SLN, were comparable between Pln-/- and wild-type (WT) littermates, as were fiber-type characteristics. Not surprisingly then, Pln-/- mice developed a similar degree of diet-induced obesity and glucose intolerance as WT controls when given a "Western" high-fat diet. Lack of an excessively obesogenic phenotype of Pln-/- could not be explained by compensation from skeletal muscle SLN or brown adipose tissue uncoupling protein-1 content. In agreement with several other reports, our study lends support to the notion that PLN serves a functionally distinct role from that of SLN in skeletal muscle physiology.
Collapse
Affiliation(s)
- Daniel Gamu
- Department of Kinesiology, University of Waterloo , Waterloo, Ontario , Canada
| | - Emma Sara Juracic
- Department of Kinesiology, University of Waterloo , Waterloo, Ontario , Canada
| | - Val A Fajardo
- Department of Kinesiology, University of Waterloo , Waterloo, Ontario , Canada
| | | | - Khanh Tran
- Department of Kinesiology, University of Waterloo , Waterloo, Ontario , Canada
| | - Eric Bombardier
- Department of Kinesiology, University of Waterloo , Waterloo, Ontario , Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo , Waterloo, Ontario , Canada
| |
Collapse
|
18
|
Komatsu M, Nakada T, Kawagishi H, Kato H, Yamada M. Increase in phospholamban content in mouse skeletal muscle after denervation. J Muscle Res Cell Motil 2019; 39:163-173. [DOI: 10.1007/s10974-019-09504-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
|
19
|
Bradley RM, Bloemberg D, Aristizabal Henao JJ, Hashemi A, Mitchell AS, Fajardo VA, Bellissimo C, Mardian EB, Bombardier E, Paré MF, Moes KA, Stark KD, Tupling AR, Quadrilatero J, Duncan RE. Lpaatδ/Agpat4 deficiency impairs maximal force contractility in soleus and alters fibre type in extensor digitorum longus muscle. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:700-711. [PMID: 29627383 DOI: 10.1016/j.bbalip.2018.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 01/09/2023]
Abstract
Lysophosphatidic acid acyltransferase (LPAAT) δ/acylglycerophosphate acyltransferase 4 is a mitochondrial enzyme and one of five homologues that catalyze the acyl-CoA-dependent synthesis of phosphatidic acid (PA) from lysophosphatidic acid. We studied skeletal muscle LPAATδ and found highest levels in soleus, a red oxidative fibre-type that is rich in mitochondria, and lower levels in extensor digitorum longus (EDL) (white glycolytic) and gastrocnemius (mixed fibre-type). Using Lpaatδ-deficient mice, we found no change in soleus or EDL mass, or in treadmill time-to-exhaustion compared to wildtype littermates. There was, however, a significant reduction in the proportion of type I and type IIA fibres in EDL but, surprisingly, not soleus, where these fibre-types predominate. Also unexpectedly, there was no impairment in force generation by EDL, but a significant reduction by soleus. Oxidative phosphorylation and activity of complexes I, I + II, III, and IV in soleus mitochondria was unchanged and therefore could not explain this effect. However, pyruvate dehydrogenase activity was significantly reduced in Lpaatδ-/- soleus and EDL. Analysis of cellular lipids indicated no difference in soleus triacylglycerol, but specific elevations in soleus PA and phosphatidylethanolamine levels, likely due to a compensatory upregulation of Lpaatβ and Lpaatε in Lpaatδ-/- mice. An anabolic effect for PA as an activator of skeletal muscle mTOR has been reported, but we found no change in serine 2448 phosphorylation, indicating reduced soleus force generation is unlikely due to the loss of mTOR activation by a specific pool of LPAATδ-derived PA. Our results identify an important role for LPAATδ in soleus and EDL.
Collapse
Affiliation(s)
- Ryan M Bradley
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - Darin Bloemberg
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - Juan J Aristizabal Henao
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - Ashkan Hashemi
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - Andrew S Mitchell
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - Val A Fajardo
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - Catherine Bellissimo
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - Emily B Mardian
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - Eric Bombardier
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - Marie-France Paré
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - Katherine A Moes
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - Ken D Stark
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - A Russell Tupling
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - Joe Quadrilatero
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada
| | - Robin E Duncan
- University of Waterloo, Department of Kinesiology, Faculty of Applied Health Sciences, 200 University Avenue West, BMH 1110, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
20
|
Cardiolipin content, linoleic acid composition, and tafazzin expression in response to skeletal muscle overload and unload stimuli. Sci Rep 2017; 7:2060. [PMID: 28515468 PMCID: PMC5435726 DOI: 10.1038/s41598-017-02089-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/05/2017] [Indexed: 02/04/2023] Open
Abstract
Cardiolipin (CL) is a unique mitochondrial phospholipid that, in skeletal muscle, is enriched with linoleic acid (18:2n6). Together, CL content and CL 18:2n6 composition are critical determinants of mitochondrial function. Skeletal muscle is comprised of slow and fast fibers that have high and low mitochondrial content, respectively. In response to overloading and unloading stimuli, these muscles undergo a fast-to-slow oxidative fiber type shift and a slow-to-fast glycolytic fiber type shift, respectively, with a concomitant change in mitochondrial content. Here, we examined changes in CL content and CL 18:2n6 composition under these conditions along with tafazzin (Taz) protein, which is a transacylase enzyme that generates CL lipids enriched with 18:2n6. Our results show that CL content, CL 18:2n6 composition, and Taz protein content increased with an overload stimulus in plantaris. Conversely, CL content and CL 18:2n6 composition was reduced with an unloaded stimulus in soleus. Interestingly, Taz protein was increased in the unloaded soleus, suggesting that Taz may provide some form of compensation for decreased CL content and CL 18:2n6 composition. Together, this study highlights the dynamic nature of CL and Taz in skeletal muscle, and future studies will examine the physiological significance behind the changes in CL content, CL 18:2n6 and Taz.
Collapse
|
21
|
Fajardo VA, Gamu D, Mitchell A, Bloemberg D, Bombardier E, Chambers PJ, Bellissimo C, Quadrilatero J, Tupling AR. Sarcolipin deletion exacerbates soleus muscle atrophy and weakness in phospholamban overexpressing mice. PLoS One 2017; 12:e0173708. [PMID: 28278204 PMCID: PMC5344511 DOI: 10.1371/journal.pone.0173708] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/24/2017] [Indexed: 11/18/2022] Open
Abstract
Sarcolipin (SLN) and phospholamban (PLN) are two small proteins that regulate the sarco(endo)plasmic reticulum Ca2+-ATPase pumps. In a recent study, we discovered that Pln overexpression (PlnOE) in slow-twitch type I skeletal muscle fibers drastically impaired SERCA function and caused a centronuclear myopathy-like phenotype, severe muscle atrophy and weakness, and an 8 to 9-fold upregulation of SLN protein in the soleus muscles. Here, we sought to determine the physiological role of SLN upregulation, and based on its role as a SERCA inhibitor, we hypothesized that it would represent a maladaptive response that contributes to the SERCA dysfunction and the overall myopathy observed in the PlnOE mice. To this end, we crossed Sln-null (SlnKO) mice with PlnOE mice to generate a PlnOE/SlnKO mouse colony and assessed SERCA function, CNM pathology, in vitro contractility, muscle mass, calcineurin signaling, daily activity and food intake, and proteolytic enzyme activity. Our results indicate that genetic deletion of Sln did not improve SERCA function nor rescue the CNM phenotype, but did result in exacerbated muscle atrophy and weakness, due to a failure to induce type II fiber compensatory hypertrophy and a reduction in total myofiber count. Mechanistically, our findings suggest that impaired calcineurin activation and resultant decreased expression of stabilin-2, and/or impaired autophagic signaling could be involved. Future studies should examine these possibilities. In conclusion, our study demonstrates the importance of SLN upregulation in combating muscle myopathy in the PlnOE mice, and since SLN is upregulated across several myopathies, our findings may reveal SLN as a novel and universal therapeutic target.
Collapse
Affiliation(s)
- Val A. Fajardo
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | - Daniel Gamu
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | - Andrew Mitchell
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | - Darin Bloemberg
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | - Eric Bombardier
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | - Paige J. Chambers
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | - Catherine Bellissimo
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
| | - A. Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1
- * E-mail:
| |
Collapse
|
22
|
Paré MF, Baechler BL, Fajardo VA, Earl E, Wong E, Campbell TL, Tupling AR, Quadrilatero J. Effect of acute and chronic autophagy deficiency on skeletal muscle apoptotic signaling, morphology, and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:708-718. [PMID: 27993671 DOI: 10.1016/j.bbamcr.2016.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/27/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022]
Abstract
Autophagy is a catabolic process that targets and degrades cytoplasmic materials. In skeletal muscle, autophagy is required for the control of mass under catabolic conditions, but is also basally active in the maintenance of myofiber homeostasis. In this study, we found that some specific autophagic markers (LC3-I, LC3-II, SQSTM1) were basally lower in glycolytic muscle compared to oxidative muscle of autophagy competent mice. In contrast, basal autophagic flux was higher in glycolytic muscle. In addition, we used several skeletal muscle-specific Atg7 transgenic mouse models to investigate the effect of acute (iAtg7-/-) and chronic (cAtg7-/-) autophagy deficiency on skeletal muscle morphology, contractility, and apoptotic signaling. While acute autophagy ablation (iAtg7-/-) resulted in increased centralized nuclei in glycolytic muscle, it did not alter contractile properties or measures of apoptosis and proteolysis. In contrast, with chronic autophagy deficiency (cAtg7-/-) there was an increased proportion of centralized nuclei, as well as reduced force and altered twitch kinetics in glycolytic muscle. Glycolytic muscle of cAtg7-/- mice also displayed an increased level of the pro-apoptotic protein BAX, as well as calpain and proteasomal enzymatic activity. Collectively, our data demonstrate cumulative damage from chronic skeletal muscle-specific autophagy deficiency with associated apoptotic and proteasomal upregulation. These findings point towards the importance of investigating different muscle/fiber types when studying skeletal muscle autophagy, and the critical role of autophagy in the maintenance of myofiber function, integrity, and cellular health.
Collapse
Affiliation(s)
- M F Paré
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - B L Baechler
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - V A Fajardo
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - E Earl
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - E Wong
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - T L Campbell
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - A R Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - J Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
23
|
Zambonelli P, Zappaterra M, Soglia F, Petracci M, Sirri F, Cavani C, Davoli R. Detection of differentially expressed genes in broiler pectoralis major muscle affected by White Striping – Wooden Breast myopathies. Poult Sci 2016; 95:2771-2785. [DOI: 10.3382/ps/pew268] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/24/2016] [Accepted: 06/16/2016] [Indexed: 11/20/2022] Open
|
24
|
Pant M, Bal NC, Periasamy M. Sarcolipin: A Key Thermogenic and Metabolic Regulator in Skeletal Muscle. Trends Endocrinol Metab 2016; 27:881-892. [PMID: 27637585 PMCID: PMC5424604 DOI: 10.1016/j.tem.2016.08.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 12/14/2022]
Abstract
Skeletal muscle constitutes ∼40% of body mass and has the capacity to play a major role as thermogenic, metabolic, and endocrine organ. In addition to shivering, muscle also contributes to nonshivering thermogenesis via futile sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) activity. Sarcolipin (SLN), a regulator of SERCA activity in muscle, plays an important role in regulating muscle thermogenesis and metabolism. Uncoupling of SERCA by SLN increases ATP hydrolysis and heat production, and contributes to temperature homeostasis. SLN also affects whole-body metabolism and weight gain in mice, and is upregulated in various muscle diseases including muscular dystrophy, suggesting a role for SLN during increased metabolic demand. In this review we also highlight the physiological roles of skeletal muscle beyond contraction.
Collapse
Affiliation(s)
- Meghna Pant
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH, USA
| | - Naresh C Bal
- Sanford Burnham Medical Research Institute at Lake Nona, Orlando, FL, USA; School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH, USA; Sanford Burnham Medical Research Institute at Lake Nona, Orlando, FL, USA.
| |
Collapse
|
25
|
Fajardo VA, Smith IC, Bombardier E, Chambers PJ, Quadrilatero J, Tupling AR. Diaphragm assessment in mice overexpressing phospholamban in slow-twitch type I muscle fibers. Brain Behav 2016; 6:e00470. [PMID: 27134770 PMCID: PMC4842933 DOI: 10.1002/brb3.470] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 12/30/2022] Open
Abstract
AIMS Phospholamban (PLN) and sarcolipin (SLN) are small inhibitory proteins that regulate the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) pump. Previous work from our laboratory revealed that in the soleus and gluteus minimus muscles of mice overexpressing PLN (Pln (OE)), SERCA function was impaired, dynamin 2 (3-5 fold) and SLN (7-9 fold) were upregulated, and features of human centronuclear myopathy (CNM) were observed. Here, we performed structural and functional experiments to evaluate whether the diaphragm muscles of the Pln (OE) mouse would exhibit CNM pathology and muscle weakness. METHODS Diaphragm muscles from Pln (OE) and WT mice were subjected to histological/histochemical/immunofluorescent staining, Ca(2+)-ATPase and Ca(2+) uptake assays, Western blotting, and in vitro electrical stimulation. RESULTS Our results demonstrate that PLN overexpression reduced SERCA's apparent affinity for Ca(2+) but did not reduce maximal SERCA activity or rates of Ca(2+) uptake. SLN was upregulated 2.5-fold, whereas no changes in dynamin 2 expression were found. With respect to CNM, we did not observe type I fiber predominance, central nuclei, or central aggregation of oxidative activity in diaphragm, although type I fiber hypotrophy was present. Furthermore, in vitro contractility assessment of Pln (OE) diaphragm strips revealed no reductions in force-generating capacity, maximal rates of relaxation or force development, but did indicate that ½ relaxation time was prolonged. CONCLUSIONS Therefore, the effects of PLN overexpression on skeletal muscle phenotype differ between diaphragm and the postural soleus and gluteus minimus muscles. Our findings here point to differences in SLN expression and type I fiber distribution as potential contributing factors.
Collapse
Affiliation(s)
| | - Ian Curtis Smith
- Department of Kinesiology University of Waterloo Waterloo ON Canada
| | - Eric Bombardier
- Department of Kinesiology University of Waterloo Waterloo ON Canada
| | - Paige J Chambers
- Department of Kinesiology University of Waterloo Waterloo ON Canada
| | - Joe Quadrilatero
- Department of Kinesiology University of Waterloo Waterloo ON Canada
| | | |
Collapse
|
26
|
Dufresne SS, Boulanger-Piette A, Bossé S, Frenette J. Physiological role of receptor activator nuclear factor-kB (RANK) in denervation-induced muscle atrophy and dysfunction. ACTA ACUST UNITED AC 2016; 3:e13231-e13236. [PMID: 27547781 PMCID: PMC4991940 DOI: 10.14800/rci.1323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The bone remodeling and homeostasis are mainly controlled by the receptor-activator of nuclear factor kB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin (OPG) pathway. While there is a strong association between osteoporosis and skeletal muscle dysfunction, the functional relevance of a particular biological pathway that synchronously regulates bone and skeletal muscle physiopathology remains elusive. Our recent article published in the American Journal of Physiology (Cell Physiology) showed that RANK is also expressed in fully differentiated C2C12 myotubes and skeletal muscles. We used the Cre-Lox approach to inactivate muscle RANK (RANKmko) and showed that RANK deletion preserves the force of denervated fast-twitch EDL muscles. However, RANK deletion had no positive impact on slow-twitch Sol muscles. In addition, denervating RANKmko EDL muscles induced an increase in the total calcium concentration ([CaT]), which was associated with a surprising decrease in SERCA activity. Interestingly, the levels of STIM-1, which mediates Ca2+ influx following the depletion of SR Ca2+ stores, were markedly higher in denervated RANKmko EDL muscles. We speculated that extracellular Ca2+ influx mediated by STIM-1 may be important for the increase in [CaT] and the gain of force in denervated RANKmko EDL muscles. Overall, these findings showed for the first time that the RANKL/RANK interaction plays a role in denervation-induced muscle atrophy and dysfunction.
Collapse
Affiliation(s)
- Sébastien S Dufresne
- Centre Hospitalier Universitaire de Québec-Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CRCHUL), Université Laval, Quebec City, Quebec, G1V 4G2, Canada
| | - Antoine Boulanger-Piette
- Centre Hospitalier Universitaire de Québec-Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CRCHUL), Université Laval, Quebec City, Quebec, G1V 4G2, Canada
| | - Sabrina Bossé
- Centre Hospitalier Universitaire de Québec-Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CRCHUL), Université Laval, Quebec City, Quebec, G1V 4G2, Canada
| | - Jérôme Frenette
- Centre Hospitalier Universitaire de Québec-Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CRCHUL), Université Laval, Quebec City, Quebec, G1V 4G2, Canada; Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec City, Quebec, G1V 4G2, Canada
| |
Collapse
|
27
|
Maurya SK, Periasamy M. Sarcolipin is a novel regulator of muscle metabolism and obesity. Pharmacol Res 2015; 102:270-5. [PMID: 26521759 DOI: 10.1016/j.phrs.2015.10.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023]
Abstract
Obesity is increasing at an alarming rate, both in adults and adolescents, across the globe due to increased consumption of caloric rich diet. Obesity and its associated complications appear to be major contributing factors not only to diabetes/heart disease but also to cancer, and neurological diseases causing a huge burden on the health care system. To date, there are no effective treatments to reduce weight gain, other than caloric restriction and exercise which are often difficult to enforce. There are very few drugs available for treating obesity and those that are available only reduce obesity by ∼ 10%. Identifying mechanisms to increase energy expenditure, on top of the increase elicited by exercise, would be more beneficial to control weight gain. The purpose of this review is to highlight the role of sarcolipin (SLN), a regulator of SERCA pump, in muscle thermogenesis and metabolism. We will further discuss if enhancing SLN activity could be an effective mechanism to increase energy expenditure and control weight gain. We will also discuss the merits of adaptive thermogenesis in muscle and brown fat as potential mechanisms to increase energy expenditure during caloric overload. That said, there is still a great need for further research into the mechanism of diet induced thermogenesis and its relevance to overall metabolism and obesity.
Collapse
Affiliation(s)
- Santosh Kumar Maurya
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA
| | - Muthu Periasamy
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, FL, USA.
| |
Collapse
|