1
|
Xu S, Zhai ZY, Zhou P, Xue XF, Huang ZY, Li XX, Yang GH, Bao CJ, You LJ, Cui XB, Xia GL, Ou Yang MP, Li LF, Lu L, Gong W, Pei XJ, Hu W. Whole-exome sequencing reveals novel genomic signatures and potential therapeutic targets during the progression of rectal neuroendocrine neoplasm. Cell Death Dis 2024; 15:833. [PMID: 39548061 PMCID: PMC11568169 DOI: 10.1038/s41419-024-07232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Rectal neuroendocrine neoplasms (rNENs) are among the most frequent gastrointestinal neuroendocrine neoplasms and pose a serious challenge for clinical management. The size of the primary neoplasm is considered to be the most important predictor of disease progression, but the genetic alterations that occur during the progression of rNENs remain unknown. Here, we performed a comprehensive whole-exome sequencing study on 54 tumor-normal paired, formalin-fixed paraffin-embedded specimens from patients locally diagnosed with rNENs. Of these, 81.5% (n = 44) were classified as small-sized (≤2 cm) rNENs, while the remainder (18.5%, n = 10) were classified as large-sized (>2 cm) rNEN samples. Comparative analysis revealed marked disparities in the mutational landscape between small- and large-sized rNEN samples, and between large-sized rNEN samples with or without lymph node metastases. The high-confidence driver genes RHPN2, MUC16, and MUC4 were significantly mutated in both small- and large-sized rNEN specimens, whereas mutations in MAN2A1, and BAG2 were only identified in large-sized specimens diagnosed with lymph node metastases. Correspondingly, we observed that the mTOR and MAPK pathways were preferentially enriched in the large-sized rNEN specimens. Signature-based analysis revealed that mutational processes associated with defective DNA base excision repair (SBS30) significantly accumulated in large-sized rNEN samples with lymph node metastases, highlighting the important role of this mutagenic process in promoting rNEN progression. We further found that most rNEN subjects, regardless of tumor size, harbored at least one alteration with targeted therapeutic implications. Taken together, these results elucidate the genetic features associated with tumor size and lymphatic metastasis in rNEN patients, which will deepen our understanding of the genetic changes during rNEN progression and potentially directing improvements in rNEN treatment strategies.
Collapse
Affiliation(s)
- Shi Xu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Zhi Yong Zhai
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Ping Zhou
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Xiu Fen Xue
- Department of Pathology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhao Yu Huang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Xia Xi Li
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Gen Hua Yang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Chong Ju Bao
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Li Juan You
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Xiao Bing Cui
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Gui Li Xia
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Mei Ping Ou Yang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Long Fei Li
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Lan Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China.
| | - Xiao Juan Pei
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China.
- Department of Pathology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Liu H, Zhang Q, Chen Y, Xing J, Li X, Hu H, Zhang S, Cheng R. Development and validation of a prognostic nomogram for elderly-onset pancreatic neuroendocrine carcinoma: a prospective cohort study from the SEER database. J Gastrointest Oncol 2024; 15:2265-2276. [PMID: 39554557 PMCID: PMC11565105 DOI: 10.21037/jgo-24-344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/20/2024] [Indexed: 11/19/2024] Open
Abstract
Background The incidence of elderly-onset pancreatic neuroendocrine carcinoma (PanNEC) is increasing. This study investigated independent risk factors affecting cancer-specific survival (CSS) and constructed a nomogram to predict CSS in patients with elderly-onset PanNEC. Methods PanNEC patients older than 50 years from the Surveillance, Epidemiology, and End Results database were retrospectively selected from 2010 to 2021 and were randomly divided into a training set and a validation set. Independent factors affecting CSS were selected by univariate and multivariate analyses. The nomogram was built using significant variables. The discrimination and calibration of the nomogram were evaluated by the area under the receiver operating characteristic curve (AUC), calibration curves, and decision curve analysis. Results A total of 407 patients were selected and randomly assigned to a training set or a validation set at a 6:4 ratio. In the selected population, 227 individuals (55.8%) were male, 313 (76.9%) were white, with a mean age of 69.4 years. Among them, 318 individuals (78.1%) died due to the tumor, with a CSS time of 6 months. Multivariate Cox analysis showed that age [hazard ratio (HR): 1.56, 95% confidence interval (CI): 1.10-2.22, P=0.01], surgery (HR: 2.32, 95% CI: 1.27-4.23, P=0.006), chemotherapy (HR: 2.39, 95% CI: 1.68-3.38, P<0.001), tumor, nodes, and metastasis (TNM) stage (HR: 3.96, 95% CI: 1.19-13.19, P=0.03), and liver metastasis (HR: 1.75, 95% CI: 1.16-2.65, P=0.008) were independent risk factors that shortened CSS. The AUCs of the nomogram for the 6-month, 1-year, and 2-year CSS were 0.826, 0.791, and 0.8 in the training set and 0.848, 0.775, and 0.781 in the validation set, respectively. Calibration curves showed that the nomogram could accurately predict the 6-month, 1-year, and 2-year CSS in both datasets. Furthermore, decision curve analysis indicated that the nomogram had clinical benefits. Conclusions The nomogram for CSS in patients with elderly-onset PanNEC showed good predictive power, enabling clinicians to understand patient's prognosis and make appropriate decisions.
Collapse
Affiliation(s)
- Haoxi Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Qian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yitian Chen
- Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jie Xing
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xue Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Haiyi Hu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Rui Cheng
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| |
Collapse
|
3
|
Wang Y, Ye Z, Lou X, Xu J, Jing D, Zhou C, Qin Y, Chen J, Xu X, Yu X, Ji S. Comparison among different preclinical models derived from the same patient with a non-functional pancreatic neuroendocrine tumor. Hum Cell 2024; 37:1522-1534. [PMID: 39078546 DOI: 10.1007/s13577-024-01107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
Pancreatic neuroendocrine tumors are the second most common tumors of the pancreas, and approximately half of patients are diagnosed with liver metastases. Currently, the improvement in the efficacy of relevant treatment methods is still limited. Therefore, there is an urgent need for in-depth research on the molecular biological mechanism of pancreatic neuroendocrine tumors. However, due to their relatively inert biology, preclinical models are extremely scarce. Here, the patient-derived organoid, and patient-derived xenograft were successfully constructed. These two models and the previously constructed cell line named SPNE1 all derived from the same patient with a grade 3 non-functional pancreatic neuroendocrine tumor, providing new tumor modeling platforms, and characterized using immunohistochemistry, whole-exome sequencing, and single-cell transcriptome sequencing. Combined with a tumor formation experiment in immunodeficient mice, we selected the model that most closely recapitulated the parental tumor. Overall, the patient-derived xenograft model most closely resembled human tumor tissue.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Junfeng Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Desheng Jing
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chenjie Zhou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Head and Neck and Neuroendocrine Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Bolduan F, Wetzel A, Giesecke Y, Eichhorn I, Alenina N, Bader M, Willnow TE, Wiedenmann B, Sigal M. Elevated sortilin expression discriminates functional from non-functional neuroendocrine tumors and enables therapeutic targeting. Front Endocrinol (Lausanne) 2024; 15:1331231. [PMID: 38694940 PMCID: PMC11061435 DOI: 10.3389/fendo.2024.1331231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
A subset of neuroendocrine tumors (NETs) can cause an excessive secretion of hormones, neuropeptides, and biogenic amines into the bloodstream. These so-called functional NETs evoke a hormone-related disease and lead to several different syndromes, depending on the factors released. One of the most common functional syndromes, carcinoid syndrome, is characterized mainly by over-secretion of serotonin. However, what distinguishes functional from non-functional tumors on a molecular level remains unknown. Here, we demonstrate that the expression of sortilin, a widely expressed transmembrane receptor involved in intracellular protein sorting, is significantly increased in functional compared to non-functional NETs and thus can be used as a biomarker for functional NETs. Furthermore, using a cell line model of functional NETs, as well as organoids, we demonstrate that inhibition of sortilin reduces cellular serotonin concentrations and may therefore serve as a novel therapeutic target to treat patients with carcinoid syndrome.
Collapse
Affiliation(s)
- Felix Bolduan
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Digital Clinician Scientist Program, Berlin, Germany
| | - Alexandra Wetzel
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Yvonne Giesecke
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ines Eichhorn
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- University of Lübeck, Institute for Biology, Lübeck, Germany
| | - Thomas E. Willnow
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bertram Wiedenmann
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Sigal
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
5
|
Duan S, Sawyer TW, Witten BL, Song H, Else T, Merchant JL. Spatial profiling reveals tissue-specific neuro-immune interactions in gastroenteropancreatic neuroendocrine tumors. J Pathol 2024; 262:362-376. [PMID: 38229586 PMCID: PMC10869639 DOI: 10.1002/path.6241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/14/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are heterogeneous malignancies that arise from complex cellular interactions within the tissue microenvironment. Here, we sought to decipher tumor-derived signals from the surrounding microenvironment by applying digital spatial profiling (DSP) to hormone-secreting and non-functional GEP-NETs. By combining this approach with in vitro studies of human-derived organoids, we demonstrated the convergence of cell autonomous immune and pro-inflammatory proteins that suggests their role in neuroendocrine differentiation and tumorigenesis. DSP was used to evaluate the expression of 40 neural- and immune-related proteins in surgically resected duodenal and pancreatic NETs (n = 20) primarily consisting of gastrinomas (18/20). A total of 279 regions of interest were examined between tumors, adjacent normal and abnormal-appearing epithelium, and the surrounding stroma. The results were stratified by tissue type and multiple endocrine neoplasia I (MEN1) status, whereas protein expression was validated by immunohistochemistry (IHC). A tumor immune cell autonomous inflammatory signature was further evaluated by IHC and RNAscope, while functional pro-inflammatory signaling was confirmed using patient-derived duodenal organoids. Gastrin-secreting and non-functional pancreatic NETs showed a higher abundance of immune cell markers and immune infiltrate compared with duodenal gastrinomas. Compared with non-MEN1 tumors, MEN1 gastrinomas and preneoplastic lesions showed strong immune exclusion and upregulated expression of neuropathological proteins. Despite a paucity of immune cells, duodenal gastrinomas expressed the pro-inflammatory and pro-neural factor IL-17B. Treatment of human duodenal organoids with IL-17B activated NF-κB and STAT3 signaling and induced the expression of neuroendocrine markers. In conclusion, multiplexed spatial protein analysis identified tissue-specific neuro-immune signatures in GEP-NETs. Duodenal gastrinomas are characterized by an immunologically cold microenvironment that permits cellular reprogramming and neoplastic transformation of the preneoplastic epithelium. Moreover, duodenal gastrinomas cell autonomously express immune and pro-inflammatory factors, including tumor-derived IL-17B, that stimulate the neuroendocrine phenotype. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Suzann Duan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Travis W. Sawyer
- Department of Optical Sciences, University of Arizona Wyant College of Optical Sciences, Tucson, AZ, USA
| | - Brandon L. Witten
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Heyu Song
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Tobias Else
- Department of Internal Medicine, Endocrinology, University of Michigan, Ann Harbor, Michigan, USA
| | - Juanita L. Merchant
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
6
|
Yang L, Fu M, Yu L, Wang H, Chen X, Sun H. Value of markers of systemic inflammation for the prediction of postoperative progression in patients with pancreatic neuroendocrine tumors. Front Endocrinol (Lausanne) 2024; 15:1293842. [PMID: 38370351 PMCID: PMC10870645 DOI: 10.3389/fendo.2024.1293842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Background Non-invasive prognostic predictors for rare pancreatic neuroendocrine tumors (PNETs) are lacking. We aimed to approach the prognostic value of preoperative systemic inflammatory markers in patients with PNETs. Methods The clinical data of 174 patients with PNETs undergoing surgical treatment were retrospectively analyzed to explore the correlation of neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), lymphocyte to monocyte ratio (LMR), and platelet to white blood cell ratio (PWR) with clinicopathological parameters and the progression of tumor after the operation. The optimal cutoff values for predictors and the area under the curve (AUC) of the receiver operating characteristic (ROC) were estimated. Univariate and multivariate Cox proportional hazards models were used to assess the relation between NLR, LMR, PLR, and progression-free survival (PFS), examined by the Kaplan-Meier and log-rank tests. Results The scores of the NLR (P = 0.039) and PLR (P = 0.011) in the progression group were significantly higher than those in the progression-free group, and the LMR was significantly lower than those in the progression-free group (P = 0.001). The best cutoff values of NLR, LMR, and PLR before operation were 2.28, 4.36, and 120.91. The proportions of tumor progression in the high NLR group (P = 0.007) and high PLR group (P = 0.013) obviously increased, and the proportion of tumor development in the low LMR group was higher than that in the high LMR group (P < 0.001). The K-M survival curve showed that the progression-free survival rate was lower in the high NLR group (P = 0.004), the low LMR group (P < 0.001), and the high PLR group (P = 0.018). The results of the multivariate Cox proportional hazards model suggested that preoperative LMR (HR = 3.128, 95% CI: 1.107~8.836, P = 0.031) was an independent predictor of PFS. Conclusion The markers of systemic inflammation, especially LMR, can predict the postoperative progression of PNETs.
Collapse
Affiliation(s)
- Liu Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Department of Endocrinology, Union Hospital, Wuhan, China
| | - Mengfei Fu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Department of Endocrinology, Union Hospital, Wuhan, China
| | - Li Yu
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanyu Wang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Department of Endocrinology, Union Hospital, Wuhan, China
| | - Xiao Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Department of Endocrinology, Union Hospital, Wuhan, China
| | - Hui Sun
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Department of Endocrinology, Union Hospital, Wuhan, China
| |
Collapse
|
7
|
Xiu Z, Yang Q, Xie F, Han F, He W, Liao W. Revolutionizing digestive system tumor organoids research: Exploring the potential of tumor organoids. J Tissue Eng 2024; 15:20417314241255470. [PMID: 38808253 PMCID: PMC11131411 DOI: 10.1177/20417314241255470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Digestive system tumors are the leading cause of cancer-related deaths worldwide. Despite ongoing research, our understanding of their mechanisms and treatment remain inadequate. One promising tool for clinical applications is the use of gastrointestinal tract tumor organoids, which serve as an important in vitro model. Tumor organoids exhibit a genotype similar to the patient's tumor and effectively mimic various biological processes, including tissue renewal, stem cell, and ecological niche functions, and tissue response to drugs, mutations, or injury. As such, they are valuable for drug screening, developing novel drugs, assessing patient outcomes, and supporting immunotherapy. In addition, innovative materials and techniques can be used to optimize tumor organoid culture systems. Several applications of digestive system tumor organoids have been described and have shown promising results in related aspects. In this review, we discuss the current progress, limitations, and prospects of this model for digestive system tumors.
Collapse
Affiliation(s)
- Zhian Xiu
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fusheng Xie
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Feng Han
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Weiwei He
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Weifang Liao
- Department of Medical Laboratory, Clinical Medical College, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| |
Collapse
|
8
|
Dayton TL, Alcala N, Moonen L, den Hartigh L, Geurts V, Mangiante L, Lap L, Dost AFM, Beumer J, Levy S, van Leeuwaarde RS, Hackeng WM, Samsom K, Voegele C, Sexton-Oates A, Begthel H, Korving J, Hillen L, Brosens LAA, Lantuejoul S, Jaksani S, Kok NFM, Hartemink KJ, Klomp HM, Borel Rinkes IHM, Dingemans AM, Valk GD, Vriens MR, Buikhuisen W, van den Berg J, Tesselaar M, Derks J, Speel EJ, Foll M, Fernández-Cuesta L, Clevers H. Druggable growth dependencies and tumor evolution analysis in patient-derived organoids of neuroendocrine neoplasms from multiple body sites. Cancer Cell 2023; 41:2083-2099.e9. [PMID: 38086335 DOI: 10.1016/j.ccell.2023.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
Neuroendocrine neoplasms (NENs) comprise well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). Treatment options for patients with NENs are limited, in part due to lack of accurate models. We establish patient-derived tumor organoids (PDTOs) from pulmonary NETs and derive PDTOs from an understudied subtype of NEC, large cell neuroendocrine carcinoma (LCNEC), arising from multiple body sites. PDTOs maintain the gene expression patterns, intra-tumoral heterogeneity, and evolutionary processes of parental tumors. Through hypothesis-driven drug sensitivity analyses, we identify ASCL1 as a potential biomarker for response of LCNEC to treatment with BCL-2 inhibitors. Additionally, we discover a dependency on EGF in pulmonary NET PDTOs. Consistent with these findings, we find that, in an independent cohort, approximately 50% of pulmonary NETs express EGFR. This study identifies an actionable vulnerability for a subset of pulmonary NETs, emphasizing the utility of these PDTO models.
Collapse
Affiliation(s)
- Talya L Dayton
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands.
| | - Nicolas Alcala
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Laura Moonen
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Lisanne den Hartigh
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Veerle Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Lise Mangiante
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Lisa Lap
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Antonella F M Dost
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Joep Beumer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Sonja Levy
- Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Rachel S van Leeuwaarde
- Department of Endocrine Oncology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Wenzel M Hackeng
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Kris Samsom
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Catherine Voegele
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Alexandra Sexton-Oates
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands
| | - Lisa Hillen
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Sylvie Lantuejoul
- Department of Biopathology, Pathology Research Platform- Synergie Lyon Cancer- CRCL, Centre Léon Bérard Unicancer, 69008 Lyon, France; Université Grenoble Alpes, Grenoble, France
| | - Sridevi Jaksani
- Hubrecht Organoid Technology, Utrecht 3584 CM, the Netherlands
| | - Niels F M Kok
- Department of Surgery, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Koen J Hartemink
- Department of Surgery, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Houke M Klomp
- Department of Surgery, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Inne H M Borel Rinkes
- Department of Endocrine Surgical Oncology, University Medical Center Utrecht, Utrecht 3508 GA, the Netherlands
| | - Anne-Marie Dingemans
- Department of Pulmonary Diseases, GROW School for Oncology and and Reproduction, Maastricht University Medical Centre, Maastricht, the Netherlands; Department of Pulmonary Medicine, Erasmus MC Cancer Institute, University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Gerlof D Valk
- Department of Endocrine Oncology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Menno R Vriens
- Department of Endocrine Surgical Oncology, University Medical Center Utrecht, Utrecht 3508 GA, the Netherlands
| | - Wieneke Buikhuisen
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - José van den Berg
- Department of Pathology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Margot Tesselaar
- Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Jules Derks
- Department of Pulmonary Diseases, GROW School for Oncology and and Reproduction, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Ernst Jan Speel
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Centre, 6229 ER Maastricht, the Netherlands
| | - Matthieu Foll
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France
| | - Lynnette Fernández-Cuesta
- Rare Cancers Genomics Team (RCG), Genomic Epidemiology Branch (GEM), International Agency for Research on Cancer/World Health Organisation (IARC/WHO), 69007 Lyon, France.
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
9
|
Virarkar MK, Montanarella M, Itani M, Calimano-Ramirez L, Gopireddy D, Bhosale P. PET/MRI imaging in neuroendocrine neoplasm. Abdom Radiol (NY) 2023; 48:3585-3600. [PMID: 36525051 DOI: 10.1007/s00261-022-03757-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Molecular imaging plays a vital role in the management of neuroendocrine neoplasms (NENs). Somatostatin receptor (SSTR) PET is critical for evaluating NENs, ascertaining peptide receptor radionuclide therapy (PRRT) eligibility, and treatment response. SSTR-PET/MRI can provide a one-stop-shop multiparametric evaluation of NENs. The acquisition of complementary imaging information in PET/MRI has distinct advantages over PET/CT and MR imaging acquisitions. The purpose of this manuscript is to provide a comprehensive overview of PET/MRI and a current review of recent PET/MRI advances in the diagnosis, staging, treatment, and surveillance of NENs.
Collapse
Affiliation(s)
- Mayur K Virarkar
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, 32209, USA
| | - Matthew Montanarella
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, 32209, USA
| | - Malak Itani
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, 510 S Kings Highway Blvd, Campus Box 8131, St Louis, MO, 63110, USA
| | - Luis Calimano-Ramirez
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, 32209, USA.
| | - Dheeraj Gopireddy
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, 32209, USA
| | - Priya Bhosale
- Division of Diagnostic Imaging, Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
10
|
Wang Y, Wang F, Qin Y, Lou X, Ye Z, Zhang W, Gao H, Chen J, Xu X, Yu X, Ji S. Recent progress of experimental model in pancreatic neuroendocrine tumors: drawbacks and challenges. Endocrine 2023; 80:266-282. [PMID: 36648608 DOI: 10.1007/s12020-023-03299-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/31/2022] [Indexed: 01/18/2023]
Abstract
The neuroendocrine neoplasm, in general, refers to a heterogeneous group of all tumors originating from peptidergic neurons and neuroendocrine cells. Neuroendocrine neoplasms are divided into two histopathological subtypes: well-differentiated neuroendocrine tumors and poorly differentiated neuroendocrine carcinomas. Pancreatic neuroendocrine tumors account for more than 80% of pancreatic neuroendocrine neoplasms. Due to the greater proportion of pancreatic neuroendocrine tumors compared to pancreatic neuroendocrine carcinoma, this review will only focus on them. The worldwide incidence of pancreatic neuroendocrine tumors is rising year by year due to sensitive detection with an emphasis on medical examinations and the improvement of testing technology. Although the biological behavior of pancreatic neuroendocrine tumors tends to be inert, distant metastasis is common, often occurring very early. Because of the paucity of basic research on pancreatic neuroendocrine tumors, the mechanism of tumor development, metastasis, and recurrence are still unclear. In this context, the representative preclinical models simulating the tumor development process are becoming ever more widely appreciated to address the clinical problems of pancreatic neuroendocrine tumors. So far, there is no comprehensive report on the experimental model of pancreatic neuroendocrine tumors. This article systematically summarizes the characteristics of preclinical models, such as patient-derived cell lines, patient-derived xenografts, genetically engineered mouse models, and patient-derived organoids, and their advantages and disadvantages, to provide a reference for further studies of neuroendocrine tumors. We also highlight the method of establishment of liver metastasis mouse models.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Fei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Heli Gao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
11
|
Neuroendocrine neoplasms of the lung and gastrointestinal system: convergent biology and a path to better therapies. Nat Rev Clin Oncol 2023; 20:16-32. [PMID: 36307533 DOI: 10.1038/s41571-022-00696-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 11/08/2022]
Abstract
Neuroendocrine neoplasms (NENs) can develop in almost any organ and span a spectrum from well-differentiated and indolent neuroendocrine tumours (NETs) to poorly differentiated and highly aggressive neuroendocrine carcinomas (NECs), including small-cell lung cancer (SCLC). These neoplasms are thought to primarily derive from neuroendocrine precursor cells located throughout the body and can also arise through neuroendocrine transdifferentiation of organ-specific epithelial cell types. Hence, NENs constitute a group of tumour types that share key genomic and phenotypic characteristics irrespective of their site of origin, albeit with some organ-specific differences. The establishment of representative preclinical models for several of these disease entities together with analyses of human tumour specimens has provided important insights into crucial aspects of their biology with therapeutic implications. In this Review, we provide a comprehensive overview of the current understanding of NENs of the gastrointestinal system and lung from clinical and biological perspectives. Research on NENs has typically been siloed by the tumour site of origin, and a cross-cutting view might enable advances in one area to accelerate research in others. Therefore, we aim to emphasize that a better understanding of the commonalities and differences of NENs arising in different organs might more effectively inform clinical research to define therapeutic targets and ultimately optimize patient care.
Collapse
|
12
|
D’Agosto S, Fiorini E, Pezzini F, Delfino P, Simbolo M, Vicentini C, Andreani S, Capelli P, Rusev B, Lawlor RT, Bassi C, Landoni L, Pea A, Luchini C, Scarpa A, Corbo V. Long-term organoid culture of a small intestinal neuroendocrine tumor. Front Endocrinol (Lausanne) 2023; 14:999792. [PMID: 37082125 PMCID: PMC10112019 DOI: 10.3389/fendo.2023.999792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/02/2023] [Indexed: 04/22/2023] Open
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are rare and highly heterogeneous neoplasms whose incidence has markedly increased over the last decades. A grading system based on the tumor cells' proliferation index predicts high-risk for G3 NETs. However, low-to-intermediate grade (G1/G2) NETs have an unpredictable clinical course that varies from indolent to highly malignant. Cultures of human cancer cells enable to perform functional perturbation analyses that are instrumental to enhance our understanding of cancer biology. To date, no tractable and reliable long-term culture of G1/G2 NET has been reported to permit disease modeling and pharmacological screens. Here, we report of the first long-term culture of a G2 metastatic small intestinal NET that preserves the main genetic drivers of the tumor and retains expression patterns of the endocrine cell lineage. Replicating the tissue, this long-term culture showed a low proliferation index, and yet it could be propagated continuously without dramatic changes in the karyotype. The model was readily available for pharmacological screens using targeted agents and as expected, showed low tumorigenic capacity in vivo. Overall, this is the first long-term culture of NETs to faithfully recapitulate many aspects of the original neuroendocrine tumor.
Collapse
Affiliation(s)
- Sabrina D’Agosto
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Elena Fiorini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Francesco Pezzini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Pietro Delfino
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Michele Simbolo
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Caterina Vicentini
- Centre for Applied Research on Cancer (ARC-Net) Research Centre, University of Verona, Verona, Italy
| | - Silvia Andreani
- Centre for Applied Research on Cancer (ARC-Net) Research Centre, University of Verona, Verona, Italy
| | - Paola Capelli
- Azienda Ospedaliera Integrata dell’Università di Verona, Verona, Italy
| | - Borislav Rusev
- Centre for Applied Research on Cancer (ARC-Net) Research Centre, University of Verona, Verona, Italy
| | - Rita T. Lawlor
- Centre for Applied Research on Cancer (ARC-Net) Research Centre, University of Verona, Verona, Italy
| | - Claudio Bassi
- Pancreas Institute, Department of Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - Luca Landoni
- Pancreas Institute, Department of Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - Antonio Pea
- Pancreas Institute, Department of Surgery, University and Hospital Trust of Verona, Verona, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- Centre for Applied Research on Cancer (ARC-Net) Research Centre, University of Verona, Verona, Italy
| | - Vincenzo Corbo
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- Centre for Applied Research on Cancer (ARC-Net) Research Centre, University of Verona, Verona, Italy
- *Correspondence: Vincenzo Corbo,
| |
Collapse
|
13
|
Gaspar TB, Lopes JM, Soares P, Vinagre J. An update on genetically engineered mouse models of pancreatic neuroendocrine neoplasms. Endocr Relat Cancer 2022; 29:R191-R208. [PMID: 36197786 DOI: 10.1530/erc-22-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Pancreatic neuroendocrine neoplasms (PanNENs) are rare and clinically challenging entities. At the molecular level, PanNENs' genetic profile is well characterized, but there is limited knowledge regarding the contribution of the newly identified genes to tumor initiation and progression. Genetically engineered mouse models (GEMMs) are the most versatile tool for studying the plethora of genetic variations influencing PanNENs' etiopathogenesis and behavior over time. In this review, we present the state of the art of the most relevant PanNEN GEMMs available and correlate their findings with the human neoplasms' counterparts. We discuss the historic GEMMs as the most used and with higher translational utility models. GEMMs with Men1 and glucagon receptor gene germline alterations stand out as the most faithful models in recapitulating human disease; RIP-Tag models are unique models of early-onset, highly vascularized, invasive carcinomas. We also include a section of the most recent GEMMs that evaluate pathways related to cell cycle and apoptosis, Pi3k/Akt/mTOR, and Atrx/Daxx. For the latter, their tumorigenic effect is heterogeneous. In particular, for Atrx/Daxx, we will require more in-depth studies to evaluate their contribution; even though they are prevalent genetic events in PanNENs, they have low/inexistent tumorigenic capacity per se in GEMMs. Researchers planning to use GEMMs can find a road map of the main clinical features in this review, presented as a guide that summarizes the chief milestones achieved. We identify pitfalls to overcome, concerning the novel designs and standardization of results, so that future models can replicate human disease more closely.
Collapse
Affiliation(s)
- Tiago Bordeira Gaspar
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - José Manuel Lopes
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Department of Pathology, Centro Hospitalar e Universitário de São João, Porto, Portugal
| | - Paula Soares
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - João Vinagre
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| |
Collapse
|
14
|
Translational research in neuroendocrine tumors (NETs): What's new in 2021? ANNALES D'ENDOCRINOLOGIE 2022; 83:469-471. [PMID: 36371349 DOI: 10.1016/j.ando.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Preclinical Models of Neuroendocrine Neoplasia. Cancers (Basel) 2022; 14:cancers14225646. [PMID: 36428741 PMCID: PMC9688518 DOI: 10.3390/cancers14225646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Neuroendocrine neoplasia (NENs) are a complex and heterogeneous group of cancers that can arise from neuroendocrine tissues throughout the body and differentiate them from other tumors. Their low incidence and high diversity make many of them orphan conditions characterized by a low incidence and few dedicated clinical trials. Study of the molecular and genetic nature of these diseases is limited in comparison to more common cancers and more dependent on preclinical models, including both in vitro models (such as cell lines and 3D models) and in vivo models (such as patient derived xenografts (PDXs) and genetically-engineered mouse models (GEMMs)). While preclinical models do not fully recapitulate the nature of these cancers in patients, they are useful tools in investigation of the basic biology and early-stage investigation for evaluation of treatments for these cancers. We review available preclinical models for each type of NEN and discuss their history as well as their current use and translation.
Collapse
|
16
|
Yao J, Bergsland E, Aggarwal R, Aparicio A, Beltran H, Crabtree JS, Hann CL, Ibrahim T, Byers LA, Sasano H, Umejiego J, Pavel M. DLL3 as an Emerging Target for the Treatment of Neuroendocrine Neoplasms. Oncologist 2022; 27:940-951. [PMID: 35983951 PMCID: PMC9632312 DOI: 10.1093/oncolo/oyac161] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/01/2022] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Neuroendocrine neoplasms (NEN) are heterogeneous malignancies that can arise at almost any anatomical site and are classified as biologically distinct well-differentiated neuroendocrine tumors (NET) and poorly differentiated neuroendocrine carcinomas (NEC). Current systemic therapies for advanced disease, including targeted therapies, chemotherapy, and immunotherapy, are associated with limited duration of response. New therapeutic targets are needed. One promising target is delta-like ligand 3 (DLL3), an inhibitory ligand of the Notch receptor whose overexpression on the surface of NEN is associated with tumorigenesis. METHODS This article is a narrative review that highlights the role of DLL3 in NEN progression and prognosis, the potential for therapeutic targeting of DLL3, and ongoing studies of DLL3-targeting therapies. Classification, incidence, pathogenesis, and current management of NEN are reviewed to provide biological context and illustrate the unmet clinical needs. DISCUSSION DLL3 is overexpressed in many NENs, implicated in tumor progression, and is typically associated with poor clinical outcomes, particularly in patients with NEC. Targeted therapies using DLL3 as a homing beacon for cytotoxic activity mediated via several different mechanisms (eg, antibody-drug conjugates, T-cell engager molecules, CAR-Ts) have shown promising clinical activity in small-cell lung cancer (SCLC). DLL3 may be a clinically actionable target across NEN. CONCLUSIONS Current treatment options for NEN do not provide sustained responses. DLL3 is expressed on the cell surface of many NEN types and is associated with poor clinical outcomes. Initial clinical studies targeting DLL3 therapeutically in SCLC have been promising, and additional studies are expanding this approach to the broader group of NEN.
Collapse
Affiliation(s)
- James Yao
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily Bergsland
- Department of Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Rahul Aggarwal
- Department of Medicine, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Ana Aparicio
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Himisha Beltran
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Judy S Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Christine L Hann
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCSS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Lauren A Byers
- Thoracic Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | | | - Marianne Pavel
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
17
|
Rösner E, Kaemmerer D, Sänger J, Lupp A. Evaluation of PD-L1 expression in a large set of gastroenteropancreatic neuroendocrine tumours and correlation with clinicopathological data. Transl Oncol 2022; 25:101526. [PMID: 36067541 PMCID: PMC9468575 DOI: 10.1016/j.tranon.2022.101526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Targeting programmed death protein 1 (PD-1) or its ligand PD-L1 is a promising therapeutic approach for many types of cancer in which PD-L1 is overexpressed. However, data on PD-L1 expression levels in gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are limited and contradictory. METHODS We evaluated PD-L1 expression in 457 archived, formalin-fixed, paraffin-embedded GEP-NEN samples from 175 patients by immunohistochemistry using the highly sensitive monoclonal anti-PD-L1 antibody 73-10. The immunostaining was semiquantitatively evaluated using a 12-point immunoreactivity score (IRS) taking both PD-L1-positive tumour cells and immune cells into account. Tumour samples with an IRS ≥ 3 were considered PD-L1-positive. Results were correlated with clinicopathological data and with the expression of several typical markers and receptors for neuroendocrine tumours. RESULTS Of the GEP-NEN samples, 73% were PD-L1-positive. The median IRS value across all samples was 4.0, corresponding to low expression. PD-L1 immunostaining was predominantly localised at the plasma membrane of the tumour cells. Positive correlations were observed between PD-L1 expression and tumour grading or Ki-67 index, between PD-L1 expression and the expression of chromogranin A, and between PD-L1 expression and the expression of each of the five somatostatin receptors. PD-L1 expression was lower in tumours with lymph node metastases at diagnosis than in those without regional metastasis and lower in high-stage than in earlier-stage tumours. No association was noted between PD-L1 expression and patient survival. CONCLUSIONS PD-L1 expression is common in GEP-NENs and increases with malignancy. Therefore, especially in high-grade GEP-NENs, targeting the PD-1/PD-L1 axis could be a promising additional therapeutic strategy.
Collapse
Affiliation(s)
- Erik Rösner
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Straße 1, Jena D-07747, Germany
| | - Daniel Kaemmerer
- Department of General and Visceral Surgery, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Jörg Sänger
- Laboratory of Pathology and Cytology Bad Berka, Bad Berka, Germany
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Straße 1, Jena D-07747, Germany.
| |
Collapse
|
18
|
Budek M, Nuszkiewicz J, Piórkowska A, Czuczejko J, Szewczyk-Golec K. Inflammation Related to Obesity in the Etiopathogenesis of Gastroenteropancreatic Neuroendocrine Neoplasms. Biomedicines 2022; 10:2660. [PMID: 36289922 PMCID: PMC9599081 DOI: 10.3390/biomedicines10102660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are rare neoplasms, which, due to their heterogeneous nature, non-specific symptoms, and lack of specific tumor markers pose many diagnostic and clinical challenges. In recent years, the effectiveness of GEP-NEN diagnosis has increased, which is probably associated with the greater availability of diagnostic tests and the cooperation of many experienced specialists in various scientific disciplines. In addition to the possible genetic etiology, the cause of GEP-NET development is not fully understood. Inflammation and obesity are known risks that contribute to the development of many diseases. Chronic inflammation accompanying obesity affects the hormonal balance and cell proliferation and causes the impairment of the immune system function, leading to neoplastic transformation. This review explores the role of inflammation and obesity in GEP-NETs. The exact mechanisms inducing tumor growth are unknown; however, the profile of inflammatory factors released in the GEP-NET tumor microenvironment is responsible for the progression or inhibition of tumor growth. Both the excess of adipose tissue and the impaired function of the immune system affect not only the initiation of cancer but also reduce the comfort and lifetime of patients.
Collapse
Affiliation(s)
- Marlena Budek
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| | - Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| | - Anna Piórkowska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| | - Jolanta Czuczejko
- Department of Psychiatry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Curie-Skłodowskiej St., 85-094 Bydgoszcz, Poland
- Department of Nuclear Medicine, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, 2 Dr. I. Romanowskiej St., 85-796 Bydgoszcz, Poland
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| |
Collapse
|
19
|
Vahidfar N, Farzanehfar S, Abbasi M, Mirzaei S, Delpassand ES, Abbaspour F, Salehi Y, Biersack HJ, Ahmadzadehfar H. Diagnostic Value of Radiolabelled Somatostatin Analogues for Neuroendocrine Tumour Diagnosis: The Benefits and Drawbacks of [ 64Cu]Cu-DOTA-TOC. Cancers (Basel) 2022; 14:1914. [PMID: 35454822 PMCID: PMC9027354 DOI: 10.3390/cancers14081914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Neuroendocrine tumours (NETs) arise from secondary epithelial cell lines in the gastrointestinal or respiratory system organs. The rate of development of these tumours varies from an indolent to an aggressive course, typically being initially asymptomatic. The identification of these tumours is difficult, particularly because the primary tumour is often small and undetectable by conventional anatomical imaging. Consequently, diagnosis of NETs is complicated and has been a significant challenge until recently. In the last 30 years, the advent of novel nuclear medicine diagnostic procedures has led to a substantial increase in NET detection. Great varieties of exclusive single photon emission computed tomography (SPECT) and positron emission tomography (PET) radiopharmaceuticals for detecting NETs are being applied successfully in clinical settings, including [111In]In-pentetreotide, [99mTc]Tc-HYNIC-TOC/TATE, [68Ga]Ga-DOTA-TATE, and [64Cu]Cu-DOTA-TOC/TATE. Among these tracers for functional imaging, PET radiopharmaceuticals are clearly and substantially superior to planar or SPECT imaging radiopharmaceuticals. The main advantages include higher resolution, better sensitivity and increased lesion-to-background uptake. An advantage of diagnosis with a radiopharmaceutical is the capacity of theranostics to provide concomitant diagnosis and treatment with particulate radionuclides, such as beta and alpha emitters including Lutetium-177 (177Lu) and Actinium-225 (225Ac). Due to these unique challenges involved with diagnosing NETs, various PET tracers have been developed. This review compares the clinical characteristics of radiolabelled somatostatin analogues for NET diagnosis, focusing on the most recently FDA-approved [64Cu]Cu-DOTA-TATE as a state-of-the art NET-PET/CT radiopharmaceutical.
Collapse
Affiliation(s)
- Nasim Vahidfar
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran 1419733133, Iran; (N.V.); (S.F.); (M.A.); (Y.S.)
| | - Saeed Farzanehfar
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran 1419733133, Iran; (N.V.); (S.F.); (M.A.); (Y.S.)
| | - Mehrshad Abbasi
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran 1419733133, Iran; (N.V.); (S.F.); (M.A.); (Y.S.)
| | - Siroos Mirzaei
- Clinic Ottakring, Institute of Nuclear Medicine with PET-Center, 1220 Vienna, Austria;
| | - Ebrahim S. Delpassand
- RadioMedix, Inc., Houston, TX 77041, USA;
- Excel Diagnostics and Nuclear Oncology Center, Houston, TX 77042, USA
| | - Farzad Abbaspour
- Division of Nuclear Medicine, Department of Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, ON K1H 8L6, Canada;
| | - Yalda Salehi
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran 1419733133, Iran; (N.V.); (S.F.); (M.A.); (Y.S.)
| | - Hans Jürgen Biersack
- Department of Nuclear Medicine, University Hospital Bonn, 53127 Bonn, Germany;
- Betaklinik Bonn, 53227 Bonn, Germany
| | | |
Collapse
|
20
|
Hu W, Chen ZM, Li XX, Lu L, Yang GH, Lei ZX, You LJ, Cui XB, Lu SC, Zhai ZY, Zeng ZY, Chen Y, Huang SL, Gong W. Faecal microbiome and metabolic signatures in rectal neuroendocrine tumors. Theranostics 2022; 12:2015-2027. [PMID: 35265196 PMCID: PMC8899573 DOI: 10.7150/thno.66464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The prevalence of rectal neuroendocrine tumors (RNET) has increased substantially over the past decades. Little is known on mechanistic alteration in the pathogenesis of such disease. We postulate that perturbations of human gut microbiome-metabolome interface influentially affect the development of RNET. The study aims to characterize the composition and function of faecal microbiome and metabolites in RNET individuals. Methods: We performed deep shotgun metagenomic sequencing and untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomic profiling of faecal samples from the discovery cohort (18 RNET patients, 40 controls), and validated the microbiome and metabolite-based classifiers in an independent cohort (15 RNET participants, 19 controls). Results: We uncovered a dysbiotic gut ecological microenvironment in RNET patients, characterized by aberrant depletion and attenuated connection of microbial species, and abnormally aggregated lipids and lipid-like molecules. Functional characterization based on our in-house and Human Project Unified Metabolic Analysis Network 2 (HUMAnN2) pipelines further indicated a nutrient deficient gut microenvironment in RNET individuals, evidenced by diminished activities such as energy metabolism, vitamin biosynthesis and transportation. By integrating these data, we revealed 291 robust associations between representative differentially abundant taxonomic species and metabolites, indicating a tight interaction of gut microbiome with metabolites in RNET pathogenesis. Finally, we identified a cluster of gut microbiome and metabolite-based signatures, and replicated them in an independent cohort, showing accurate prediction of such neoplasm from healthy people. Conclusions: Our current study is the first to comprehensively characterize the perturbed interface of gut microbiome and metabolites in RNET patients, which may provide promising targets for microbiome-based diagnostics and therapies for this disorder.
Collapse
Affiliation(s)
- Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Ze Min Chen
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Xia Xi Li
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Lan Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Gen Hua Yang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Zheng Xia Lei
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Li Juan You
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Xiao Bing Cui
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Si Cun Lu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhi Yong Zhai
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhi Yu Zeng
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Ye Chen
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Si Lin Huang
- Department of Gastroenterology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
21
|
Liverani C, Spadazzi C, Ibrahim T, Pieri F, Foca F, Calabrese C, De Vita A, Miserocchi G, Cocchi C, Vanni S, Ercolani G, Cavaliere D, Ranallo N, Chiadini E, Prisinzano G, Severi S, Sansovini M, Martinelli G, Bongiovanni A, Mercatali L. HRAS overexpression predicts response to Lenvatinib treatment in gastroenteropancreatic neuroendocrine tumors. Front Endocrinol (Lausanne) 2022; 13:1045038. [PMID: 36743926 PMCID: PMC9895371 DOI: 10.3389/fendo.2022.1045038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/28/2022] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Neuroendocrine neoplasms (NENs) are a rare group of tumors exceptionally heterogeneous, with clinical presentation ranging from well differentiated more indolent tumors to poorly differentiated very aggressive forms. Both are often diagnosed after the metastatic spread and require appropriate medical treatment. A high priority need in the management of this disease is the identification of effective therapeutic strategies for advanced and metastatic patients. The recent TALENT trial demonstrated the efficacy of lenvatinib, a multi-tyrosine kinase inhibitor, in patients with gastroenteropancreatic neuroendocrine tumors (GEP-NETs) with no other treatment indication. Further development of this drug in advanced NETs is warranted. METHODS We investigated potential clinical and molecular determinants of lenvatinib response in human primary cultures derived from patients with GEP-NET of different grades and sites of origin. We correlated response to treatment with patient clinical characteristics, with the mutational status of 161-cancer associated genes and with the expression levels of MKI-related genes. RESULTS Lenvatinib exerted a significant antitumor activity in primary GEP-NET cells, with median survival inhibitions similar or higher than those of standard frontline treatments. Of the 11 primary cultures analyzed in our case series, 6 were classified as responder showing a significant survival inhibition, and 5 as non-responder. We observed that the overexpression of HRAS in the original tumor tissue compared to the matched healthy tissue significantly correlated with responsiveness of primary cells to lenvatinib (p=.048). All 5 non-responder cultures showed normal HRAS expression, while of the 6 responder cultures, 4 had HRAS overexpression. Overexpression of HRAS was not associated with gene mutation. None of the other evaluated clinical variables (grade, Ki67, site of origin and syndromic disease) or molecular markers correlated with response. DISCUSSION Lenvatinib appears to be a highly effective drug for the treatment of NETs. The evaluation of HRAS expression in the tumor tissue might improve patient selection and optimize therapeutic outcome.
Collapse
Affiliation(s)
- Chiara Liverani
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Spadazzi
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- *Correspondence: Chiara Spadazzi,
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Federica Pieri
- Pathology Unit, “Morgagni-Pierantoni” Hospital, Forlì, Italy
| | - Flavia Foca
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Calabrese
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Alessandro De Vita
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giacomo Miserocchi
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Claudia Cocchi
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Silvia Vanni
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giorgio Ercolani
- General and Oncologic Surgery, “Morgagni-Pierantoni” Hospital, Forlì, Italy
| | - Davide Cavaliere
- General and Oncologic Surgery, “Morgagni-Pierantoni” Hospital, Forlì, Italy
| | - Nicoletta Ranallo
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Elisa Chiadini
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giovanna Prisinzano
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Stefano Severi
- Unit of Nuclear Medicine, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Maddalena Sansovini
- Unit of Nuclear Medicine, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Laura Mercatali
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
22
|
Herring B, Jang S, Whitt J, Goliwas K, Aburjania Z, Dudeja V, Ren B, Berry J, Bibb J, Frost A, Chen H, Rose JB, Jaskula-Sztul R. Ex Vivo Modeling of Human Neuroendocrine Tumors in Tissue Surrogates. Front Endocrinol (Lausanne) 2021; 12:710009. [PMID: 35002949 PMCID: PMC8734644 DOI: 10.3389/fendo.2021.710009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/10/2021] [Indexed: 12/24/2022] Open
Abstract
Few models exist for studying neuroendocrine tumors (NETs), and there are mounting concerns that the currently available array of cell lines is not representative of NET biology. The lack of stable patient-derived NET xenograft models further limits the scientific community's ability to make conclusions about NETs and their response to therapy in patients. To address these limitations, we propose the use of an ex vivo 3D flow-perfusion bioreactor system for culturing and studying patient-derived NET surrogates. Herein, we demonstrate the utility of the bioreactor system for culturing NET surrogates and provide methods for evaluating the efficacy of therapeutic agents on human NET cell line xenograft constructs and patient-derived NET surrogates. We also demonstrate that patient-derived NET tissues can be propagated using the bioreactor system and investigate the near-infrared (NIR) dye IR-783 for its use in monitoring their status within the bioreactor. The results indicate that the bioreactor system and similar 3D culture models may be valuable tools for culturing patient-derived NETs and monitoring their response to therapy ex vivo.
Collapse
Affiliation(s)
- Brendon Herring
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Samuel Jang
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jason Whitt
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kayla Goliwas
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zviadi Aburjania
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vikas Dudeja
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bin Ren
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joel Berry
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James Bibb
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andra Frost
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John Bart Rose
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Renata Jaskula-Sztul
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
23
|
Rico K, Duan S, Pandey RL, Chen Y, Chakrabarti JT, Starr J, Zavros Y, Else T, Katona BW, Metz DC, Merchant JL. Genome analysis identifies differences in the transcriptional targets of duodenal versus pancreatic neuroendocrine tumours. BMJ Open Gastroenterol 2021; 8:bmjgast-2021-000765. [PMID: 34750164 PMCID: PMC8576490 DOI: 10.1136/bmjgast-2021-000765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Objective Gastroenteropancreatic neuroendocrine tumours (GEP-NETs) encompass a diverse group of neoplasms that vary in their secretory products and in their location within the gastrointestinal tract. Their prevalence in the USA is increasing among all adult age groups. Aim To identify the possible derivation of GEP-NETs using genome-wide analyses to distinguish small intestinal neuroendocrine tumours, specifically duodenal gastrinomas (DGASTs), from pancreatic neuroendocrine tumours. Design Whole exome sequencing and RNA-sequencing were performed on surgically resected GEP-NETs (discovery cohort). RNA transcript profiles available in the Gene Expression Omnibus were analysed using R integrated software (validation cohort). Digital spatial profiling (DSP) was used to analyse paraffin-embedded GEP-NETs. Human duodenal organoids were treated with 5 or 10 ng/mL of tumor necrosis factor alpha (TNFα) prior to qPCR and western blot analysis of neuroendocrine cell specification genes. Results Both the discovery and validation cohorts of small intestinal neuroendocrine tumours induced expression of mesenchymal and calcium signalling pathways coincident with a decrease in intestine-specific genes. In particular, calcium-related, smooth muscle and cytoskeletal genes increased in DGASTs, but did not correlate with MEN1 mutation status. Interleukin 17 (IL-17) and tumor necrosis factor alpha (TNFα) signalling pathways were elevated in the DGAST RNA-sequencing. However, DSP analysis confirmed a paucity of immune cells in DGASTs compared with the adjacent tumour-associated Brunner’s glands. Immunofluorescent analysis showed production of these proinflammatory cytokines and phosphorylated signal transducer and activator of transcription 3 (pSTAT3) by the tumours and stroma. Human duodenal organoids treated with TNFα induced neuroendocrine tumour genes, SYP, CHGA and NKX6.3. Conclusions Stromal–epithelial interactions induce proinflammatory cytokines that promote Brunner’s gland reprogramming.
Collapse
Affiliation(s)
- Karen Rico
- Department of Medicine, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| | - Suzann Duan
- Department of Medicine, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| | - Ritu L Pandey
- Department of Cellular and Molecular Medicine, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| | - Yuliang Chen
- Department of Cellular and Molecular Medicine, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| | - Jayati T Chakrabarti
- Department of Cellular and Molecular Medicine, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| | - Julie Starr
- Department of Internal Medicine, Division of Gastroenterology, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Yana Zavros
- Department of Cellular and Molecular Medicine, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| | - Tobias Else
- Department of Internal Medicine-Endocrinology, University of Michigan, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Bryson W Katona
- Department of Internal Medicine, Division of Gastroenterology, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - David C Metz
- Department of Internal Medicine, Division of Gastroenterology, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Juanita L Merchant
- Department of Medicine, University of Arizona Medical Center - University Campus, Tucson, Arizona, USA
| |
Collapse
|
24
|
Maharjan CK, Ear PH, Tran CG, Howe JR, Chandrasekharan C, Quelle DE. Pancreatic Neuroendocrine Tumors: Molecular Mechanisms and Therapeutic Targets. Cancers (Basel) 2021; 13:5117. [PMID: 34680266 PMCID: PMC8533967 DOI: 10.3390/cancers13205117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are unique, slow-growing malignancies whose molecular pathogenesis is incompletely understood. With rising incidence of pNETs over the last four decades, larger and more comprehensive 'omic' analyses of patient tumors have led to a clearer picture of the pNET genomic landscape and transcriptional profiles for both primary and metastatic lesions. In pNET patients with advanced disease, those insights have guided the use of targeted therapies that inhibit activated mTOR and receptor tyrosine kinase (RTK) pathways or stimulate somatostatin receptor signaling. Such treatments have significantly benefited patients, but intrinsic or acquired drug resistance in the tumors remains a major problem that leaves few to no effective treatment options for advanced cases. This demands a better understanding of essential molecular and biological events underlying pNET growth, metastasis, and drug resistance. This review examines the known molecular alterations associated with pNET pathogenesis, identifying which changes may be drivers of the disease and, as such, relevant therapeutic targets. We also highlight areas that warrant further investigation at the biological level and discuss available model systems for pNET research. The paucity of pNET models has hampered research efforts over the years, although recently developed cell line, animal, patient-derived xenograft, and patient-derived organoid models have significantly expanded the available platforms for pNET investigations. Advancements in pNET research and understanding are expected to guide improved patient treatments.
Collapse
Affiliation(s)
- Chandra K. Maharjan
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Po Hien Ear
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Catherine G. Tran
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - James R. Howe
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Chandrikha Chandrasekharan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Dawn E. Quelle
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
25
|
Carpizo DR, Harris CR. Genetic Drivers of Ileal Neuroendocrine Tumors. Cancers (Basel) 2021; 13:cancers13205070. [PMID: 34680217 PMCID: PMC8533727 DOI: 10.3390/cancers13205070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Although ileal neuroendocrine tumors are the most common tumors of the small intestine, they are not well-defined at the genetic level. Unlike most cancers, they have an unusually low number of mutations, and also lack recurrently mutated genes. Moreover ileal NETs have been difficult to study in the laboratory because there were no animal models and because cell lines were generally unavailable. But recent advances, including the first ileal NET mouse model as well as methods for culturing patient tumor samples, have been described and have already helped to identify IGF2 and CDK4 as two of the genetic drivers for this tumor type. These advances may help in the development of new treatments for patients. Abstract The genetic causes of ileal neuroendocrine tumors (ileal NETs, or I-NETs) have been a mystery. For most types of tumors, key genes were revealed by large scale genomic sequencing that demonstrated recurrent mutations of specific oncogenes or tumor suppressors. In contrast, genomic sequencing of ileal NETs demonstrated a distinct lack of recurrently mutated genes, suggesting that the mechanisms that drive the formation of I-NETs may be quite different than the cell-intrinsic mutations that drive the formation of other tumor types. However, recent mouse studies have identified the IGF2 and RB1 pathways in the formation of ileal NETs, which is supported by the subsequent analysis of patient samples. Thus, ileal NETs no longer appear to be a cancer without genetic causes.
Collapse
|
26
|
Liverani C, Bongiovanni A, Mercatali L, Pieri F, Spadazzi C, Miserocchi G, Di Menna G, Foca F, Ravaioli S, De Vita A, Cocchi C, Rossi G, Recine F, Ibrahim T. Diagnostic and Predictive Role of DLL3 Expression in Gastroenteropancreatic Neuroendocrine Neoplasms. Endocr Pathol 2021; 32:309-317. [PMID: 33409812 DOI: 10.1007/s12022-020-09657-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are a rare and heterogeneous subgroup of tumors with a challenging management because of their extremely variable biological and clinical behaviors. Due to their different prognosis, there is an urgent need to identify molecular markers which would enable to discriminate between grade 3 neuroendocrine tumors (NETs) and neuroendocrine carcinomas (NECs), despite both being diagnosed mainly on the basis of proliferation index and cell differentiation. DLL3, a negative Notch regulator, is a promising molecular target highly expressed in several tumors with neuroendocrine features. We conducted a retrospective analysis of DLL3, RB1, and PD-L1 expression by immunohistochemistry (IHC), in formalin-fixed, paraffin-embedded (FFPE) samples from 47 patients with GEP-NENs. Then, we correlated the results with patients' clinical features and outcome. The absence of DLL3 expression in 5 well-differentiated GEP-NETs with high-grade features (G3 NET), and the presence of DLL3 in 76.9% of poorly-differentiated NECs (G3 NEC), highlights DLL3 expression as a marker of G3 NECs (p = 0.007). DLL3 expression was correlated with RB1-loss (p < 0.001), negative 68 Ga-PET/CT scan (p = 0.001), and an unfavorable clinical outcome, with important implications for treatment response and patient's follow-up. Median progression-free survival (PFS) and overall survival (OS) were 22.7 months (95% CI 6.1-68.8) and 68.8 months (95% CI 26.0-78.1), respectively, in patients with DLL3-negative tumor compared with 5.2 months (95% CI 2.5-18.5) and 9.5 months (95% CI 2.5-25.2), respectively, in patients with DLL3-positive tumor (PFS p = 0.0083, OS p = 0.0071). Therefore, combined with morphological cell analysis, DLL3 could represent a valuable histological marker, for the diagnosis of poorly differentiated NECs. The high percentage of DLL3 expression in NEC patients also highlights a potential opportunity for a DLL3 targeted therapy in this tumor subset.
Collapse
Affiliation(s)
- Chiara Liverani
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy.
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Federica Pieri
- Pathology Unit, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Chiara Spadazzi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giacomo Miserocchi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giandomenico Di Menna
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Flavia Foca
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Sara Ravaioli
- Biosciences Laboratory, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Alessandro De Vita
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Claudia Cocchi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giulio Rossi
- Pathology Unit, Azienda USL Della Romagna, S. Maria Delle Croci Teaching Hospital, Ravenna, Italy
| | - Federica Recine
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo Per Lo Studio E La Cura Dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
27
|
Gillette AA, Babiarz CP, VanDommelen AR, Pasch CA, Clipson L, Matkowskyj KA, Deming DA, Skala MC. Autofluorescence Imaging of Treatment Response in Neuroendocrine Tumor Organoids. Cancers (Basel) 2021; 13:cancers13081873. [PMID: 33919802 PMCID: PMC8070804 DOI: 10.3390/cancers13081873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/30/2021] [Accepted: 04/08/2021] [Indexed: 12/30/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NET) account for roughly 60% of all neuroendocrine tumors. Low/intermediate grade human GEP-NETs have relatively low proliferation rates that animal models and cell lines fail to recapitulate. Short-term patient-derived cancer organoids (PDCOs) are a 3D model system that holds great promise for recapitulating well-differentiated human GEP-NETs. However, traditional measurements of drug response (i.e., growth, proliferation) are not effective in GEP-NET PDCOs due to the small volume of tissue and low proliferation rates that are characteristic of the disease. Here, we test a label-free, non-destructive optical metabolic imaging (OMI) method to measure drug response in live GEP-NET PDCOs. OMI captures the fluorescence lifetime and intensity of endogenous metabolic cofactors NAD(P)H and FAD. OMI has previously provided accurate predictions of drug response on a single cell level in other cancer types, but this is the first study to apply OMI to GEP-NETs. OMI tested the response to novel drug combination on GEP-NET PDCOs, specifically ABT263 (navitoclax), a Bcl-2 family inhibitor, and everolimus, a standard GEP-NET treatment that inhibits mTOR. Treatment response to ABT263, everolimus, and the combination were tested in GEP-NET PDCO lines derived from seven patients, using two-photon OMI. OMI measured a response to the combination treatment in 5 PDCO lines, at 72 h post-treatment. In one of the non-responsive PDCO lines, heterogeneous response was identified with two distinct subpopulations of cell metabolism. Overall, this work shows that OMI provides single-cell metabolic measurements of drug response in PDCOs to guide drug development for GEP-NET patients.
Collapse
Affiliation(s)
- Amani A. Gillette
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706, USA;
| | - Christopher P. Babiarz
- Department of Medicine, Division of Hematology, Oncology and Palliative Care, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA;
| | | | - Cheri A. Pasch
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA; (C.A.P.); (K.A.M.)
| | - Linda Clipson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, WI 53705, USA;
| | - Kristina A. Matkowskyj
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA; (C.A.P.); (K.A.M.)
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA
| | - Dustin A. Deming
- Department of Medicine, Division of Hematology, Oncology and Palliative Care, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA;
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA; (C.A.P.); (K.A.M.)
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, WI 53705, USA;
- Correspondence: (D.A.D.); (M.C.S.)
| | - Melissa C. Skala
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706, USA;
- Morgridge Institute for Research, Madison, WI 53715, USA;
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA; (C.A.P.); (K.A.M.)
- Correspondence: (D.A.D.); (M.C.S.)
| |
Collapse
|
28
|
Detjen K, Hammerich L, Özdirik B, Demir M, Wiedenmann B, Tacke F, Jann H, Roderburg C. Models of Gastroenteropancreatic Neuroendocrine Neoplasms: Current Status and Future Directions. Neuroendocrinology 2021; 111:217-236. [PMID: 32615560 DOI: 10.1159/000509864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/23/2020] [Indexed: 11/19/2022]
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are a rare, heterogeneous group of tumors that originate from the endocrine system of the gastrointestinal tract and pancreas. GEP-NENs are subdivided according to their differentiation into well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). Since GEP-NENs represent rare diseases, only limited data from large prospective, randomized clinical trials are available, and recommendations for treatment of GEP-NEN are in part based on data from retrospective analyses or case series. In this context, tractable disease models that reflect the situation in humans and that allow to recapitulate the different clinical aspects and disease stages of GEP-NET or GEP-NEC are urgently needed. In this review, we highlight available data on mouse models for GEP-NEN. We discuss how these models reflect tumor biology of human disease and whether these models could serve as a tool for understanding the pathogenesis of GEP-NEN and for disease modeling and pharmacosensitivity assays, facilitating prediction of treatment response in patients. In addition, open issues applicable for future developments will be discussed.
Collapse
Affiliation(s)
- Katharina Detjen
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Burcin Özdirik
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Bertram Wiedenmann
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Henning Jann
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Charité - University Medicine Berlin, Campus Virchow Klinikum and Charité Campus Mitte, Berlin, Germany,
| |
Collapse
|
29
|
Dijkstra KK, van den Berg JG, Weeber F, van de Haar J, Velds A, Kaing S, Peters DDGC, Eskens FALM, de Groot DJA, Tesselaar MET, Voest EE. Patient-Derived Organoid Models of Human Neuroendocrine Carcinoma. Front Endocrinol (Lausanne) 2021; 12:627819. [PMID: 33776923 PMCID: PMC7991829 DOI: 10.3389/fendo.2021.627819] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine carcinoma (GEP-NEC) is a poorly understood disease with limited treatment options. A better understanding of this disease would greatly benefit from the availability of representative preclinical models. Here, we present the potential of tumor organoids, three-dimensional cultures of tumor cells, to model GEP-NEC. We established three GEP-NEC organoid lines, originating from the stomach and colon, and characterized them using DNA sequencing and immunohistochemistry. Organoids largely resembled the original tumor in expression of synaptophysin, chromogranin and Ki-67. Models derived from tumors containing both neuroendocrine and non-neuroendocrine components were at risk of overgrowth by non-neuroendocrine tumor cells. Organoids were derived from patients treated with cisplatin and everolimus and for the three patients studied, organoid chemosensitivity paralleled clinical response. We demonstrate the feasibility of establishing NEC organoid lines and their potential applications. Organoid culture has the potential to greatly extend the repertoire of preclinical models for GEP-NEC, supporting drug development for this difficult-to-treat tumor type.
Collapse
Affiliation(s)
- Krijn K. Dijkstra
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | | | - Fleur Weeber
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Joris van de Haar
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Arno Velds
- Central Genomics Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Sovann Kaing
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Dennis D. G. C. Peters
- Core Facility Molecular Pathology and Biobanking, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Derk-Jan A. de Groot
- Department of Medical Oncology, University Medical Center Groningen, Groningen, Netherlands
| | | | - Emile E. Voest
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
- *Correspondence: Emile E. Voest,
| |
Collapse
|
30
|
Kawasaki K, Toshimitsu K, Matano M, Fujita M, Fujii M, Togasaki K, Ebisudani T, Shimokawa M, Takano A, Takahashi S, Ohta Y, Nanki K, Igarashi R, Ishimaru K, Ishida H, Sukawa Y, Sugimoto S, Saito Y, Maejima K, Sasagawa S, Lee H, Kim HG, Ha K, Hamamoto J, Fukunaga K, Maekawa A, Tanabe M, Ishihara S, Hamamoto Y, Yasuda H, Sekine S, Kudo A, Kitagawa Y, Kanai T, Nakagawa H, Sato T. An Organoid Biobank of Neuroendocrine Neoplasms Enables Genotype-Phenotype Mapping. Cell 2020; 183:1420-1435.e21. [PMID: 33159857 DOI: 10.1016/j.cell.2020.10.023] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/21/2020] [Accepted: 10/12/2020] [Indexed: 01/11/2023]
Abstract
Gastroenteropancreatic (GEP) neuroendocrine neoplasm (NEN) that consists of neuroendocrine tumor and neuroendocrine carcinoma (NEC) is a lethal but under-investigated disease owing to its rarity. To fill the scarcity of clinically relevant models of GEP-NEN, we here established 25 lines of NEN organoids and performed their comprehensive molecular characterization. GEP-NEN organoids recapitulated pathohistological and functional phenotypes of the original tumors. Whole-genome sequencing revealed frequent genetic alterations in TP53 and RB1 in GEP-NECs, and characteristic chromosome-wide loss of heterozygosity in GEP-NENs. Transcriptome analysis identified molecular subtypes that are distinguished by the expression of distinct transcription factors. GEP-NEN organoids gained independence from the stem cell niche irrespective of genetic mutations. Compound knockout of TP53 and RB1, together with overexpression of key transcription factors, conferred on the normal colonic epithelium phenotypes that are compatible with GEP-NEN biology. Altogether, our study not only provides genetic understanding of GEP-NEN, but also connects its genetics and biological phenotypes.
Collapse
Affiliation(s)
- Kenta Kawasaki
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kohta Toshimitsu
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mami Matano
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masashi Fujita
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Masayuki Fujii
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Deparment of Surgical Oncology, The University of Tokyo, Tokyo 113-8654, Japan
| | - Kazuhiro Togasaki
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Toshiki Ebisudani
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Pulmonary Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mariko Shimokawa
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ai Takano
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Sirirat Takahashi
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuki Ohta
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kosaku Nanki
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ryo Igarashi
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazuhiro Ishimaru
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Deparment of Surgical Oncology, The University of Tokyo, Tokyo 113-8654, Japan
| | - Hiroki Ishida
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yasutaka Sukawa
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinya Sugimoto
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yoshimasa Saito
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan; Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, Tokyo 105-8512, Japan
| | - Kazuhiro Maejima
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Shota Sasagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Hwajin Lee
- Biomedical Knowledge Engineering Laboratory, Seoul National University, Seoul 08826, South Korea
| | - Hong-Gee Kim
- Biomedical Knowledge Engineering Laboratory, Seoul National University, Seoul 08826, South Korea
| | - Kyungsik Ha
- Biomedical Knowledge Engineering Laboratory, Seoul National University, Seoul 08826, South Korea
| | - Junko Hamamoto
- Department of Pulmonary Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Koichi Fukunaga
- Department of Pulmonary Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Aya Maekawa
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Minoru Tanabe
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Soichiro Ishihara
- Deparment of Surgical Oncology, The University of Tokyo, Tokyo 113-8654, Japan
| | - Yasuo Hamamoto
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroyuki Yasuda
- Department of Pulmonary Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shigeki Sekine
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Atsushi Kudo
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takanori Kanai
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
31
|
Modelling Pancreatic Neuroendocrine Cancer: From Bench Side to Clinic. Cancers (Basel) 2020; 12:cancers12113170. [PMID: 33126717 PMCID: PMC7693644 DOI: 10.3390/cancers12113170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic neuroendocrine tumours (pNETs) are a heterogeneous group of epithelial tumours with neuroendocrine differentiation. Although rare (incidence of <1 in 100,000), they are the second most common group of pancreatic neoplasms after pancreatic ductal adenocarcinoma (PDAC). pNET incidence is however on the rise and patient outcomes, although variable, have been linked with 5-year survival rates as low as 40%. Improvement of diagnostic and treatment modalities strongly relies on disease models that reconstruct the disease ex vivo. A key constraint in pNET research, however, is the absence of human pNET models that accurately capture the original tumour phenotype. In attempts to more closely mimic the disease in its native environment, three-dimensional culture models as well as in vivo models, such as genetically engineered mouse models (GEMMs), have been developed. Despite adding significant contributions to our understanding of more complex biological processes associated with the development and progression of pNETs, factors such as ethical considerations and low rates of clinical translatability limit their use. Furthermore, a role for the site-specific extracellular matrix (ECM) in disease development and progression has become clear. Advances in tissue engineering have enabled the use of tissue constructs that are designed to establish disease ex vivo within a close to native ECM that can recapitulate tumour-associated tissue remodelling. Yet, such advanced models for studying pNETs remain underdeveloped. This review summarises the most clinically relevant disease models of pNETs currently used, as well as future directions for improved modelling of the disease.
Collapse
|
32
|
Wang H, Lin Z, Li G, Zhang D, Yu D, Lin Q, Wang J, Zhao Y, Pi G, Zhang T. Validation and modification of staging Systems for Poorly Differentiated Pancreatic Neuroendocrine Carcinoma. BMC Cancer 2020; 20:188. [PMID: 32138704 PMCID: PMC7059325 DOI: 10.1186/s12885-020-6634-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Background The American Joint Committee on Cancer (AJCC) and the European Neuroendocrine Tumor Society (ENETS) staging classifications are two broadly used systems for pancreatic neuroendocrine tumors. This study aims to identify the most accurate and useful tumor–node–metastasis (TNM) staging system for poorly differentiated pancreatic neuroendocrine carcinomas (pNECs). Methods An analysis was performed to evaluate the application of the ENETS, 7th edition (7th) AJCC and 8th edition (8th) AJCC staging classifications using the Surveillance, Epidemiology, and End Results (SEER) registry (N = 568 patients), and a modified system based on the analysis of the 7th AJCC classification was proposed. Results In multivariable analyses, only the 7th AJCC staging system allocated patients into four different risk groups, although there was no significant difference. We modified the staging classification by maintaining the T and M definitions of the 7th AJCC staging and adopting new staging definitions. An increased hazard ratio (HR) of death was also observed from class I to class IV for the modified 7th (m7th) staging system (compared with stage I disease; HR for stage II =1.23, 95% confidence interval (CI) = 0.73–2.06, P = 0.44; HR for stage III =2.20, 95% CI =1.06–4.56, P = 0.03; HR for stage IV =4.95, 95% CI =3.20–7.65, P < 0.001). The concordance index (C-index) was higher for local disease with the m7th AJCC staging system than with the 7th AJCC staging system. Conclusions The m7th AJCC staging system for pNECs proposed in this study provides improvements and may be assessed for potential adoption in the next edition.
Collapse
Affiliation(s)
- Haihong Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenyu Lin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guiling Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dejun Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dandan Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qili Lin
- School of Business and Administration, Jiangxi University of Finance and Economics, Nanchang, China
| | - Jing Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ye Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guoliang Pi
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
33
|
Xing J, Ying H, Li J, Gao Y, Sun Z, Li J, Bai C, Cheng Y, Wu H. Immune Checkpoint Markers in Neuroendocrine Carcinoma of the Digestive System. Front Oncol 2020; 10:132. [PMID: 32181153 PMCID: PMC7059119 DOI: 10.3389/fonc.2020.00132] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/24/2020] [Indexed: 12/21/2022] Open
Abstract
Digestive system neuroendocrine carcinomas (NECs) are rare neoplasms originating from neuroendocrine cells with a poor prognosis and limited effective treatments. Programmed cell death protein 1/ligand 1 (PD-1/PD-L1) blockade has been used in the management of more than 10 solid tumors and has achieved promising clinical outcomes. PD-L1 expression, immune cell infiltration, tumor mutational burden (TMB), and microsatellite instability (MSI) are all verified biomarkers that can predict the response to anti-PD-1/PD-L1 therapy. Here, we investigated PD-L1 expression and immune cell infiltration density by immunohistochemical (IHC) staining of tumor samples from 33 patients with digestive system NECs. Tumor and paratumor normal samples from 31 of these patients underwent whole-exome sequencing to evaluate TMB and the MSI-high (MSI-H) status. In total, 29.0% of digestive system NECs had positive PD-L1 expression according to the tumor proportion score (TPS). Infiltration of CD3+, CD8+, and CD68+ cells was observed in 69.7, 27.3, and 54.5% of patients, respectively. The TMB value for patients sequenced ranged from 0.57 to 11.75 mutations/Mb, with a median of 5.68 mutations/Mb. mSINGS, MSIsensor, and MSIseq were used to analyze the MSI status according to the sequencing data, and in our evaluation, no MSI-H status was detected. Our data might indicate a limited potential of anti-PD-1/PD-L1 monotherapy in digestive system NECs, although clinical trials are warranted.
Collapse
Affiliation(s)
- Jiazhang Xing
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongyan Ying
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ji Li
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Gao
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhao Sun
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiarui Li
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunmei Bai
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuejuan Cheng
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
34
|
Tatura M, Schmidt H, Haijat M, Stark M, Rinke A, Diels R, Lawlor RT, Scarpa A, Schrader J, Hackert T, Schimmack S, Gress TM, Buchholz M. Placenta-Specific 8 Is Overexpressed and Regulates Cell Proliferation in Low-Grade Human Pancreatic Neuroendocrine Tumors. Neuroendocrinology 2020; 110:23-34. [PMID: 31018208 DOI: 10.1159/000500541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/23/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Many aspects of the biology of pancreatic neuroendocrine tumors (PanNETs), including determinants of proliferative, invasive, and metastatic potential, remain poorly understood. Placenta-specific 8 (PLAC8), a gene with unknown molecular function, has been reported to have tumor-promoting roles in different human malignancies, including exocrine pancreatic cancer. Since preliminary data suggested deregulation of PLAC8 expression in PanNET, we have performed detailed analyses of PLAC8 expression and function in human PanNET. METHODS Primary tissue from PanNET patients was immunohistochemically stained for PLAC8, and expression was correlated with clinicopathological data. In vitro, PLAC8 expression was inhibited by siRNA transfection in PanNET cell lines and effects were analyzed by qRT-PCR, Western blot, and proliferation assays. RESULTS We report that PLAC8 is expressed in the majority of well-differentiated human PanNETs, predominantly in early-stage and low-grade tumors. SiRNA-mediated knockdown of PLAC8 in PanNET cells resulted in decreased proliferation and viability, while apoptosis was not induced. Mechanistically, these effects were mediated by attenuation of cell cycle progression, as Western blot analyses demonstrated upregulation of the tumor suppressor p21/CDKN2A and downregulation of the cell cycle regulator Cyclin D1 as well as reduced levels of phosphorylated ribosomal protein s6 and retinoblastoma protein. CONCLUSION Our findings establish PLAC8 as a central mediator of cell growth in a subset of human PanNET, providing evidence for the existence of distinct molecular subtypes within this class of tumors.
Collapse
Affiliation(s)
- Marina Tatura
- Department of Medicine, Division of Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Marburg, Germany
| | - Harald Schmidt
- Department of Medicine, Division of Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Marburg, Germany
| | - Mikail Haijat
- Department of Medicine, Division of Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Marburg, Germany
| | - Maren Stark
- Department of Medicine, Division of Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Marburg, Germany
| | - Anja Rinke
- Department of Medicine, Division of Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Marburg, Germany
| | - Ramona Diels
- Department of Medicine, Division of Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Marburg, Germany
| | - Rita T Lawlor
- ARC-Net Cancer Research Centre, Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-Net Cancer Research Centre, Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona, Italy
| | - Joerg Schrader
- Department of Medical, Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thilo Hackert
- Department of Surgery, University Clinic Heidelberg, Heidelberg, Germany
| | - Simon Schimmack
- Department of Surgery, University Clinic Heidelberg, Heidelberg, Germany
| | - Thomas Matthias Gress
- Department of Medicine, Division of Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Marburg, Germany
| | - Malte Buchholz
- Department of Medicine, Division of Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Marburg, Germany,
| |
Collapse
|
35
|
Lin Z, Wang H, Zhang Y, Li G, Pi G, Yu X, Chen Y, Jin K, Chen L, Yang S, Zhu Y, Wu G, Chen J, Zhang T. Development and Validation of a Prognostic Nomogram to Guide Decision-Making for High-Grade Digestive Neuroendocrine Neoplasms. Oncologist 2019; 25:e659-e667. [PMID: 32297441 DOI: 10.1634/theoncologist.2019-0566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The objective of this study was to develop and validate a nomogram to predict 1-year overall survival (OS) and 2-year OS in patients with high-grade digestive neuroendocrine neoplasms (NENs) as well as to guide selection of subgroups that could benefit from systemic chemotherapy. SUBJECTS, MATERIALS, AND METHODS We performed a retrospective analysis of 223 patients with NENs of the gut and hepato-biliary-pancreatic system from four centers included in the development cohort. The nomogram was externally validated in a cohort of 90 patients from another one. RESULTS The final model included lactate dehydrogenase, performance status, stage, Ki67, and site of primary tumor, all of which had a significant effect on OS. The uncorrected C-index was 0.761 for OS, and the bias-corrected C-index was 0.744. Predictions correlated well with observed 1-year and 2-year outcomes (judged by eye). The area under the time-dependent receiver operating characteristic curve at 12 months and 24 months was 0.876 and 0.838, respectively. The nomogram performed well in terms of both discrimination and calibration when applied to the validation cohort, and OS was significantly different between the two groups classified by nomogram score (log-rank p < .001). CONCLUSION The validated nomogram provided useful prediction of OS, which can be offered for clinicians to improve their abilities to assess patient prognosis, to create clinical risk groups for informing treatment or for patient stratification by disease severity in clinical trials. IMPLICATIONS FOR PRACTICE The high-grade neuroendocrine neoplasms of the digestive system are rare malignancies with great heterogeneity. An overall survival nomogram was developed and externally validated in this study. Two subgroups were classified by the nomogram score, and platinum-based chemotherapy may not bring clinical benefit for the low-risk patients.
Collapse
Affiliation(s)
- Zhenyu Lin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Haihong Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yixuan Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Guiling Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Guoliang Pi
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xianjun Yu
- Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Yaobing Chen
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Kaizhou Jin
- Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shengli Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ying Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jie Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
36
|
Guenter R, Aweda T, Carmona Matos DM, Jang S, Whitt J, Cheng YQ, Liu XM, Chen H, Lapi SE, Jaskula-Sztul R. Overexpression of somatostatin receptor type 2 in neuroendocrine tumors for improved Ga68-DOTATATE imaging and treatment. Surgery 2019; 167:189-196. [PMID: 31629542 DOI: 10.1016/j.surg.2019.05.092] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Neuroendocrine tumors are found throughout the body, including the pancreas. These tumors are phenotypically and genetically heterogeneous and can be difficult to accurately image using current imaging standards. However, positron emission tomography/computed tomography with radiolabeled somatostatin analogs has shown clinical success because many neuroendocrine tumors overexpress somatostatin receptor subtype 2. Unfortunately, patients with poorly differentiated neuroendocrine tumors often have a diminished level of somatostatin receptor subtype 2. We found that histone deacetylase inhibitors can upregulate the functional expression of somatostatin receptor subtype 2. METHODS We evaluated the effect of histone deacetylase inhibitors on somatostatin receptor subtype 2 expression at the mRNA and protein level in neuroendocrine tumor cell lines. The effect of histone deacetylase inhibitors on surface somatostatin receptor subtype 2 was also investigated by fluorescence-activated cell sorting analysis. Changes in somatostatin receptor subtype 2 expression in neuroendocrine tumor xenografts after treatment were imaged using Ga68-DOTATATE positron emission tomography/computed tomography. RESULTS The functional increase of somatostatin receptor subtype 2 in neuroendocrine tumors after histone deacetylase inhibitor treatment was confirmed through in vitro experiments and small animal Ga68-DOTATATE positron emission tomography/computed tomography imaging. Histone deacetylase inhibitors increased somatostatin receptor subtype 2 transcription and protein expression in neuroendocrine tumor cell lines. Small animal Ga68-DOTATATE positron emission tomography/computed tomography imaging confirmed the enhancement of radiopeptide uptake after histone deacetylase inhibitor administration. CONCLUSION This study demonstrates a new method to potentially improve imaging and treatments that target somatostatin receptor subtype 2 in neuroendocrine tumors.
Collapse
Affiliation(s)
- Rachael Guenter
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Tolulope Aweda
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Danilea M Carmona Matos
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL; San Juan Bautista School of Medicine, Caguas, PR
| | - Samuel Jang
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Jason Whitt
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Yi-Qiang Cheng
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX
| | - X Margaret Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Renata Jaskula-Sztul
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL.
| |
Collapse
|
37
|
Herring B, Whitt J, Aweda T, Ou J, Guenter R, Lapi S, Berry J, Chen H, Liu X, Rose JB, Jaskula-Sztul R. A growth model of neuroendocrine tumor surrogates and the efficacy of a novel somatostatin-receptor-guided antibody-drug conjugate: Perspectives on clinical response? Surgery 2019; 167:197-203. [PMID: 31543319 PMCID: PMC8162105 DOI: 10.1016/j.surg.2019.04.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/22/2019] [Accepted: 04/20/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND As patient-derived xenografts and other preclinical models of neuroendocrine tumors for testing personalized therapeutics are lacking, we have developed a perfused, 3D bioreactor model to culture tumor surrogates from patient-derived neuroendocrine tumors. This work evaluates the duration of surrogate culture and surrogate response to a novel antibody-drug conjugate. METHODS Twenty-seven patient-derived neuroendocrine tumors were cultured. Histologic sections of a pancreatic neuroendocrine tumor xenograft (BON-1) tumor were assessed for SSTR2 expression before tumor implantation into 2 bioreactors. One surrogate was treated with an antibody-drug conjugate composed of an anti-mitotic Monomethyl auristatin-E linked to a somatostatin receptor 2 antibody. Viability and therapeutic response were assessed by pre-imaging incubation with IR-783 and the RealTime-Glo AnnexinV Apoptosis and Necrosis Assay (Promega Corporation, Madison, WI) over 6 days. A primary human pancreatic neuroendocrine tumor was evaluated similarly. RESULTS Mean surrogate growth duration was 34.8 days. Treated BON-1 surrogates exhibited less proliferation (1.2 vs 1.9-fold) and greater apoptosis (1.5 vs 1.1-fold) than controls, whereas treated patient-derived neuroendocrine tumor bioreactors exhibited greater degrees of apoptosis (13- vs 9-fold) and necrosis (2.5- vs 1.6-fold). CONCLUSION Patient-derived neuroendocrine tumor surrogates can be cultured reliably within the bioreactor. This model can be used to evaluate the efficacy of antibody-guided chemotherapy ex vivo and may be useful for predicting clinical responses.
Collapse
Affiliation(s)
| | - Jason Whitt
- Department of Surgery, University of Alabama at Birmingham School of Medicine, AL
| | - Tolulope Aweda
- Department of Radiology, University of Alabama at Birmingham School of Medicine, AL
| | - Jianfa Ou
- Department of Biomedical Engineering, University of Alabama at Birmingham School of Medicine, AL
| | | | - Suzanne Lapi
- Department of Radiology, University of Alabama at Birmingham School of Medicine, AL
| | - Joel Berry
- Department of Biomedical Engineering, University of Alabama at Birmingham School of Medicine, AL
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham School of Medicine, AL
| | - Xiaoguang Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham School of Medicine, AL
| | - J Bart Rose
- Department of Surgery, University of Alabama at Birmingham School of Medicine, AL
| | - Renata Jaskula-Sztul
- Department of Surgery, University of Alabama at Birmingham School of Medicine, AL.
| |
Collapse
|
38
|
Romano D. Relevance of neuroendocrine tumours models assessed by kinomic profiling. ANNALES D'ENDOCRINOLOGIE 2019; 80:144-148. [PMID: 31054767 DOI: 10.1016/j.ando.2019.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although there is evidence of a significant rise of neuroendocrine tumours (NETs) incidence, current treatments are largely insufficient due to somewhat poor knowledge of these tumours. Despite many efforts achieved to expose driver oncogene mutations in NETs, the genetic landscape of NETs is characterized by relatively few mutations and chromosomal aberrations per tumour compared with other tumour types. In addition, NETs display few actionable mutations providing compelling rationale for targeted therapies. Recent works aiming at characterizing currently used NETs in vitro models at the genomic level raised concerns on their reliability as bona fide tools to study NETs biology. However, the lack of actionable mutation in NETs implies that sole use of genomic is not sufficient to describe these models and establish appropriate therapeutic strategies. Several kinases and kinase-involving signalling pathways have been demonstrated as abnormally regulated in NETs. Yet, kinases have only been investigated regardless of their involvement in large intracellular signalling networks. In order to assess the validity of in vitro NETs models to study NETs biology, "next-generation" high throughput functional technologies based on "kinome-wide activity" will demonstrate the similarities between signalling pathways in NETs models and patients' samples. These approaches will significantly assist in identifying actionable alterations in NETs signalling pathways and guide patient stratification into early-phase clinical trials based on kinase inhibition targeted therapies.
Collapse
Affiliation(s)
- David Romano
- Marseille Medical Genetics, MMG, U1251 Inserm, Aix-Marseille université, Marseille, France.
| |
Collapse
|