1
|
Horenberg AL, Ren Y, Zeng EZ, Rindone AN, Pathak AP, Grayson WL. 3D imaging reveals changes in the neurovascular architecture of the murine calvarium with aging. Bone Res 2025; 13:24. [PMID: 39984434 PMCID: PMC11845787 DOI: 10.1038/s41413-025-00401-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 12/18/2024] [Accepted: 12/31/2024] [Indexed: 02/23/2025] Open
Abstract
Calvarial nerves, along with vasculature, influence skull formation during development and following injury, but it remains unclear how calvarial nerves are spatially distributed during postnatal growth and aging. Studying the spatial distribution of nerves in the skull remains a challenge due to a lack of methods to quantify 3D structures in intact bone. To visualize calvarial 3D neurovascular architecture, we imaged nerves and endothelial cells with lightsheet microscopy. We employed machine-learning-based segmentation to facilitate high-resolution characterization from post-natal day 0 (P0) to 80 weeks. We found that TUBB3+ nerve density decreased with aging with the frontal bone demonstrating earlier onset age-related nerve loss than the parietal bone. In addition, nerves in the periosteum and dura mater exhibited similar yet distinct temporal patterns of nerve growth and loss. While no difference was observed in TUBB3+ nerves during skeletal maturation (P0 → 12 weeks), we did observe an increase in the volume of unmyelinated nerves in the dura mater. Regarding calvarial vasculature, larger CD31hiEmcn- vessel fraction increased with aging, while CD31hiEmcnhi vessel fraction was reduced. Throughout all ages, calvarial nerves maintained a preferential spatial association with CD31hiEmcnhi vessels, however, this association decreased with aging. Additionally, we used a model of Apert syndrome to explore the impact of suture-related disease on neurovascular architecture. Collectively, this 3D, spatiotemporal characterization of calvarial nerves throughout the lifespan and provides new insights into age-induced neurovascular architecture.
Collapse
Affiliation(s)
- Allison L Horenberg
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yunke Ren
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric Z Zeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexandra N Rindone
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arvind P Pathak
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Sciences, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Electrical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Warren L Grayson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Morice A, de La Seiglière A, Kany A, Khonsari RH, Bensidhoum M, Puig-Lombardi ME, Legeai Mallet L. FGFR antagonists restore defective mandibular bone repair in a mouse model of osteochondrodysplasia. Bone Res 2025; 13:12. [PMID: 39837840 PMCID: PMC11751307 DOI: 10.1038/s41413-024-00385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 01/30/2025] Open
Abstract
Gain-of-function mutations in fibroblast growth factor receptor (FGFR) genes lead to chondrodysplasia and craniosynostoses. FGFR signaling has a key role in the formation and repair of the craniofacial skeleton. Here, we analyzed the impact of Fgfr2- and Fgfr3-activating mutations on mandibular bone formation and endochondral bone repair after non-stabilized mandibular fractures in mouse models of Crouzon syndrome (Crz) and hypochondroplasia (Hch). Bone mineralization of the calluses was abnormally high in Crz mice and abnormally low in Hch mice. The latter model presented pseudarthrosis and impaired chondrocyte differentiation. Spatial transcriptomic analyses of the Hch callus revealed abnormally low expression of Col11, Col1a, Dmp1 genes in mature chondrocytes. We found that the expression of genes involved in autophagy and apoptosis (Smad1, Comp, Birc2) was significantly perturbed and that the Dusp3, Dusp9, and Socs3 genes controlling the mitogen-activated protein kinase pathway were overexpressed. Lastly, we found that treatment with a tyrosine kinase inhibitor (BGJ398, infigratinib) or a C-type natriuretic peptide (BMN111, vosoritide) fully rescued the defective endochondral bone repair observed in Hch mice. Taken as a whole, our findings show that FGFR3 is a critical orchestrator of bone repair and provide a rationale for the development of potential treatments for patients with FGFR3-osteochondrodysplasia.
Collapse
Affiliation(s)
- Anne Morice
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France
| | - Amélie de La Seiglière
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France
| | - Alexia Kany
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France
| | - Roman H Khonsari
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France
| | | | - Maria-Emilia Puig-Lombardi
- Bioinformatics Core Platform, Imagine Institute, INSERM UMR1163 and Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Université Paris Cité, Paris, France
| | - Laurence Legeai Mallet
- Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France.
| |
Collapse
|
3
|
Faria-Teixeira MC, Tordera C, Salvado E Silva F, Vaz-Carneiro A, Iglesias-Linares A. Craniofacial syndromes and class III phenotype: common genotype fingerprints? A scoping review and meta-analysis. Pediatr Res 2024; 95:1455-1475. [PMID: 38347173 PMCID: PMC11126392 DOI: 10.1038/s41390-023-02907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 02/18/2024]
Abstract
Skeletal Class III (SCIII) is among the most challenging craniofacial dysmorphologies to treat. There is, however, a knowledge gap regarding which syndromes share this clinical phenotype. The aims of this study were to: (i) identify the syndromes affected by the SCIII phenotype; (ii) clarify the involvement of maxillary and/or mandibular structures; (iii) explore shared genetic/molecular mechanisms. A two-step strategy was designed: [Step#1] OMIM, MHDD, HPO, GeneReviews and MedGen databases were explored; [Step#2]: Syndromic conditions indexed in [Step#1] were explored in Medline, Pubmed, Scopus, Cochrane Library, WOS and OpenGrey. Eligibility criteria were defined. Individual studies were assessed for risk of bias using the New Ottawa Scale. For quantitative analysis, a meta-analysis was conducted. This scoping review is a hypothesis-generating research. Twenty-two studies met the eligibility criteria. Eight syndromes affected by the SCIII were targeted: Apert syndrome, Crouzon syndrome, achondroplasia, X-linked hypohidrotic ectodermal dysplasia (XLED), tricho-dento-osseous syndrome, cleidocranial dysplasia, Klinefelter and Down syndromes. Despite heterogeneity between studies [p < 0.05], overall effects showed that midface components were affected in Apert and Down Syndromes, lower face in Klinefelter Syndrome and midface and lower face components in XLED. Our review provides new evidence on the craniofacial characteristics of genetically confirmed syndromes exhibiting the SCIII phenotype. Four major regulatory pathways might have a modulatory effect on this phenotype. IMPACT: What does this review add to the existing literature? To date, there is no literature exploring which particular syndromes exhibit mandibular prognathism as a common trait. Through this research, it was possibly to identify the particular syndromes that share the skeletal Class III phenotype (mandibular prognathism) as a common trait highlighting the common genetic and molecular pathways between different syndromes acknowledging their impact in craniofacial development.
Collapse
Affiliation(s)
- Maria Cristina Faria-Teixeira
- Complutense University of Madrid, School of Dentistry, 28040, Madrid, Spain
- University of Lisbon, School of Medicine, University Clinic of Stomatology, 1200, Lisbon, Portugal
| | - Cristina Tordera
- Complutense University of Madrid, School of Dentistry, 28040, Madrid, Spain
| | | | | | - Alejandro Iglesias-Linares
- Complutense University of Madrid, School of Dentistry, 28040, Madrid, Spain.
- BIOCRAN (Craniofacial Biology) Research Group, Complutense University, 28040, Madrid, Spain.
| |
Collapse
|
4
|
王 蕊, 安 可, 谢 静, 邹 淑. [Role of Fibroblast Growth Factor 7 in Craniomaxillofacial Development]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:469-474. [PMID: 38645865 PMCID: PMC11026893 DOI: 10.12182/20240360505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 04/23/2024]
Abstract
Craniomaxillofacial development involves a series of highly ordered temporal-spatial cellular differentiation processes in which a variety of cell signaling factors, such as fibroblast growth factors, play important regulatory roles. As a classic fibroblast growth factor, fibroblast growth factor 7 (FGF7) serves a wide range of regulatory functions. Previous studies have demonstrated that FGF7 regulates the proliferation and migration of epithelial cells, protects them, and promotes their repair. Furthermore, recent findings indicate that epithelial cells are not the only ones subjected to the broad and powerful regulatory capacity of FGF7. It has potential effects on skeletal system development as well. In addition, FGF7 plays an important role in the development of craniomaxillofacial organs, such as the palate, the eyes, and the teeth. Nonetheless, the role of FGF7 in oral craniomaxillofacial development needs to be further elucidated. In this paper, we summarized the published research on the role of FGF7 in oral craniomaxillofacial development to demonstrate the overall understanding of FGF7 and its potential functions in oral craniomaxillofacial development.
Collapse
Affiliation(s)
- 蕊欣 王
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 可 安
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 静 谢
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 淑娟 邹
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Richbourg HA, Vidal-García M, Brakora KA, Devine J, Takenaka R, Young NM, Gong SG, Neves A, Hallgrímsson B, Marcucio RS. Dosage-dependent effects of FGFR2 W290R mutation on craniofacial shape and cellular dynamics of the basicranial synchondroses. Anat Rec (Hoboken) 2024:10.1002/ar.25398. [PMID: 38409943 PMCID: PMC11345876 DOI: 10.1002/ar.25398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/31/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024]
Abstract
Craniosynostosis is a common yet complex birth defect, characterized by premature fusion of the cranial sutures that can be syndromic or nonsyndromic. With over 180 syndromic associations, reaching genetic diagnoses and understanding variations in underlying cellular mechanisms remains a challenge. Variants of FGFR2 are highly associated with craniosynostosis and warrant further investigation. Using the missense mutation FGFR2W290R , an effective mouse model of Crouzon syndrome, craniofacial features were analyzed using geometric morphometrics across developmental time (E10.5-adulthood, n = 665 total). Given the interrelationship between the cranial vault and basicranium in craniosynostosis patients, the basicranium and synchondroses were analyzed in perinates. Embryonic time points showed minimal significant shape differences. However, hetero- and homozygous mutant perinates and adults showed significant differences in shape and size of the cranial vault, face, and basicranium, which were associated with cranial doming and shortening of the basicranium and skull. Although there were also significant shape and size differences associated with the basicranial bones and clear reductions in basicranial ossification in cleared whole-mount samples, there were no significant alterations in chondrocyte cell shape, size, or orientation along the spheno-occipital synchondrosis. Finally, shape differences in the cranial vault and basicranium were interrelated at perinatal stages. These results point toward the possibility that facial shape phenotypes in craniosynostosis may result in part from pleiotropic effects of the causative mutations rather than only from the secondary consequences of the sutural defects, indicating a novel direction of research that may shed light on the etiology of the broad changes in craniofacial morphology observed in craniosynostosis syndromes.
Collapse
Affiliation(s)
- Heather A. Richbourg
- Department of Orthopedic Surgery; University of California, San Francisco; San Francisco, CA, 94110, USA
| | - Marta Vidal-García
- Alberta Children’s Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Katherine A. Brakora
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX 77807, USA
| | - Jay Devine
- Alberta Children’s Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Risa Takenaka
- Department of Orthopedic Surgery; University of California, San Francisco; San Francisco, CA, 94110, USA
- Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, USA
| | - Nathan M. Young
- Department of Orthopedic Surgery; University of California, San Francisco; San Francisco, CA, 94110, USA
| | - Siew-Ging Gong
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, M5G 1G6, Canada
| | - Amanda Neves
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
- DeepSurfaceAI, 1039 17 Avenue Southwest Calgary AB T2T 0B1, Canada
| | - Benedikt Hallgrímsson
- Alberta Children’s Hospital Research Institute, University of Calgary, 28 Oki Dr NW, Calgary, AB, T3B 6A8, Canada
- The McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Ralph S. Marcucio
- Department of Orthopedic Surgery; University of California, San Francisco; San Francisco, CA, 94110, USA
| |
Collapse
|
6
|
Parsegian K. The inhibition of mineralisation by fibroblast growth factor 2 is associated with the altered expression of genes regulating phosphate balance. AUST ENDOD J 2023; 49:324-331. [PMID: 35801357 DOI: 10.1111/aej.12656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/27/2022]
Abstract
The study aimed to determine whether inhibitory effects of fibroblast growth factor 2 (FGF2) on mineralisation in dental pulp (DP) cultures were associated with changes in the expression of genes regulating phosphate balance (Enpp1, Ank, Slc20a2, Alpl, Phospho1, and Xpr1). DP cultures growing under mineralisation-inducing conditions were exposed to FGF2 and inhibitors of the FGFR and MEK/ERK1/2 signaling pathways. Mineralisation, culture cellularity, and gene expression were examined at various time points. Statistical analysis was performed using analysis of variance followed by the Holm-Šídák test. Control cultures exhibited transient increases in Enpp1 and Ank, continuous increases in Alpl, Phospho1, and Xpr1, and continuous decreases in Slc20a2. FGF2 increased Enpp1, Ank, and Slc20a2 and decreased Alpl, Phospho1, and Xpr1, whereas the FGF2 withdrawal and inhibition of FGFR and MEK/ERK1/2 exerted opposite effects. These changes suggest that FGF2-mediated decreases in mineralisation could be functionally coupled to the altered regulation of phosphate formation and transport.
Collapse
Affiliation(s)
- Karo Parsegian
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, Connecticut, USA
- Division of Periodontics, Department of Surgical Dentistry, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
7
|
Zhou Y, Zhu P, Shen S, Wang Y, Li B, Guo B, Li H. Overexpression of fibroblast growth factor receptor 2 in bone marrow mesenchymal stem cells enhances osteogenesis and promotes critical cranial bone defect regeneration. Front Cell Dev Biol 2023; 11:1208239. [PMID: 37266455 PMCID: PMC10229770 DOI: 10.3389/fcell.2023.1208239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Background: Reconstruction of cranial bone defects is one of the most challenging problems in reconstructive surgery, and several biological tissue engineering methods have been used to promote bone repair, such as genetic engineering of bone marrow mesenchymal stem cells (BMSCs). Fibroblast growth factor receptor 2 (Fgfr2) is an important regulator of bone construction and can be used as a potential gene editing site. However, its role in the osteogenesis process of BMSCs remains unclear. This article clarifies the function of Fgfr2 in BMSCs and explores the role of Fgfr2-overexpressed BMSCs carried by light-induced porous hydrogel (GelMA) in the repair of cranial bone defects. Methods: Lenti-virus was used to overexpress Fgfr2 in BMSCs, and cell counting kit-8, transwell, and flow cytometry assays were conducted to investigate the proliferation, migration, and characteristics. After 0, 3, 7, and 10 days of osteogenic or chondrogenic induction, the changes in osteogenic and chondrogenic ability were detected by real-time PCR, western blot, alkaline phosphatase staining, alizarin Red staining, and alcian blue staining. To investigate the viability of BMSCs carried by GelMA, calcein and propyl iodide staining were carried out as well. Finally, a critical cranial bone defect model was established in 6-week-old male mice and micro-computerized tomography, masson staining, and immunohistochemistry of OCN were conducted to test the bone regeneration properties of implanting Fgfr2-overexpressed BMSCs with GelMA in cranial bone defects over 6 weeks. Results: Overexpression of Fgfr2 in BMSCs significantly promoted cell proliferation and migration and increased the percentage of CD200+CD105+ cells. After osteogenic and chondrogenic induction, Fgfr2 overexpression enhanced both osteogenic and chondrogenic ability. Furthermore, in cranial bone defect regeneration, BMSCs carried by light-induced GelMA showed favorable biocompatibility, and Fgfr2-overexpressed BMSCs induced superior cranial bone regeneration compared to a normal BMSCs group and an untreated blank group. Conclusion: In vitro, Fgfr2 enhanced the proliferation, migration, and stemness of BMSCs and promoted osteogenesis and chondrogenesis after parallel induction. In vivo, BMSCs with Fgfr2 overexpression carried by GelMA showed favorable performance in treating critical cranial bone defects. This study clarifies the multiple functions of Fgfr2 in BMSCs and provides a new method for future tissue engineering.
Collapse
Affiliation(s)
- Yiwen Zhou
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
| | - Peixiang Zhu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
| | - Siyu Shen
- Medical School of Nanjing University, Nanjing, China
| | - Yanyi Wang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
| | - Baochao Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
| | - Baosheng Guo
- Medical School of Nanjing University, Nanjing, China
| | - Huang Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Luo S, Liu Z, Bian Q, Wang X. Ectomesenchymal Six1 controls mandibular skeleton formation. Front Genet 2023; 14:1082911. [PMID: 36845386 PMCID: PMC9946248 DOI: 10.3389/fgene.2023.1082911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Craniofacial development requires intricate cooperation between multiple transcription factors and signaling pathways. Six1 is a critical transcription factor regulating craniofacial development. However, the exact function of Six1 during craniofacial development remains elusive. In this study, we investigated the role of Six1 in mandible development using a Six1 knockout mouse model (Six1 -/- ) and a cranial neural crest-specific, Six1 conditional knockout mouse model (Six1 f/f ; Wnt1-Cre). The Six1 -/- mice exhibited multiple craniofacial deformities, including severe microsomia, high-arched palate, and uvula deformity. Notably, the Six1 f/f ; Wnt1-Cre mice recapitulate the microsomia phenotype of Six1 -/- mice, thus demonstrating that the expression of Six1 in ectomesenchyme is critical for mandible development. We further showed that the knockout of Six1 led to abnormal expression of osteogenic genes within the mandible. Moreover, the knockdown of Six1 in C3H10 T1/2 cells reduced their osteogenic capacity in vitro. Using RNA-seq, we showed that both the loss of Six1 in the E18.5 mandible and Six1 knockdown in C3H10 T1/2 led to the dysregulation of genes involved in embryonic skeletal development. In particular, we showed that Six1 binds to the promoter of Bmp4, Fat4, Fgf18, and Fgfr2, and promotes their transcription. Collectively, our results suggest that Six1 plays a critical role in regulating mandibular skeleton formation during mouse embryogenesis.
Collapse
Affiliation(s)
- Songyuan Luo
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhixu Liu
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qian Bian
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Precision Medicine, Shanghai, China,*Correspondence: Qian Bian, ; Xudong Wang,
| | - Xudong Wang
- Department of Oral and Craniomaxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China,*Correspondence: Qian Bian, ; Xudong Wang,
| |
Collapse
|
9
|
Zhang C, Porto A, Rolfe S, Kocatulum A, Maga AM. Automated landmarking via multiple templates. PLoS One 2022; 17:e0278035. [PMID: 36454982 PMCID: PMC9714854 DOI: 10.1371/journal.pone.0278035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
Manually collecting landmarks for quantifying complex morphological phenotypes can be laborious and subject to intra and interobserver errors. However, most automated landmarking methods for efficiency and consistency fall short of landmarking highly variable samples due to the bias introduced by the use of a single template. We introduce a fast and open source automated landmarking pipeline (MALPACA) that utilizes multiple templates for accommodating large-scale variations. We also introduce a K-means method of choosing the templates that can be used in conjunction with MALPACA, when no prior information for selecting templates is available. Our results confirm that MALPACA significantly outperforms single-template methods in landmarking both single and multi-species samples. K-means based template selection can also avoid choosing the worst set of templates when compared to random template selection. We further offer an example of post-hoc quality check for each individual template for further refinement. In summary, MALPACA is an efficient and reproducible method that can accommodate large morphological variability, such as those commonly found in evolutionary studies. To support the research community, we have developed open-source and user-friendly software tools for performing K-means multi-templates selection and MALPACA.
Collapse
Affiliation(s)
- Chi Zhang
- Center for Development Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Arthur Porto
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Sara Rolfe
- Center for Development Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Friday Harbor Laboratories, University of Washington, San Juan Island, Washington, United States of America
| | - Altan Kocatulum
- Alfred University, Alfred, New York, United States of America
| | - A. Murat Maga
- Center for Development Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
10
|
Lo Vercio LD, Green RM, Robertson S, Guo S, Dauter A, Marchini M, Vidal-GARCíA M, Zhao X, Mahika A, Marcucio RS, HALLGRíMSSON B, Forkert ND. Segmentation of Tissues and Proliferating Cells in Light-Sheet Microscopy Images of Mouse Embryos Using Convolutional Neural Networks. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2022; 10:105084-105100. [PMID: 36660260 PMCID: PMC9848387 DOI: 10.1109/access.2022.3210542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A variety of genetic mutations affect cell proliferation during organism development, leading to structural birth defects. However, the mechanisms by which these alterations influence the development of the face remain unclear. Cell proliferation and its relation to shape variation can be studied using Light-Sheet Microscopy (LSM) imaging across a range of developmental time points using mouse models. The aim of this work was to develop and evaluate accurate automatic methods based on convolutional neural networks (CNNs) for: (i) tissue segmentation (neural ectoderm and mesenchyme), (ii) cell segmentation in nuclear-stained images, and (iii) segmentation of proliferating cells in phospho-Histone H3 (pHH3)-stained LSM images of mouse embryos. For training and evaluation of the CNN models, 155 to 176 slices from 10 mouse embryo LSM images with corresponding manual segmentations were available depending on the segmentation task. Three U-net CNN models were trained optimizing their loss functions, among other hyper-parameters, depending on the segmentation task. The tissue segmentation achieved a macro-average F-score of 0.84, whereas the inter-observer value was 0.89. The cell segmentation achieved a Dice score of 0.57 and 0.56 for nuclear-stained and pHH3-stained images, respectively, whereas the corresponding inter-observer Dice scores were 0.39 and 0.45, respectively. The proposed pipeline using the U-net CNN architecture can accelerate LSM image analysis and together with the annotated datasets can serve as a reference for comparison of more advanced LSM image segmentation methods in future.
Collapse
Affiliation(s)
- Lucas D Lo Vercio
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Rebecca M Green
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Samuel Robertson
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sienna Guo
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Andreas Dauter
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Marta Marchini
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Marta Vidal-GARCíA
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Xiang Zhao
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Anandita Mahika
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Ralph S Marcucio
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA 94115, USA
| | - Benedikt HALLGRíMSSON
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Nils D Forkert
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
11
|
Paese CLB, Chang CF, Kristeková D, Brugmann SA. Pharmacological intervention of the FGF-PTH axis as a potential therapeutic for craniofacial ciliopathies. Dis Model Mech 2022; 15:275968. [PMID: 35818799 PMCID: PMC9403750 DOI: 10.1242/dmm.049611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
Ciliopathies represent a disease class characterized by a broad range of phenotypes including polycystic kidneys and skeletal anomalies. Ciliopathic skeletal phenotypes are among the most common and most difficult to treat due to a poor understanding of the pathological mechanisms leading to disease. Using an avian model (talpid2) for a human ciliopathy with both kidney and skeletal anomalies (Orofaciodigital syndrome 14), we identified disruptions in the FGF23-PTH axis that resulted in reduced calcium uptake in the developing mandible and subsequent micrognathia. While pharmacological intervention with the FDA-approved pan-FGFR inhibitor AZD4547 alone rescued expression of the FGF target Sprouty2, it did not significantly rescue micrognathia. In contrast, treatment with a cocktail of AZD4547 and Teriparatide acetate, a PTH agonist and FDA-approved treatment for osteoporosis, resulted in a molecular, cellular, and phenotypic rescue of ciliopathic micrognathia in talpid2 mutants. Together, these data provide novel insight into pathological molecular mechanisms associated with ciliopathic skeletal phenotypes and a potential therapeutic strategy for a pleiotropic disease class with limited to no treatment options.
Collapse
Affiliation(s)
- Christian Louis Bonatto Paese
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ching-Fang Chang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Daniela Kristeková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Brno 602 00, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Samantha A Brugmann
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
12
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
13
|
Pitirri MK, Durham EL, Romano NA, Santos JI, Coupe AP, Zheng H, Chen DZ, Kawasaki K, Jabs EW, Richtsmeier JT, Wu M, Motch Perrine SM. Meckel's Cartilage in Mandibular Development and Dysmorphogenesis. Front Genet 2022; 13:871927. [PMID: 35651944 PMCID: PMC9149363 DOI: 10.3389/fgene.2022.871927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/15/2022] [Indexed: 12/02/2022] Open
Abstract
The Fgfr2cC342Y/+ Crouzon syndrome mouse model carries a cysteine to tyrosine substitution at amino acid position 342 (Cys342Tyr; C342Y) in the fibroblast growth factor receptor 2 (Fgfr2) gene equivalent to a FGFR2 mutation commonly associated with Crouzon and Pfeiffer syndromes in humans. The Fgfr2c C342Y mutation results in constitutive activation of the receptor and is associated with upregulation of osteogenic differentiation. Fgfr2cC342Y/+ Crouzon syndrome mice show premature closure of the coronal suture and other craniofacial anomalies including malocclusion of teeth, most likely due to abnormal craniofacial form. Malformation of the mandible can precipitate a plethora of complications including disrupting development of the upper jaw and palate, impediment of the airway, and alteration of occlusion necessary for proper mastication. The current paradigm of mandibular development assumes that Meckel’s cartilage (MC) serves as a support or model for mandibular bone formation and as a template for the later forming mandible. If valid, this implies a functional relationship between MC and the forming mandible, so mandibular dysmorphogenesis might be discerned in MC affecting the relationship between MC and mandibular bone. Here we investigate the relationship of MC to mandible development from the early mineralization of the mandible (E13.5) through the initiation of MC degradation at E17.7 using Fgfr2cC342Y/+ Crouzon syndrome embryos and their unaffected littermates (Fgfr2c+/+). Differences between genotypes in both MC and mandibular bone are subtle, however MC of Fgfr2cC342Y/+ embryos is generally longer relative to unaffected littermates at E15.5 with specific aspects remaining relatively large at E17.5. In contrast, mandibular bone is smaller overall in Fgfr2cC342Y/+ embryos relative to their unaffected littermates at E15.5 with the posterior aspect remaining relatively small at E17.5. At a cellular level, differences are identified between genotypes early (E13.5) followed by reduced proliferation in MC (E15.5) and in the forming mandible (E17.5) in Fgfr2cC342Y/+ embryos. Activation of the ERK pathways is reduced in the perichondrium of MC in Fgfr2cC342Y/+ embryos and increased in bone related cells at E15.5. These data reveal that the Fgfr2c C342Y mutation differentially affects cells by type, location, and developmental age indicating a complex set of changes in the cells that make up the lower jaw.
Collapse
Affiliation(s)
- M Kathleen Pitirri
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Emily L Durham
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Natalie A Romano
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Jacob I Santos
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Abigail P Coupe
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Hao Zheng
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Danny Z Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Kazuhiko Kawasaki
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Joan T Richtsmeier
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| | - Meng Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Susan M Motch Perrine
- Department of Anthropology, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
14
|
Lesciotto KM, Tomlinson L, Leonard S, Richtsmeier JT. Embryonic and Early Postnatal Cranial Bone Volume and Tissue Mineral Density Values for C57BL/6J Laboratory Mice. Dev Dyn 2022; 251:1196-1208. [PMID: 35092111 PMCID: PMC9250594 DOI: 10.1002/dvdy.458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 11/27/2022] Open
Abstract
Background Laboratory mice are routinely used in craniofacial research based on the relatively close genetic relationship and conservation of developmental pathways between humans and mice. Since genetic perturbations and disease states may have localized effects, data from individual cranial bones are valuable for the interpretation of experimental assays. We employ high‐resolution microcomputed tomography to characterize cranial bones of C57BL/6J mice at embryonic day (E) 15.5 and E17.5, day of birth (P0), and postnatal day 7 (P7) and provide estimates of individual bone volume and tissue mineral density (TMD). Results Average volume and TMD values are reported for individual bones. Significant differences in volume and TMD during embryonic ages likely reflect early mineralization of cranial neural crest‐derived and intramembranously forming bones. Although bones of the face and vault had higher TMD values during embryonic ages, bones of the braincase floor had significantly higher TMD values by P7. Conclusions These ontogenetic data on cranial bone volume and TMD serve as a reference standard for future studies using mice bred on a C57BL/6J genetic background. Our findings also highlight the importance of differentiating “control” data from mice that are presented as “unaffected” littermates, particularly when carrying a single copy of a cre‐recombinase gene. Higher average volume and density of cranial neural crest‐derived and intramembranously‐forming bones during embryonic development. Higher average density in bones of the braincase floor during early postnatal development. Ontogenetic data on cranial bone volume and TMD serve as a reference standard for mice bred on a C57BL/6J genetic background.
Collapse
Affiliation(s)
- Kate M Lesciotto
- College of Osteopathic Medicine, Sam Houston State University, Conroe, TX, USA
| | | | - Steven Leonard
- College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
15
|
Fabik J, Psutkova V, Machon O. The Mandibular and Hyoid Arches-From Molecular Patterning to Shaping Bone and Cartilage. Int J Mol Sci 2021; 22:7529. [PMID: 34299147 PMCID: PMC8303155 DOI: 10.3390/ijms22147529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
The mandibular and hyoid arches collectively make up the facial skeleton, also known as the viscerocranium. Although all three germ layers come together to assemble the pharyngeal arches, the majority of tissue within viscerocranial skeletal components differentiates from the neural crest. Since nearly one third of all birth defects in humans affect the craniofacial region, it is important to understand how signalling pathways and transcription factors govern the embryogenesis and skeletogenesis of the viscerocranium. This review focuses on mouse and zebrafish models of craniofacial development. We highlight gene regulatory networks directing the patterning and osteochondrogenesis of the mandibular and hyoid arches that are actually conserved among all gnathostomes. The first part of this review describes the anatomy and development of mandibular and hyoid arches in both species. The second part analyses cell signalling and transcription factors that ensure the specificity of individual structures along the anatomical axes. The third part discusses the genes and molecules that control the formation of bone and cartilage within mandibular and hyoid arches and how dysregulation of molecular signalling influences the development of skeletal components of the viscerocranium. In conclusion, we notice that mandibular malformations in humans and mice often co-occur with hyoid malformations and pinpoint the similar molecular machinery controlling the development of mandibular and hyoid arches.
Collapse
Affiliation(s)
- Jaroslav Fabik
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Viktorie Psutkova
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
| |
Collapse
|
16
|
Morice A, Cornette R, Giudice A, Collet C, Paternoster G, Arnaud É, Galliani E, Picard A, Legeai-Mallet L, Khonsari RH. Early mandibular morphological differences in patients with FGFR2 and FGFR3-related syndromic craniosynostoses: A 3D comparative study. Bone 2020; 141:115600. [PMID: 32822871 DOI: 10.1016/j.bone.2020.115600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 01/04/2023]
Abstract
Syndromic craniosynostoses are defined by the premature fusion of one or more cranial and facial sutures, leading to skull vault deformation, and midfacial retrusion. More recently, mandibular shape modifications have been described in FGFR-related craniosynostoses, which represent almost 75% of the syndromic craniosynostoses. Here, further characterisation of the mandibular phenotype in FGFR-related craniosynostoses is provided in order to confirm mandibular shape modifications, as this could contribute to a better understanding of the involvement of the FGFR pathway in craniofacial development. The aim of our study was to analyse early mandibular morphology in a cohort of patients with FGFR2- (Crouzon and Apert) and FGFR3- (Muenke and Crouzonodermoskeletal) related syndromic craniosynostoses. We used a comparative geometric morphometric approach based on 3D imaging. Thirty-one anatomical landmarks and eleven curves with sliding semi-landmarks were defined to model the shape of the mandible. In total, 40 patients (12 with Crouzon, 12 with Apert, 12 with Muenke and 4 with Crouzonodermoskeletal syndromes) and 40 age and sex-matched controls were included (mean age: 13.7 months ±11.9). Mandibular shape differed significantly between controls and each patient group based on geometric morphometrics. Mandibular shape in FGFR2-craniosynostoses was characterized by open gonial angle, short ramus height, and high and prominent symphysis. Short ramus height appeared more pronounced in Apert than in Crouzon syndrome. Additionally, narrow inter-condylar and inter-gonial distances were observed in Crouzon syndrome. Mandibular shape in FGFR3-craniosynostoses was characterized by high and prominent symphysis and narrow inter-gonial distance. In addition, narrow condylar processes affected patients with Crouzonodermoskeletal syndrome. Statistical analysis of variance showed significant clustering of Apert and Crouzon, Crouzon and Muenke, and Apert and Muenke patients (p < 0.05). Our results confirm distinct mandibular shapes at early ages in FGFR2- (Crouzon and Apert syndromes) and FGFR3-related syndromic craniosynostoses (Muenke and Crouzonodermoskeletal syndromes) and reinforce the hypothesis of genotype-phenotype correspondence concerning mandibular morphology.
Collapse
Affiliation(s)
- A Morice
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares MAFACE Fentes et Malformations Faciales, Université de Paris, Paris, France; Laboratoire 'Bases Moléculaires et Physiopathologiques des Ostéochondrodysplasies', INSERM UMR 1163, Institut Imagine, Paris, France.
| | - R Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, Sorbonne Université, Ecole Pratique des Hautes Etudes, Université des Antilles, CNRS, CP 50, 57 rue Cuvier, 75005 Paris, France
| | - A Giudice
- Università Degli Studi di Catanzaro 'Magna Graecia', Catanzaro, Italy
| | - C Collet
- BIOSCAR, INSERM U1132, Université de Paris, Hôpital Lariboisière, 75010 Paris, France; Service de Biochimie et Biologie Moléculaire, CHU-Paris-GH Saint Louis Lariboisière Widal, Paris, France
| | - G Paternoster
- Service de Neurochirurgie, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares CRANIOST Craniosténoses et Malformations Craniofaciales, Université de Paris, Paris, France
| | - É Arnaud
- Service de Neurochirurgie, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares CRANIOST Craniosténoses et Malformations Craniofaciales, Université de Paris, Paris, France
| | - E Galliani
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares MAFACE Fentes et Malformations Faciales, Université de Paris, Paris, France
| | - A Picard
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares MAFACE Fentes et Malformations Faciales, Université de Paris, Paris, France
| | - L Legeai-Mallet
- Laboratoire 'Bases Moléculaires et Physiopathologiques des Ostéochondrodysplasies', INSERM UMR 1163, Institut Imagine, Paris, France
| | - R H Khonsari
- Service de Chirurgie Maxillo-Faciale et Chirurgie Plastique, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares MAFACE Fentes et Malformations Faciales, Université de Paris, Paris, France; Laboratoire 'Bases Moléculaires et Physiopathologiques des Ostéochondrodysplasies', INSERM UMR 1163, Institut Imagine, Paris, France; Service de Neurochirurgie, Hôpital Universitaire Necker - Enfants Malades, Assistance Publique - Hôpitaux de Paris, Centre de Référence Maladies Rares CRANIOST Craniosténoses et Malformations Craniofaciales, Université de Paris, Paris, France
| |
Collapse
|
17
|
Lam AS, Liu CC, Deutsch GH, Rivera J, Perkins JA, Holmes G, Jabs EW, Cunningham ML, Dahl JP. Genotype-Phenotype Correlation of Tracheal Cartilaginous Sleeves and Fgfr2 Mutations in Mice. Laryngoscope 2020; 131:E1349-E1356. [PMID: 32886384 DOI: 10.1002/lary.29060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/22/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To characterize tracheal cartilage morphology in mouse models of fibroblast growth factor receptor (Fgfr2)-related craniosynostosis syndromes. To establish relationships between specific Fgfr2 mutations and tracheal cartilaginous sleeve (TCS) phenotypes in these mouse models. METHODS Postnatal day 0 knock-in mouse lines with disease-specific genetic variations in the Fgfr2 gene (Fgfr2C342Y/C342Y , Fgfr2C342Y/+ , Fgfr2+/Y394C , Fgfr2+/S252W , and Fgfr2+/P253R ) as well as line-specific controls were utilized. Tracheal cartilage morphology as measured by gross analyses, microcomputed tomography (μCT), and histopathology were compared using Chi-squared and single-factor analysis of variance statistical tests. RESULTS A greater proportion of rings per trachea were abnormal in Fgfr2C342Y/+ tracheas (63%) than Fgfr2+/S252W (17%), Fgfr2+/P253R (17%), Fgfr2+/Y394C (12%), and controls (10%) (P < .001 for each vs. Fgfr2C342Y/+ ). TCS segments were found only in Fgfr2C342Y/C342Y (100%) and Fgfr2C342Y/+ (72%) tracheas. Cricoid and first-tracheal ring fusion was noted in all Fgfr2C342Y/C342Y and 94% of Fgfr2C342Y/+ samples. The Fgfr2C342Y/C342Y and Fgfr2C342Y/+ groups were found to have greater areas and volumes of cartilage than other lines on gross analysis and μCT. Histologic analyses confirmed TCS among the Fgfr2C342Y/C342Y and Fgfr2C342Y/+ groups, without appreciable differences in cartilage morphology, cell size, or density; no histologic differences were observed among other Fgfr2 lines compared to controls. CONCLUSION This study found TCS phenotypes only in the Fgfr2C342Y mouse lines. These lines also had increased tracheal cartilage compared to other mutant lines and controls. These data support further study of the Fgfr2 mouse lines and the investigation of other Fgfr2 variants to better understand their role in tracheal development and TCS formation. LEVEL OF EVIDENCE NA Laryngoscope, 131:E1349-E1356, 2021.
Collapse
Affiliation(s)
- Austin S Lam
- Department of Otolaryngology - Head & Neck Surgery, University of Washington School of Medicine, Seattle, Washington, U.S.A.,Division of Pediatric Otolaryngology - Head & Neck Surgery, Seattle Children's Hospital, Seattle, Washington, U.S.A.,Seattle Children's Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, Washington, U.S.A
| | - Carrie C Liu
- Department of Otolaryngology - Head & Neck Surgery, University of Washington School of Medicine, Seattle, Washington, U.S.A.,Division of Pediatric Otolaryngology - Head & Neck Surgery, Seattle Children's Hospital, Seattle, Washington, U.S.A.,Current address: Divisions of Otolaryngology - Head and Neck Surgery, and Pediatric Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Gail H Deutsch
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, U.S.A.,Department of Pathology, Seattle Children's Hospital, Seattle, Washington, U.S.A
| | - Joshua Rivera
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, U.S.A.,Current address: Center for Personalized Cancer Therapy, University of Massachusetts, Boston, Massachusetts, U.S.A
| | - Jonathan A Perkins
- Department of Otolaryngology - Head & Neck Surgery, University of Washington School of Medicine, Seattle, Washington, U.S.A.,Division of Pediatric Otolaryngology - Head & Neck Surgery, Seattle Children's Hospital, Seattle, Washington, U.S.A.,Craniofacial Center, Seattle Children's Hospital, Seattle, Washington, U.S.A
| | - Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, U.S.A
| | - Ethylin W Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, U.S.A
| | - Michael L Cunningham
- Seattle Children's Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, Washington, U.S.A.,Craniofacial Center, Seattle Children's Hospital, Seattle, Washington, U.S.A.,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, U.S.A
| | - John P Dahl
- Department of Otolaryngology - Head & Neck Surgery, University of Washington School of Medicine, Seattle, Washington, U.S.A.,Division of Pediatric Otolaryngology - Head & Neck Surgery, Seattle Children's Hospital, Seattle, Washington, U.S.A.,Craniofacial Center, Seattle Children's Hospital, Seattle, Washington, U.S.A
| |
Collapse
|
18
|
Dash S, Trainor PA. The development, patterning and evolution of neural crest cell differentiation into cartilage and bone. Bone 2020; 137:115409. [PMID: 32417535 DOI: 10.1016/j.bone.2020.115409] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
Neural crest cells are a vertebrate-specific migratory, multipotent cell population that give rise to a diverse array of cells and tissues during development. Cranial neural crest cells, in particular, generate cartilage, bone, tendons and connective tissue in the head and face as well as neurons, glia and melanocytes. In this review, we focus on the chondrogenic and osteogenic potential of cranial neural crest cells and discuss the roles of Sox9, Runx2 and Msx1/2 transcription factors and WNT, FGF and TGFβ signaling pathways in regulating neural crest cell differentiation into cartilage and bone. We also describe cranioskeletal defects and disorders arising from gain or loss-of-function of genes that are required for patterning and differentiation of cranial neural crest cells. Finally, we discuss the evolution of skeletogenic potential in neural crest cells and their function as a conduit for intraspecies and interspecies variation, and the evolution of craniofacial novelties.
Collapse
Affiliation(s)
- Soma Dash
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
19
|
Holmes G, Gonzalez-Reiche AS, Lu N, Zhou X, Rivera J, Kriti D, Sebra R, Williams AA, Donovan MJ, Potter SS, Pinto D, Zhang B, van Bakel H, Jabs EW. Integrated Transcriptome and Network Analysis Reveals Spatiotemporal Dynamics of Calvarial Suturogenesis. Cell Rep 2020; 32:107871. [PMID: 32640236 PMCID: PMC7379176 DOI: 10.1016/j.celrep.2020.107871] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/14/2020] [Accepted: 06/15/2020] [Indexed: 11/28/2022] Open
Abstract
Craniofacial abnormalities often involve sutures, the growth centers of the skull. To characterize the organization and processes governing their development, we profile the murine frontal suture, a model for sutural growth and fusion, at the tissue- and single-cell level on embryonic days (E)16.5 and E18.5. For the wild-type suture, bulk RNA sequencing (RNA-seq) analysis identifies mesenchyme-, osteogenic front-, and stage-enriched genes and biological processes, as well as alternative splicing events modifying the extracellular matrix. Single-cell RNA-seq analysis distinguishes multiple subpopulations, of which five define a mesenchyme-osteoblast differentiation trajectory and show variation along the anteroposterior axis. Similar analyses of in vivo mouse models of impaired frontal suturogenesis in Saethre-Chotzen and Apert syndromes, Twist1+/- and Fgfr2+/S252W, demonstrate distinct transcriptional changes involving angiogenesis and ribogenesis, respectively. Co-expression network analysis reveals gene expression modules from which we validate key driver genes regulating osteoblast differentiation. Our study provides a global approach to gain insights into suturogenesis.
Collapse
Affiliation(s)
- Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ana S Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Na Lu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joshua Rivera
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Divya Kriti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anthony A Williams
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael J Donovan
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, OH 45229, USA
| | - Dalila Pinto
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, and Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
20
|
First person – Susan M. Motch Perrine and Meng Wu. Dis Model Mech 2019. [PMCID: PMC6550043 DOI: 10.1242/dmm.040568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Disease Models & Mechanisms (DMM), helping early-career researchers promote themselves alongside their papers. Susan M. Motch Perrine and Meng Wu are co-first authors on ‘Mandibular dysmorphology due to abnormal embryonic osteogenesis in FGFR2-related craniosynostosis mice’, published in DMM. Susan is an Assistant Research Professor of Anthropology in the lab of Joan T. Richtsmeier at the Department of Anthropology, Pennsylvania State University, USA, with a current focus on craniofacial variation using an interdisciplinary approach which combines high-resolution imaging, geometric morphometrics and wet lab techniques. Meng is an Instructor (tenure-track) in the lab of Ethylin Wang Jabs at Icahn School of Medicine at Mount Sinai, New York, USA, investigating the developmental mechanisms of birth defects, currently focusing on modelling and elucidating human malformation disorders using mice, organoids, pluripotent stem cells and bioinformatics.
Collapse
|