1
|
Song H, Kim S, Han JE, Kang KH, Koh H. PDH Inhibition in Drosophila Ameliorates Sensory Dysfunction Induced by Vincristine Treatment in the Chemotherapy-Induced Peripheral Neuropathy Models. Biomedicines 2025; 13:783. [PMID: 40299339 PMCID: PMC12025153 DOI: 10.3390/biomedicines13040783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Chemotherapy-induced peripheral neuropathy (CIPN) is a significant dose-limiting side effect of many effective anticancer agents, including vincristine. While CIPN adversely affects both oncological outcomes and the quality of life for cancer patients, the in vivo mechanisms behind CIPN pathology remain largely unknown, and effective treatments have yet to be developed. In this study, we established a novel Drosophila model of CIPN using vincristine to explore the molecular mechanisms underlying this condition. Methods: We assessed the impact of vincristine exposure on thermal nociception in Drosophila larvae using a programmable heat probe. Additionally, we investigated vincristine-induced mitochondrial dysfunction and dendritic abnormalities in class IV dendritic arborization (C4da) neurons with various fluorescent protein markers. Results: We found a dose-dependent increase in thermal hypersensitivity, accompanied by changes in the sensory dendrites of C4da neurons in vincristine-treated fly larvae. Moreover, vincristine significantly enhanced mitochondrial ROS production and mitophagy-a selective autophagy that targets dysfunctional mitochondria-indicating vincristine-induced mitochondrial dysfunction within C4da neurons. Surprisingly, inhibiting the pyruvate dehydrogenase complex (PDH), a key mitochondrial metabolic enzyme complex, effectively rescued the mitochondrial and sensory abnormalities caused by vincristine. Conclusions: Findings from this first Drosophila model of vincristine-induced peripheral neuropathy (VIPN) suggest that mitochondrial dysfunction plays a critical role in VIPN pathology, representing PDH as a potential target for the treatment of VIPN.
Collapse
Affiliation(s)
- Harim Song
- Department of Pharmacology, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (H.S.); (S.K.); (J.E.H.)
- Department of Translational Biomedical Sciences, Dong-A University College of Medicine, Busan 49201, Republic of Korea
| | - Sohee Kim
- Department of Pharmacology, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (H.S.); (S.K.); (J.E.H.)
- Department of Translational Biomedical Sciences, Dong-A University College of Medicine, Busan 49201, Republic of Korea
| | - Ji Eun Han
- Department of Pharmacology, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (H.S.); (S.K.); (J.E.H.)
- Department of Translational Biomedical Sciences, Dong-A University College of Medicine, Busan 49201, Republic of Korea
| | - Kyong-hwa Kang
- Department of Pharmacology, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (H.S.); (S.K.); (J.E.H.)
- Neuroscience Translational Research Solution Center, Dong-A University College of Medicine, Busan 49201, Republic of Korea
| | - Hyongjong Koh
- Department of Pharmacology, Dong-A University College of Medicine, Busan 49201, Republic of Korea; (H.S.); (S.K.); (J.E.H.)
- Department of Translational Biomedical Sciences, Dong-A University College of Medicine, Busan 49201, Republic of Korea
- Neuroscience Translational Research Solution Center, Dong-A University College of Medicine, Busan 49201, Republic of Korea
| |
Collapse
|
2
|
Im S, Jeong DJ, Kim E, Choi JH, Jang HJ, Kim YY, Um JH, Lee J, Lee YJ, Lee KM, Choi D, Yoo E, Lee HS, Yun J. A novel marine-derived mitophagy inducer ameliorates mitochondrial dysfunction and thermal hypersensitivity in paclitaxel-induced peripheral neuropathy. Br J Pharmacol 2024; 181:4012-4027. [PMID: 38925168 DOI: 10.1111/bph.16476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/07/2024] [Accepted: 04/25/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND AND PURPOSE Mitochondrial dysfunction contributes to the pathogenesis and maintenance of chemotherapy-induced peripheral neuropathy (CIPN), a significant limitation of cancer chemotherapy. Recently, the stimulation of mitophagy, a pivotal process for mitochondrial homeostasis, has emerged as a promising treatment strategy for neurodegenerative diseases, but its therapeutic effect on CIPN has not been explored. Here, we assessed the mitophagy-inducing activity of 3,5-dibromo-2-(2',4'-dibromophenoxy)-phenol (PDE701), a diphenyl ether derivative isolated from the marine sponge Dysidea sp., and investigated its therapeutic effect on a CIPN model. EXPERIMENTAL APPROACH Mitophagy activity was determined by a previously established mitophagy assay using mitochondrial Keima (mt-Keima). Mitophagy induction was further verified by western blotting, immunofluorescence, and electron microscopy. Mitochondrial dysfunction was analysed by measuring mitochondrial superoxide levels in SH-SY5Y cells and Drosophila larvae. A thermal nociception assay was used to evaluate the therapeutic effect of PDE701 on the paclitaxel-induced thermal hyperalgesia phenotype in Drosophila larvae. KEY RESULTS PDE701 specifically induced mitophagy but was not toxic to mitochondria. PDE701 ameliorated paclitaxel-induced mitochondrial dysfunction in both SH-SY5Y cells and Drosophila larvae. Importantly, PDE701 also significantly ameliorated paclitaxel-induced thermal hyperalgesia in Drosophila larvae. Knockdown of ATG5 or ATG7 abolished the effect of PDE701 on thermal hyperalgesia, suggesting that PDE701 exerts its therapeutic effect through mitophagy induction. CONCLUSION AND IMPLICATIONS This study identified PDE701 as a novel mitophagy inducer and a potential therapeutic compound for CIPN. Our results suggest that mitophagy stimulation is a promising strategy for the treatment of CIPN and that marine organisms are a potential source of mitophagy-inducing compounds.
Collapse
Affiliation(s)
- Sangwoo Im
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Dae Jin Jeong
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Eunmi Kim
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Jae-Hyeong Choi
- Korea Institute of Ocean Science & Technology (KIOST), Busan, Republic of Korea
- Department of Applied Ocean Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Hye-Ji Jang
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Young Yeon Kim
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Jee-Hyun Um
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Jihoon Lee
- Korea Institute of Ocean Science & Technology (KIOST), Busan, Republic of Korea
- Department of Applied Ocean Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Yeon-Ju Lee
- Korea Institute of Ocean Science & Technology (KIOST), Busan, Republic of Korea
- Department of Applied Ocean Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Kang-Min Lee
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Dabin Choi
- Altmedical Co., Ltd, Seoul, Republic of Korea
| | - Eunhee Yoo
- Altmedical Co., Ltd, Seoul, Republic of Korea
| | - Hyi-Seung Lee
- Korea Institute of Ocean Science & Technology (KIOST), Busan, Republic of Korea
- Department of Applied Ocean Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Jeanho Yun
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| |
Collapse
|
3
|
Shin GJE, Abaci HE, Smith MC. Cellular Pathogenesis of Chemotherapy-Induced Peripheral Neuropathy: Insights From Drosophila and Human-Engineered Skin Models. FRONTIERS IN PAIN RESEARCH 2022; 3:912977. [PMID: 35875478 PMCID: PMC9304629 DOI: 10.3389/fpain.2022.912977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a highly prevalent and complex condition arising from chemotherapy cancer treatments. Currently, there are no treatment or prevention options in the clinic. CIPN accompanies pain-related sensory functions starting from the hands and feet. Studies focusing on neurons in vitro and in vivo models significantly advanced our understanding of CIPN pathological mechanisms. However, given the direct toxicity shown in both neurons and non-neuronal cells, effective in vivo or in vitro models that allow the investigation of neurons in their local environment are required. No single model can provide a complete solution for the required investigation, therefore, utilizing a multi-model approach would allow complementary advantages of different models and robustly validate findings before further translation. This review aims first to summarize approaches and insights from CIPN in vivo models utilizing small model organisms. We will focus on Drosophila melanogaster CIPN models that are genetically amenable and accessible to study neuronal interactions with the local environment in vivo. Second, we will discuss how these findings could be tested in physiologically relevant vertebrate models. We will focus on in vitro approaches using human cells and summarize the current understanding of engineering approaches that may allow the investigation of pathological changes in neurons and the skin environment.
Collapse
Affiliation(s)
- Grace Ji-eun Shin
- Zuckerman Mind Brain and Behavior Institute, Jerome L. Greene Science Center, Columbia University, New York, NY, United States
- *Correspondence: Grace Ji-eun Shin
| | - Hasan Erbil Abaci
- Department of Dermatology, Columbia University Medical Center, Saint Nicholas Avenue, New York, NY, United States
| | - Madison Christine Smith
- Zuckerman Mind Brain and Behavior Institute, Jerome L. Greene Science Center, Columbia University, New York, NY, United States
| |
Collapse
|
4
|
Current and Emerging Pharmacotherapeutic Interventions for the Treatment of Peripheral Nerve Disorders. Pharmaceuticals (Basel) 2022; 15:ph15050607. [PMID: 35631433 PMCID: PMC9144529 DOI: 10.3390/ph15050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Peripheral nerve disorders are caused by a range of different aetiologies. The range of causes include metabolic conditions such as diabetes, obesity and chronic kidney disease. Diabetic neuropathy may be associated with severe weakness and the loss of sensation, leading to gangrene and amputation in advanced cases. Recent studies have indicated a high prevalence of neuropathy in patients with chronic kidney disease, also known as uraemic neuropathy. Immune-mediated neuropathies including Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy may cause significant physical disability. As survival rates continue to improve in cancer, the prevalence of treatment complications, such as chemotherapy-induced peripheral neuropathy, has also increased in treated patients and survivors. Notably, peripheral neuropathy associated with these conditions may be chronic and long-lasting, drastically affecting the quality of life of affected individuals, and leading to a large socioeconomic burden. This review article explores some of the major emerging clinical and experimental therapeutic agents that have been investigated for the treatment of peripheral neuropathy due to metabolic, toxic and immune aetiologies.
Collapse
|
5
|
The PINK1 Activator Niclosamide Mitigates Mitochondrial Dysfunction and Thermal Hypersensitivity in a Paclitaxel-Induced Drosophila Model of Peripheral Neuropathy. Biomedicines 2022; 10:biomedicines10040863. [PMID: 35453613 PMCID: PMC9025238 DOI: 10.3390/biomedicines10040863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022] Open
Abstract
Paclitaxel is a widely used anticancer drug that induces dose-limiting peripheral neuropathy. Mitochondrial dysfunction has been implicated in paclitaxel-induced neuronal damage and in the onset of peripheral neuropathy. We have previously shown that the expression of PINK1, a key mediator of mitochondrial quality control, ameliorated the paclitaxel-induced thermal hyperalgesia phenotype and restored mitochondrial homeostasis in Drosophila larvae. In this study, we show that the small-molecule PINK1 activator niclosamide exhibits therapeutic potential for paclitaxel-induced peripheral neuropathy. Specifically, niclosamide cotreatment significantly ameliorated the paclitaxel-induced thermal hyperalgesia phenotype in Drosophila larvae in a PINK1-dependent manner. Paclitaxel-induced alteration of the dendrite structure of class IV dendritic arborization (C4da) neurons was not reduced upon niclosamide treatment. In contrast, paclitaxel treatment-induced increases in both mitochondrial ROS and aberrant mitophagy levels in C4da neurons were significantly suppressed by niclosamide. In addition, niclosamide suppressed paclitaxel-induced mitochondrial dysfunction in human SH-SY5Y cells in a PINK1-dependent manner. These results suggest that niclosamide alleviates thermal hyperalgesia by attenuating paclitaxel-induced mitochondrial dysfunction. Taken together, our results suggest that niclosamide is a potential candidate for the treatment of paclitaxel-induced peripheral neuropathy with low toxicity in neurons and that targeting mitochondrial dysfunction is a promising strategy for the treatment of chemotherapy-induced peripheral neuropathy.
Collapse
|
6
|
Liu J, Tao X, Zhu Y, Li C, Ruan K, Diaz-Perez Z, Rai P, Wang H, Zhai RG. NMNAT promotes glioma growth through regulating post-translational modifications of P53 to inhibit apoptosis. eLife 2021; 10:70046. [PMID: 34919052 PMCID: PMC8683086 DOI: 10.7554/elife.70046] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/10/2021] [Indexed: 12/31/2022] Open
Abstract
Gliomas are highly malignant brain tumors with poor prognosis and short survival. NAD+ has been shown to impact multiple processes that are dysregulated in cancer; however, anti-cancer therapies targeting NAD+ synthesis have had limited success due to insufficient mechanistic understanding. Here, we adapted a Drosophila glial neoplasia model and discovered the genetic requirement for NAD+ synthase nicotinamide mononucleotide adenylyltransferase (NMNAT) in glioma progression in vivo and in human glioma cells. Overexpressing enzymatically active NMNAT significantly promotes glial neoplasia growth and reduces animal viability. Mechanistic analysis suggests that NMNAT interferes with DNA damage-p53-caspase-3 apoptosis signaling pathway by enhancing NAD+-dependent posttranslational modifications (PTMs) poly(ADP-ribosyl)ation (PARylation) and deacetylation of p53. Since PARylation and deacetylation reduce p53 pro-apoptotic activity, modulating p53 PTMs could be a key mechanism by which NMNAT promotes glioma growth. Our findings reveal a novel tumorigenic mechanism involving protein complex formation of p53 with NAD+ synthetic enzyme NMNAT and NAD+-dependent PTM enzymes that regulates glioma growth.
Collapse
Affiliation(s)
- Jiaqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai UniversityShandongChina
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of MedicineMiamiUnited States
| | - Xianzun Tao
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of MedicineMiamiUnited States
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of MedicineMiamiUnited States
| | - Chong Li
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of MedicineMiamiUnited States
| | - Kai Ruan
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of MedicineMiamiUnited States
| | - Zoraida Diaz-Perez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of MedicineMiamiUnited States
| | - Priyamvada Rai
- Department of Radiation Oncology, University of Miami Miller School of MedicineMiamiUnited States
- Sylvester Comprehensive Cancer CenterMiamiUnited States
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai UniversityShandongChina
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of MedicineMiamiUnited States
- Sylvester Comprehensive Cancer CenterMiamiUnited States
| |
Collapse
|
7
|
Integrins protect sensory neurons in models of paclitaxel-induced peripheral sensory neuropathy. Proc Natl Acad Sci U S A 2021; 118:2006050118. [PMID: 33876743 DOI: 10.1073/pnas.2006050118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect from cancer treatment with no known method for prevention or cure in clinics. CIPN often affects unmyelinated nociceptive sensory terminals. Despite the high prevalence, molecular and cellular mechanisms that lead to CIPN are still poorly understood. Here, we used a genetically tractable Drosophila model and primary sensory neurons isolated from adult mouse to examine the mechanisms underlying CIPN and identify protective pathways. We found that chronic treatment of Drosophila larvae with paclitaxel caused degeneration and altered the branching pattern of nociceptive neurons, and reduced thermal nociceptive responses. We further found that nociceptive neuron-specific overexpression of integrins, which are known to support neuronal maintenance in several systems, conferred protection from paclitaxel-induced cellular and behavioral phenotypes. Live imaging and superresolution approaches provide evidence that paclitaxel treatment causes cellular changes that are consistent with alterations in endosome-mediated trafficking of integrins. Paclitaxel-induced changes in recycling endosomes precede morphological degeneration of nociceptive neuron arbors, which could be prevented by integrin overexpression. We used primary dorsal root ganglia (DRG) neuron cultures to test conservation of integrin-mediated protection. We show that transduction of a human integrin β-subunit 1 also prevented degeneration following paclitaxel treatment. Furthermore, endogenous levels of surface integrins were decreased in paclitaxel-treated mouse DRG neurons, suggesting that paclitaxel disrupts recycling in vertebrate sensory neurons. Altogether, our study supports conserved mechanisms of paclitaxel-induced perturbation of integrin trafficking and a therapeutic potential of restoring neuronal interactions with the extracellular environment to antagonize paclitaxel-induced toxicity in sensory neurons.
Collapse
|
8
|
Bush KM, Barber KR, Martinez JA, Tang SJ, Wairkar YP. Drosophila model of anti-retroviral therapy induced peripheral neuropathy and nociceptive hypersensitivity. Biol Open 2021; 10:bio.054635. [PMID: 33504470 PMCID: PMC7860131 DOI: 10.1242/bio.054635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The success of antiretroviral therapy (ART) has improved the survival of HIV-infected patients significantly. However, significant numbers of patients on ART whose HIV disease is well controlled show peripheral sensory neuropathy (PSN), suggesting that ART may cause PSN. Although the nucleoside reverse transcriptase inhibitors (NRTIs), one of the vital components of ART, are thought to contribute to PSN, the mechanisms underlying the PSN induced by NRTIs are unclear. In this study, we developed a Drosophila model of NRTI-induced PSN that recapitulates the salient features observed in patients undergoing ART: PSN and nociceptive hypersensitivity. Furthermore, our data demonstrate that pathways known to suppress PSN induced by chemotherapeutic drugs are ineffective in suppressing the PSN or nociception induced by NRTIs. Instead, we found that increased dynamics of a peripheral sensory neuron may possibly underlie NRTI-induced PSN and nociception. Our model provides a solid platform in which to investigate further mechanisms of ART-induced PSN and nociceptive hypersensitivity. This article has an associated First Person interview with the first author of the paper. Summary: Nucleoside reverse transcriptase inhibitors (NRTIs) that are important components of anti-retroviral therapies also cause peripheral sensory neuropathies (PSN). This article investigates ways in which NRTIs may cause PSN and outlines ways to better understand the mechanisms underlying it.
Collapse
Affiliation(s)
- Keegan M Bush
- Neuroscience Graduate Program, University of. Texas Medical Branch, Galveston, TX 77555, USA.,Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kara R Barber
- Neuroscience Graduate Program, University of. Texas Medical Branch, Galveston, TX 77555, USA.,Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jade A Martinez
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shao-Jun Tang
- Neuroscience Graduate Program, University of. Texas Medical Branch, Galveston, TX 77555, USA .,Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yogesh P Wairkar
- Neuroscience Graduate Program, University of. Texas Medical Branch, Galveston, TX 77555, USA .,Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
9
|
Kim YY, Yoon JH, Um JH, Jeong DJ, Shin DJ, Hong YB, Kim JK, Kim DH, Kim C, Chung CG, Lee SB, Koh H, Yun J. PINK1 alleviates thermal hypersensitivity in a paclitaxel-induced Drosophila model of peripheral neuropathy. PLoS One 2020; 15:e0239126. [PMID: 32941465 PMCID: PMC7498067 DOI: 10.1371/journal.pone.0239126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 08/31/2020] [Indexed: 11/18/2022] Open
Abstract
Paclitaxel is a representative anticancer drug that induces chemotherapy-induced peripheral neuropathy (CIPN), a common side effect that limits many anticancer chemotherapies. Although PINK1, a key mediator of mitochondrial quality control, has been shown to protect neuronal cells from various toxic treatments, the role of PINK1 in CIPN has not been investigated. Here, we examined the effect of PINK1 expression on CIPN using a recently established paclitaxel-induced peripheral neuropathy model in Drosophila larvae. We found that the class IV dendritic arborization (C4da) sensory neuron-specific expression of PINK1 significantly ameliorated the paclitaxel-induced thermal hyperalgesia phenotype. In contrast, knockdown of PINK1 resulted in an increase in thermal hypersensitivity, suggesting a critical role for PINK1 in sensory neuron-mediated thermal nociceptive sensitivity. Interestingly, analysis of the C4da neuron morphology suggests that PINK1 expression alleviates paclitaxel-induced thermal hypersensitivity by means other than preventing alterations in sensory dendrites in C4da neurons. We found that paclitaxel induces mitochondrial dysfunction in C4da neurons and that PINK1 expression suppressed the paclitaxel-induced increase in mitophagy in C4da neurons. These results suggest that PINK1 mitigates paclitaxel-induced sensory dendrite alterations and restores mitochondrial homeostasis in C4da neurons and that improvement in mitochondrial quality control could be a promising strategy for the treatment of CIPN.
Collapse
Affiliation(s)
- Young Yeon Kim
- Peripheral Neuropathy Research Center, Dong-A University, Busan, Republic of Korea
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Jeong-Hyun Yoon
- Peripheral Neuropathy Research Center, Dong-A University, Busan, Republic of Korea
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Jee-Hyun Um
- Peripheral Neuropathy Research Center, Dong-A University, Busan, Republic of Korea
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Dae Jin Jeong
- Peripheral Neuropathy Research Center, Dong-A University, Busan, Republic of Korea
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Dong Jin Shin
- Peripheral Neuropathy Research Center, Dong-A University, Busan, Republic of Korea
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Young Bin Hong
- Peripheral Neuropathy Research Center, Dong-A University, Busan, Republic of Korea
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Jong Kuk Kim
- Peripheral Neuropathy Research Center, Dong-A University, Busan, Republic of Korea
- Department of Neurology, College of Medicine, Dong‐A University, Busan, Republic of Korea
| | - Dong Hyun Kim
- Peripheral Neuropathy Research Center, Dong-A University, Busan, Republic of Korea
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Changsoo Kim
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Chang Geon Chung
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Sung Bae Lee
- Department of Pharmacology, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Hyongjong Koh
- Peripheral Neuropathy Research Center, Dong-A University, Busan, Republic of Korea
- Department of Pharmacology, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Jeanho Yun
- Peripheral Neuropathy Research Center, Dong-A University, Busan, Republic of Korea
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
- * E-mail:
| |
Collapse
|
10
|
Matiytsiv NP, Chernyk YI. Drosophila melanogaster as a Model System for the Study of Human Neuropathy and the Testing of Neuroprotectors. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452720030081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Calvo M, Davies AJ, Hébert HL, Weir GA, Chesler EJ, Finnerup NB, Levitt RC, Smith BH, Neely GG, Costigan M, Bennett DL. The Genetics of Neuropathic Pain from Model Organisms to Clinical Application. Neuron 2019; 104:637-653. [PMID: 31751545 PMCID: PMC6868508 DOI: 10.1016/j.neuron.2019.09.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022]
Abstract
Neuropathic pain (NeuP) arises due to injury of the somatosensory nervous system and is both common and disabling, rendering an urgent need for non-addictive, effective new therapies. Given the high evolutionary conservation of pain, investigative approaches from Drosophila mutagenesis to human Mendelian genetics have aided our understanding of the maladaptive plasticity underlying NeuP. Successes include the identification of ion channel variants causing hyper-excitability and the importance of neuro-immune signaling. Recent developments encompass improved sensory phenotyping in animal models and patients, brain imaging, and electrophysiology-based pain biomarkers, the collection of large well-phenotyped population cohorts, neurons derived from patient stem cells, and high-precision CRISPR generated genetic editing. We will discuss how to harness these resources to understand the pathophysiological drivers of NeuP, define its relationship with comorbidities such as anxiety, depression, and sleep disorders, and explore how to apply these findings to the prediction, diagnosis, and treatment of NeuP in the clinic.
Collapse
Affiliation(s)
- Margarita Calvo
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexander J Davies
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Harry L Hébert
- Chronic Pain Research Group, Division of Population Health and Genomics, Mackenzie Building, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Greg A Weir
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | - Nanna B Finnerup
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus 8000, Denmark
| | - Roy C Levitt
- Department of Anesthesiology, Perioperative Medicine and Pain Management, and John T. MacDonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Blair H Smith
- Chronic Pain Research Group, Division of Population Health and Genomics, Mackenzie Building, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - G Gregory Neely
- Dr. John and Anne Chong Lab for Functional Genomics, Camperdown, University of Sydney, Sydney, NSW, Australia
| | - Michael Costigan
- Departments of Anesthesia and Neurobiology, Children's Hospital Boston and Harvard Medical School, Boston, MA, USA.
| | - David L Bennett
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Analyzing chemotherapy-induced peripheral neuropathy in vivo using non-mammalian animal models. Exp Neurol 2019; 323:113090. [PMID: 31669484 DOI: 10.1016/j.expneurol.2019.113090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022]
Abstract
Non-mammalian models of CIPN remain relatively sparse, but the knowledge gained from the few published studies suggest that these species have great potential to serve as a discovery platform for new pathways and underlying genetic mechanisms of CIPN. These models permit large-scale genetic and pharmacological screening, and they are highly suitable for in vivo imaging. CIPN phenotypes described in rodents have been confirmed in those models, and conversely, genetic players leading to axon de- and regeneration under conditions of chemotherapy treatment identified in these non-mammalian species have been validated in rodents. Given the need for non-traditional approaches with which to identify new CIPN mechanisms, these models bear a strong potential due to the conservation of basic mechanisms by which chemotherapeutic agents induce neurotoxicity.
Collapse
|
13
|
Khuong TM, Hamoudi Z, Manion J, Loo L, Muralidharan A, Neely GG. Peripheral straightjacket (α2δ Ca 2+ channel subunit) expression is required for neuropathic sensitization in Drosophila. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190287. [PMID: 31544607 DOI: 10.1098/rstb.2019.0287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nerve injury leads to devastating and often untreatable neuropathic pain. While acute noxious sensation (nociception) is a crucial survival mechanism and is conserved across phyla, chronic neuropathic pain is considered a maladaptive response owing to its devastating impact on a patient's quality of life. We have recently shown that a neuropathic pain-like response occurs in adult Drosophila. However, the mechanisms underlying this phenomenon are largely unknown. Previous studies have shown that the α2δ peripheral calcium channel subunit straightjacket (stj) is a conserved factor required for thermal pain perception. We demonstrate here that stj is required in peripheral ppk+ sensory neurons for acute thermal responses and that it mediates nociceptive hypersensitivity in an adult Drosophila model of neuropathic pain-like disease. Given that calcium channels are the main targets of gabapentinoids (pregabalin and gabapentin), we assessed if these drugs can alleviate nociceptive hypersensitivity. Our findings suggest that gabapentinoids may prevent nociceptive hypersensitivity by preserving central inhibition after nerve injury. Together, our data further highlight the similarity of some mechanisms for pain-like conditions across phyla and validates the scientific use of Drosophila neuropathic sensitization models for analgesic drug discovery. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
- Thang M Khuong
- The Dr John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zina Hamoudi
- The Dr John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - John Manion
- The Dr John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Lipin Loo
- The Dr John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Arjun Muralidharan
- The Dr John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - G Gregory Neely
- The Dr John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
14
|
Khuong TM, Wang QP, Manion J, Oyston LJ, Lau MT, Towler H, Lin YQ, Neely GG. Nerve injury drives a heightened state of vigilance and neuropathic sensitization in Drosophila. SCIENCE ADVANCES 2019; 5:eaaw4099. [PMID: 31309148 PMCID: PMC6620091 DOI: 10.1126/sciadv.aaw4099] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
Injury can lead to devastating and often untreatable chronic pain. While acute pain perception (nociception) evolved more than 500 million years ago, virtually nothing is known about the molecular origin of chronic pain. Here we provide the first evidence that nerve injury leads to chronic neuropathic sensitization in insects. Mechanistically, peripheral nerve injury triggers a loss of central inhibition that drives escape circuit plasticity and neuropathic allodynia. At the molecular level, excitotoxic signaling within GABAergic (γ-aminobutyric acid) neurons required the acetylcholine receptor nAChRα1 and led to caspase-dependent death of GABAergic neurons. Conversely, disruption of GABA signaling was sufficient to trigger allodynia without injury. Last, we identified the conserved transcription factor twist as a critical downstream regulator driving GABAergic cell death and neuropathic allodynia. Together, we define how injury leads to allodynia in insects, and describe a primordial precursor to neuropathic pain may have been advantageous, protecting animals after serious injury.
Collapse
Affiliation(s)
- Thang M. Khuong
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Qiao-Ping Wang
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - John Manion
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Lisa J. Oyston
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Man-Tat Lau
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Harry Towler
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Yong Qi Lin
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - G. Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
- Genome Editing Initiative, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
15
|
Malacrida A, Meregalli C, Rodriguez-Menendez V, Nicolini G. Chemotherapy-Induced Peripheral Neuropathy and Changes in Cytoskeleton. Int J Mol Sci 2019; 20:E2287. [PMID: 31075828 PMCID: PMC6540147 DOI: 10.3390/ijms20092287] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/23/2022] Open
Abstract
Despite the different antineoplastic mechanisms of action, peripheral neurotoxicity induced by all chemotherapy drugs (anti-tubulin agents, platinum compounds, proteasome inhibitors, thalidomide) is associated with neuron morphological changes ascribable to cytoskeleton modifications. The "dying back" degeneration of distal terminals (sensory nerves) of dorsal root ganglia sensory neurons, observed in animal models, in in vitro cultures and biopsies of patients is the most evident hallmark of the perturbation of the cytoskeleton. On the other hand, in highly polarized cells like neurons, the cytoskeleton carries out its role not only in axons but also has a fundamental role in dendrite plasticity and in the organization of soma. In the literature, there are many studies focused on the antineoplastic-induced alteration of microtubule organization (and consequently, fast axonal transport defects) while very few studies have investigated the effect of the different classes of drugs on microfilaments, intermediate filaments and associated proteins. Therefore, in this review, we will focus on: (1) Highlighting the fundamental role of the crosstalk among the three filamentous subsystems and (2) investigating pivotal cytoskeleton-associated proteins.
Collapse
Affiliation(s)
- Alessio Malacrida
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy.
| | - Cristina Meregalli
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy.
| | - Virginia Rodriguez-Menendez
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy.
| | - Gabriella Nicolini
- School of Medicine and Surgery, Experimental Neurology Unit and Milan Center for Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, MB, Italy.
| |
Collapse
|