1
|
Li G, Kolan SS, Guo S, Marciniak K, Kolan P, Malachin G, Grimolizzi F, Haraldsen G, Skålhegg BS. Activated, Pro-Inflammatory Th1, Th17, and Memory CD4+ T Cells and B Cells Are Involved in Delayed-Type Hypersensitivity Arthritis (DTHA) Inflammation and Paw Swelling in Mice. Front Immunol 2021; 12:689057. [PMID: 34408746 PMCID: PMC8365304 DOI: 10.3389/fimmu.2021.689057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/13/2021] [Indexed: 11/23/2022] Open
Abstract
Delayed-type hypersensitivity arthritis (DTHA) is a recently established experimental model of rheumatoid arthritis (RA) in mice with pharmacological values. Despite an indispensable role of CD4+ T cells in inducing DTHA, a potential role for CD4+ T cell subsets is lacking. Here we have quantified CD4+ subsets during DTHA development and found that levels of activated, pro-inflammatory Th1, Th17, and memory CD4+ T cells in draining lymph nodes were increased with differential dynamic patterns after DTHA induction. Moreover, according to B-cell depletion experiments, it has been suggested that this cell type is not involved in DTHA. We show that DTHA is associated with increased levels of B cells in draining lymph nodes accompanied by increased levels of circulating IgG. Finally, using the anti-rheumatoid agents, methotrexate (MTX) and the anti-inflammatory drug dexamethasone (DEX), we show that MTX and DEX differentially suppressed DTHA-induced paw swelling and inflammation. The effects of MTX and DEX coincided with differential regulation of levels of Th1, Th17, and memory T cells as well as B cells. Our results implicate Th1, Th17, and memory T cells, together with activated B cells, to be involved and required for DTHA-induced paw swelling and inflammation.
Collapse
Affiliation(s)
- Gaoyang Li
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Shuai Guo
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Katarzyna Marciniak
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Pratibha Kolan
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Giulia Malachin
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Franco Grimolizzi
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Guttorm Haraldsen
- Department of Pathology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Bjørn Steen Skålhegg
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Wang Y, Zhang W, Lim SM, Xu L, Jin JO. Interleukin-10-Producing B Cells Help Suppress Ovariectomy-Mediated Osteoporosis. Immune Netw 2020; 20:e50. [PMID: 33425435 PMCID: PMC7779870 DOI: 10.4110/in.2020.20.e50] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is prevalent in elderly women and it may cause dental implant failure. In particular, estrogen deficiency in postmenopausal women leads to higher rates of osteoporosis prevalence. Immune cell-mediated effects involving the development of osteoporosis have been studied previously; however, the role of IL-10-producing regulatory B (B10) cells in osteoporosis is largely unclear. Here, we examined the role of B10 cells in osteoporosis. C57BL/6 mice were subjected to ovariectomy (OVX). Fifteen weeks after OVX surgery, the first molar of the right maxillary was extracted, and twenty-four weeks after OVX surgery, serous progression of osteoporosis was observed in the alveolar bone. Moreover, the proportion of CD19+CD5+CD1dhigh regulatory B cells, B10, and CD4+CD25+FoxP3+ regulatory T cells from the spleen of OVX mice decreased during the progression of osteoporosis, compared to controls. In contrast to regulatory cells, IL-17-producing Th (Th17) cell levels were increased in OVX mice. Adoptive transfer of B10 cells to OVX mice led to a decrease in Th17 cell abundance and inhibited the development of osteoporosis in the alveolar bone from OVX mice. Thus, our results suggest that B10 cells may help suppress osteoporosis development.
Collapse
Affiliation(s)
- Yuhua Wang
- Department of Prosthodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Seong-Min Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Li Xu
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai 201508, China.,Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
3
|
Hand LE, Gray KJ, Dickson SH, Simpkins DA, Ray DW, Konkel JE, Hepworth MR, Gibbs JE. Regulatory T cells confer a circadian signature on inflammatory arthritis. Nat Commun 2020; 11:1658. [PMID: 32245954 PMCID: PMC7125185 DOI: 10.1038/s41467-020-15525-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
The circadian clock is an intrinsic oscillator that imparts 24 h rhythms on immunity. This clock drives rhythmic repression of inflammatory arthritis during the night in mice, but mechanisms underlying this effect are not clear. Here we show that the amplitude of intrinsic oscillators within macrophages and neutrophils is limited by the chronic inflammatory environment, suggesting that rhythms in inflammatory mediators might not be a direct consequence of intrinsic clocks. Anti-inflammatory regulatory T (Treg) cells within the joints show diurnal variation, with numbers peaking during the nadir of inflammation. Furthermore, the anti-inflammatory action of Treg cells on innate immune cells contributes to the night-time repression of inflammation. Treg cells do not seem to have intrinsic circadian oscillators, suggesting that rhythmic function might be a consequence of external signals. These data support a model in which non-rhythmic Treg cells are driven to rhythmic activity by systemic signals to confer a circadian signature to chronic arthritis.
Collapse
Affiliation(s)
- L E Hand
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - K J Gray
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - S H Dickson
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - D A Simpkins
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - D W Ray
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK and Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - J E Konkel
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Oxford Road, Manchester, UK
| | - M R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Oxford Road, Manchester, UK
| | - J E Gibbs
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK.
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
4
|
Jörns A, Ishikawa D, Teraoku H, Yoshimoto T, Wedekind D, Lenzen S. Remission of autoimmune diabetes by anti-TCR combination therapies with anti-IL-17A or/and anti-IL-6 in the IDDM rat model of type 1 diabetes. BMC Med 2020; 18:33. [PMID: 32106855 PMCID: PMC7047363 DOI: 10.1186/s12916-020-1503-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/27/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The cytokine IL-17 is a key player in autoimmune processes, while the cytokine IL-6 is responsible for the chronification of inflammation. However, their roles in type 1 diabetes development are still unknown. METHODS Therefore, therapies for 5 days with anti-IL-17A or anti-IL-6 in combination with a T cell-specific antibody, anti-TCR, or in a triple combination were initiated immediately after disease manifestation to reverse the diabetic metabolic state in the LEW.1AR1-iddm (IDDM) rat, a model of human type 1 diabetes. RESULTS Monotherapies with anti-IL-6 or anti-IL-17 showed no sustained anti-diabetic effects. Only the combination therapy of anti-TCR with anti-IL-6 or anti-IL-17 at starting blood glucose concentrations up to 12 mmol/l restored normoglycaemia. The triple antibody combination therapy was effective even up to very high initial blood glucose concentrations (17 mmol/l). The β cell mass was raised to values of around 6 mg corresponding to those of normoglycaemic controls. In parallel, the apoptosis rate of β cells was reduced and the proliferation rate increased as well as the islet immune cell infiltrate was strongly reduced in double and abolished in triple combination therapies. CONCLUSIONS The anti-TCR combination therapy with anti-IL-17 preferentially raised the β cell mass as a result of β cell proliferation while anti-IL-6 strongly reduced β cell apoptosis and the islet immune cell infiltrate with a modest increase of the β cell mass only. The triple combination therapy achieved both goals in a complimentary anti-autoimmune and anti-inflammatory action resulting in sustained normoglycaemia with normalized serum C-peptide concentrations.
Collapse
Affiliation(s)
- Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Daichi Ishikawa
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
- Institute of Experimental Diabetes Research, Hannover Medical School, 30623, Hannover, Germany
| | - Hiroki Teraoku
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
- Institute of Experimental Diabetes Research, Hannover Medical School, 30623, Hannover, Germany
| | - Toshiaki Yoshimoto
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
- Institute of Experimental Diabetes Research, Hannover Medical School, 30623, Hannover, Germany
| | - Dirk Wedekind
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Sigurd Lenzen
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
- Institute of Experimental Diabetes Research, Hannover Medical School, 30623, Hannover, Germany.
| |
Collapse
|
5
|
Transition from metal-DTH resistance to susceptibility is facilitated by NLRP3 inflammasome signaling induced Th17 reactivity: Implications for orthopedic implants. PLoS One 2019; 14:e0210336. [PMID: 30653583 PMCID: PMC6336398 DOI: 10.1371/journal.pone.0210336] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Metal hypersensitivity has been recognized as an adverse biologic reaction that can compromise total joint arthroplasty (TJA) performance. However, the etiology of metal hypersensitivity responses in TJAs remains unclear. Metal implant debris is known to act as a danger signal that drives NLRP3 inflammasome activation. It remains unknown if implant debris induced inflammasome activation regulates T cell lineage in TJA metal hypersensitivity responses. In this study, we show both in vivo and in vitro that the pathogenesis of metal hypersensitivity responses to implant debris are largely dependent on activation of the inflammasome/caspase-1 pathway and subsequent production of IL-17A/F by CD4+ T cells. Inhibiting either the inflammasome pathway or IL-17A bioactivity in vivo and in vitro (in vivo using NLRP3 and Caspase-1 deficient mice or in vitro using blocking agents such as Capase-1 inhibitor, IL-1Ra and anti-IL-17A), significantly (p<0.05) mitigated metal-DTH paw inflammation as well as lymphocyte cytokine (IFN-γ and IL-17) and proliferation responses in metal-sensitized mice and primary human PBMCs. This study provides mechanistic insight into how in vivo exposure to orthopedic implant debris, and metals in general, elicits NLRP3 inflammasome activation that mediates the generation of IL-17A/F producing CD4+ T cells, leading to metal-delayed type hypersensitivity reactions.
Collapse
|
6
|
Francisconi C, Vieira A, Azevedo M, Tabanez A, Fonseca A, Trombone A, Letra A, Silva R, Sfeir C, Little S, Garlet G. RANKL Triggers Treg-Mediated Immunoregulation in Inflammatory Osteolysis. J Dent Res 2018; 97:917-927. [PMID: 29499125 PMCID: PMC6728554 DOI: 10.1177/0022034518759302] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The chronic inflammatory immune response triggered by the infection of the tooth root canal system results in the local upregulation of RANKL, resulting in periapical bone loss. While RANKL has a well-characterized role in the control of bone homeostasis/pathology, it can play important roles in the regulation of the immune system, although its possible immunoregulatory role in infectious inflammatory osteolytic conditions remains largely unknown. Here, we used a mouse model of infectious inflammatory periapical lesions subjected to continuous or transitory anti-RANKL inhibition, followed by the analysis of lesion outcome and multiple host response parameters. Anti-RANKL administration resulted in arrest of bone loss but interfered in the natural immunoregulation of the lesions observed in the untreated group. RANKL inhibition resulted in an unremitting proinflammatory response, persistent high proinflammatory and effector CD4 response, decreased regulatory T-cell (Treg) migration, and lower levels of Treg-related cytokines IL-10 and TGFb. Anti-RANKL blockade impaired the immunoregulatory process only in early disease stages, while the late administration of anti-RANKL did not interfere with the stablished immunoregulation. The impaired immunoregulation due to RANKL inhibition is characterized by increased delayed-type hypersensitivity in vivo and T-cell proliferation in vitro to the infecting bacteria, which mimic the effects of Treg inhibition, reinforcing a possible influence of RANKL on Treg-mediated suppressive response. The adoptive transfer of CD4+FOXp3+ Tregs to mice receiving anti-RANKL therapy restored the immunoregulatory capacity, attenuating the inflammatory response in the lesions, reestablishing normal T-cell response in vivo and in vitro, and preventing lesion relapse upon anti-RANKL therapy cessation. Therefore, while RANKL inhibition efficiently limited the periapical bone loss, it promoted an unremitting host inflammatory response by interfering with Treg activity, suggesting that this classic osteoclastogenic mediator plays a role in immunoregulation.
Collapse
Affiliation(s)
- C.F. Francisconi
- Department of Biological Sciences,
School of Dentistry of Bauru, University of São Paulo, Bauru, Brazil
| | - A.E. Vieira
- Institute of Biological Sciences and
Health, Federal University of Alagoas, Maceió, Brazil
| | - M.C.S. Azevedo
- Department of Biological Sciences,
School of Dentistry of Bauru, University of São Paulo, Bauru, Brazil
| | - A.P. Tabanez
- Department of Biological Sciences,
School of Dentistry of Bauru, University of São Paulo, Bauru, Brazil
| | - A.C. Fonseca
- Department of Biological Sciences,
School of Dentistry of Bauru, University of São Paulo, Bauru, Brazil
| | | | - A. Letra
- Department of Endodontics, School of
Dentistry, University of Texas Health Science Center at Houston, Houston, TX,
USA
- Department of Diagnostic and Biomedical
Sciences and Center for Craniofacial Research, University of Texas Health Science
Center at Houston, Houston, Texas, USA
| | - R.M. Silva
- Department of Endodontics, School of
Dentistry, University of Texas Health Science Center at Houston, Houston, TX,
USA
| | - C.S. Sfeir
- Center for Craniofacial Regeneration,
University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative
Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Periodontics and
Preventive Dentistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - S.R. Little
- Center for Craniofacial Regeneration,
University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative
Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemical and Petroleum
Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University
of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering,
University of Pittsburgh, Pittsburgh, PA, USA
| | - G.P. Garlet
- Department of Biological Sciences,
School of Dentistry of Bauru, University of São Paulo, Bauru, Brazil
| |
Collapse
|
7
|
Fernandes C, Wanderley CWS, Silva CMS, Muniz HA, Teixeira MA, Souza NRP, Cândido AGF, Falcão RB, Souza MHLP, Almeida PRC, Câmara LMC, Lima-Júnior RCP. Role of regulatory T cells in irinotecan-induced intestinal mucositis. Eur J Pharm Sci 2018; 115:158-166. [PMID: 29307857 DOI: 10.1016/j.ejps.2018.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/27/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023]
Abstract
Intestinal mucositis (IM) is a common side effect of irinotecan-based chemotherapy. The involvement of inflammatory mediators, such as TNF-α, IL1-β, IL-18 and IL-33, has been demonstrated. However, the role of adaptive immune system cells, whose activation is partially regulated by these cytokines, is yet unknown. Thus, we investigated the role of regulatory T cells (Tregs) in irinotecan-induced IM. C57BL/6 mice were injected with saline or irinotecan (75mgkg-1, i.p.), once a day for 4days, and euthanized at day 1, 3, 5 or 7 following the first dose of irinotecan. For Treg depletion, the mice were pretreated with a low single dose of cyclophosphamide (100mgkg-1, i.p). Intestinal lamina propria lymphocytes were harvested and purified by Percoll gradient. Treg and Th17 cells were identified by flow cytometry. Blood leukocyte count was obtained and ileum samples were collected for histopathological analysis and myeloperoxidase assay. IM caused an accumulation of Tregs and Th17 cells over time. Treg depletion exacerbated intestinal damage, diarrhea, neutrophil infiltration and animal mortality, despite a reduction in Th17 cell number. The frequency of other Th cells increased and was positively correlated with neutrophil infiltration. Tregs showed a negative correlation with neutrophils and the frequency of non-regulatory Th cells. In conclusion, Tregs are important in the control of intestinal damage induced by irinotecan, and their depletion showed a deleterious effect on IM. Activation of these cells appears to be a compensatory mechanism for intestinal inflammation.
Collapse
Affiliation(s)
- Camila Fernandes
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil.
| | | | | | - Heitor Amorim Muniz
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | - Maraiza Alves Teixeira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | | | | | - Renata Brito Falcão
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | | | | | | | | |
Collapse
|
8
|
Chen B, Sun L, Zhang X. Integration of microbiome and epigenome to decipher the pathogenesis of autoimmune diseases. J Autoimmun 2017; 83:31-42. [DOI: 10.1016/j.jaut.2017.03.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 02/07/2023]
|
9
|
Hu S, He W, Du X, Yang J, Wen Q, Zhong XP, Ma L. IL-17 Production of Neutrophils Enhances Antibacteria Ability but Promotes Arthritis Development During Mycobacterium tuberculosis Infection. EBioMedicine 2017; 23:88-99. [PMID: 28821374 PMCID: PMC5605331 DOI: 10.1016/j.ebiom.2017.08.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 01/13/2023] Open
Abstract
To our knowledge, no studies have examined the role of IL-17 production by neutrophils in immune defense against Mycobacterium tuberculosis (MTB) infection and the pathogenesis of rheumatoid arthritis (RA) caused by MTB infection. Here, we determined that neutrophils express IL-17 in an autocrine IL-6- and IL-23-dependent manner during MTB infection. MTB H37Rv-induced IL-6 production was dependent on the NF-κB, p38, and JNK signaling pathways; however, IL-23 production was dependent on NF-κB and EKR in neutrophils. Furthermore, we found that Toll-like receptor 2 (TLR2) and TLR4 mediated the activation of the kinases NF-κB, p38, ERK, and JNK and the production of IL-6, IL-23, and IL-17 in neutrophils infected with MTB H37Rv. Autocrine IL-17 produced by neutrophils played a vital role in inhibiting MTB H37Rv growth by mediating reactive oxygen species production and the migration of neutrophils in the early stages of infection. However, IL-17 production by neutrophils contributed to collagen-induced arthritis development during MTB infection. Our findings identify a protective mechanism against mycobacteria and the pathogenic role of MTB in arthritis development.
Collapse
Affiliation(s)
- Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Wenting He
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xialin Du
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Jiahui Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Ping Zhong
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
10
|
Atkinson SM, Nansen A. Pharmacological Value of Murine Delayed-type Hypersensitivity Arthritis: A Robust Mouse Model of Rheumatoid Arthritis in C57BL/6 Mice. Basic Clin Pharmacol Toxicol 2016; 120:108-114. [PMID: 27553641 DOI: 10.1111/bcpt.12657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022]
Abstract
In this MiniReview, we summarize the body of knowledge on the delayed-type hypersensitivity arthritis (DTHA) model, a recently developed arthritis model with 100% incidence, low variation and synchronized onset in C57BL/6 (B6) mice, and compare it to other murine arthritis models. It is desirable to have robust arthritis models in B6 mice, as many transgene strains are bred on this background. However, several of the most widely used mouse model of arthritis cannot be induced in B6 mice without the drawback of lower incidence, reduced severity and higher variation, if at all. DTHA is induced by modifying a classical methylated bovine serum albumin (mBSA)-induced DTH response by administering a cocktail of anti-type II collagen antibodies (anti-CII) between immunization and challenge. Arthritis affects one, predefined paw in which acute inflammation and severe arthritis rapidly develop and peak after 4-7 days. Disease is self-resolving over the course of around 3 weeks. Disease manifestations resemble those seen in other arthritis models and include bone erosion, cartilage destruction, oedema, pannus and new bone formation. Induction of DTHA is dependent on CD4+ T cells while B cells are dispensable. The DTHA model is set apart from other murine arthritis models in that it can be induced in B6 mice with 100% incidence and with high and consistent severity. This is the clearest advantage of the model, as the mechanisms of disease and clinical manifestations can be found in other arthritis models. The model holds potential for future modifications that may improve the lack of chronicity.
Collapse
Affiliation(s)
- Sara Marie Atkinson
- Novo Nordisk & LIFE In Vivo Pharmacology Centre & the Danish In Vivo Pharmacology PhD Program, University of Copenhagen, Frederiksberg C, Denmark.,Diabetes Complications Research, Novo Nordisk A/S, Maaloev, Denmark
| | | |
Collapse
|