1
|
Grigoryan EN, Markitantova YV. Tail and Spinal Cord Regeneration in Urodelean Amphibians. Life (Basel) 2024; 14:594. [PMID: 38792615 PMCID: PMC11122520 DOI: 10.3390/life14050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Urodelean amphibians can regenerate the tail and the spinal cord (SC) and maintain this ability throughout their life. This clearly distinguishes these animals from mammals. The phenomenon of tail and SC regeneration is based on the capability of cells involved in regeneration to dedifferentiate, enter the cell cycle, and change their (or return to the pre-existing) phenotype during de novo organ formation. The second critical aspect of the successful tail and SC regeneration is the mutual molecular regulation by tissues, of which the SC and the apical wound epidermis are the leaders. Molecular regulatory systems include signaling pathways components, inflammatory factors, ECM molecules, ROS, hormones, neurotransmitters, HSPs, transcriptional and epigenetic factors, etc. The control, carried out by regulatory networks on the feedback principle, recruits the mechanisms used in embryogenesis and accompanies all stages of organ regeneration, from the moment of damage to the completion of morphogenesis and patterning of all its structures. The late regeneration stages and the effects of external factors on them have been poorly studied. A new model for addressing this issue is herein proposed. The data summarized in the review contribute to understanding a wide range of fundamentally important issues in the regenerative biology of tissues and organs in vertebrates including humans.
Collapse
Affiliation(s)
| | - Yuliya V. Markitantova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| |
Collapse
|
2
|
Usmani MA, Ghaffar A, Shahzad M, Akram J, Majeed AI, Malik K, Fatima K, Khan AA, Ahmed ZM, Riazuddin S, Riazuddin S. A Missense Variant in HACE1 Is Associated with Intellectual Disability, Epilepsy, Spasticity, and Psychomotor Impairment in a Pakistani Kindred. Genes (Basel) 2024; 15:580. [PMID: 38790209 PMCID: PMC11121239 DOI: 10.3390/genes15050580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Intellectual disability (ID), which affects around 2% to 3% of the population, accounts for 0.63% of the overall prevalence of neurodevelopmental disorders (NDD). ID is characterized by limitations in a person's intellectual and adaptive functioning, and is caused by pathogenic variants in more than 1000 genes. Here, we report a rare missense variant (c.350T>C; p.(Leu117Ser)) in HACE1 segregating with NDD syndrome with clinical features including ID, epilepsy, spasticity, global developmental delay, and psychomotor impairment in two siblings of a consanguineous Pakistani kindred. HACE1 encodes a HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1 (HACE1), which is involved in protein ubiquitination, localization, and cell division. HACE1 is also predicted to interact with several proteins that have been previously implicated in the ID phenotype in humans. The p.(Leu117Ser) variant replaces an evolutionarily conserved residue of HACE1 and is predicted to be deleterious by various in silico algorithms. Previously, eleven protein truncating variants of HACE1 have been reported in individuals with NDD. However, to our knowledge, p.(Leu117Ser) is the second missense variant in HACE1 found in an individual with NDD.
Collapse
Affiliation(s)
- Muhammad A. Usmani
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (M.A.U.); (A.G.)
- Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan; (M.S.); (J.A.); (S.R.)
- Jinnah Burn and Reconstructive Surgery Center, Allama Iqbal Medical College, University of Health Sciences, Lahore 54550, Pakistan
| | - Amama Ghaffar
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (M.A.U.); (A.G.)
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore 54500, Pakistan
| | - Mohsin Shahzad
- Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan; (M.S.); (J.A.); (S.R.)
| | - Javed Akram
- Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan; (M.S.); (J.A.); (S.R.)
| | - Aisha I. Majeed
- Department of Radiology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan;
| | - Kausar Malik
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore 54500, Pakistan
| | - Khushbakht Fatima
- Department of Applied Health Sciences, University of Management and Technology, Lahore 54500, Pakistan;
| | - Asma A. Khan
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore 54500, Pakistan
| | - Zubair M. Ahmed
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (M.A.U.); (A.G.)
- Department of Molecular Biology and Biochemistry, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Sheikh Riazuddin
- Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44000, Pakistan; (M.S.); (J.A.); (S.R.)
- Jinnah Burn and Reconstructive Surgery Center, Allama Iqbal Medical College, University of Health Sciences, Lahore 54550, Pakistan
| | - Saima Riazuddin
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (M.A.U.); (A.G.)
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore 54500, Pakistan
- Department of Molecular Biology and Biochemistry, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Piazza A, Carlone R, Spencer GE. Non-canonical retinoid signaling in neural development, regeneration and synaptic function. Front Mol Neurosci 2024; 17:1371135. [PMID: 38516042 PMCID: PMC10954794 DOI: 10.3389/fnmol.2024.1371135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Canonical retinoid signaling via nuclear receptors and gene regulation is critical for the initiation of developmental processes such as cellular differentiation, patterning and neurite outgrowth, but also mediates nerve regeneration and synaptic functions in adult nervous systems. In addition to canonical transcriptional regulation, retinoids also exert rapid effects, and there are now multiple lines of evidence supporting non-canonical retinoid actions outside of the nucleus, including in dendrites and axons. Together, canonical and non-canonical retinoid signaling provide the precise temporal and spatial control necessary to achieve the fine cellular coordination required for proper nervous system function. Here, we examine and discuss the evidence supporting non-canonical actions of retinoids in neural development and regeneration as well as synaptic function, including a review of the proposed molecular mechanisms involved.
Collapse
Affiliation(s)
| | | | - Gaynor E. Spencer
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
4
|
Pedroza-García KA, Careaga-Cárdenas G, Díaz-Galindo C, Quintanar JL, Hernández-Jasso I, Ramírez-Orozco RE. Bioactive role of vitamins as a key modulator of oxidative stress, cellular damage and comorbidities associated with spinal cord injury (SCI). Nutr Neurosci 2023; 26:1120-1137. [PMID: 36537581 DOI: 10.1080/1028415x.2022.2133842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Spinal cord injury (SCI) cause significant disability and impact the quality of life of those affected by it. The nutritional status and diet are fundamental to diminish the progression of complications; vitamins modulate the inflammatory response and oxidative stress, promote blood-spinal cord barrier preservation and the prompt recovery of homeostasis. A deep knowledge of the benefits achieved from vitamins in patients with SCI are summarized. Information of dosage, time, and effects of vitamins in these patients are also displayed. Vitamins have been extensively investigated; however, more clinical trials are needed to clarify the scope of vitamin supplementation.Objective: The objective of this review was to offer relevant therapeutic information based on vitamins supplementation for SCI patients.Methods: Basic and clinical studies that have implemented the use of vitamins in SCI were considered. They were selected from the year 2000-2022 from three databases: PubMed, Science Direct and Google Scholar.Results: Consistent benefits in clinical trials were shown in those who were supplemented with vitamin D (prevents osteoporosis and improves physical performance variables), B3 (improves lipid profile) and B12 (neurological prophylaxis of chronic SCI damage) mainly. On the other hand, improvement related to neuroprotection, damage modulation (vitamin A) and its prophylaxis were associated to B complex vitamins supplementation; the studies who reported positive results are displayed in this review.Discussion: Physicians should become familiar with relevant information that can support conventional treatment in patients with SCI, such as the use of vitamins, a viable option that can improve outcomes in patients with this condition.
Collapse
Affiliation(s)
- Karina A Pedroza-García
- Departamento de Nutrición, Centro de Ciencias de la Salud, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Gabriela Careaga-Cárdenas
- Biomedical Research, Centro de Ciencias de la Salud, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Carmen Díaz-Galindo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - J Luis Quintanar
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Irma Hernández-Jasso
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Ricardo E Ramírez-Orozco
- Departamento de Nutrición, Centro de Ciencias de la Salud, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| |
Collapse
|
5
|
Cediel-Ulloa A, Lupu DL, Johansson Y, Hinojosa M, Özel F, Rüegg J. Impact of endocrine disrupting chemicals on neurodevelopment: the need for better testing strategies for endocrine disruption-induced developmental neurotoxicity. Expert Rev Endocrinol Metab 2022; 17:131-141. [PMID: 35255767 DOI: 10.1080/17446651.2022.2044788] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/17/2022] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Brain development is highly dependent on hormonal regulation. Exposure to chemicals disrupting endocrine signaling has been associated with neurodevelopmental impairment. This raises concern about exposure to the suspected thousands of endocrine disruptors, and has resulted in efforts to improve regulation of these chemicals. Yet, the causal links between endocrine disruption and developmental neurotoxicity, which would be required for regulatory action, are still largely missing. AREAS COVERED In this review, we illustrate the importance of two endocrine systems, thyroid hormone and retinoic acid pathways, for neurodevelopment. We place special emphasis on TH and RA synthesis, metabolism, and how endocrine disrupting chemicals known or suspected to affect these systems are associated with developmental neurotoxicity. EXPERT OPINION While it is clear that neurodevelopment is dependent on proper hormonal functioning, and evidence is increasing for developmental neurotoxicity induced by endocrine disrupting chemicals, this is not grasped by current chemical testing. Thus, there is an urgent need to develop test methods detecting endocrine disruption in the context of neurodevelopment. Key to this development is further mechanistic insights on the involvement of endocrine signaling in neurodevelopment as well as increased support to develop and validate new test methods for the regulatory context.
Collapse
Affiliation(s)
| | | | - Ylva Johansson
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Maria Hinojosa
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Fatih Özel
- Department of Organismal Biology, Uppsala University, Sweden
- Centre for Women's Mental Health during the Reproductive Lifespan - Womher, Uppsala University, Sweden
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| | - Joëlle Rüegg
- Department of Organismal Biology, Uppsala University, Sweden
- Department of Health Sciences, Karlstad University, Karlstad, Sweden
| |
Collapse
|
6
|
De La Rosa-Reyes V, Duprey-Díaz MV, Blagburn JM, Blanco RE. Retinoic acid treatment recruits macrophages and increases axonal regeneration after optic nerve injury in the frog Rana pipiens. PLoS One 2021; 16:e0255196. [PMID: 34739478 PMCID: PMC8570512 DOI: 10.1371/journal.pone.0255196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/21/2021] [Indexed: 11/18/2022] Open
Abstract
Retinoic acid (RA) plays major roles during nervous system development, and during regeneration of the adult nervous system. We have previously shown that components of the RA signaling pathway are upregulated after optic nerve injury, and that exogenous application of all-trans retinoic acid (ATRA) greatly increases the survival of axotomized retinal ganglion cells (RGCs). The objective of the present study is to investigate the effects of ATRA application on the macrophages in the optic nerve after injury, and to determine whether this affects axonal regeneration. The optic nerve was crushed and treated with PBS, ATRA and/or clodronate-loaded liposomes. Nerves were examined at one and two weeks after axotomy with light microscopy, immunocytochemistry and electron microscopy. ATRA application to the optic nerve caused transient increases in the number of macrophages and microglia one week after injury. The macrophages are consistently labeled with M2-type markers, and have considerable phagocytic activity. ATRA increased ultrastructural features of ongoing phagocytic activity in macrophages at one and two weeks. ATRA treatment also significantly increased the numbers of regenerating GAP-43-labeled axons. Clodronate liposome treatment depleted macrophage numbers by 80%, completely eliminated the ATRA-mediated increase in axonal regeneration, and clodronate treatment alone decreased axonal numbers by 30%. These results suggest that the success of axon regeneration is partially dependent on the presence of debris-phagocytosing macrophages, and that the increases in regeneration caused by ATRA are in part due to their increased numbers. Further studies will examine whether macrophage depletion affects RGC survival.
Collapse
Affiliation(s)
- Valeria De La Rosa-Reyes
- Department of Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico, United States of America
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Mildred V. Duprey-Díaz
- Department of Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico, United States of America
| | - Jonathan M. Blagburn
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Rosa E. Blanco
- Department of Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico, United States of America
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
7
|
Clark JN, Whiting A, McCaffery P. Retinoic acid receptor-targeted drugs in neurodegenerative disease. Expert Opin Drug Metab Toxicol 2020; 16:1097-1108. [DOI: 10.1080/17425255.2020.1811232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jason Nicol Clark
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | | | - Peter McCaffery
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
8
|
Su X, Gu X, Zhang Z, Li W, Wang X. Retinoic acid receptor gamma is targeted by microRNA-124 and inhibits neurite outgrowth. Neuropharmacology 2020; 163:107657. [PMID: 31170403 DOI: 10.1016/j.neuropharm.2019.05.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/02/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Abstract
During brain development, neurite outgrowth is required for brain development and is regulated by many factors. All-trans retinoic acid (RA) is an important regulator of cell growth and differentiation. MicroRNA-124 (miR-124), a brain-specific microRNA, has been implicated in stimulating neurite growth. In this study, we found that retinoic acid receptor gamma (RARG) expression was decreased, whereas miR-124 expression was increased during neural differentiation in mouse Neuroblastoma (N2a) Cells, P19 embryonal carcinoma (P19) cells, and mouse brain, as detected by immunoblotting or RT-qPCR. And we proved that miR-124 inhibited RARG expression by binding to the 3' UTR of RARG with a luciferase reporter assay. Upregulation of miR-124 (using miR-124 overexpressing plasmid and miR-124 mimic) led to a significant decrease in RARG protein in N2a cells and primary neurons. Therefore, we asked whether and how the miR-124/RARG axis regulates neuronal outgrowth, which is poorly understood. Strikingly, RARG knockdown by shRNA stimulated neurite growth in N2a cells and primary neurons, whereas RARG overexpression (without 3' UTR) inhibited neurite growth in N2a cells, P19 cells, and primary neurons. Furthermore, RARG knockdown could partially eliminate neurite outgrowth defects caused by the inhibitor of miR-124, while RARG overexpression could reverse the neurite outgrowth enhancing effect of the upregulation of miR-124. Collectively, the data reveal that miR-124/RARG axis is critical for neurite outgrowth. RARG emerges as a new target regulated by miR-124 that modulates neurite outgrowth, providing a novel context in which these two molecules function.
Collapse
Affiliation(s)
- Xiaohong Su
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xi Gu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhiduo Zhang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weipeng Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xuemin Wang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Dick RA, Xu C, Morado DR, Kravchuk V, Ricana CL, Lyddon TD, Broad AM, Feathers JR, Johnson MC, Vogt VM, Perilla JR, Briggs JAG, Schur FKM. Structures of immature EIAV Gag lattices reveal a conserved role for IP6 in lentivirus assembly. PLoS Pathog 2020; 16:e1008277. [PMID: 31986188 PMCID: PMC7004409 DOI: 10.1371/journal.ppat.1008277] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/06/2020] [Accepted: 12/11/2019] [Indexed: 01/11/2023] Open
Abstract
Retrovirus assembly is driven by the multidomain structural protein Gag. Interactions between the capsid domains (CA) of Gag result in Gag multimerization, leading to an immature virus particle that is formed by a protein lattice based on dimeric, trimeric, and hexameric protein contacts. Among retroviruses the inter- and intra-hexamer contacts differ, especially in the N-terminal sub-domain of CA (CANTD). For HIV-1 the cellular molecule inositol hexakisphosphate (IP6) interacts with and stabilizes the immature hexamer, and is required for production of infectious virus particles. We have used in vitro assembly, cryo-electron tomography and subtomogram averaging, atomistic molecular dynamics simulations and mutational analyses to study the HIV-related lentivirus equine infectious anemia virus (EIAV). In particular, we sought to understand the structural conservation of the immature lentivirus lattice and the role of IP6 in EIAV assembly. Similar to HIV-1, IP6 strongly promoted in vitro assembly of EIAV Gag proteins into virus-like particles (VLPs), which took three morphologically highly distinct forms: narrow tubes, wide tubes, and spheres. Structural characterization of these VLPs to sub-4Å resolution unexpectedly showed that all three morphologies are based on an immature lattice with preserved key structural components, highlighting the structural versatility of CA to form immature assemblies. A direct comparison between EIAV and HIV revealed that both lentiviruses maintain similar immature interfaces, which are established by both conserved and non-conserved residues. In both EIAV and HIV-1, IP6 regulates immature assembly via conserved lysine residues within the CACTD and SP. Lastly, we demonstrate that IP6 stimulates in vitro assembly of immature particles of several other retroviruses in the lentivirus genus, suggesting a conserved role for IP6 in lentiviral assembly.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Electron Microscope Tomography
- Equine Infectious Anemia/metabolism
- Equine Infectious Anemia/virology
- Gene Products, gag/chemistry
- Gene Products, gag/genetics
- Gene Products, gag/metabolism
- HIV Infections/metabolism
- HIV Infections/virology
- HIV-1/genetics
- HIV-1/physiology
- HIV-1/ultrastructure
- Horses
- Host-Pathogen Interactions
- Infectious Anemia Virus, Equine/chemistry
- Infectious Anemia Virus, Equine/genetics
- Infectious Anemia Virus, Equine/physiology
- Infectious Anemia Virus, Equine/ultrastructure
- Phytic Acid/metabolism
- Sequence Alignment
- Virion/genetics
- Virion/physiology
- Virion/ultrastructure
- Virus Assembly
- gag Gene Products, Human Immunodeficiency Virus/chemistry
- gag Gene Products, Human Immunodeficiency Virus/genetics
- gag Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Robert A. Dick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail: (RAD); (FKMS)
| | - Chaoyi Xu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States of America
| | - Dustin R. Morado
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Clifton L. Ricana
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America
| | - Terri D. Lyddon
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America
| | - Arianna M. Broad
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - J. Ryan Feathers
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Marc C. Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America
| | - Volker M. Vogt
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States of America
| | - John A. G. Briggs
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Florian K. M. Schur
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- * E-mail: (RAD); (FKMS)
| |
Collapse
|
10
|
Johnson A, Nasser TIN, Spencer GE. Inhibition of Rho GTPases in Invertebrate Growth Cones Induces a Switch in Responsiveness to Retinoic Acid. Biomolecules 2019; 9:biom9090460. [PMID: 31500289 PMCID: PMC6769630 DOI: 10.3390/biom9090460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022] Open
Abstract
During development, growth cones are essential for axon pathfinding by sensing numerous guidance cues in their environment. Retinoic acid, the metabolite of vitamin A, is important for neurite outgrowth during vertebrate development, but may also play a role in axon guidance, though little is known of the cellular mechanisms involved. Our previous studies showed that retinoid-induced growth cone turning of invertebrate motorneurons requires local protein synthesis and calcium influx. However, the signalling pathways that link calcium influx to cytoskeletal dynamics involved in retinoid-mediated growth cone turning are not currently known. The Rho GTPases, Cdc42 and Rac, are known regulators of the growth cone cytoskeleton. Here, we demonstrated that inhibition of Cdc42 or Rac not only prevented growth cone turning toward retinoic acid but could also induce a switch in growth cone responsiveness to chemorepulsion or growth cone collapse. However, the effects of Cdc42 or Rac inhibition on growth cone responsiveness differed, depending on whether the turning was induced by the all-trans or 9-cis retinoid isomer. The effects also differed depending on whether the growth cones maintained communication with the cell body. These data strongly suggest that Cdc42 and Rac are downstream effectors of retinoic acid during growth cone guidance.
Collapse
Affiliation(s)
- Alysha Johnson
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St Catharines, ON L2S 3A1, Canada
| | - Tamara I N Nasser
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St Catharines, ON L2S 3A1, Canada
| | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
11
|
Johnson A, de Hoog E, Tolentino M, Nasser T, Spencer GE. Pharmacological evidence for the role of RAR in axon guidance and embryonic development of a protostome species. Genesis 2019; 57:e23301. [PMID: 31038837 DOI: 10.1002/dvg.23301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/07/2019] [Accepted: 04/08/2019] [Indexed: 01/26/2023]
Abstract
Retinoic acid (RA), the active metabolite of vitamin A, functions through nuclear receptors, one of which is the retinoic acid receptor (RAR). Though the RAR is essential for various aspects of vertebrate development, little is known about the role of RAR in nonchordate invertebrates. Here, we examined the potential role of an invertebrate RAR in mediating chemotropic effects of retinoic acid. The RAR of the protostome Lymnaea stagnalis is present in the growth cones of regenerating cultured motorneurons, and a synthetic RAR agonist (EC23), was able to mimic the effects of retinoic acid in inducing growth cone turning. We also examined the ability of the natural retinoids, all-trans RA and 9-cis RA, as well as the synthetic RAR agonists, to disrupt embryonic development in Lymnaea. Developmental defects included delays in embryo hatching, arrested eye, and shell development, as well as more severe abnormalities such as halted development. Developmental defects induced by some (but not all) synthetic RAR agonists were found to mimic those induced by addition of high concentrations of the natural retinoid isomers. These pharmacological data support a possible physiological role for the RAR in axon guidance and embryonic development of an invertebrate protostome species.
Collapse
Affiliation(s)
- Alysha Johnson
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Eric de Hoog
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Michael Tolentino
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Tamara Nasser
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
12
|
Tang BL. Promoting axonal regeneration through exosomes: An update of recent findings on exosomal PTEN and mTOR modifiers. Brain Res Bull 2018; 143:123-131. [DOI: 10.1016/j.brainresbull.2018.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
|
13
|
Muniswami DM, Kanthakumar P, Kanakasabapathy I, Tharion G. Motor Recovery after Transplantation of Bone Marrow Mesenchymal Stem Cells in Rat Models of Spinal Cord Injury. Ann Neurosci 2018; 25:126-140. [PMID: 30814821 DOI: 10.1159/000487069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 12/26/2018] [Indexed: 12/25/2022] Open
Abstract
Background Neuronal tissue has a limited potential to self-renew or get repaired after damage. Cell therapies using stem cells are promising approaches for the treatment of central nervous system (CNS) injuries. However, the clinical use of embryonic stem cells is limited by ethical concerns and other scientific consequences. Bone marrow mesenchymal stromal cells (BM-MSC) could represent an alternative source of stem cells for replacement therapy. Indeed, many studies have demonstrated that MSCs can give rise to neuronal cells as well as many tissue-specific cell phenotypes. Purpose Motor recovery by transplantation of bone marrow MSCs in rat models of spinal cord injury (SCI). Methods Bone marrow was collected from the femur of albino Wistar rats. MSCs were separated using the Ficoll-Paque density gradient method and cultured in Dulbecco's Modified Eagle Medium supplemented with 20% fetal bovine serum. Cultured MSC was characterized by immunohistochemistry and flow cytometry and neuronal-induced cells were further characterized for neural markers. Cultured MSCs were transplanted into the experimentally injured spinal cord of Wistar rats. Control (injured, but without cell transplantation) and transplanted rats were followed up to 8 weeks, analyzed using the Basso, Beattie, Bresnahan (BBB) scale and electromyography (EMG) for behavioral and physiological status of the injured spinal cord. Finally, the tissue was evaluated histologically. Results Rat MSCs expressed positivity for a panel of MSC markers CD29, CD54, CD90, CD73, and CD105, and negativity for hematopoietic markers CD34, CD14, and CD45. In vitro neuronal transdifferentiated MSCs express positivity for β III tubulin, MAP2, NF, NeuN, Nav1.1, oligodendrocyte (O4), and negativity for glial fibrillary acid protein. All the treated groups show promising hind-limb motor recovery BBB score, except the control group. There was increased EMG amplitude in treated groups as compared to the control group. Green fluorescent protein (GFP)-labeled MSC survived and differentiated into neurons in the injured spinal cord, which is responsible for functional recovery. Conclusion Our results demonstrate that BM-MSC has the potential to repair the injured cord in rat models of SCI. Thus, BM-MSC appears to be a promising candidate for cell-based therapy in CNS injury.
Collapse
Affiliation(s)
- Durai Murugan Muniswami
- Department of Physical Medicine and Rehabilitation, Christian Medical College, Vellore, India
| | | | | | - George Tharion
- Department of Physical Medicine and Rehabilitation, Christian Medical College, Vellore, India
| |
Collapse
|
14
|
Carlstedt T, James N, Risling M. Surgical reconstruction of spinal cord circuit provides functional return in humans. Neural Regen Res 2018; 12:1960-1963. [PMID: 29323028 PMCID: PMC5784337 DOI: 10.4103/1673-5374.221145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
This mini review describes the current surgical strategy for restoring function after traumatic spinal nerve root avulsion in brachial or lumbosacral plexus injury in man. As this lesion is a spinal cord or central nervous injury functional return depends on spinal cord nerve cell growth within the central nervous system. Basic science, clinical research and human application has demonstrated good and useful motor function after ventral root avulsion followed by spinal cord reimplantation. Recently, sensory return could be demonstrated following spinal cord surgery bypassing the injured primary sensory neuron. Experimental data showed that most of the recovery depended on new growth reinnervating peripheral receptors. Restored sensory function and the return of spinal reflex was demonstrated by electrophysiology and functional magnetic resonance imaging of human cortex. This spinal cord surgery is a unique treatment of central nervous system injury resulting in useful functional return. Further improvements will not depend on surgical improvements. Adjuvant therapy aiming at ameliorating the activity in retinoic acid elements in dorsal root ganglion neurons could be a new therapeutic avenue in restoring spinal cord circuits after nerve root avulsion injury.
Collapse
Affiliation(s)
- Thomas Carlstedt
- The Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Nicholas James
- The Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
15
|
Walker SE, Nottrodt R, Maddalena L, Carter C, Spencer GE, Carlone RL. Retinoid X receptor α downregulation is required for tail and caudal spinal cord regeneration in the adult newt. Neural Regen Res 2018; 13:1036-1045. [PMID: 29926831 PMCID: PMC6022477 DOI: 10.4103/1673-5374.233447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Some adult vertebrate species, such as newts, axolotls and zebrafish, have the ability to regenerate their central nervous system (CNS). However, the factors that establish a permissive CNS environment for correct morphological and functional regeneration in these species are not well understood. Recent evidence supports a role for retinoid signaling in the intrinsic ability of neurons, in these regeneration-competent species, to regrow after CNS injury. Previously, we demonstrated that a specific retinoic acid receptor (RAR) subtype, RARβ, mediates the effects of endogenous retinoic acid (RA) on neuronal growth and guidance in the adult newt CNS after injury. Here, we now examine the expression of the retinoid X receptor RXRα (a potential heterodimeric transcriptional regulator with RARβ), in newt tail and spinal cord regeneration. We show that at 21 days post-amputation (dpa), RXRα is expressed at temporally distinct periods and in non-overlapping spatial domains compared to RARβ. Whereas RARβ protein levels increase, RXRα proteins level decrease by 21 dpa. A selective agonist for RXR, SR11237, prevents both this downregulation of RXRα and upregulation of RARβ and inhibits tail and caudal spinal cord regeneration. Moreover, treatment with a selective antagonist for RARβ, LE135, inhibits regeneration with the same morphological consequences as treatment with SR11237. Interestingly, LE135 treatment also inhibits the normal downregulation of RXRα in tail and spinal cord tissues at 21 dpa. These results reveal a previously unidentified, indirect regulatory feedback loop between these two receptor subtypes in regulating the regeneration of tail and spinal cord tissues in this regeneration-competent newt.
Collapse
Affiliation(s)
- Sarah E Walker
- Department of Biological Sciences, Brock University, Ontario, Canada
| | - Rachel Nottrodt
- Department of Biological Sciences, Brock University, Ontario; Department of Geosciences, University of Calgary, Calgary Alberta, Canada
| | - Lucas Maddalena
- Department of Biological Sciences, Brock University, Ontario, Canada; Biomedical Sciences, Cambridge University, Cambridge, UK
| | - Christopher Carter
- Department of Biological Sciences, Brock University; Pre-Health Sciences Department, Niagara College, Welland, Ontario, Canada
| | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, Ontario, Canada
| | - Robert L Carlone
- Department of Biological Sciences, Brock University, Ontario, Canada
| |
Collapse
|
16
|
Park SJ, Kim S, Kim SY, Jeon NL, Song JM, Won C, Min DH. Highly Efficient and Rapid Neural Differentiation of Mouse Embryonic Stem Cells Based on Retinoic Acid Encapsulated Porous Nanoparticle. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34634-34640. [PMID: 28921950 DOI: 10.1021/acsami.7b09760] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An improved cell conversion strategy for neural differentiation of mouse embryonic stem (mES) cells is developed by incorporating functionalized mesoporous silica nanoparticle (MSN) as an efficient delivery carrier of retinoic acid (RA), which is a pleiotropic factor required for initiation of neural differentiation. Traditional RA-mediated neural differentiation methods required either preactivation of the cells to the differentiating state by embryoid body (EB) formation or repetitive treatment of the differentiation factor. Our modified cell conversion system involves only singular treatment of the RA/MSN complex, which simplified the whole process and accelerated neural induction to be finished within 6 days with high quality. With our new method, neural cells were successfully derived from mES cells with stable expression of neurite marker gene.
Collapse
Affiliation(s)
- Se-Jin Park
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University , Seoul 08826, Republic of Korea
- Department of Chemistry, Seoul National University , Seoul 08826, Republic of Korea
| | - Seongchan Kim
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University , Seoul 08826, Republic of Korea
- Department of Chemistry, Seoul National University , Seoul 08826, Republic of Korea
| | - Sung-Yon Kim
- Department of Chemistry, Seoul National University , Seoul 08826, Republic of Korea
| | - Noo Li Jeon
- Department of Mechanical and Aerospace Engineering, Seoul National University , Seoul 08826, Republic of Korea
| | - Joon Myong Song
- College of Pharmacy, Seoul National University , Seoul 08826, Republic of Korea
| | - Cheolhee Won
- Institute of Nanobio Convergence Technology, Lemonex Inc. , Seoul 08826, Republic of Korea
| | - Dal-Hee Min
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University , Seoul 08826, Republic of Korea
- Department of Chemistry, Seoul National University , Seoul 08826, Republic of Korea
- Institute of Nanobio Convergence Technology, Lemonex Inc. , Seoul 08826, Republic of Korea
| |
Collapse
|
17
|
Rand C, Spencer G, Carlone R. Retinoic acid as a chemoattractant for cultured embryonic spinal cord neurons of the African Clawed Frog, Xenopus laevis. CAN J ZOOL 2017. [DOI: 10.1139/cjz-2016-0279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retinoic acid (RA), an active metabolite of vitamin A, is important for neural development and regeneration and can induce neurite outgrowth. It may also act as a guidance molecule by attracting neurite processes during outgrowth. In the African Clawed Frog (Xenopus laevis (Daudin, 1802)), RA has been shown to play an important role in the development of the anterior–posterior axis. However, whether RA can act as a trophic or tropic molecule on embryonic neurons of this species has not been determined. In this study, we investigated the effects of two retinoid isomers, all-trans retinoic acid (atRA) and 9-cis retinoic acid (9-cisRA), on cultured embryonic spinal cord neurons of X. laevis. Both isomers significantly enhanced neurite outgrowth compared with the vehicle control. In addition, atRA induced growth cone turning, which was blocked with a retinoic acid receptor (RAR) antagonist, selective for the β receptor subtype. Immunostaining also revealed RAR immunoreactivity in the neurites and growth cones of these cells. Interestingly, the 9-cisRA isomer also induced significant growth cone turning and this response was inhibited by a retinoid X receptor (RXR) pan-antagonist. Overall, we have provided evidence for both trophic and chemotropic actions of two naturally occurring retinoid isomers on Xenopus embryonic spinal cord neurons in culture.
Collapse
Affiliation(s)
- C.D. Rand
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - G.E. Spencer
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - R.L. Carlone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
18
|
Kukreja S, Gautam P, Saxena R, Saxena M, Udaykumar N, Kumar A, Bhatt R, Kumar V, Sen J. Identification of novel candidate regulators of retinotectal map formation through transcriptional profiling of the chick optic tectum. J Comp Neurol 2017; 525:459-477. [PMID: 27410778 DOI: 10.1002/cne.24073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 07/06/2016] [Accepted: 07/08/2016] [Indexed: 11/06/2022]
Abstract
Information from the retina is carried along the visual pathway with accuracy and spatial conservation as a result of topographically mapped axonal connections. The optic tectum in the midbrain is the primary region to which retinal ganglion cells project their axons in the chick. The two primary axes of the retina project independently onto the tectum using different sets of guidance cues to give rise to the retinotectal map. Specificity of the map is determined by attractive or repulsive interactions between molecular tags that are distributed in gradients in the retina and the tectum. Despite several studies, knowledge of the retinotectal guidance molecules is far from being complete. We screened for all molecules that are expressed differentially along the anterior-posterior and medial-lateral axes of the chick tectum using microarray based transcriptional profiling and identified several novel candidate retinotectal guidance molecules. Two such genes, encoding Wnt5a and Raldh2, the synthesizing enzymes for retinoic acid, were further analyzed for their function as putative regulators of retinotectal map formation. Wnt5a and retinoic acid were found to exhibit differential effects on the growth of axons from retinal explants derived from different quadrants of the retina. This screen also yielded a large number of genes expressed in a lamina-specific manner in the tectum, which may have other roles in tectal development. J. Comp. Neurol. 525:459-477, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shweta Kukreja
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.,Shweta Kukreja is now at the Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605
| | - Pratibha Gautam
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.,Pratibha Gautam is now at the Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Richa Saxena
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.,Richa Saxena is now at the Central Drug Research Institute, Jankipuram, Lucknow, Uttar Pradesh, 226031, India
| | - Monika Saxena
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Niveda Udaykumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Aditi Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Ritesh Bhatt
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Vidur Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Jonaki Sen
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|
19
|
Chakrabarti M, McDonald AJ, Will Reed J, Moss MA, Das BC, Ray SK. Molecular Signaling Mechanisms of Natural and Synthetic Retinoids for Inhibition of Pathogenesis in Alzheimer's Disease. J Alzheimers Dis 2016; 50:335-52. [PMID: 26682679 DOI: 10.3233/jad-150450] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Retinoids, which are vitamin A derivatives, interact through retinoic acid receptors (RARs) and retinoid X receptors (RXRs) and have profound effects on several physiological and pathological processes in the brain. The presence of retinoic acid signaling is extensively detected in the adult central nervous system, including the amygdala, cortex, hypothalamus, hippocampus, and other brain areas. Retinoids are primarily involved in neural patterning, differentiation, and axon outgrowth. Retinoids also play a key role in the preservation of the differentiated state of adult neurons. Impairment in retinoic acid signaling can result in neurodegeneration and progression of Alzheimer's disease (AD). Recent studies demonstrated severe deficiencies in spatial learning and memory in mice during retinoic acid (vitamin A) deprivation indicating its significance in preserving memory function. Defective cholinergic neurotransmission plays an important role in cognitive deficits in AD. All-trans retinoic acid is known to enhance the expression and activity of choline acetyltransferase in neuronal cell lines. Activation of RAR and RXR is also known to impede the pathogenesis of AD in mice by inhibiting accumulation of amyloids. In addition, retinoids have been shown to inhibit the expression of chemokines and pro-inflammatory cytokines in microglia and astrocytes, which are activated in AD. In this review article, we have described the chemistry and molecular signaling mechanisms of natural and synthetic retinoids and current understandings of their therapeutic potentials in prevention of AD pathology.
Collapse
Affiliation(s)
- Mrinmay Chakrabarti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Alexander J McDonald
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - J Will Reed
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Melissa A Moss
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Bhaskar C Das
- Division of Hematology and Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
20
|
Carlstedt T. New Treatments for Spinal Nerve Root Avulsion Injury. Front Neurol 2016; 7:135. [PMID: 27602018 PMCID: PMC4994285 DOI: 10.3389/fneur.2016.00135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/05/2016] [Indexed: 01/20/2023] Open
Abstract
Further progress in the treatment of the longitudinal spinal cord injury has been made. In an inverted translational study, it has been demonstrated that return of sensory function can be achieved by bypassing the avulsed dorsal root ganglion neurons. Dendritic growth from spinal cord sensory neurons could replace dorsal root ganglion axons and re-establish a reflex arch. Another research avenue has led to the development of adjuvant therapy for regeneration following dorsal root to spinal cord implantation in root avulsion injury. A small, lipophilic molecule that can be given orally acts on the retinoic acid receptor system as an agonist. Upregulation of dorsal root ganglion regenerative ability and organization of glia reaction to injury were demonstrated in treated animals. The dual effect of this substance may open new avenues for the treatment of root avulsion and spinal cord injuries.
Collapse
|
21
|
Neuronal RARβ Signaling Modulates PTEN Activity Directly in Neurons and via Exosome Transfer in Astrocytes to Prevent Glial Scar Formation and Induce Spinal Cord Regeneration. J Neurosci 2016; 35:15731-45. [PMID: 26609164 DOI: 10.1523/jneurosci.1339-15.2015] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Failure of axonal regeneration in the central nervous system (CNS) is mainly attributed to a lack of intrinsic neuronal growth programs and an inhibitory environment from a glial scar. Phosphatase and tensin homolog (PTEN) is a major negative regulator of neuronal regeneration and, as such, inhibiting its activity has been considered a therapeutic target for spinal cord (SC) injuries (SCIs). Using a novel model of rat cervical avulsion, we show that treatment with a retinoic acid receptor β (RARβ) agonist results in locomotor and sensory recovery. Axonal regeneration from the severed roots into the SC could be seen by biotinylated dextran amine labeling. Light micrographs of the dorsal root entry zone show the peripheral nervous system (PNS)-CNS transition of regrown axons. RARβ agonist treatment also resulted in the absence of scar formation. Mechanism studies revealed that, in RARβ-agonist-treated neurons, PTEN activity is decreased by cytoplasmic phosphorylation and increased secretion in exosomes. These are taken up by astrocytes, resulting in hampered proliferation and causing them to arrange in a normal-appearing scaffold around the regenerating axons. Attribution of the glial modulation to neuronal PTEN in exosomes was demonstrated by the use of an exosome inhibitor in vivo and PTEN siRNA in vitro assays. The dual effect of RARβ signaling, both neuronal and neuronal-glial, results in axonal regeneration into the SC after dorsal root neurotmesis. Targeting this pathway may open new avenues for the treatment of SCIs. SIGNIFICANCE STATEMENT Spinal cord injuries (SCIs) often result in permanent damage in the adult due to the very limited capacity of axonal regeneration. Intrinsic neuronal programs and the formation of a glial scar are the main obstacles. Here, we identify a single target, neuronal retinoic acid receptor β (RARβ), which modulates these two aspects of the postinjury physiological response. Activation of RARβ in the neuron inactivates phosphatase and tensin homolog and induces its transfer into the astrocytes in small vesicles, where it prevents scar formation. This may open new therapeutic avenues for SCIs.
Collapse
|
22
|
Hollstein R, Parry DA, Nalbach L, Logan CV, Strom TM, Hartill VL, Carr IM, Korenke GC, Uppal S, Ahmed M, Wieland T, Markham AF, Bennett CP, Gillessen-Kaesbach G, Sheridan EG, Kaiser FJ, Bonthron DT. HACE1 deficiency causes an autosomal recessive neurodevelopmental syndrome. J Med Genet 2015; 52:797-803. [PMID: 26424145 PMCID: PMC4717446 DOI: 10.1136/jmedgenet-2015-103344] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 07/23/2015] [Indexed: 01/05/2023]
Abstract
Background The genetic aetiology of neurodevelopmental defects is extremely diverse, and the lack of distinctive phenotypic features means that genetic criteria are often required for accurate diagnostic classification. We aimed to identify the causative genetic lesions in two families in which eight affected individuals displayed variable learning disability, spasticity and abnormal gait. Methods Autosomal recessive inheritance was suggested by consanguinity in one family and by sibling recurrences with normal parents in the second. Autozygosity mapping and exome sequencing, respectively, were used to identify the causative gene. Results In both families, biallelic loss-of-function mutations in HACE1 were identified. HACE1 is an E3 ubiquitin ligase that regulates the activity of cellular GTPases, including Rac1 and members of the Rab family. In the consanguineous family, a homozygous mutation p.R219* predicted a truncated protein entirely lacking its catalytic domain. In the other family, compound heterozygosity for nonsense mutation p.R748* and a 20-nt insertion interrupting the catalytic homologous to the E6-AP carboxyl terminus (HECT) domain was present; western blot analysis of patient cells revealed an absence of detectable HACE1 protein. Conclusion HACE1 mutations underlie a new autosomal recessive neurodevelopmental disorder. Previous studies have implicated HACE1 as a tumour suppressor gene; however, since cancer predisposition was not observed either in homozygous or heterozygous mutation carriers, this concept may require re-evaluation.
Collapse
Affiliation(s)
- Ronja Hollstein
- Sektion für Funktionelle Genetik am Institut für Humangenetik, Universität zu Lübeck, Lübeck, Germany
| | - David A Parry
- Section of Genetics, School of Medicine, University of Leeds, Leeds, UK
| | - Lisa Nalbach
- Sektion für Funktionelle Genetik am Institut für Humangenetik, Universität zu Lübeck, Lübeck, Germany
| | - Clare V Logan
- Section of Genetics, School of Medicine, University of Leeds, Leeds, UK
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, Munich, Germany Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Verity L Hartill
- Section of Genetics, School of Medicine, University of Leeds, Leeds, UK Yorkshire Regional Genetics Service, Leeds, UK
| | - Ian M Carr
- Section of Genetics, School of Medicine, University of Leeds, Leeds, UK
| | - Georg C Korenke
- Zentrum für Kinder- und Jugendmedizin, Neuropädiatrie, Klinikum Oldenburg, Oldenburg, Germany
| | - Sandeep Uppal
- Section of Genetics, School of Medicine, University of Leeds, Leeds, UK
| | | | - Thomas Wieland
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | | | | | - Eamonn G Sheridan
- Section of Genetics, School of Medicine, University of Leeds, Leeds, UK Yorkshire Regional Genetics Service, Leeds, UK
| | - Frank J Kaiser
- Sektion für Funktionelle Genetik am Institut für Humangenetik, Universität zu Lübeck, Lübeck, Germany
| | - David T Bonthron
- Section of Genetics, School of Medicine, University of Leeds, Leeds, UK Yorkshire Regional Genetics Service, Leeds, UK
| |
Collapse
|
23
|
Carter CJ, Rand C, Mohammad I, Lepp A, Vesprini N, Wiebe O, Carlone R, Spencer GE. Expression of a retinoic acid receptor (RAR)-like protein in the embryonic and adult nervous system of a protostome species. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 324:51-67. [DOI: 10.1002/jez.b.22604] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/18/2014] [Indexed: 01/08/2023]
Affiliation(s)
| | - Christopher Rand
- Department of Biological Sciences; Brock University; Ontario Canada
| | - Imtiaz Mohammad
- Department of Biological Sciences; Brock University; Ontario Canada
| | - Amanda Lepp
- Department of Biological Sciences; Brock University; Ontario Canada
| | | | - Olivia Wiebe
- Department of Biological Sciences; Brock University; Ontario Canada
| | - Robert Carlone
- Department of Biological Sciences; Brock University; Ontario Canada
| | | |
Collapse
|
24
|
Hou PS, Huang WC, Chiang W, Lin WC, Chien CL. Impaired neural differentiation potency by retinoic acid receptor-α pathway defect in induced pluripotent stem cells. Cell Reprogram 2014; 16:467-76. [PMID: 25364979 DOI: 10.1089/cell.2014.0029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are reprogrammed from somatic cells via ectopic gene expression and, similarly to embryonic stem cells (ESCs), possess powerful abilities to self-renew and differentiate into cells of various lineages. However, the neural differentiation potency of iPSCs remains unknown. In this study, we demonstrated the neural differentiation ability of iPSCs compared with ESCs using an retinoic acid (RA) induction system. The neural differentiation efficiency of iPSCs was obviously lower than that of ESCs. Retinoic acid receptor-α (RARα) was critical in the RA-induced neural differentiation of iPSCs, and the effect of RARα was confirmed by applying a specific RARα antagonist ER50891 to ESCs. These findings indicate that iPSCs do not possess the complete properties that ESCs have.
Collapse
Affiliation(s)
- Pei-Shan Hou
- 1 Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University , Taipei, 100, Taiwan
| | | | | | | | | |
Collapse
|
25
|
Lepp AC, Carlone RL. RARβ2 expression is induced by the down-regulation of microRNA 133a during caudal spinal cord regeneration in the adult newt. Dev Dyn 2014; 243:1581-90. [DOI: 10.1002/dvdy.24210] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 09/15/2014] [Accepted: 09/20/2014] [Indexed: 11/09/2022] Open
Affiliation(s)
- A. C. Lepp
- Department of Biological Sciences; Brock University; St. Catharines Ontario Canada
| | - R. L. Carlone
- Department of Biological Sciences; Brock University; St. Catharines Ontario Canada
| |
Collapse
|
26
|
Sukiban J, Bräunig P, Mey J, Bui-Göbbels K. Retinoic acid as a survival factor in neuronal development of the grasshopper, Locusta migratoria. Cell Tissue Res 2014; 358:303-12. [PMID: 25107605 DOI: 10.1007/s00441-014-1957-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 07/03/2014] [Indexed: 12/23/2022]
Abstract
Based on experience with cell cultures of adult insect neurons, we develop a serum-free culture system for embryonic locust neurons. Influences of trophic substances on survival and neurite outgrowth of developing neurons are investigated. For the first time, a positive trophic effect of 9-cis retinoic acid (9-cis RA) was shown in vitro on embryonic neurons of an insect. We observed longer cell survival of 50 % developmental stage neurons in cultures supplemented with 0.3 nM 9-cis RA. Furthermore, an influence on neuron morphology was revealed, as the addition of 9-cis RA to cell culture medium led to an increase in the number of neurites per cell. Although an RA receptor gene, LmRXR (Locusta migratoria retinoid X receptor), was expressed in the central nervous system throughout development, the influence of 9-cis RA on neuronal survival and outgrowth was restricted to 50 % stage embryonic cells.
Collapse
Affiliation(s)
- Jeyathevy Sukiban
- Institut für Biologie II (Zoologie), RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | | | | | | |
Collapse
|
27
|
Rothwell CM, Spencer GE. Retinoid signaling is necessary for, and promotes long-term memory formation following operant conditioning. Neurobiol Learn Mem 2014; 114:127-40. [PMID: 24925874 DOI: 10.1016/j.nlm.2014.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
Abstract
Retinoic acid, a metabolite of vitamin A, is proposed to play an important role in vertebrate learning and memory, as well as hippocampal-dependent synaptic plasticity. However, it has not yet been determined whether retinoic acid plays a similar role in learning and memory in invertebrates. In this study, we report that retinoid signaling in the mollusc Lymnaea stagnalis, is required for long-term memory formation following operant conditioning of its aerial respiratory behaviour. Animals were exposed to inhibitors of the RALDH enzyme (which synthesizes retinoic acid), or various retinoid receptor antagonists. Following exposure to these inhibitors, neither learning nor intermediate-term memory (lasting 2 h) was affected, but long-term memory formation (tested at either 24 or 72 h) was inhibited. We next demonstrated that various retinoid receptor agonists promoted long-term memory formation. Using a training paradigm shown only to produce intermediate-term memory (lasting 2 h, but not 24 h) we found that exposure of animals to synthetic retinoids promoted memory formation that lasted up to 30 h. These findings suggest that the role of retinoids in memory formation is ancient in origin, and that retinoid signaling is also important for the formation of implicit memories, in addition to its previously demonstrated role in hippocampal-dependent memories.
Collapse
Affiliation(s)
- Cailin M Rothwell
- Department of Biological Sciences, Brock University, 500 Glenridge Ave, St. Catharines, ON L2S 3A1, Canada
| | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, 500 Glenridge Ave, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
28
|
Hoecker J, Liffert R, Burch P, Wehlauch R, Gademann K. Caged retinoids as photoinducible activators: implications for cell differentiation and neurite outgrowth. Org Biomol Chem 2014; 11:3314-21. [PMID: 23538708 DOI: 10.1039/c3ob40106e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aiming to control neurite formation and navigate the axonal growth by an extrinsic guidance, we report on the design, synthesis and biological evaluation of caged retinoids. Agonists of RARβ have been temporarily blocked either by the [(α-methyl-2-nitropiperonyl)oxy]carbonyl (MeNPOC) group or by immobilization using nitrocatechol linkers on TiO2 particles. Release on demand has been achieved by release under UV irradiation, leading to the biologically active compounds, which have been shown to induce neuronal differentiation and neurite outgrowth.
Collapse
Affiliation(s)
- Johannes Hoecker
- Department of Chemistry, NCCR Chemical Biology, University of Basel, Basel, Switzerland
| | | | | | | | | |
Collapse
|
29
|
Sodhi RK, Singh N. Retinoids as potential targets for Alzheimer's disease. Pharmacol Biochem Behav 2014; 120:117-23. [PMID: 24582848 DOI: 10.1016/j.pbb.2014.02.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
Vitamin A and its derivatives, the retinoids, modulate several physiological and pathological processes through their interactions with nuclear retinoid receptor proteins termed as retinoic acid receptors (RARs) and retinoid X receptors (RXRs). An increasing body of evidence signifies the existence of retinoid signaling in diverse brain areas including cortex, amygdala, hypothalamus, hippocampus, and striatum suggesting its involvement in adult brain functions. Defective retinoid signaling has been evidenced in the pathology of Alzheimer's disease. Reports demonstrate that vitamin A deprived mice exhibit serious defects in spatial learning and memory signifying its importance in the maintenance of memory functions. Retinoid signaling impacts the development of AD pathology through multiple pathways. Ligand activation of RAR and RXR in APP/PS1 transgenic mice ameliorated the symptoms of AD and reduced amyloid accumulation and tau hyperphosphorylation. Retinoids also reduce the production of pro-inflammatory cytokines and chemokines by astrocytes and the microglia. Studies also suggest that neuronal cell lines treated with retinoid agonists exhibit an up-regulation in the expression and activity of choline acetyltransferase (ChAT). Reports depict that retinoic acid isomers enhance, the expression of genes linked with cholesterol efflux e.g. apoe, abca-1 and abcg-1 proteins in astrocytes. Furthermore numerous studies also indicate antioxidant potential of retinoids. Through this review we concisely summarize the biology of retinoids, emphasizing on their probable neuroprotective mechanisms that will help to elucidate the pivotal role of these receptors in AD pathology.
Collapse
Affiliation(s)
- Rupinder K Sodhi
- Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, 147002 Punjab, India
| | - Nirmal Singh
- Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, 147002 Punjab, India.
| |
Collapse
|
30
|
Choi J, Park S, Sockanathan S. Activated retinoid receptors are required for the migration and fate maintenance of subsets of cortical neurons. Development 2014; 141:1151-60. [PMID: 24504337 DOI: 10.1242/dev.104505] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Layer-specific cortical neurons are essential components of local, intracortical and subcortical circuits and are specified by complex signaling pathways acting on cortical progenitors. However, whether extrinsic signals contribute to postmitotic cortical neuronal development is unclear. Here we show in mice that retinoic acid (RA) receptors are activated in newly born migrating cortical neurons indicative of endogenous RA in the cortex. Disruption of RA signaling in postmitotic neurons by dominant-negative retinoid receptor RAR403 expression specifically delays late-born cortical neuron migration in vivo. Moreover, prospective layer V-III neurons that express RAR403 fail to maintain their fates and instead acquire characteristics of layer II neurons. This latter phenotype is rescued by active forms of β-catenin at central and caudal but not rostral cortical regions. Taken together, these observations suggest that RA signaling pathways operate postmitotically to regulate the onset of radial migration and to consolidate regional differences in cortical neuronal identity.
Collapse
Affiliation(s)
- Jeonghoon Choi
- PCTB1004, the Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
31
|
Koriyama Y, Sugitani K, Ogai K, Kato S. Neuritogenic activity of trichostatin A in adult rat retinal ganglion cells through acetylation of histone H3 lysine 9 and RARβ induction. J Pharmacol Sci 2013; 124:112-6. [PMID: 24389816 DOI: 10.1254/jphs.13171sc] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Like other CNS neurons, mature retinal ganglion cells (RGCs) cannot regenerate their axons after nerve injury due to loss of regenerative capacity. One of the reasons why they lose their capacity seems to be a dramatic shift in gene expression of RGCs under epigenetic modulation. In here, we found that levels of histone H3 lysine 9 acetylation decreased after birth in RGCs. This decrease showed good correlation with restriction of retinoic acid receptor β (RARβ) expression in RGCs after birth. Furthermore, we demonstrated that a histone deacetylase inhibitor, trichostatin A, induced axonal regeneration of adult rat RGCs through RARβ induction.
Collapse
Affiliation(s)
- Yoshiki Koriyama
- Department of Molecular Neurobiology, Graduate School of Medicine, Kanazawa University, Japan
| | | | | | | |
Collapse
|
32
|
Vesprini ND, Spencer GE. Retinoic acid induces changes in electrical properties of adult neurons in a dose- and isomer-dependent manner. J Neurophysiol 2013; 111:1318-30. [PMID: 24371294 DOI: 10.1152/jn.00434.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The electrical activity of neurons is known to play a role in neuronal development, as well as repair of adult nervous tissue. For example, the extension of neurites and motility of growth cones can be modulated by changes in the electrical firing of neurons. The vitamin A metabolite retinoic acid also plays a critical role during nervous system development and is also known to elicit regenerative responses, namely the induction, enhancement, and directionality of neurite outgrowth. However, no studies have previously reported the ability of retinoic acid to modify the electrical activity of neurons. In this study, we determined whether retinoic acid might exert effects on the nervous system by altering the electrical properties of neurons. Using cultured adult neurons from Lymnaea stagnalis, we showed that acute application of retinoic acid can rapidly elicit changes in neuronal firing properties. Retinoic acid caused the presence of atypical firing behavior such as rhythmic bursting and altered the shape of action potentials, causing increases in half-amplitude duration and decay time. Retinoic acid also caused cell silencing, whereby neuronal activity was halted within an hour. These effects of retinoic acid were shown to be both dose and isomer dependent. We then showed that the effects of retinoic acid on cell firing (but not silencing) were significantly reduced in the presence of an retinoid X receptor pan-antagonist HX531. This study suggests that some of the effects of retinoic acid during neuronal development or regeneration might possibly occur as a result of changes in electrical activity of neurons.
Collapse
Affiliation(s)
- Nicholas D Vesprini
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | | |
Collapse
|
33
|
Koriyama Y, Takagi Y, Chiba K, Yamazaki M, Sugitani K, Arai K, Suzuki H, Kato S. Requirement of retinoic acid receptor β for genipin derivative-induced optic nerve regeneration in adult rat retina. PLoS One 2013; 8:e71252. [PMID: 23940731 PMCID: PMC3735487 DOI: 10.1371/journal.pone.0071252] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/27/2013] [Indexed: 01/23/2023] Open
Abstract
Like other CNS neurons, mature retinal ganglion cells (RGCs) are unable to regenerate their axons after nerve injury due to a diminished intrinsic regenerative capacity. One of the reasons why they lose the capacity for axon regeneration seems to be associated with a dramatic shift in RGCs’ program of gene expression by epigenetic modulation. We recently reported that (1R)-isoPropyloxygenipin (IPRG001), a genipin derivative, has both neuroprotective and neurite outgrowth activities in murine RGC-5 retinal precursor cells. These effects were both mediated by nitric oxide (NO)/S-nitrosylation signaling. Neuritogenic activity was mediated by S-nitrosylation of histone deacetylase-2 (HDAC2), which subsequently induced retinoic acid receptor β (RARβ) expression via chromatin remodeling in vitro. RARβ plays important roles of neural growth and differentiation in development. However, the role of RARβ expression during adult rat optic nerve regeneration is not clear. In the present study, we extended this hypothesis to examine optic nerve regeneration by IPRG001 in adult rat RGCs in vivo. We found a correlation between RARβ expression and neurite outgrowth with age in the developing rat retina. Moreover, we found that IPRG001 significantly induced RARβ expression in adult rat RGCs through the S-nitrosylation of HDAC2 processing mechanism. Concomitant with RARβ expression, adult rat RGCs displayed a regenerative capacity for optic axons in vivo by IPRG001 treatment. These neuritogenic effects of IPRG001 were specifically suppressed by siRNA for RARβ. Thus, the dual neuroprotective and neuritogenic actions of genipin via S-nitrosylation might offer a powerful therapeutic tool for the treatment of RGC degenerative disorders.
Collapse
Affiliation(s)
- Yoshiki Koriyama
- Department of Molecular Neurobiology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Stergiopoulos A, Politis PK. The role of nuclear receptors in controlling the fine balance between proliferation and differentiation of neural stem cells. Arch Biochem Biophys 2013; 534:27-37. [DOI: 10.1016/j.abb.2012.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/23/2012] [Accepted: 09/20/2012] [Indexed: 12/22/2022]
|
35
|
Yamashima T. ‘PUFA–GPR40–CREB signaling’ hypothesis for the adult primate neurogenesis. Prog Lipid Res 2012; 51:221-31. [DOI: 10.1016/j.plipres.2012.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Paschaki M, Lin SC, Wong RLY, Finnell RH, Dollé P, Niederreither K. Retinoic acid-dependent signaling pathways and lineage events in the developing mouse spinal cord. PLoS One 2012; 7:e32447. [PMID: 22396766 PMCID: PMC3292566 DOI: 10.1371/journal.pone.0032447] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/26/2012] [Indexed: 11/19/2022] Open
Abstract
Studies in avian models have demonstrated an involvement of retinoid signaling in early neural tube patterning. The roles of this signaling pathway at later stages of spinal cord development are only partly characterized. Here we use Raldh2-null mouse mutants rescued from early embryonic lethality to study the consequences of lack of endogenous retinoic acid (RA) in the differentiating spinal cord. Mid-gestation RA deficiency produces prominent structural and molecular deficiencies in dorsal regions of the spinal cord. While targets of Wnt signaling in the dorsal neuronal lineage are unaltered, reductions in Fibroblast Growth Factor (FGF) and Notch signaling are clearly observed. We further provide evidence that endogenous RA is capable of driving stem cell differentiation. Raldh2 deficiency results in a decreased number of spinal cord derived neurospheres, which exhibit a reduced differentiation potential. Raldh2-null neurospheres have a decreased number of cells expressing the neuronal marker β-III-tubulin, while the nestin-positive cell population is increased. Hence, in vivo retinoid deficiency impaired neural stem cell growth. We propose that RA has separable functions in the developing spinal cord to (i) maintain high levels of FGF and Notch signaling and (ii) drive stem cell differentiation, thus restricting both the numbers and the pluripotent character of neural stem cells.
Collapse
Affiliation(s)
- Marie Paschaki
- Development and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR 7104), Institut National de la Santé et de la Recherche Médicale (U 964), Université de Strasbourg, Illkirch-Strasbourg, France
| | - Song-Chang Lin
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rebecca Lee Yean Wong
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, The Texas A&M University System Health Science Center, Houston, Texas, United States of America
| | - Richard H. Finnell
- Department of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas, Austin, Texas, United States of America
| | - Pascal Dollé
- Development and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR 7104), Institut National de la Santé et de la Recherche Médicale (U 964), Université de Strasbourg, Illkirch-Strasbourg, France
| | - Karen Niederreither
- Department of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
37
|
Puttagunta R, Di Giovanni S. Retinoic acid signaling in axonal regeneration. Front Mol Neurosci 2012; 4:59. [PMID: 22287943 PMCID: PMC3249608 DOI: 10.3389/fnmol.2011.00059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/22/2011] [Indexed: 01/28/2023] Open
Abstract
Following an acute central nervous system (CNS) injury, axonal regeneration and functional recovery are extremely limited. This is due to an extrinsic inhibitory growth environment and the lack of intrinsic growth competence. Retinoic acid (RA) signaling, essential in developmental dorsoventral patterning and specification of spinal motor neurons, has been shown through its receptor, the transcription factor RA receptor β2 (RARβ2), to induce axonal regeneration following spinal cord injury (SCI). Recently, it has been shown that in dorsal root ganglion neurons (DRGs), cAMP levels were greatly increased by lentiviral RARβ2 expression and contributed to neurite outgrowth. Moreover, RARβagonists, in cerebellar granule neurons (CGN) and in the brain in vivo, induced phosphoinositide 3-kinase dependent phosphorylation of AKT that was involved in RARβ-dependent neurite outgrowth. More recently, RA-RARβpathways were shown to directly transcriptionally repress a member of the inhibitory Nogo receptor (NgR) complex, Lingo-1, under an axonal growth inhibitory environment in vitro as well as following spinal injury in vivo. This perspective focuses on these newly discovered molecular mechanisms and future directions in the field.
Collapse
Affiliation(s)
- Radhika Puttagunta
- Laboratory for Neuroregeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen Tuebingen, Germany
| | | |
Collapse
|
38
|
Koriyama Y, Takagi Y, Chiba K, Yamazaki M, Arai K, Matsukawa T, Suzuki H, Sugitani K, Kagechika H, Kato S. Neuritogenic activity of a genipin derivative in retinal ganglion cells is mediated by retinoic acid receptor β expression through nitric oxide/S-nitrosylation signaling. J Neurochem 2011; 119:1232-42. [PMID: 21995424 DOI: 10.1111/j.1471-4159.2011.07533.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genipin, a herbal iridoid, is known to have both neuroprotective and neuritogenic activity in neuronal cell lines. As it is structurally similar to tetrahydrobiopterin, its activity is believed to be nitric oxide (NO)-dependent. We previously proposed a novel neuroprotective activity of a genipin derivative, (1R)-isoPropyloxygenipin (IPRG001), whereby it reduces oxidative stress in RGC-5, a neuronal precursor cell line of retinal origin through protein S-nitrosylation. In the present study, we investigated another neuritogenic property of IPRG001 in RGC-5 cells and retinal explant culture where in we focused on the NO-cGMP-dependent and protein S-nitrosylation pathways. IPRG001 stimulated neurite outgrowth in RGC-5 cells and retinal explant culture through NO-dependent signaling, but not NO-dependent cGMP signaling. Neurite outgrowth with IPRG001 requires retinoic acid receptor β (RARβ) expression, which is suppressed by an RAR blocking agent and siRNA inhibition. Thereby, we hypothesized that RARβ expression is mediated by protein S-nitrosylation. S-nitrosylation of histone deacetylase 2 is a key mechanism in chromatin remodeling leading to transcriptional gene activation. We found a parallelism between S-nitrosylation of histone diacetylase 2 and the induction of RARβ expression with IPRG001 treatment. The both neuroprotective and neuritogenic activities of genipin could be a new target for the regeneration of retinal ganglion cells after glaucomatous conditions.
Collapse
Affiliation(s)
- Yoshiki Koriyama
- Department of Molecular Neurobiology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Carter C, Clark A, Spencer G, Carlone R. Cloning and expression of a retinoic acid receptor β2 subtype from the adult newt: Evidence for an early role in tail and caudal spinal cord regeneration. Dev Dyn 2011; 240:2613-25. [DOI: 10.1002/dvdy.22769] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2011] [Indexed: 11/11/2022] Open
|
40
|
RAR/RXR and PPAR/RXR Signaling in Spinal Cord Injury. PPAR Res 2011; 2007:29275. [PMID: 18060014 PMCID: PMC1950239 DOI: 10.1155/2007/29275] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2006] [Accepted: 02/28/2007] [Indexed: 12/24/2022] Open
Abstract
The retinoid
acid receptors (RAR) and peroxisome proliferator-activated receptors (PPAR)
have been implicated in the regulation of inflammatory reactions. Both receptor families contain ligand-activated transcription factors which form heterodimers with retinoid X receptors (RXR). We review data that imply RAR/RXR and PPAR/RXR pathways in physiological reactions after spinal cord injury. Experiments show how RAR signaling may improve axonal regeneration and modulate reactions of glia cells. While anti-inflammatory properties of PPAR are well documented in the periphery, their possible roles in the central nervous system have only recently become evident. Due to its anti-inflammatory function this transcription factor family promises to be a useful target after spinal cord or brain lesions.
Collapse
|
41
|
Puttagunta R, Schmandke A, Floriddia E, Gaub P, Fomin N, Ghyselinck NB, Di Giovanni S. RA-RAR-β counteracts myelin-dependent inhibition of neurite outgrowth via Lingo-1 repression. ACTA ACUST UNITED AC 2011; 193:1147-56. [PMID: 21690307 PMCID: PMC3216335 DOI: 10.1083/jcb.201102066] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Central nervous system injury results in the release of molecules that inhibit neuronal regeneration, but retinoic acid counteracts this effect by inhibiting Lingo-1. After an acute central nervous system injury, axonal regeneration is limited as the result of a lack of neuronal intrinsic competence and the presence of extrinsic inhibitory signals. The injury fragments the myelin neuronal insulating layer, releasing extrinsic inhibitory molecules to signal through the neuronal membrane–bound Nogo receptor (NgR) complex. In this paper, we show that a neuronal transcriptional pathway can interfere with extrinsic inhibitory myelin-dependent signaling, thereby promoting neurite outgrowth. Specifically, retinoic acid (RA), acting through the RA receptor β (RAR-β), inhibited myelin-activated NgR signaling through the transcriptional repression of the NgR complex member Lingo-1. We show that suppression of Lingo-1 was required for RA–RAR-β to counteract extrinsic inhibition of neurite outgrowth. Furthermore, we confirm in vivo that RA treatment after a dorsal column overhemisection injury inhibited Lingo-1 expression, specifically through RAR-β. Our findings identify a novel link between RA–RAR-β–dependent proaxonal outgrowth and inhibitory NgR complex–dependent signaling, potentially allowing for the development of molecular strategies to enhance axonal regeneration after a central nervous system injury.
Collapse
Affiliation(s)
- Radhika Puttagunta
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research and 2 Graduate School for Cellular and Molecular Neuroscience, University of Tuebingen, 72074 Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Kumar A, Singh CK, DiPette DD, Singh US. Ethanol impairs activation of retinoic acid receptors in cerebellar granule cells in a rodent model of fetal alcohol spectrum disorders. Alcohol Clin Exp Res 2010; 34:928-37. [PMID: 20201933 PMCID: PMC4502960 DOI: 10.1111/j.1530-0277.2010.01166.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Ethanol is the main addictive and neurotoxic constituent of alcohol. Ethanol exposure during embryonic development causes dysfunction of the central nervous system (CNS) and leads to fetal alcohol spectrum disorders. The cerebellum is one of the CNS regions that are particularly vulnerable to ethanol toxic effects. Retinoic acid (RA) is a physiologically active metabolite of vitamin A that is locally synthesized in the cerebellum. Studies have shown that RA is required for neuronal development, but it remains unknown if ethanol impairs RA signaling and thus induces neuronal malformations. In this study, we tested the hypothesis that ethanol impairs the expression and activation of RA receptors in cerebellum and in cerebellar granule cells. METHODS The cerebellum of ethanol unexposed and exposed pups was used to study the expression of retinoic acid receptors (RARs or RXRs) by immunohistochemistry and by Western blot analysis. We also studied the effect of ethanol on expression of RA receptors in the cerebellar granule cells. Activation of RA receptors (DNA-binding activities) in response to high-dose ethanol was determined by electrophoretic mobility shift and supershift assays. RESULTS Findings from these studies demonstrated that ethanol exposure reduced the expression of RARalpha/gamma while it increased the expression of RXRalpha/gamma in the cerebellum and in cerebellar granule neurons. Immuno-histological studies further strengthened the expression pattern of RA receptors in response to ethanol. The DNA-binding activity of RARs was reduced, while DNA-binding activity of RXRs was increased in response to ethanol exposure. CONCLUSION For the first time, our studies have demonstrated that high-dose ethanol affects the expression and activation of RA receptors, which could impair the signaling events and induce harmful effects on the survival and differentiation of cerebellar granule cells. Taken together, these findings could provide insight into the treatment options for brain defects caused by excessive ethanol exposure, such as in Fetal Alcohol Spectrum Disorders.
Collapse
Affiliation(s)
- Ambrish Kumar
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, 29209, USA
| | | | | | | |
Collapse
|
43
|
Robson LG, Dyall SC, Sidloff D, Michael-Titus AT. Omega-3 polyunsaturated fatty acids increase the neurite outgrowth of rat sensory neurones throughout development and in aged animals. Neurobiol Aging 2010; 31:678-87. [PMID: 18620782 DOI: 10.1016/j.neurobiolaging.2008.05.027] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 05/07/2008] [Accepted: 05/28/2008] [Indexed: 01/25/2023]
Abstract
Polyunsaturated fatty acids (PUFA) of the omega-3 series and omega-6 series modulate neurite outgrowth in immature neurones. However, it has not been determined if their neurotrophic effects persist in adult and aged tissue. We prepared cultures of primary sensory neurones from male and female rat dorsal root ganglia (DRG), isolated at different ages: post-natal day 3 (P3) and day 9 (P9), adult (2-4 months) and aged (18-20 months). Cultures were incubated with the omega-6 PUFA arachidonic acid (AA) and the omega-3 PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), at 0.8, 4, 8 and 40muM. PUFA increased neurite outgrowth throughout the developmental stages studied. The effects of omega-3 PUFA, in particular DHA, were still prominent in aged tissue. The amplitude of the effects was comparable to that of nerve growth factor (NGF; 50ng/ml) and all-trans-retinoic acid (ATRA; 0.1muM). The effects of PUFA were similar in cells positive or negative for the N52 neurofilament marker. Our results show that omega-3 PUFA have a marked neurite-promoting potential in neurones from adult and aged animals.
Collapse
Affiliation(s)
- Lesley G Robson
- Neuroscience Centre, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, Whitechapel, London E1 2AT, United Kingdom
| | | | | | | |
Collapse
|
44
|
Agudo M, Yip P, Davies M, Bradbury E, Doherty P, McMahon S, Maden M, Corcoran JP. A retinoic acid receptor beta agonist (CD2019) overcomes inhibition of axonal outgrowth via phosphoinositide 3-kinase signalling in the injured adult spinal cord. Neurobiol Dis 2010; 37:147-55. [PMID: 19800972 PMCID: PMC2789321 DOI: 10.1016/j.nbd.2009.09.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/10/2009] [Accepted: 09/27/2009] [Indexed: 01/12/2023] Open
Abstract
After spinal cord injury in the adult mammal, axons do not normally regrow and this commonly leads to paralysis. Retinoic acid (RA) can stimulate neurite outgrowth in vitro of both the embryonic central and peripheral nervous system, via activation of the retinoic acid receptor (RAR) beta2. We show here that regions of the adult CNS, including the cerebellum and cerebral cortex, express RARbeta2. We show that when cerebellar neurons are grown in the presence of myelin-associated glycoprotein (MAG) which inhibits neurite outgrowth, RARbeta can be activated in a dose dependent manner by a RARbeta agonist (CD2019) and neurite outgrowth can occur via phosphoinositide 3-kinase (PI3K) signalling. In a model of spinal cord injury CD2019 also acts through PI3K signalling to induce axonal outgrowth of descending corticospinal fibres and promote functional recovery. Our data suggest that RARbeta agonists may be of therapeutic potential for human spinal cord injuries.
Collapse
Affiliation(s)
- Marta Agudo
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Ping Yip
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Meirion Davies
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Elizabeth Bradbury
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Patrick Doherty
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Stephen McMahon
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Malcolm Maden
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Jonathan P.T. Corcoran
- The Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
45
|
Shudo K, Fukasawa H, Nakagomi M, Yamagata N. Towards retinoid therapy for Alzheimer's disease. Curr Alzheimer Res 2009; 6:302-11. [PMID: 19519313 PMCID: PMC2765081 DOI: 10.2174/156720509788486581] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 11/05/2008] [Accepted: 11/12/2008] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease(AD) is associated with a variety of pathophysiological features, including amyloid plaques, inflammation, immunological changes, cell death and regeneration processes, altered neurotransmission, and age-related changes. Retinoic acid receptors (RARs) and retinoids are relevant to all of these. Here we review the pathology, pharmacology, and biochemistry of AD in relation to RARs and retinoids, and we suggest that retinoids are candidate drugs for treatment of AD.
Collapse
Affiliation(s)
- K Shudo
- Research Foundation ITSUU Laboratory, Tokyo, Japan.
| | | | | | | |
Collapse
|
46
|
Hollis ER, Jamshidi P, Löw K, Blesch A, Tuszynski MH. Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation. Proc Natl Acad Sci U S A 2009; 106:7215-20. [PMID: 19359495 PMCID: PMC2678459 DOI: 10.1073/pnas.0810624106] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Indexed: 11/18/2022] Open
Abstract
Several experimental manipulations of the CNS environment successfully elicit regeneration of sensory and bulbospinal motor axons but fail to elicit regeneration of corticospinal axons, suggesting that cell-intrinsic mechanisms limit the regeneration of this critical class of motor neurons. We hypothesized that enhancement of intrinsic neuronal growth mechanisms would enable adult corticospinal motor axon regeneration. Lentiviral vectors were used to overexpress the BDNF receptor trkB in layer V corticospinal motor neurons. After subcortical axotomy, trkB transduction induced corticospinal axon regeneration into subcortical lesion sites expressing BDNF. In the absence of trkB overexpression, no regeneration occurred. Selective deletion of canonical, trkB-mediated neurite outgrowth signaling by mutation of the Shc/FRS-2 activation domain prohibited Erk activation and eliminated regeneration. These findings support the hypothesis that the refractory regenerative state of adult corticospinal axons can be attributed at least in part to neuron-intrinsic mechanisms, and that activation of ERK signaling can elicit corticospinal tract regeneration.
Collapse
Affiliation(s)
- Edmund R. Hollis
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093-0626; and
| | - Pouya Jamshidi
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093-0626; and
| | - Karin Löw
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093-0626; and
| | - Armin Blesch
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093-0626; and
| | - Mark H. Tuszynski
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093-0626; and
- Veterans Affairs Medical Center, La Jolla, CA 92161
| |
Collapse
|
47
|
Nagashima M, Sakurai H, Mawatari K, Koriyama Y, Matsukawa T, Kato S. Involvement of retinoic acid signaling in goldfish optic nerve regeneration. Neurochem Int 2009; 54:229-36. [PMID: 19114071 DOI: 10.1016/j.neuint.2008.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 11/11/2008] [Accepted: 11/27/2008] [Indexed: 12/21/2022]
Abstract
Recently, we identified a retina-specific retinol-binding protein, purpurin, as a trigger molecule in the early stage of goldfish optic nerve regeneration. Purpurin protein was secreted by photoreceptors to injured ganglion cells, at 2-5 days after optic nerve injury. Purpurin bound to retinol induced neurite outgrowth in retinal explant cultures and retinoic acid (RA) had a comparable effect on neurite outgrowth. These results indicate that purpurin acts as a retinol transporter and facilitates conversion of retinol to RA. Intracellularly, RA is transported into the nucleus with cellular retinoic acid-binding protein IIb (CRABPIIb) and binds with retinoic acid receptor alpha (RARalpha) as a transcriptional regulator of target genes. Here, we investigated the RA signaling through RA synthesis to RARalpha in the goldfish retina during optic nerve regeneration by RT-PCR. Retinaldehyde dehydrogenase 2 (RALDH2; an RA synthetic enzyme) mRNA was increased by 2.7-fold in the retina at 7-10 days and then gradually decreased until 40 days after nerve injury. In contrast, cytochrome P450 26a1 (CYP26a1; an RA degradative enzyme) mRNA was decreased to less than half in the retina at 5-20 days and then gradually returned to the control level by 40 days after nerve injury. CRABPIIb mRNA was increased by 1.5-fold in the retina at 10 days after axotomy, RARalphaa mRNA was increased by 1.8-fold in the retina at 10 days after axotomy. The cellular changes in the RA signaling molecules after optic nerve injury were almost all located in the ganglion cells, as evaluated by in situ hybridization. The present data described for the first time that RA signaling through RALDH2 and CRABPIIb to RARalpha was serially upregulated in the ganglion cells at 7-10 days just after the purpurin induction. Therefore, we conclude that the triggering action of purpurin on optic nerve regeneration is mediated by RA signaling pathway.
Collapse
|
48
|
Lund BW, Knapp AE, Piu F, Gauthier NK, Begtrup M, Hacksell U, Olsson R. Design, Synthesis, and Structure−Activity Analysis of Isoform-Selective Retinoic Acid Receptor β Ligands. J Med Chem 2009; 52:1540-5. [DOI: 10.1021/jm801532e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Birgitte W. Lund
- ACADIA Pharmaceuticals AB, Medeon Science Park, S-205 12 Malmö, Sweden, ACADIA Pharmaceuticals Inc., 3911 Sorrento Valley Boulevard, San Diego, California, 92121, and Department of Medicinal Chemistry, The Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anne Eeg Knapp
- ACADIA Pharmaceuticals AB, Medeon Science Park, S-205 12 Malmö, Sweden, ACADIA Pharmaceuticals Inc., 3911 Sorrento Valley Boulevard, San Diego, California, 92121, and Department of Medicinal Chemistry, The Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Fabrice Piu
- ACADIA Pharmaceuticals AB, Medeon Science Park, S-205 12 Malmö, Sweden, ACADIA Pharmaceuticals Inc., 3911 Sorrento Valley Boulevard, San Diego, California, 92121, and Department of Medicinal Chemistry, The Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Natalie K. Gauthier
- ACADIA Pharmaceuticals AB, Medeon Science Park, S-205 12 Malmö, Sweden, ACADIA Pharmaceuticals Inc., 3911 Sorrento Valley Boulevard, San Diego, California, 92121, and Department of Medicinal Chemistry, The Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Mikael Begtrup
- ACADIA Pharmaceuticals AB, Medeon Science Park, S-205 12 Malmö, Sweden, ACADIA Pharmaceuticals Inc., 3911 Sorrento Valley Boulevard, San Diego, California, 92121, and Department of Medicinal Chemistry, The Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Uli Hacksell
- ACADIA Pharmaceuticals AB, Medeon Science Park, S-205 12 Malmö, Sweden, ACADIA Pharmaceuticals Inc., 3911 Sorrento Valley Boulevard, San Diego, California, 92121, and Department of Medicinal Chemistry, The Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Roger Olsson
- ACADIA Pharmaceuticals AB, Medeon Science Park, S-205 12 Malmö, Sweden, ACADIA Pharmaceuticals Inc., 3911 Sorrento Valley Boulevard, San Diego, California, 92121, and Department of Medicinal Chemistry, The Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
49
|
Zhuang B, Su YS, Sockanathan S. FARP1 promotes the dendritic growth of spinal motor neuron subtypes through transmembrane Semaphorin6A and PlexinA4 signaling. Neuron 2009; 61:359-72. [PMID: 19217374 PMCID: PMC2654783 DOI: 10.1016/j.neuron.2008.12.022] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/07/2008] [Accepted: 12/11/2008] [Indexed: 01/08/2023]
Abstract
The dendritic morphology of neurons dictates their abilities to process and transmit information; however, the signaling pathways that regulate dendritic growth and complexity are poorly understood. Here, we show that retinoids induce the expression of the FERM Rho-GEF protein FARP1 in the developing spinal cord. FARP1 is expressed in subsets of motor neurons and is enriched in dendrites of lateral motor column (LMC) neurons that innervate the limb. FARP1 is necessary and sufficient to promote LMC dendritic growth but does not affect dendrite number or axonal morphology. We show that FARP1 serves as a specific effector of transmembrane Semaphorin6A and PlexinA4 signals to regulate LMC dendritic growth, and that its Rho-GEF domain is necessary for this function. These findings reveal that retinoid and Sema6A/PlexA4 signaling pathways intersect through FARP1 to control dendritic growth, and uncover the existence of subtype-specific signaling networks that control dendritic developmental programs in spinal motor neurons.
Collapse
Affiliation(s)
- BinQuan Zhuang
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore MD 21205, Tel: 410-502 3084, Fax: 410-614 8423, e-mail:
| | - YouRong Sophie Su
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore MD 21205, Tel: 410-502 3084, Fax: 410-614 8423, e-mail:
| | - Shanthini Sockanathan
- The Solomon Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore MD 21205, Tel: 410-502 3084, Fax: 410-614 8423, e-mail:
| |
Collapse
|
50
|
Wang G, Scott SA. Retinoid signaling is involved in governing the waiting period for axons in chick hindlimb. Dev Biol 2008; 321:216-26. [PMID: 18602384 PMCID: PMC2596718 DOI: 10.1016/j.ydbio.2008.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/12/2008] [Accepted: 06/12/2008] [Indexed: 01/01/2023]
Abstract
During embryonic development in chick, axons pause in a plexus region for approximately 1 day prior to invading the limb. We have previously shown that this "waiting period" is governed by maturational changes in the limb. Here we provide a detailed description of the spatiotemporal pattern of Raldh2 expression in lumbosacral motoneurons and in the limb, and show that retinoid signaling in the limb contributes significantly to terminating the waiting period. Raldh2, indicative of retinoid signaling, first appears in hindlimb mesenchyme near the end of the waiting period. Transcripts are more abundant in connective tissue associated with predominantly fast muscles than predominantly slow muscles, but are not expressed in muscle cells themselves. The tips of ingrowing axons are always found in association with domains of Raldh2, but development of Raldh2 expression is not regulated by the axons. Instead, retinoid signaling appears to regulate axon entry into the limb. Supplying exogenous retinoic acid to proximal limb during the waiting period caused both motor and sensory axons to invade the limb prematurely and altered the normal stereotyped pattern of axon ingrowth without obvious effects on limb morphogenesis or motoneuron specification. Conversely, locally decreasing retinoid synthesis reduced axon growth into the limb. Retinoic acid significantly enhanced motor axon growth in vitro, suggesting that retinoic acid may directly promote axon growth into the limb in vivo. In addition, retinoid signaling may indirectly affect the waiting period by regulating the maturation of other gate keeping or guidance molecules in the limb. Together these findings reveal a novel function of retinoid signaling in governing the timing and patterning of axon growth into the limb.
Collapse
Affiliation(s)
- Guoying Wang
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 20 N 1900 East, Salt Lake City, UT 84108
| | - Sheryl A. Scott
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 20 N 1900 East, Salt Lake City, UT 84108
| |
Collapse
|