1
|
Ramos-Alvarez I, Jensen RT. The Important Role of p21-Activated Kinases in Pancreatic Exocrine Function. BIOLOGY 2025; 14:113. [PMID: 40001881 PMCID: PMC11851965 DOI: 10.3390/biology14020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025]
Abstract
The p21-activated kinases (PAKs) are a conserved family of serine/threonine protein kinases, which are effectors for the Rho family GTPases, namely, Rac/Cdc42. PAKs are divided into two groups: group I (PAK1-3) and group II (PAK4-6). Both groups of PAKs have been well studied in apoptosis, protein synthesis, glucose homeostasis, growth (proliferation and survival) and cytoskeletal regulation, as well as in cell motility, proliferation and cycle control. However, little is known about the role of PAKs in the secretory tissues, including in exocrine tissue, such as the exocrine pancreas (except for islet function and pancreatic cancer growth). Recent studies have provided insights supporting the importance of PAKs in exocrine pancreas. This review summarizes the recent insights into the importance of PAKs in the exocrine pancreas by reviewing their presence and activation; the ability of GI hormones/neurotransmitters/GFs/post-receptor activators to activate them; the kinetics of their activation; the participation of exocrine-tissue PAKs in activating the main growth-signaling cascade; their roles in the stimulation of enzyme secretion; finally, their roles in pancreatitis. These insights suggest that PAKs could be more important in exocrine/secretory tissues than currently appreciated and that their roles should be explored in more detail in the future.
Collapse
Affiliation(s)
| | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20812-1804, USA;
| |
Collapse
|
2
|
Li Q, Chen Q, Wang W, Xie R, Li Z, Chen D. KGF secreted from HSCs activates PAK4/BMI1, promotes HCC stemness through PI3K/AKT pathway. IUBMB Life 2024. [PMID: 39544166 DOI: 10.1002/iub.2929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/29/2024] [Indexed: 11/17/2024]
Abstract
In our present study, we investigated the interaction between HSCs and HCC, also explored the molecular mechanism. Clinical samples were collected from HCC and adjacent tissue with different degree of liver fibrosis. HCC cells were co-cultured with LX-2 cell by Transwell system or cultured with conditioned medium (CM), which was collected from LX-2. The tumor spheroid growth and colony formation analyses were performed to evaluate the cell stemness. Flow cytometry analysis was conducted on cell apoptosis after 5-Fu treatment. Co-immunoprecipitation assay confirmed the interaction between BMI1 and PAK4. Our results showed that BMI1 was highly expressed in HCC and was correlated with HCC liver fibrosis. Both co-cultured with LX-2 and cultured with CM promoted HCC stemness, also increased KGF level and BMI1 expression. KGF treatment had a similar effect with co-culture with LX-2 on HCC. BMI1 overexpression promoted HCC stemness and activated PI3K/AKT pathway, which was reversed by PI3K inhibition. PAK4 was activated by KGF, then phosphorylated S315 site and promoted protein stability of BMI1, therefore enhanced HCC stemness. BMI1 also had a promote effect on liver fibrosis. In summary, we found that KGF secreted by HSCs activated PAK4, which phosphorylated S315 and promoted protein stability of BMI1, and further promoted liver fibrosis and HCC stemness through the PI3K/AKT signaling pathway. Our present study deeply studied the interaction and mechanism between HSCs and HCC, which might provide a new insight for HCC therapy.
Collapse
Affiliation(s)
- Qinghua Li
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, China
| | - Qiuyang Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University and Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, China
| | - Wenchao Wang
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, China
| | - Rongrong Xie
- Health Management, Shanghai Jianqiao University School, China
| | - Zhen Li
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, China
| | - Dawei Chen
- Department of Hepatopancreatobiliary Surgery, Jiangyin People's Hospital Affiliated to Nantong University, China
| |
Collapse
|
3
|
Ong JWJ, Tan KS, Lee JJX, Seet JE, Choi HW, Ler SG, Gunaratne J, Narasaraju T, Sham LT, Patzel V, Chow VT. Differential effects of microRNAs miR-21, miR-99 and miR-145 on lung regeneration and inflammation during recovery from influenza pneumonia. J Med Virol 2023; 95:e29286. [PMID: 38087452 DOI: 10.1002/jmv.29286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/10/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023]
Abstract
In a mouse model of influenza pneumonia, we previously documented that proliferating alveolar type II (AT2) cells are the major stem cells involved in early lung recovery. Profiling of microRNAs revealed significant dysregulation of specific ones, including miR-21 and miR-99a. Moreover, miR-145 is known to exhibit antagonism to miR-21. This follow-up study investigated the roles of microRNAs miR-21, miR-99a, and miR-145 in the murine pulmonary regenerative process and inflammation during influenza pneumonia. Inhibition of miR-21 resulted in severe morbidity, and in significantly decreased proliferating AT2 cells due to impaired transition from innate to adaptive immune responses. Knockdown of miR-99a culminated in moderate morbidity, with a significant increase in proliferating AT2 cells that may be linked to PTEN downregulation. In contrast, miR-145 antagonism did not impact morbidity nor the proliferating AT2 cell population, and was associated with downregulation of TNF-alpha, IL1-beta, YM1, and LY6G. Hence, a complex interplay exists between expression of specific miRNAs, lung regeneration, and inflammation during recovery from influenza pneumonia. Inhibition of miR-21 and miR-99a (but not miR-145) can lead to deleterious cellular and molecular effects on pulmonary repair and inflammatory processes during influenza pneumonia.
Collapse
Affiliation(s)
- Joe Wee Jian Ong
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kai Sen Tan
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Ju Ee Seet
- Department of Pathology, National University of Singapore, Singapore
| | - Hyung Won Choi
- Department of Medicine, National University of Singapore, Singapore
| | | | | | - Teluguakula Narasaraju
- Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, Karnataka, India
| | - Lok-To Sham
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Volker Patzel
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Vincent T Chow
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
4
|
Chetty AK, Ha BH, Boggon TJ. Rho family GTPase signaling through type II p21-activated kinases. Cell Mol Life Sci 2022; 79:598. [PMID: 36401658 PMCID: PMC10105373 DOI: 10.1007/s00018-022-04618-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/07/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022]
Abstract
Signaling from the Rho family small GTPases controls a wide range of signaling outcomes. Key among the downstream effectors for many of the Rho GTPases are the p21-activated kinases, or PAK group. The PAK family comprises two types, the type I PAKs (PAK1, 2 and 3) and the type II PAKs (PAK4, 5 and 6), which have distinct structures and mechanisms of regulation. In this review, we discuss signal transduction from Rho GTPases with a focus on the type II PAKs. We discuss the role of PAKs in signal transduction pathways and selectivity of Rho GTPases for PAK family members. We consider the less well studied of the Rho GTPases and their PAK-related signaling. We then discuss the molecular basis for kinase domain recognition of substrates and for regulation of signaling. We conclude with a discussion of the role of PAKs in cross talk between Rho family small GTPases and the roles of PAKs in disease.
Collapse
Affiliation(s)
- Ashwin K Chetty
- Yale College, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Byung Hak Ha
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
5
|
Yuan Y, Zhang H, Li D, Li Y, Lin F, Wang Y, Song H, Liu X, Li F, Zhang J. PAK4 in cancer development: Emerging player and therapeutic opportunities. Cancer Lett 2022; 545:215813. [DOI: 10.1016/j.canlet.2022.215813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
|
6
|
Yu X, Huang C, Liu J, Shi X, Li X. The significance of PAK4 in signaling and clinicopathology: A review. Open Life Sci 2022; 17:586-598. [PMID: 35800076 PMCID: PMC9210989 DOI: 10.1515/biol-2022-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/17/2022] [Accepted: 03/12/2022] [Indexed: 11/15/2022] Open
Abstract
P21-activated protein kinases (PAKs) are thought to be at the center of tumor signaling pathways. As a representative member of the group II PAK family, P21-activated protein kinase 4 (PAK4) plays an important role in the development of tumors, with several biological functions such as participating in oncogenic transformation, promoting cell division, resisting aging and apoptosis, regulating cytoskeleton and adhesion, as well as suppressing antitumor immune responses. PAK4 is also crucial in biological processes, including the occurrence, proliferation, survival, migration, invasion, drug resistance, and immune escape of tumor cells. It is closely related to poor prognosis and tumor-related pathological indicators, which have significant clinical and pathological significance. Therefore, this article offers a review of the structure, activation, and biological functions of PAK4 and its clinical and pathological importance. This overview should be of assistance for future research on PAK4 and tumors and provide new ideas for tumor treatment and prognostic evaluation of patients.
Collapse
Affiliation(s)
- Xinbo Yu
- The First Clinical College, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Changwei Huang
- The First Clinical College, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Jiyuan Liu
- The First Clinical College, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Xinyu Shi
- The Second Clinical College, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Xiaodong Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, Liaoning Province 110122, China
| |
Collapse
|
7
|
Wang H, Song P, Gao Y, Shen L, Xu H, Wang J, Cheng M. Drug discovery targeting p21-activated kinase 4 (PAK4): a patent review. Expert Opin Ther Pat 2021; 31:977-987. [PMID: 34369844 DOI: 10.1080/13543776.2021.1944100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: The Ser/Thr protein kinase PAK4 is a downstream regulator of Cdc42, mediating cytoskeleton remodeling, and cell motility, and inhibiting apoptosis and transcriptional regulation. Nowadays, efforts in PAK4 inhibitor development are focusing on improving inhibitory selectivity, cellular potency, and in vivo pharmacokinetic properties, and identifying the feasibility of immunotherapy combination in oncology therapy.Areas covered: This review summarized the development of PAK4 inhibitors that reported on patents in the past two decades. According to their binding features, these inhibitors were classified into type I, type I 1/2, and PAMs. Their designing ideas and SAR were elucidated in this review. Moreover, synergistic therapy of PAK4 inhibitors with PD-1/PD-L1 or CAR-T were also summarized .Expert opinion: In the past years, preclinical and clinical studies of PAK4 inhibitors ended in failure due to poor selectivity, cellular activity, or pharmacokinetic issues. There are researchers questioning the reliability of PAK4 as a drug target, particularly PAK4-related therapy is concerned with the distinguishment of the non-kinase functions and catalytic functions triggered by PAK4 phosphorylation. Meanwhile, synergistic effects of PAK4 inhibitors with PD-1/PD-L1 and CAR-T immunotherapy shed light for the development of PAK4 inhibitors.
Collapse
Affiliation(s)
- Hanxun Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Peilu Song
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yinli Gao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Lanlan Shen
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Hanqin Xu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Jian Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Maosheng Cheng
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
8
|
Haapalainen AM, Daddali R, Hallman M, Rämet M. Human CPPED1 belongs to calcineurin-like metallophosphoesterase superfamily and dephosphorylates PI3K-AKT pathway component PAK4. J Cell Mol Med 2021; 25:6304-6317. [PMID: 34009729 PMCID: PMC8366450 DOI: 10.1111/jcmm.16607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Protein kinases and phosphatases regulate cellular processes by reversible phosphorylation and dephosphorylation events. CPPED1 is a recently identified serine/threonine protein phosphatase that dephosphorylates AKT1 of the PI3K-AKT signalling pathway. We previously showed that CPPED1 levels are down-regulated in the human placenta during spontaneous term birth. In this study, based on sequence comparisons, we propose that CPPED1 is a member of the class III phosphodiesterase (PDE) subfamily within the calcineurin-like metallophosphoesterase (MPE) superfamily rather than a member of the phosphoprotein phosphatase (PPP) or metal-dependent protein phosphatase (PPM) protein families. We used a human proteome microarray to identify 36 proteins that putatively interact with CPPED1. Of these, GRB2, PAK4 and PIK3R2 are known to regulate the PI3K-AKT pathway. We further confirmed CPPED1 interactions with PAK4 and PIK3R2 by coimmunoprecipitation analyses. We characterized the effect of CPPED1 on phosphorylation of PAK4 and PIK3R2 in vitro by mass spectrometry. CPPED1 dephosphorylated specific serine residues in PAK4, while phosphorylation levels in PIK3R2 remained unchanged. Our findings indicate that CPPED1 may regulate PI3K-AKT pathway activity at multiple levels. Higher CPPED1 levels may inhibit PI3K-AKT pathway maintaining pregnancy. Consequences of decreased CPPED1 expression during labour remain to be elucidated.
Collapse
Affiliation(s)
- Antti M. Haapalainen
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Ravindra Daddali
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Mikko Hallman
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Mika Rämet
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| |
Collapse
|
9
|
Liu H, Liu K, Dong Z. The Role of p21-Activated Kinases in Cancer and Beyond: Where Are We Heading? Front Cell Dev Biol 2021; 9:641381. [PMID: 33796531 PMCID: PMC8007885 DOI: 10.3389/fcell.2021.641381] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
The p21-activated kinases (PAKs), downstream effectors of Ras-related Rho GTPase Cdc42 and Rac, are serine/threonine kinases. Biologically, PAKs participate in various cellular processes, including growth, apoptosis, mitosis, immune response, motility, inflammation, and gene expression, making PAKs the nexus of several pathogenic and oncogenic signaling pathways. PAKs were proved to play critical roles in human diseases, including cancer, infectious diseases, neurological disorders, diabetes, pancreatic acinar diseases, and cardiac disorders. In this review, we systematically discuss the structure, function, alteration, and molecular mechanisms of PAKs that are involved in the pathogenic and oncogenic effects, as well as PAK inhibitors, which may be developed and deployed in cancer therapy, anti-viral infection, and other diseases. Furthermore, we highlight the critical questions of PAKs in future research, which provide an opportunity to offer input and guidance on new directions for PAKs in pathogenic, oncogenic, and drug discovery research.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| |
Collapse
|
10
|
De Piano M, Manuelli V, Zadra G, Loda M, Muir G, Chandra A, Morris J, Van Hemelrijck M, Wells CM. Exploring a role for fatty acid synthase in prostate cancer cell migration. Small GTPases 2020; 12:265-272. [PMID: 33043786 DOI: 10.1080/21541248.2020.1826781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fatty acid synthase (FASN) is commonly overexpressed in prostate cancer and associated with tumour progression. FASN is responsible for de novo synthesis of the fatty acid palmitate; the building block for protein palmitoylation. A functional role for FASN in regulating cell proliferation is widely accepted. We recently reported that FASN activity can also mediate prostate cancer HGF-mediated cell motility. Moreover, we found that modulation of FASN expression specifically impacts on the palmitoylation of RhoU. Findings we will describe here. We now report that loss of FASN expression also impairs HGF-mediated cell dissociation responses. Taken together our results provide compelling evidence that FASN activity directly promotes cell migration and supports FASN as a potential therapeutic target in metastatic prostate cancer.
Collapse
Affiliation(s)
- Mario De Piano
- School of Cancer and Pharmaceutical Sciences, Kings College London, London, UK
| | - Valeria Manuelli
- School of Cancer and Pharmaceutical Sciences, Kings College London, London, UK
| | - Giorgia Zadra
- Departments of Oncologic Pathology and Pathology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Massimo Loda
- Departments of Oncologic Pathology and Pathology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Gordon Muir
- Urology, King's College Hospital, London, UK
| | - Ash Chandra
- Cellular Pathology, St. Thomas' Hospital, London, UK
| | - Jonathan Morris
- School of Cancer and Pharmaceutical Sciences, Kings College London, London, UK
| | | | - Claire M Wells
- School of Cancer and Pharmaceutical Sciences, Kings College London, London, UK
| |
Collapse
|
11
|
Foxall E, Staszowska A, Hirvonen LM, Georgouli M, Ciccioli M, Rimmer A, Williams L, Calle Y, Sanz-Moreno V, Cox S, Jones GE, Wells CM. PAK4 Kinase Activity Plays a Crucial Role in the Podosome Ring of Myeloid Cells. Cell Rep 2020; 29:3385-3393.e6. [PMID: 31825823 PMCID: PMC6915307 DOI: 10.1016/j.celrep.2019.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/03/2019] [Accepted: 11/05/2019] [Indexed: 02/08/2023] Open
Abstract
p21-Activated kinase 4 (PAK4), a serine/threonine kinase, is purported to localize to podosomes: transient adhesive structures that degrade the extracellular matrix to facilitate rapid myeloid cell migration. We find that treatment of transforming growth factor β (TGF-β)-differentiated monocytic (THP-1) cells with a PAK4-targeted inhibitor significantly reduces podosome formation and induces the formation of focal adhesions. This switch in adhesions confers a diminution of matrix degradation and reduced cell migration. Furthermore, reduced PAK4 expression causes a significant reduction in podosome number that cannot be rescued by kinase-dead PAK4, supporting a kinase-dependent role. Concomitant with PAK4 depletion, phosphorylation of Akt is perturbed, whereas a specific phospho-Akt signal is detected within the podosomes. Using superresolution analysis, we find that PAK4 specifically localizes in the podosome ring, nearer to the actin core than other ring proteins. We propose PAK4 kinase activity intersects with the Akt pathway at the podosome ring:core interface to drive regulation of macrophage podosome turnover.
Collapse
Affiliation(s)
- Elizabeth Foxall
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Adela Staszowska
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Liisa M Hirvonen
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Mirella Georgouli
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | | | - Alexander Rimmer
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Lynn Williams
- Kennedy Institute of Rheumatology, Oxford University, Oxford, UK
| | - Yolanda Calle
- Department of Life Sciences, University of Roehampton, London, UK
| | - Victoria Sanz-Moreno
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK; Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Susan Cox
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Gareth E Jones
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| | - Claire M Wells
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK.
| |
Collapse
|
12
|
Zhao CC, Zhan MN, Liu WT, Jiao Y, Zhang YY, Lei Y, Zhang TT, Zhang CJ, Du YY, Gu KS, Wei W. Combined LIM kinase 1 and p21-Activated kinase 4 inhibitor treatment exhibits potent preclinical antitumor efficacy in breast cancer. Cancer Lett 2020; 493:120-127. [PMID: 32829006 DOI: 10.1016/j.canlet.2020.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 12/20/2022]
Abstract
LIM kinase 1 (LIMK1) and p21-activated kinase 4 (PAK4) are often over-expressed in breast tumors, which causes aggressive cancer phenotypes and unfavorable clinical outcomes. In addition to the well-defined role in regulating cell division, proliferation and invasion, the two kinases promote activation of the MAPK pathway and cause endocrine resistance through phosphorylating estrogen receptor alpha (ERα). PAK4 specifically phosphorylates LIMK1 and its functional partners, indicating possible value of suppressing both kinases in cancers that over-express PAK4 and/or LIMK1. Here, for the first time, we assessed the impact of combining LIMK1 inhibitor LIMKi 3 and PAK4 inhibitor PF-3758309 in preclinical breast cancer models. LIMK1 and PAK4 pharmacological inhibition synergistically reduced the survival of various cancer cell lines, exhibiting specific efficacy in luminal and HER2-enriched models, and suppressed development and ERα-driven signals in a BT474 xenograft model. In silico analysis demonstrated the cell lines with reliance on LIMK1 were the most prone to be susceptible to PAK4 inhibition. Double LIMK1 and PAK4 targeting therapy can be a successful therapeutic strategy for breast cancer, with a unique efficiency in the subtypes of luminal and HER2-enriched tumors.
Collapse
Affiliation(s)
- Chen-Chen Zhao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Meng-Na Zhan
- Department of Pathology, Zhong-Shan Hospital Affiliated to Fudan University, Shanghai, 200023, China
| | - Wan-Ting Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Yang Jiao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Yi-Yin Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Yu Lei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Teng-Teng Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Cong-Jun Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Ying-Ying Du
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Kang-Sheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China.
| | - Wei Wei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China.
| |
Collapse
|
13
|
Annunziata MC, Parisi M, Esposito G, Fabbrocini G, Ammendola R, Cattaneo F. Phosphorylation Sites in Protein Kinases and Phosphatases Regulated by Formyl Peptide Receptor 2 Signaling. Int J Mol Sci 2020; 21:ijms21113818. [PMID: 32471307 PMCID: PMC7312799 DOI: 10.3390/ijms21113818] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
FPR1, FPR2, and FPR3 are members of Formyl Peptides Receptors (FPRs) family belonging to the GPCR superfamily. FPR2 is a low affinity receptor for formyl peptides and it is considered the most promiscuous member of this family. Intracellular signaling cascades triggered by FPRs include the activation of different protein kinases and phosphatase, as well as tyrosine kinase receptors transactivation. Protein kinases and phosphatases act coordinately and any impairment of their activation or regulation represents one of the most common causes of several human diseases. Several phospho-sites has been identified in protein kinases and phosphatases, whose role may be to expand the repertoire of molecular mechanisms of regulation or may be necessary for fine-tuning of switch properties. We previously performed a phospho-proteomic analysis in FPR2-stimulated cells that revealed, among other things, not yet identified phospho-sites on six protein kinases and one protein phosphatase. Herein, we discuss on the selective phosphorylation of Serine/Threonine-protein kinase N2, Serine/Threonine-protein kinase PRP4 homolog, Serine/Threonine-protein kinase MARK2, Serine/Threonine-protein kinase PAK4, Serine/Threonine-protein kinase 10, Dual specificity mitogen-activated protein kinase kinase 2, and Protein phosphatase 1 regulatory subunit 14A, triggered by FPR2 stimulation. We also describe the putative FPR2-dependent signaling cascades upstream to these specific phospho-sites.
Collapse
Affiliation(s)
- Maria Carmela Annunziata
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.C.A.); (M.P.); (G.F.)
| | - Melania Parisi
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.C.A.); (M.P.); (G.F.)
| | - Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (G.E.); (R.A.)
| | - Gabriella Fabbrocini
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.C.A.); (M.P.); (G.F.)
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (G.E.); (R.A.)
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (G.E.); (R.A.)
- Correspondence: ; Fax: +39-081-7464-359
| |
Collapse
|
14
|
Römermann D, Ansari N, Schultz-Moreira AR, Michael A, Marhenke S, Hardtke-Wolenski M, Longerich T, Manns MP, Wedemeyer H, Vogel A, Buitrago-Molina LE. Absence of Atg7 in the liver disturbed hepatic regeneration after liver injury. Liver Int 2020; 40:1225-1238. [PMID: 32141704 DOI: 10.1111/liv.14425] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Autophagy is a critical process in cell survival and the maintenance of homeostasis. However, the implementation of therapeutic approaches based on autophagy mechanisms after liver damage is still challenging. METHODS We used a hepatospecific Atg7-deficient murine model to address this question. RESULTS We showed that the proliferation and regeneration capacity of Atg7-deficient hepatocytes was impaired. On the one hand, Atg7-deficient hepatocytes showed steady-state hyperproliferation. On the other hand, external triggers such as partial hepatectomy (PHx) or cell transplantation did not induce hepatocellular proliferation or liver repopulation. After PHx, hepatocyte proliferation was strongly decreased, accompanied by high mortality. This increase in mortality could be overcome by pharmacological mTOR inhibition. In accordance with hepatocyte hypoproliferation after damage, Atg7-deficient hepatocytes failed to repopulate the liver in a hepatic injury model. Atg7-deficient mice showed hepatic hypertrophy, transient cellular hypertrophy, and high transaminase levels followed by strong perisinusoidal/pericellular fibrosis with age. Their elevated modified hepatic activity index (mHAI) was almost exclusively due to apoptosis without any inflammation. These parameters were associated with variations in the triglyceride content and compromised lipid droplet formation after PHx. Mechanistically, we also observed a modulation of HGF, PAK4, NOTCH3 and YES1, which are proteins involved in cell cycle regulation. CONCLUSION We demonstrated the important role of autophagy in the regeneration capacity of hepatocytes. We showed the causative relationship between autophagy and triglycerides that is essential for promoting liver recovery. Finally, pharmacological mTOR inhibition overcame the impact of autophagy deficiency after liver damage and prevented mortality.
Collapse
Affiliation(s)
- Dorothee Römermann
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Nadiea Ansari
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Adriana Rita Schultz-Moreira
- Department of Gastroenterology and Hepatology, Essen University Hospital, University Duisburg-Essen, Essen, Germany
| | - Alina Michael
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Silke Marhenke
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Matthias Hardtke-Wolenski
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany.,Department of Gastroenterology and Hepatology, Essen University Hospital, University Duisburg-Essen, Essen, Germany
| | - Thomas Longerich
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany.,Department of Gastroenterology and Hepatology, Essen University Hospital, University Duisburg-Essen, Essen, Germany
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany
| | - Laura Elisa Buitrago-Molina
- Department of Gastroenterology, Hepatology & Endocrinology, Hannover Medical School, Hannover, Germany.,Department of Gastroenterology and Hepatology, Essen University Hospital, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
15
|
Ramos-Álvarez I, Lee L, Jensen RT. Group II p21-activated kinase, PAK4, is needed for activation of focal adhesion kinases, MAPK, GSK3, and β-catenin in rat pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2020; 318:G490-G503. [PMID: 31984786 PMCID: PMC7099487 DOI: 10.1152/ajpgi.00229.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/31/2023]
Abstract
PAK4 is the only member of the Group II p21-activated kinases (PAKs) present in rat pancreatic acinar cells and is activated by gastrointestinal hormones/neurotransmitters stimulating PLC/cAMP and by various pancreatic growth factors. However, little is known of the role of PAK4 activation in cellular signaling cascades in pancreatic acinar cells. In the present study, we examined the role of PAK4's participation in five different cholecystokinin-8 (CCK-8)-stimulated signaling pathways (PI3K/Akt, MAPK, focal adhesion kinase, GSK3, and β-catenin), which mediate many of its physiological acinar-cell effects, as well as effects in pathophysiological conditions. To define PAK4's role, the effect of two different PAK4 inhibitors, PF-3758309 and LCH-7749944, was examined under experimental conditions that only inhibited PAK4 activation and not activation of the other pancreatic PAK, Group I PAK2. The inhibitors' effects on activation of these five signaling cascades by both physiological and pathophysiological concentrations of CCK, as well as by 12-O-tetradecanoylphobol-13-acetate (TPA), a PKC-activator, were examined. CCK/TPA activation of focal adhesion kinases(PYK2/p125FAK) and the accompanying adapter proteins (paxillin/p130CAS), Mek1/2, and p44/42, but not c-Raf or other MAPKs (JNK/p38), were mediated by PAK4. Activation of PI3K/Akt/p70s6K was independent of PAK4, whereas GSK3 and β-catenin stimulation was PAK4-dependent. These results, coupled with recent studies showing PAK4 is important in pancreatic fluid/electrolyte/enzyme secretion and acinar cell growth, show that PAK4 plays an important role in different cellular signaling cascades, which have been shown to mediate numerous physiological and pathophysiological processes in pancreatic acinar cells.NEW & NOTEWORTHY In pancreatic acinar cells, cholecystokinin (CCK) or 12-O-tetradecanoylphobol-13-acetate (TPA) activation of focal adhesion kinases (p125FAK,PYK2) and its accompanying adapter proteins, p130CAS/paxillin; Mek1/2, p44/42, GSK3, and β-catenin are mediated by PAK4. PI3K/Akt/p70s6K, c-Raf, JNK, or p38 pathways are independent of PAK4 activation.
Collapse
Affiliation(s)
- Irene Ramos-Álvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Lingaku Lee
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Robert T Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
16
|
Benzing C, Lam H, Tsang CM, Rimmer A, Arroyo-Berdugo Y, Calle Y, Wells CM. TIMP-2 secreted by monocyte-like cells is a potent suppressor of invadopodia formation in pancreatic cancer cells. BMC Cancer 2019; 19:1214. [PMID: 31836008 PMCID: PMC6911299 DOI: 10.1186/s12885-019-6429-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/03/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Monocytes are a major component of the tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC). However, the complex interactions between tumor cells and monocytes and their role in tumor invasion have not been fully established. METHODS To specifically test the impact of interaction on invasive potential two PDAC cell lines PaTu8902 and CFPAC-1 were selected on their ability to form invasive adhesions, otherwise known as invadopodia and invade in a spheroid invasion assay. RESULTS Interestingly when the PDAC cells were co-cultured with undifferentiated THP1 monocyte-like cells invadopodia formation was significantly suppressed. Moreover, conditioned media of THP1 cells (CM) was also able to suppress invadopodia formation. Further investigation revealed that both tissue inhibitor of metalloproteinase (TIMP) 1 and 2 were present in the CM. However, suppression of invadopodia formation was found that was specific to TIMP2 activity. CONCLUSIONS Our findings indicate that TIMP2 levels in the tumour microenvironment may have prognostic value in patients with PDAC. Furthermore, activation of TIMP2 expressing monocytes in the primary tumour could present a potential therapeutic opportunity to suppress cell invasion in PDAC.
Collapse
Affiliation(s)
- Christian Benzing
- School of Cancer and Pharmaceutical Sciences, New Hunts House, Kings College London, London, SE1 1UL, UK.,Department of Surgery, Campus Charité-Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hoyin Lam
- School of Cancer and Pharmaceutical Sciences, New Hunts House, Kings College London, London, SE1 1UL, UK
| | - Chi Man Tsang
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hongkong, Hong Kong SAR
| | - Alexander Rimmer
- School of Cancer and Pharmaceutical Sciences, New Hunts House, Kings College London, London, SE1 1UL, UK
| | | | - Yolanda Calle
- Department of Life Sciences, University of Roehampton, London, UK
| | - Claire M Wells
- School of Cancer and Pharmaceutical Sciences, New Hunts House, Kings College London, London, SE1 1UL, UK.
| |
Collapse
|
17
|
Guo J, Wang T, Wu T, Zhang K, Yin W, Zhu M, Pang Y, Hao C, He Z, Cheng M, Liu Y, Zheng J, Gu J, Zhao D. Synthesis, bioconversion, pharmacokinetic and pharmacodynamic evaluation of N-isopropyl-oxy-carbonyloxymethyl prodrugs of CZh-226, a potent and selective PAK4 inhibitor. Eur J Med Chem 2019; 186:111878. [PMID: 31757524 DOI: 10.1016/j.ejmech.2019.111878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022]
Abstract
We have previously disclosed compound 3 (CZh-226), a potent and selective PAK4 inhibitor, but its development was delayed due to poor oral pharmacokinetics. In an attempt to improve this issue, we synthesised a series of prodrugs by masking its terminal nitrogen of the piperazine moiety. Most synthesised prodrugs of 3 have low or no inhibition of PAK4 activity. The stability of synthetic prodrugs was evaluated in PBS, SGF, SIF, rat plasma and liver S9 fraction. Of these, prodrug 19 was not only stable under both acidic and neutral conditions but also could be quickly converted to parent drug 3 in rat plasma and liver S9 fraction. Such effective conversion into parent drug 3 was observed in rats, providing higher exposure of 3 compared to its direct administration. When given via oral route at daily doses of 25 and 50 mg/kg, the prodrug 19 was effective and well tolerated in mouse model of HCT-116 and B16F10.
Collapse
Affiliation(s)
- Jing Guo
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Tingting Wang
- Research Institute of Translational Medicine, The First Bethune Hospital of Jilin University, Changchun, 130061, China; Research Center for Drug Metabolism, College of Life Science, Jilin University, Changchun, 130012, China
| | - Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Kehan Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mingyue Zhu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yu Pang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chenzhou Hao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Jingkai Gu
- Research Institute of Translational Medicine, The First Bethune Hospital of Jilin University, Changchun, 130061, China; Research Center for Drug Metabolism, College of Life Science, Jilin University, Changchun, 130012, China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
18
|
Callegari E, Domenicali M, Shankaraiah RC, D'Abundo L, Guerriero P, Giannone F, Baldassarre M, Bassi C, Elamin BK, Zagatti B, Ferracin M, Fornari F, Altavilla G, Blandamura S, Silini EM, Gramantieri L, Sabbioni S, Negrini M. MicroRNA-Based Prophylaxis in a Mouse Model of Cirrhosis and Liver Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 14:239-250. [PMID: 30641476 PMCID: PMC6330511 DOI: 10.1016/j.omtn.2018.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023]
Abstract
Most hepatocellular carcinomas (HCCs) arise in the context of chronic liver disease and/or cirrhosis. Thus, chemoprevention in individuals at risk represents an important but yet unproven approach. In this study, we investigated the ability of microRNA (miRNA)-based molecules to prevent liver cancer development in a cirrhotic model. To this end, we developed a mouse model able to recapitulate the natural progression from fibrosis to HCC, and then we tested the prophylactic activity of an miRNA-based approach in the model. The experiments were carried out in the TG221 transgenic mouse, characterized by the overexpression of miR-221 in the liver and predisposed to the development of liver tumors. TG221 as well as wild-type mice were exposed to the hepatotoxin carbon tetrachloride (CCl4) to induce chronic liver damage. All mice developed liver cirrhosis, but only TG221 mice developed nodular lesions in 100% of cases within 6 months of age. The spectrum of lesions ranged from dysplastic foci to carcinomas. To investigate miRNA-based prophylactic approaches, anti-miR-221 oligonucleotides or miR-199a-3p mimics were administered to TG221 CCl4-treated mice. Compared to control animals, a significant reduction in number, size, and, most significantly, malignant phenotype of liver nodules was observed, thus demonstrating an important prophylactic action of miRNA-based molecules. In summary, in this article, we not only report a simple model of liver cancer in a cirrhotic background but also provide evidence for a potential miRNA-based approach to reduce the risk of HCC development.
Collapse
Affiliation(s)
- Elisa Callegari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Marco Domenicali
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; Center for Applied Biomedical Research, St. Orsola-Malpighi University Hospital, 40138 Bologna, Italy
| | - Ram Charan Shankaraiah
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Lucilla D'Abundo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Paola Guerriero
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Ferdinando Giannone
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; Center for Applied Biomedical Research, St. Orsola-Malpighi University Hospital, 40138 Bologna, Italy
| | - Maurizio Baldassarre
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; Center for Applied Biomedical Research, St. Orsola-Malpighi University Hospital, 40138 Bologna, Italy
| | - Cristian Bassi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Bahaeldin K Elamin
- Department of Basic Sciences, College of Medicine, University of Bisha, 61922 Bisha, Saudi Arabia; Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, 11115 Khartoum, Sudan
| | - Barbara Zagatti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| | - Francesca Fornari
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; Center for Applied Biomedical Research, St. Orsola-Malpighi University Hospital, 40138 Bologna, Italy
| | | | - Stella Blandamura
- Department of Medicine DIMED, University of Padova, 35121 Padova, Italy
| | - Enrico Maria Silini
- Section of Anatomy and Pathology, University Hospital of Parma, 43121 Parma, Italy
| | - Laura Gramantieri
- Center for Applied Biomedical Research, St. Orsola-Malpighi University Hospital, 40138 Bologna, Italy
| | - Silvia Sabbioni
- Department of Life Sciences and Biotechnologies, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
19
|
PAK4 signaling in health and disease: defining the PAK4-CREB axis. Exp Mol Med 2019; 51:1-9. [PMID: 30755582 PMCID: PMC6372590 DOI: 10.1038/s12276-018-0204-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/27/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023] Open
Abstract
p21-Activated kinase 4 (PAK4), a member of the PAK family, regulates a wide range of cellular functions, including cell adhesion, migration, proliferation, and survival. Dysregulation of its expression and activity thus contributes to the development of diverse pathological conditions. PAK4 plays a pivotal role in cancer progression by accelerating the epithelial–mesenchymal transition, invasion, and metastasis. Therefore, PAK4 is regarded as an attractive therapeutic target in diverse types of cancers, prompting the development of PAK4-specific inhibitors as anticancer drugs; however, these drugs have not yet been successful. PAK4 is essential for embryonic brain development and has a neuroprotective function. A long list of PAK4 effectors has been reported. Recently, the transcription factor CREB has emerged as a novel effector of PAK4. This finding has broad implications for the role of PAK4 in health and disease because CREB-mediated transcriptional reprogramming involves a wide range of genes. In this article, we review the PAK4 signaling pathways involved in prostate cancer, Parkinson’s disease, and melanogenesis, focusing in particular on the PAK4-CREB axis. An enzyme that regulates an important controller of gene expression may offer a therapeutic target for cancer and other diseases. cAMP response element-binding protein (CREB) interacts with various other proteins to switch a myriad of target genes on and off in different cells. A review by Eung-Gook Kim, Eun-Young Shin and colleagues at Chungbuk National University, Cheongju, South Korea, explores the interplay between CREB and an enzyme called p21-activated kinase 4 (PAK4) in human health and disease. PAK4, for example, has been shown to promote CREB’s gene-activating function in prostate cancer, and PAK4 overexpression is a feature of numerous other tumor types. Disruptions in PAK4-mediated regulation of CREB activity have also been observed in neurons affected by Parkinson’s disease. The authors see strong clinical promise in further exploring the biology of the PAK4-CREB pathway.
Collapse
|
20
|
Ramos-Alvarez I, Jensen RT. P21-activated kinase 4 in pancreatic acinar cells is activated by numerous gastrointestinal hormones/neurotransmitters and growth factors by novel signaling, and its activation stimulates secretory/growth cascades. Am J Physiol Gastrointest Liver Physiol 2018; 315:G302-G317. [PMID: 29672153 PMCID: PMC6139648 DOI: 10.1152/ajpgi.00005.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 01/31/2023]
Abstract
p21-activated kinases (PAKs) are highly conserved serine/threonine protein kinases, which are divided into two groups: group-I (PAKs1-3) and group-II (PAKs4-6). In various tissues, Group-II PAKs play important roles in cytoskeletal dynamics and cell growth as well as neoplastic development/progression. However, little is known about Group-II PAK's role in a number of physiological events, including their ability to be activated by gastrointestinal (GI) hormones/neurotransmitters/growth factors (GFs). We used rat pancreatic acini to explore the ability of GI hormones/neurotransmitters/GFs to activate Group-II-PAKs and the signaling cascades involved. Only PAK4 was detected in pancreatic acini. PAK4 was activated by endothelin, secretagogues-stimulating phospholipase C (bombesin, CCK-8, and carbachol), by pancreatic GFs (insulin, insulin-like growth factor 1, hepatocyte growth factor, epidermal growth factor, basic fibroblast growth factor, and platelet-derived growth factor), and by postreceptor stimulants (12-O-tetradecanoylphobol-13-acetate and A23187 ). CCK-8 activation of PAK4 required both high- and low-affinity CCK1-receptor state activation. It was reduced by PKC-, Src-, p44/42-, or p38-inhibition but not with phosphatidylinositol 3-kinase-inhibitors and only minimally by thapsigargin. A protein kinase D (PKD)-inhibitor completely inhibited CCK-8-stimulated PKD-activation; however, stimulated PAK4 phosphorylation was only inhibited by 60%, demonstrating that it is both PKD-dependent and PKD-independent. PF-3758309 and LCH-7749944, inhibitors of PAK4, decreased CCK-8-stimulated PAK4 activation but not PAK2 activation. Each inhibited ERK1/2 activation and amylase release induced by CCK-8 or bombesin. These results show that PAK4 has an important role in modulating signal cascades activated by a number of GI hormones/neurotransmitters/GFs that have been shown to mediate both physiological/pathological responses in acinar cells. Therefore, in addition to the extensive studies on PAK4 in pancreatic cancer, PAK4 should also be considered an important signaling molecule for pancreatic acinar physiological responses and, in the future, should be investigated for a possible role in pancreatic acinar pathophysiological responses, such as in pancreatitis. NEW & NOTEWORTHY This study demonstrates that the only Group-II p21-activated kinase (PAK) in rat pancreatic acinar cells is PAK4, and thus differs from islets/pancreatic cancer. Both gastrointestinal hormones/neurotransmitters stimulating PLC and pancreatic growth factors activate PAK4. With cholecystokinin (CCK), activation is PKC-dependent/-independent, requires both CCK1-R affinity states, Src, p42/44, and p38 activation. PAK4 activation is required for CCK-mediated p42/44 activation/amylase release. These results show PAK4 plays an important role in mediating CCK physiological signal cascades and suggest it may be a target in pancreatic acinar diseases besides cancer.
Collapse
Affiliation(s)
- Irene Ramos-Alvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - R T Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
21
|
Soliman B, Salem A, Ghazy M, Abu-Shahba N, El Hefnawi M. Bioinformatics functional analysis of let-7a, miR-34a, and miR-199a/b reveals novel insights into immune system pathways and cancer hallmarks for hepatocellular carcinoma. Tumour Biol 2018; 40:1010428318773675. [PMID: 29775159 DOI: 10.1177/1010428318773675] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Let-7a, miR-34a, and miR-199 a/b have gained a great attention as master regulators for cellular processes. In particular, these three micro-RNAs act as potential onco-suppressors for hepatocellular carcinoma. Bioinformatics can reveal the functionality of these micro-RNAs through target prediction and functional annotation analysis. In the current study, in silico analysis using innovative servers (miRror Suite, DAVID, miRGator V3.0, GeneTrail) has demonstrated the combinatorial and the individual target genes of these micro-RNAs and further explored their roles in hepatocellular carcinoma progression. There were 87 common target messenger RNAs (p ≤ 0.05) that were predicted to be regulated by the three micro-RNAs using miRror 2.0 target prediction tool. In addition, the functional enrichment analysis of these targets that was performed by DAVID functional annotation and REACTOME tools revealed two major immune-related pathways, eight hepatocellular carcinoma hallmarks-linked pathways, and two pathways that mediate interconnected processes between immune system and hepatocellular carcinoma hallmarks. Moreover, protein-protein interaction network for the predicted common targets was obtained by using STRING database. The individual analysis of target genes and pathways for the three micro-RNAs of interest using miRGator V3.0 and GeneTrail servers revealed some novel predicted target oncogenes such as SOX4, which we validated experimentally, in addition to some regulated pathways of immune system and hepatocarcinogenesis such as insulin signaling pathway and adipocytokine signaling pathway. In general, our results demonstrate that let-7a, miR-34a, and miR-199 a/b have novel interactions in different immune system pathways and major hepatocellular carcinoma hallmarks. Thus, our findings shed more light on the roles of these miRNAs as cancer silencers.
Collapse
Affiliation(s)
- Bangly Soliman
- 1 Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.,2 Informatics and Systems Department, Biomedical Informatics and Chemo-Informatics Group, Centre of Excellence for Advanced Sciences (CEAS), Division of Engineering Research, National Research Centre, Cairo, Egypt
| | - Ahmed Salem
- 1 Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed Ghazy
- 1 Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Nourhan Abu-Shahba
- 3 Stem Cells Research Group, Medical Centre of Excellence, Medical Molecular Genetics Department, National Research Centre, Cairo, Egypt
| | - Mahmoud El Hefnawi
- 2 Informatics and Systems Department, Biomedical Informatics and Chemo-Informatics Group, Centre of Excellence for Advanced Sciences (CEAS), Division of Engineering Research, National Research Centre, Cairo, Egypt.,4 Centre for Informatics, Nile University, Sheikh Zayed City, Egypt
| |
Collapse
|
22
|
Thillai K, Sarker D, Wells C. PAK4 pathway as a potential therapeutic target in pancreatic cancer. Future Oncol 2018; 14:579-582. [PMID: 29508632 DOI: 10.2217/fon-2017-0458] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Kiruthikah Thillai
- Cancer Studies, King's College London, London, SE1 9RT, UK.,Department of Medical Oncology, Guy's & St Thomas' NHS Trust, London, SE1 9RT, UK
| | - Debashis Sarker
- Cancer Studies, King's College London, London, SE1 9RT, UK.,Department of Medical Oncology, Guy's & St Thomas' NHS Trust, London, SE1 9RT, UK
| | - Claire Wells
- Cancer Studies, King's College London, London, SE1 9RT, UK
| |
Collapse
|
23
|
Abstract
The p21-activated kinase (PAK) group of serine/threonine kinases are downstream effectors of RHO GTPases and play important roles in regulation of the actin cytoskeleton, cell growth, survival, polarity, and development. Here we probe the interaction of the type II PAK, PAK4, with RHO GTPases. Using solution scattering we find that the full-length PAK4 heterodimer with CDC42 adopts primarily a compact organization. X-ray crystallography reveals the molecular nature of the interaction between PAK4 and CDC42 and shows that in addition to the canonical PAK4 CDC42/RAC interactive binding (CRIB) domain binding to CDC42 there are unexpected contacts involving the PAK4 kinase C-lobe, CDC42, and the PAK4 polybasic region. These additional interactions modulate kinase activity and increase the binding affinity of CDC42 for full-length PAK4 compared with the CRIB domain alone. We therefore show that the interaction of CDC42 with PAK4 can influence kinase activity in a previously unappreciated manner.
Collapse
|
24
|
Rane CK, Patel M, Cai L, Senapedis W, Baloglu E, Minden A. Decrypting the PAK4 transcriptome profile in mammary tumor forming cells using Next Generation Sequencing. Genomics 2017; 110:S0888-7543(17)30128-3. [PMID: 29055713 DOI: 10.1016/j.ygeno.2017.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 10/03/2017] [Accepted: 10/17/2017] [Indexed: 01/05/2023]
Abstract
The p-21 Activated Kinase 4 (PAK4) protein kinase is implicated in many cancers, including breast cancer. Overexpression of PAK4 is sufficient to cause mouse mammary epithelial cells (iMMECs) to become tumorigenic. To gain insight into the long-term gene expression changes that occur downstream to PAK4, we performed Next Generation Sequencing of RNA collected from PAK4 overexpressing iMMECs and wild-type iMMECs. We identified a list of genes whose expression levels were altered in response to PAK4 overexpression in iMMECs. Some of these genes, including FoxC2 and ParvB, are consistent with a role for PAK4 in cancer. In addition, PAK4 regulates many genes that are frequently associated with the inflammatory response, raising the possibility that there is a connection between PAK4, inflammation, and the tumor microenvironment. This study delineates the PAK4 transcriptome profile in transformed mammary cells and can provide translational utility in other types of cancers as well.
Collapse
Affiliation(s)
- Chetan K Rane
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854, United States
| | - Misaal Patel
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, United States
| | - Li Cai
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, United States
| | - William Senapedis
- Karyopharm Therapeutics, Inc., 85 Wells Avenue, Newton, MA 02459, United States
| | - Erkan Baloglu
- Karyopharm Therapeutics, Inc., 85 Wells Avenue, Newton, MA 02459, United States
| | - Audrey Minden
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854, United States.
| |
Collapse
|
25
|
Zhao M, Spiess M, Johansson HJ, Olofsson H, Hu J, Lehtiö J, Strömblad S. Identification of the PAK4 interactome reveals PAK4 phosphorylation of N-WASP and promotion of Arp2/3-dependent actin polymerization. Oncotarget 2017; 8:77061-77074. [PMID: 29100370 PMCID: PMC5652764 DOI: 10.18632/oncotarget.20352] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/25/2017] [Indexed: 12/14/2022] Open
Abstract
p21-activated kinase 4 (PAK4) regulates cell proliferation, apoptosis, cell motility and F-actin remodeling, but the PAK4 interactome has not been systematically analyzed. Here, we comprehensively characterized the human PAK4 interactome by iTRAQ quantitative mass spectrometry of PAK4-immunoprecipitations. Consistent with its multiple reported functions, the PAK4 interactome was enriched in diverse protein networks, including the 14-3-3, proteasome, replication fork, CCT and Arp2/3 complexes. Because PAK4 co-immunoprecipitated most subunits of the Arp2/3 complex, we hypothesized that PAK4 may play a role in Arp2/3 dependent actin regulation. Indeed, we found that PAK4 interacts with and phosphorylates the nucleation promoting factor N-WASP at Ser484/Ser485 and promotes Arp2/3-dependent actin polymerization in vitro. Also, PAK4 ablation in vivo reduced N-WASP Ser484/Ser485 phosphorylation and altered the cellular balance between G- and F-actin as well as the actin organization. By presenting the PAK4 interactome, we here provide a powerful resource for further investigations and as proof of principle, we also indicate a novel mechanism by which PAK4 regulates actin cytoskeleton remodeling.
Collapse
Affiliation(s)
- Miao Zhao
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Matthias Spiess
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Henrik J Johansson
- Cancer Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Helene Olofsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Jianjiang Hu
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Janne Lehtiö
- Cancer Proteomics Mass Spectrometry, Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Staffan Strömblad
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
Su T, Qu JJ, Wang K, Li BL, Zhao D, Zhu YP, Ye L, Lu W, Wan XP. Cross-talk between p21-activated kinase 4 and ERα signaling triggers endometrial cancer cell proliferation. Oncotarget 2017; 8:68083-68094. [PMID: 28978098 PMCID: PMC5620238 DOI: 10.18632/oncotarget.19188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 06/13/2017] [Indexed: 01/16/2023] Open
Abstract
Cross-talk between estrogen receptor alpha (ERα) and signal transduction pathways plays an important role in the progression of endometrial cancer (EC). Here, we show that 17β-estradiol (E2) stimulation increases p21-activated kinase 4 (Pak4) expression and activation in ER-positive EC cells. The estrogen-induced Pak4 activation is mediated via the PI3K/AKT pathway. Estrogen increases Pak4 and phosphorylated-Pak4 (p-Pak4) nuclear accumulation, and Pak4 in turn enhances ERα trans-activation. Depletion or functional inhibition of Pak4 abrogates EC cell proliferation induced by E2, whereas overexpression of Pak4 rescues cell proliferation decreased by inhibiting the estrogen pathway. Pak4 knockdown decreases cyclin D1 expression and induces G1-S arrest. Importantly, Pak4 suppression inhibits E2 induced EC tumor growth in vivo, in a mouse xenograft model. These data demonstrate that estrogen stimulation increases Pak4 expression and activation, which in turn enhances ERα transcriptional activity and ERα-dependent gene expression, resulting in increased proliferation of EC cells. Thus inhibition of Pak4-ERα signaling may represent a novel therapeutic strategy against endometrial carcinoma.
Collapse
Affiliation(s)
- Tao Su
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, P.R. China.,Department of Gynecology, The International Peace Maternity & Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Jun-Jie Qu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Bi-Lan Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Dong Zhao
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Yi-Ping Zhu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Lei Ye
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Wen Lu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Xiao-Ping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
27
|
PAK5 mediates cell: cell adhesion integrity via interaction with E-cadherin in bladder cancer cells. Biochem J 2017; 474:1333-1346. [PMID: 28232500 DOI: 10.1042/bcj20160875] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 12/26/2022]
Abstract
Urothelial bladder cancer is a major cause of morbidity and mortality worldwide, causing an estimated 150 000 deaths per year. Whilst non-muscle-invasive bladder tumours can be effectively treated, with high survival rates, many tumours recur, and some will progress to muscle-invasive disease with a much poorer long-term prognosis. Thus, there is a pressing need to understand the molecular transitions occurring within the progression of bladder cancer to an invasive disease. Tumour invasion is often associated with a down-regulation of E-cadherin expression concomitant with a suppression of cell:cell junctions, and decreased levels of E-cadherin expression have been reported in higher grade urothelial bladder tumours. We find that expression of E-cadherin in a panel of bladder cancer cell lines correlated with the presence of cell:cell junctions and the level of PAK5 expression. Interestingly, exogenous PAK5 has recently been described to be associated with cell:cell junctions and we now find that endogenous PAK5 is localised to cell junctions and interacts with an E-cadherin complex. Moreover, depletion of PAK5 expression significantly reduced junctional integrity. These data suggest a role for PAK5 in maintaining junctional stability and we find that, in both our own patient samples and a commercially available dataset, PAK5mRNA levels are reduced in human bladder cancer compared with normal controls. Taken together, the present study proposes that PAK5 expression levels could be used as a novel prognostic marker for bladder cancer progression.
Collapse
|
28
|
He LF, Xu HW, Chen M, Xian ZR, Wen XF, Chen MN, Du CW, Huang WH, Wu JD, Zhang GJ. Activated-PAK4 predicts worse prognosis in breast cancer and promotes tumorigenesis through activation of PI3K/AKT signaling. Oncotarget 2017; 8:17573-17585. [PMID: 28407679 PMCID: PMC5392270 DOI: 10.18632/oncotarget.7466] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 01/27/2016] [Indexed: 02/05/2023] Open
Abstract
The p21-activated kinase 4 (PAK4) is sufficient to transform noncancerous mammary epithelial cells and to form tumors in the mammary glands of mice. The accumulated information suggests that PAK4 might be an oncogenic protein in breast cancer. In this study, we sought to identify the role for PAK4 in breast cancer progression. Immunohistochemical study revealed that high PAK4 expression is associated with larger tumor size, lymph node metastasis, and advanced stage cancer in 93 invasive breast carcinoma patients. Moreover, high PAK4 expression was significantly associated with poor overall and disease-free survival. PAK4 remained an independent adverse prognosticator after univariate and multivariate analysis. Ectopic expression of wild-type PAK4 in MDA-MB-231 cells activated PI3K/AKT signaling and resulted in the enhancement of the cell proliferation, migration, and invasion, whereas PAK4-induced effects were blocked by the PAK4 kinase inhibitor PF- 3758309, PAK4 siRNAs or the PI3K inhibitor LY294002. Furthermore, a kinase-active PAK4 (S474E) strongly induced PI3K/AKT activation, and promoted proliferation, migration and invasion in breast cancer cells. A kinase-inactive PAK4 KD (K350A/K351A) did partially upregulate PI3K/AKT, and promoted invasive phenotype. Taken together, these findings suggest that PAK4-activated PI3K/AKT signaling is both kinase-dependent and -independent, which contributes to breast cancer progression. Thus, our results imply that dual inhibition of PAK4 and PI3K/AKT signaling might be a potential therapeutic approach for breast cancer therapy.
Collapse
Affiliation(s)
- Li-Fang He
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
- Changjiang Scholar Laboratory, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Hong-Wu Xu
- Changjiang Scholar Laboratory, Shantou University Medical College, Shantou 515041, Guangdong, China
- Department of Neurosurgery, Second Affiliated Hospital of Shantou, University Medical College, Shantou 515031, Guangdong, China
| | - Min Chen
- Changjiang Scholar Laboratory, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zhi-Rong Xian
- Changjiang Scholar Laboratory, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiao-Fen Wen
- Changjiang Scholar Laboratory, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Min-Na Chen
- Changjiang Scholar Laboratory, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Cai-Wen Du
- Department of Breast Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wen-He Huang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jun-Dong Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Guo-Jun Zhang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
- Changjiang Scholar Laboratory, Shantou University Medical College, Shantou 515041, Guangdong, China
| |
Collapse
|
29
|
King H, Thillai K, Whale A, Arumugam P, Eldaly H, Kocher HM, Wells CM. PAK4 interacts with p85 alpha: implications for pancreatic cancer cell migration. Sci Rep 2017; 7:42575. [PMID: 28205613 PMCID: PMC5312077 DOI: 10.1038/srep42575] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/12/2017] [Indexed: 01/23/2023] Open
Abstract
It has been reported that p21-activated kinase 4 (PAK4) is amplified in pancreatic cancer tissue. PAK4 is a member of the PAK family of serine/threonine kinases, which act as effectors for several small GTPases, and has been specifically identified to function downstream of HGF-mediated c-Met activation in a PI3K dependent manner. However, the functionality of PAK4 in pancreatic cancer and the contribution made by HGF signalling to pancreatic cancer cell motility remain to be elucidated. We now find that elevated PAK4 expression is coincident with increased expression levels of c-Met and the p85α subunit of PI3K. Furthermore, we demonstrate that pancreatic cancer cells have a specific motility response to HGF both in 2D and 3D physiomimetic organotypic assays; which can be suppressed by inhibition of PI3K. Significantly, we report a specific interaction between PAK4 and p85α and find that PAK4 deficient cells exhibit a reduction in Akt phosphorylation downstream of HGF signalling. These results implicate a novel role for PAK4 within the PI3K pathway via interaction with p85α. Thus, PAK4 could be an essential player in PDAC progression representing an interesting therapeutic opportunity.
Collapse
Affiliation(s)
- Helen King
- Division of Cancer Studies, King's College London, UK
| | | | - Andrew Whale
- Division of Cancer Studies, King's College London, UK
| | - Prabhu Arumugam
- Barts Cancer Institute, a CRUK centre of Excellance, Queen Mary University of London, UK
| | - Hesham Eldaly
- Dept of Haematopathology Oncology Diagnostic Service, Addenbrooke's Hospital, Cambridge, UK
| | - Hemant M Kocher
- Barts Cancer Institute, a CRUK centre of Excellance, Queen Mary University of London, UK
| | | |
Collapse
|
30
|
Nicholas NS, Pipili A, Lesjak MS, Ameer SM, Geh JLC, Healy C, Ross ADM, Parsons M, Nestle FO, Lacy KE, Wells CM. PAK4 suppresses PDZ-RhoGEF activity to drive invadopodia maturation in melanoma cells. Oncotarget 2016; 7:70881-70897. [PMID: 27765920 PMCID: PMC5342596 DOI: 10.18632/oncotarget.12282] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/14/2016] [Indexed: 01/19/2023] Open
Abstract
Cancer cells are thought to use actin rich invadopodia to facilitate matrix degradation. Formation and maturation of invadopodia requires the co-ordained activity of Rho-GTPases, however the molecular mechanisms that underlie the invadopodia lifecycle are not fully elucidated. Previous work has suggested a formation and disassembly role for Rho family effector p-21 activated kinase 1 (PAK1) however, related family member PAK4 has not been explored. Systematic analysis of isoform specific depletion using in vitro and in vivo invasion assays revealed there are differential invadopodia-associated functions. We consolidated a role for PAK1 in the invadopodia formation phase and identified PAK4 as a novel invadopodia protein that is required for successful maturation. Furthermore, we find that PAK4 (but not PAK1) mediates invadopodia maturation likely via inhibition of PDZ-RhoGEF. Our work points to an essential role for both PAKs during melanoma invasion but provides a significant advance in our understanding of differential PAK function.
Collapse
Affiliation(s)
- Nicole S. Nicholas
- Division of Cancer Studies, New Hunts House, Guy's Campus, King's College London, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre, Guy's and St Thomas's Hospital and King's College London, London, UK
| | - Aikaterini Pipili
- Division of Cancer Studies, New Hunts House, Guy's Campus, King's College London, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre, Guy's and St Thomas's Hospital and King's College London, London, UK
| | - Michaela S. Lesjak
- Division of Cancer Studies, New Hunts House, Guy's Campus, King's College London, London, UK
| | - Simon M. Ameer
- Division of Cancer Studies, New Hunts House, Guy's Campus, King's College London, London, UK
| | - Jenny L. C. Geh
- Department of Plastic and Reconstructive Surgery, Guy's and St Thomas' Hospital, London, UK
| | - Ciaran Healy
- Department of Plastic and Reconstructive Surgery, Guy's and St Thomas' Hospital, London, UK
| | | | - Maddy Parsons
- Randall Division, New Hunts House, Guy's Campus, King's College London, London, UK
| | - Frank O. Nestle
- National Institute for Health Research (NIHR) Biomedical Research Centre, Guy's and St Thomas's Hospital and King's College London, London, UK
- St Johns Institute of Dermatology, Guy's Hospital, London, UK
| | - Katie E. Lacy
- National Institute for Health Research (NIHR) Biomedical Research Centre, Guy's and St Thomas's Hospital and King's College London, London, UK
- St Johns Institute of Dermatology, Guy's Hospital, London, UK
| | - Claire M. Wells
- Division of Cancer Studies, New Hunts House, Guy's Campus, King's College London, London, UK
| |
Collapse
|
31
|
Zhuang T, Zhu J, Li Z, Lorent J, Zhao C, Dahlman-Wright K, Strömblad S. p21-activated kinase group II small compound inhibitor GNE-2861 perturbs estrogen receptor alpha signaling and restores tamoxifen-sensitivity in breast cancer cells. Oncotarget 2016; 6:43853-68. [PMID: 26554417 PMCID: PMC4791272 DOI: 10.18632/oncotarget.6081] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/26/2015] [Indexed: 01/07/2023] Open
Abstract
Estrogen receptor alpha (ERα) is highly expressed in most breast cancers. Consequently, ERα modulators, such as tamoxifen, are successful in breast cancer treatment, although tamoxifen resistance is commonly observed. While tamoxifen resistance may be caused by altered ERα signaling, the molecular mechanisms regulating ERα signaling and tamoxifen resistance are not entirely clear. Here, we found that PAK4 expression was consistently correlated to poor patient outcome in endocrine treated and tamoxifen-only treated breast cancer patients. Importantly, while PAK4 overexpression promoted tamoxifen resistance in MCF-7 human breast cancer cells, pharmacological treatment with a group II PAK (PAK4, 5, 6) inhibitor, GNE-2861, sensitized tamoxifen resistant MCF-7/LCC2 breast cancer cells to tamoxifen. Mechanistically, we identified a regulatory positive feedback loop, where ERα bound to the PAK4 gene, thereby promoting PAK4 expression, while PAK4 in turn stabilized the ERα protein, activated ERα transcriptional activity and ERα target gene expression. Further, PAK4 phosphorylated ERα-Ser305, a phosphorylation event needed for the PAK4 activation of ERα-dependent transcription. In conclusion, PAK4 may be a suitable target for perturbing ERα signaling and tamoxifen resistance in breast cancer patients.
Collapse
Affiliation(s)
- Ting Zhuang
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge, Sweden
| | - Jian Zhu
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge, Sweden
| | - Zhilun Li
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge, Sweden
| | - Julie Lorent
- Department of Oncology and Pathology, Karolinska Institutet, Solna, Sweden
| | - Chunyan Zhao
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge, Sweden
| | - Karin Dahlman-Wright
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge, Sweden.,Science for Life Laboratory (SciLifeLab), Karolinska Institutet, Solna, Sweden
| | - Staffan Strömblad
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
32
|
Zhang J, Zhang HY, Wang J, You LH, Zhou RZ, Zhao DM, Cheng MS, Li F. GL-1196 Suppresses the Proliferation and Invasion of Gastric Cancer Cells via Targeting PAK4 and Inhibiting PAK4-Mediated Signaling Pathways. Int J Mol Sci 2016; 17:470. [PMID: 27077843 PMCID: PMC4848926 DOI: 10.3390/ijms17040470] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/12/2016] [Accepted: 03/24/2016] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer, which is the most common malignant gastrointestinal tumor, has jumped to the third leading cause of cancer-related mortality worldwide. It is of great importance to identify novel and potent drugs for gastric cancer treatment. P21-activated kinase 4 (PAK4) has emerged as an attractive target for the development of anticancer drugs in consideration of its vital functions in tumorigenesis and progression. In this paper, we reported that GL-1196, as a small molecular compound, effectively suppressed the proliferation of human gastric cancer cells through downregulation of PAK4/c-Src/EGFR/cyclinD1 pathway and CDK4/6 expression. Moreover, GL-1196 prominently inhibited the invasion of human gastric cancer cells in parallel with blockage of the PAK4/LIMK1/cofilin pathway. Interestingly, GL-1196 also inhibited the formation of filopodia and induced cell elongation in SGC7901 and BGC823 cells. Taken together, these results provided novel insights into the potential therapeutic strategy for gastric cancer.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China.
| | - Hong-Yan Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China.
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Liang-Hao You
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China.
| | - Rui-Zhi Zhou
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China.
| | - Dong-Mei Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Mao-Sheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China.
| |
Collapse
|
33
|
Dart AE, Box GM, Court W, Gale ME, Brown JP, Pinder SE, Eccles SA, Wells CM. PAK4 promotes kinase-independent stabilization of RhoU to modulate cell adhesion. J Cell Biol 2016; 211:863-79. [PMID: 26598620 PMCID: PMC4657161 DOI: 10.1083/jcb.201501072] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
PAK4, via a novel kinase-independent mechanism, protects RhoU from a Rab40A/Cullin 5 ubiquitin ligase complex–driven K48 ubiquitination to regulate breast cancer cell adhesion. P21-activated kinase 4 (PAK4) is a Cdc42 effector protein thought to regulate cell adhesion disassembly in a kinase-dependent manner. We found that PAK4 expression is significantly higher in high-grade human breast cancer patient samples, whereas depletion of PAK4 modifies cell adhesion dynamics of breast cancer cells. Surprisingly, systematic analysis of PAK4 functionality revealed that PAK4-driven adhesion turnover is neither dependent on Cdc42 binding nor kinase activity. Rather, reduced expression of PAK4 leads to a concomitant loss of RhoU expression. We report that RhoU is targeted for ubiquitination by the Rab40A–Cullin 5 complex and demonstrate that PAK4 protects RhoU from ubiquitination in a kinase-independent manner. Overexpression of RhoU rescues the PAK4 depletion phenotype, whereas loss of RhoU expression reduces cell adhesion turnover and migration. These data support a new kinase-independent mechanism for PAK4 function, where an important role of PAK4 in cellular adhesions is to stabilize RhoU protein levels. Thus, PAK4 and RhoU cooperate to drive adhesion turnover and promote cell migration.
Collapse
Affiliation(s)
- Anna E Dart
- Division of Cancer Studies, King's College London, London SE1 1UL, England, UK
| | - Gary M Box
- Tumour Biology and Metastasis, Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, England, UK
| | - William Court
- Tumour Biology and Metastasis, Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, England, UK
| | - Madeline E Gale
- Division of Cancer Studies, King's College London, London SE1 1UL, England, UK
| | - John P Brown
- Breast Research Pathology, Department of Research Oncology, Division of Cancer Studies, School of Medicine, Guy's Hospital, King's College London, London SE1 9RT, England, UK
| | - Sarah E Pinder
- Breast Research Pathology, Department of Research Oncology, Division of Cancer Studies, School of Medicine, Guy's Hospital, King's College London, London SE1 9RT, England, UK
| | - Suzanne A Eccles
- Tumour Biology and Metastasis, Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, England, UK
| | - Claire M Wells
- Division of Cancer Studies, King's College London, London SE1 1UL, England, UK
| |
Collapse
|
34
|
Kumar R, Li DQ. PAKs in Human Cancer Progression: From Inception to Cancer Therapeutic to Future Oncobiology. Adv Cancer Res 2016; 130:137-209. [PMID: 27037753 DOI: 10.1016/bs.acr.2016.01.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the initial recognition of a mechanistic role of p21-activated kinase 1 (PAK1) in breast cancer invasion, PAK1 has emerged as one of the widely overexpressed or hyperactivated kinases in human cancer at-large, allowing the PAK family to make in-roads in cancer biology, tumorigenesis, and cancer therapeutics. Much of our current understanding of the PAK family in cancer progression relates to a central role of the PAK family in the integration of cancer-promoting signals from cell membrane receptors as well as function as a key nexus-modifier of complex, cytoplasmic signaling network. Another core aspect of PAK signaling that highlights its importance in cancer progression is through PAK's central role in the cross talk with signaling and interacting proteins, as well as PAK's position as a key player in the phosphorylation of effector substrates to engage downstream components that ultimately leads to the development cancerous phenotypes. Here we provide a comprehensive review of the recent advances in PAK cancer research and its downstream substrates in the context of invasion, nuclear signaling and localization, gene expression, and DNA damage response. We discuss how a deeper understanding of PAK1's pathobiology over the years has widened research interest to the PAK family and human cancer, and positioning the PAK family as a promising cancer therapeutic target either alone or in combination with other therapies. With many landmark findings and leaps in the progress of PAK cancer research since the infancy of this field nearly 20 years ago, we also discuss postulated advances in the coming decade as the PAK family continues to shape the future of oncobiology.
Collapse
Affiliation(s)
- R Kumar
- School of Medicine and Health Sciences, George Washington University, Washington, DC, United States; Rajiv Gandhi Center of Biotechnology, Thiruvananthapuram, India.
| | - D-Q Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Epigenetics in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
35
|
Elevated STMN1 promotes tumor growth and invasion in endometrial carcinoma. Tumour Biol 2016; 37:9951-8. [DOI: 10.1007/s13277-016-4869-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/14/2016] [Indexed: 11/25/2022] Open
|
36
|
An in cellulo-derived structure of PAK4 in complex with its inhibitor Inka1. Nat Commun 2015; 6:8681. [PMID: 26607847 PMCID: PMC4674680 DOI: 10.1038/ncomms9681] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/21/2015] [Indexed: 01/09/2023] Open
Abstract
PAK4 is a metazoan-specific kinase acting downstream of Cdc42. Here we describe the structure of human PAK4 in complex with Inka1, a potent endogenous kinase inhibitor. Using single mammalian cells containing crystals 50 μm in length, we have determined the in cellulo crystal structure at 2.95 Å resolution, which reveals the details of how the PAK4 catalytic domain binds cellular ATP and the Inka1 inhibitor. The crystal lattice consists only of PAK4–PAK4 contacts, which form a hexagonal array with channels of 80 Å in diameter that run the length of the crystal. The crystal accommodates a variety of other proteins when fused to the kinase inhibitor. Inka1–GFP was used to monitor the process crystal formation in living cells. Similar derivatives of Inka1 will allow us to study the effects of PAK4 inhibition in cells and model organisms, to allow better validation of therapeutic agents targeting PAK4. PAK4 is a metazoan-specific kinase, which acts downstream of the cell polarity regulator Cdc42. Here, Baskaran et al. determine the structure of PAK4 bound to the endogenous inhibitor Inka1 from crystals that form spontaneously in mammalian cells overexpressing both proteins.
Collapse
|
37
|
PAK5-mediated E47 phosphorylation promotes epithelial-mesenchymal transition and metastasis of colon cancer. Oncogene 2015. [PMID: 26212009 DOI: 10.1038/onc.2015.259] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The p21-activated kinase 5 (PAK5) is overexpressed in advanced cancer and the transcription factor E47 is a direct repressor of E-cadherin and inducer of epithelial-mesenchymal transition (EMT). However, the relationship between PAK5 and E47 has not been explored. In this study, we found that PAK5-mediated E47 phosphorylation promoted EMT in advanced colon cancer. PAK5 interacted with E47 and phosphorylated E47 on Ser39 under hepatocyte growth factor (HGF) stimulation, which decreased cell-cell cohesion, increased cell migration and invasion in vitro and promoted metastasis in a xenograft model. Furthermore, phosphorylation of E47 facilitated its accumulating in nucleus in an importin α-dependent manner, and enhanced E47 binding to E-cadherin promoter directly, leading to inhibition of E-cadherin transcription. In contrast, PAK5-knockdown resulted in blockage of HGF-induced E47 phosphorylation, attenuated association of E47 with importin α and decreased E47 binding to E-cadherin promoter. In addition, we demonstrated a close correlation between PAK5 and phospho-Ser39 E47 expression in colon cancer specimens. More importantly, high expression of phospho-E47 was associated with an aggressive phenotype of colon cancer and nuclear phospho-E47 staining was found in certain cases of colon cancer with metastasis. Collectively, E47 is a novel substrate of PAK5, and PAK5-mediated phosphorylation of E47 promotes EMT and metastasis of colon cancer, suggesting that phosphorylated E47 on Ser39 may be a potential therapeutic target in progressive colon cancer.
Collapse
|
38
|
Selamat W, Tay PLF, Baskaran Y, Manser E. The Cdc42 Effector Kinase PAK4 Localizes to Cell-Cell Junctions and Contributes to Establishing Cell Polarity. PLoS One 2015; 10:e0129634. [PMID: 26068882 PMCID: PMC4466050 DOI: 10.1371/journal.pone.0129634] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 05/11/2015] [Indexed: 01/22/2023] Open
Abstract
The serine/threonine kinase PAK4 is a Cdc42 effector whose role is not well understood; overexpression of PAK4 has been associated with some cancers, and there are reports that correlate kinase level with increased cell migration in vitro. Here we report that PAK4 is primarily associated with cell-cell junctions in all the cell lines we tested, and fails to accumulate at focal adhesions or at the leading edge of migrating cells. In U2OS osteosarcoma and MCF-7 breast cancer cell lines, PAK4 depletion did not affect collective cell migration, but affected cell polarization. By contrast, Cdc42 depletion (as reported by many studies) caused a strong defect in junctional assembly in multiple cells lines. We also report that the depletion of PAK4 protein or treatment of cells with the PAK4 inhibitor PF-3758309 can lead to defects in centrosome reorientation (polarization) after cell monolayer wounding. These experiments are consistent with PAK4 forming part of a conserved cell-cell junctional polarity Cdc42 complex. We also confirm β-catenin as a target for PAK4 in these cells. Treatment of cells with PF-3758309 caused inhibition of β-catenin Ser-675 phosphorylation, which is located predominantly at cell-cell junctions.
Collapse
Affiliation(s)
- Widyawilis Selamat
- small G-protein Signaling and Kinases (sGSK) Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Pei-Ling Felicia Tay
- small G-protein Signaling and Kinases (sGSK) Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yohendran Baskaran
- small G-protein Signaling and Kinases (sGSK) Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ed Manser
- small G-protein Signaling and Kinases (sGSK) Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
39
|
Ha BH, Morse EM, Turk BE, Boggon TJ. Signaling, Regulation, and Specificity of the Type II p21-activated Kinases. J Biol Chem 2015; 290:12975-83. [PMID: 25855792 DOI: 10.1074/jbc.r115.650416] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The p21-activated kinases (PAKs) are a family of six serine/threonine kinases that act as key effectors of RHO family GTPases in mammalian cells. PAKs are subdivided into two groups: type I PAKs (PAK1, PAK2, and PAK3) and type II PAKs (PAK4, PAK5, and PAK6). Although these groups are involved in common signaling pathways, recent work indicates that the two groups have distinct modes of regulation and have both unique and common substrates. Here, we review recent insights into the molecular level details that govern regulation of type II PAK signaling. We also consider mechanisms by which signal transduction is regulated at the level of substrate specificity. Finally, we discuss the implications of these studies for clinical targeting of these kinases.
Collapse
Affiliation(s)
| | - Elizabeth M Morse
- Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520
| | | | | |
Collapse
|
40
|
Dammann K, Khare V, Gasche C. Republished: tracing PAKs from GI inflammation to cancer. Postgrad Med J 2014; 90:657-68. [PMID: 25335797 PMCID: PMC4222351 DOI: 10.1136/postgradmedj-2014-306768rep] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/07/2014] [Accepted: 04/10/2014] [Indexed: 12/20/2022]
Abstract
P-21 activated kinases (PAKs) are effectors of Rac1/Cdc42 which coordinate signals from the cell membrane to the nucleus. Activation of PAKs drive important signalling pathways including mitogen activated protein kinase, phospoinositide 3-kinase (PI3K/AKT), NF-κB and Wnt/β-catenin. Intestinal PAK1 expression increases with inflammation and malignant transformation, although the biological relevance of PAKs in the development and progression of GI disease is only incompletely understood. This review highlights the importance of altered PAK activation within GI inflammation, emphasises its effect on oncogenic signalling and discusses PAKs as therapeutic targets of chemoprevention.
Collapse
Affiliation(s)
- Kyle Dammann
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - Vineeta Khare
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - Christoph Gasche
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Abstract
PAKs 4, 5 and 6 are members of the group B family of p21-activated kinases. Among this group, PAK4 has been most extensively studied. While it has essential roles in embryonic development, in adults high levels of PAK4 are frequently associated with cancer. PAK4 is overexpressed in a variety of cancers, and the Pak4 gene is amplified in some cancers. PAK4 overexpression is sufficient to cause oncogenic transformation in cells and in mouse models. The tight connection between PAK4 and cancer make it a promising diagnostic tool as well as a potential drug target. The group B PAKs also have important developmental functions. PAK4 is important for many early developmental processes, while PAK5 and PAK6 play roles in learning and memory in mice. This chapter provides an overview of the roles of the group B PAKs in cancer as well as development, and includes a discussion of PAK mediated signaling pathways and cellular functions.
Collapse
Affiliation(s)
- Audrey Minden
- Susan Lehman Cullman Laboratory for Cancer Research; Department of Chemical Biology; Ernest Mario School of Pharmacy; Rutgers, The State University of New Jersey; Piscataway, NJ USA
| |
Collapse
|
42
|
Abstract
p21-activated kinases are a family of highly conserved protein serine/threonine kinases that are increasingly recognized as playing essential roles in a variety of key signaling processes. Genetic analyses in mice, using constitutive or regulated gene disruption, have provided important new insights into PAK function. In this paper, we review the genetic analysis of all six PAK genes in mice. These data address the singular and redundant functions of the various PAK genes and suggest therapeutic possibilities for small molecule PAK inhibitors or activators.
Collapse
Affiliation(s)
- Mollie L Kelly
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA USA
| | | |
Collapse
|
43
|
Activation of diverse signalling pathways by oncogenic PIK3CA mutations. Nat Commun 2014; 5:4961. [PMID: 25247763 PMCID: PMC4210192 DOI: 10.1038/ncomms5961] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 08/12/2014] [Indexed: 12/13/2022] Open
Abstract
The PIK3CA gene is frequently mutated in human cancers. Here we carry out a SILAC-based quantitative phosphoproteomic analysis using isogenic knockin cell lines containing ‘driver’ oncogenic mutations of PIK3CA to dissect the signaling mechanisms responsible for oncogenic phenotypes induced by mutant PIK3CA. From 8,075 unique phosphopeptides identified, we observe that aberrant activation of PI3K pathway leads to increased phosphorylation of a surprisingly wide variety of kinases and downstream signaling networks. Here, by integrating phosphoproteomic data with human protein microarray-based AKT1 kinase assays, we discover and validate six novel AKT1 substrates, including cortactin. Through mutagenesis studies, we demonstrate that phosphorylation of cortactin by AKT1 is important for mutant PI3K enhanced cell migration and invasion. Our study describes a quantitative and global approach for identifying mutation-specific signaling events and for discovering novel signaling molecules as readouts of pathway activation or potential therapeutic targets.
Collapse
|
44
|
Abstract
P-21 activated kinases (PAKs) are effectors of Rac1/Cdc42 which coordinate signals from the cell membrane to the nucleus. Activation of PAKs drive important signalling pathways including mitogen activated protein kinase, phospoinositide 3-kinase (PI3K/AKT), NF-κB and Wnt/β-catenin. Intestinal PAK1 expression increases with inflammation and malignant transformation, although the biological relevance of PAKs in the development and progression of GI disease is only incompletely understood. This review highlights the importance of altered PAK activation within GI inflammation, emphasises its effect on oncogenic signalling and discusses PAKs as therapeutic targets of chemoprevention.
Collapse
Affiliation(s)
- Kyle Dammann
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - Vineeta Khare
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - Christoph Gasche
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
45
|
Assessing the ability of the 2D Fisher–KPP equation to model cell-sheet wound closure. Math Biosci 2014; 252:45-59. [DOI: 10.1016/j.mbs.2014.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 03/07/2014] [Accepted: 03/08/2014] [Indexed: 11/20/2022]
|
46
|
Discovery and the structural basis of a novel p21-activated kinase 4 inhibitor. Cancer Lett 2014; 349:45-50. [PMID: 24704155 DOI: 10.1016/j.canlet.2014.03.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/19/2014] [Accepted: 03/23/2014] [Indexed: 12/15/2022]
Abstract
Functional versatility and elevated expression in cancers have endowed p21-activated kinase 4 (PAK4) as one of the first-in-class anti-cancer drug target. In this study, a novel PAK4 inhibitor, KY-04031 (N(2)-(2-(1H-indol-3-yl)ethyl)-N(4)-(1H-indazol-5-yl)-6-methoxy-1,3,5-triazine-2,4-diamine), was discovered using a high-throughput screening. Analysis of the complex crystal structure illustrated that both indole and indazole of KY-04031 are responsible for PAK4 hinge interaction. Moreover, the molecule's triazine core was found to mimic the ribose of the natural ATP substrate. The cell-based anti-cancer potency of KY-04031 was less effective than the pyrroloaminopyrazoles; however, the unique molecular feature of KY-04031 can be exploited in designing new PAK4 inhibitors.
Collapse
|
47
|
Abstract
The p21 activated kinases (Paks) are well known effector proteins for the Rho GTPases Cdc42 and Rac. The Paks contain 6 members, which fall into 2 families of proteins. The first family consists of Paks 1, 2, and 3, and the second consists of Paks 4, 5, and 6. While some of the Paks are ubiquitously expressed, others have more restrictive tissue specificity. All of them are found in the nervous system. Studies using cell culture, transgenic mice, and knockout mice, have revealed important roles for the Paks in cytoskeletal organization and in many aspects of cell growth and development. This review discusses the basic structures of the Paks, and their roles in cell growth, development, and in cancer.
Collapse
Affiliation(s)
- Chetan K Rane
- Susan Lehman Cullman Laboratory for Cancer Research; Department of Chemical Biology; Ernest Mario School of Pharmacy; Rutgers The State University of New Jersey; Piscataway, NJ USA
| | - Audrey Minden
- Susan Lehman Cullman Laboratory for Cancer Research; Department of Chemical Biology; Ernest Mario School of Pharmacy; Rutgers The State University of New Jersey; Piscataway, NJ USA
| |
Collapse
|
48
|
Role of p-21-activated kinases in cancer progression. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:347-87. [PMID: 24529727 DOI: 10.1016/b978-0-12-800255-1.00007-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The p-21-activated kinases (PAKs) are downstream effectors of Rho GTPases Rac and Cdc42. The PAK family consists of six members which are segregated into two subgroups (Group I and Group II) based on sequence homology. Group I PAKs (PAK1-3) are the most extensively studied but there is increasing interest in the functionality of Group II PAKs (PAK4-6). The PAK family proteins are thought to play an important role in many different cellular processes, some of which have particular significance in the context of cancer progression. This review explores established and more recent data, linking the PAK family kinases to cancer progression including expression profiles, evasion of apoptosis, promotion of cell survival, and regulation of cell invasion. Finally, we discuss attempts to therapeutically target the PAK family and outline the major obstacles that still need to be overcome.
Collapse
|
49
|
Fram S, King H, Sacks DB, Wells CM. A PAK6-IQGAP1 complex promotes disassembly of cell-cell adhesions. Cell Mol Life Sci 2013; 71:2759-73. [PMID: 24352566 PMCID: PMC4059965 DOI: 10.1007/s00018-013-1528-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 10/30/2013] [Accepted: 11/18/2013] [Indexed: 12/04/2022]
Abstract
p-21 activated 6 (PAK6), first identified as interacting with the androgen receptor (AR), is over-expressed in multiple cancer tissues and has been linked to the progression of prostate cancer, however little is known about PAK6 function in the absence of AR signaling. We report here that PAK6 is specifically required for carcinoma cell–cell dissociation downstream of hepatocyte growth factor (HGF) for both DU145 prostate cancer and HT29 colon cancer cells. Moreover, PAK6 overexpression can drive cells to escape from adhesive colonies in the absence of stimulation. We have localized PAK6 to cell–cell junctions and have detected a direct interaction between the kinase domain of PAK6 and the junctional protein IQGAP1. Co-expression of IQGAP1 and PAK6 increases cell colony escape and leads to elevated PAK6 activation. Further studies have identified a PAK6/E-cadherin/IQGAP1 complex downstream of HGF. Moreover, we find that β-catenin is also localized with PAK6 in cell–cell junctions and is a novel PAK6 substrate. We propose a unique role for PAK6, independent of AR signaling, where PAK6 drives junction disassembly during HGF-driven cell–cell dissociation via an IQGAP1/E-cadherin complex that leads to the phosphorylation of β-catenin and the disruption of cell–cell adhesions.
Collapse
Affiliation(s)
- Sally Fram
- Division of Cancer Studies, King's College London, New Hunts House, Guys Campus, London, SE1 1UL, UK
| | | | | | | |
Collapse
|
50
|
Hou A, Toh LX, Gan KH, Lee KJR, Manser E, Tong L. Rho GTPases and regulation of cell migration and polarization in human corneal epithelial cells. PLoS One 2013; 8:e77107. [PMID: 24130842 PMCID: PMC3795020 DOI: 10.1371/journal.pone.0077107] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/06/2013] [Indexed: 01/11/2023] Open
Abstract
Purpose Epithelial cell migration is required for regeneration of tissues and can be defective in a number of ocular surface diseases. This study aimed to determine the expression pattern of Rho family small G-proteins in human corneal epithelial cells to test their requirement in directional cell migration. Methods Rho family small G-protein expression was assessed by reverse transcription-polymerase chain reaction. Dominant-inhibitory constructs encoding Rho proteins or Rho protein targeting small interfering RNA were transfected into human corneal epithelial large T antigen cells, and wound closure rate were evaluated by scratch wounding assay, and a complementary non-traumatic cell migration assay. Immunofluorescence staining was performed to study cell polarization and to assess Cdc42 downstream effector. Results Cdc42, Chp, Rac1, RhoA, TC10 and TCL were expressed in human corneal epithelial cells. Among them, Cdc42 and TCL were found to significantly affect cell migration in monolayer scratch assays. These results were confirmed through the use of validated siRNAs directed to Cdc42 and TCL. Scramble siRNA transfected cells had high percentage of polarized cells than Cdc42 or TCL siRNA transfected cells at the wound edge. We showed that the Cdc42-specific effector p21-activated kinase 4 localized predominantly to cell-cell junctions in cell monolayers, but failed to translocate to the leading edge in Cdc42 siRNA transfected cells after monolayer wounding. Conclusion Rho proteins expressed in cultured human corneal epithelial cells, and Cdc42, TCL facilitate two-dimensional cell migration in-vitro. Although silencing of Cdc42 and TCL did not noticeably affect the appearance of cell adhesions at the leading edge, the slower migration of these cells indicates both GTP-binding proteins play important roles in promoting cell movement of human corneal epithelial cells.
Collapse
Affiliation(s)
- Aihua Hou
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore, Singapore, Singapore
| | - Li Xian Toh
- RGS Group, Institute of Medical Biology, A, Star, Singapore, Singapore
| | - Kah Hui Gan
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore, Singapore, Singapore
| | - Khee Jin Ryan Lee
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore, Singapore, Singapore
| | - Edward Manser
- RGS Group, Institute of Medical Biology, A, Star, Singapore, Singapore
| | - Louis Tong
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore, Singapore, Singapore
- Singapore National Eye Center, Singapore, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|