1
|
Jeong SH, Kim HH, Park MY, Bhosale PB, Abusaliya A, Hwang KH, Moon YG, Heo JD, Seong JK, Ahn M, Park KI, Won CK, Kim GS. Potential Anticancer Effects of Isoflavone Prunetin and Prunetin Glycoside on Apoptosis Mechanisms. Int J Mol Sci 2024; 25:11713. [PMID: 39519265 PMCID: PMC11545868 DOI: 10.3390/ijms252111713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Cancer is a deadly disease caused by cells that deviate from the normal differentiation and proliferation behaviors and continue to multiply. There is still no definitive cure, and many side effects occur even after treatment. However, apoptosis, one of the programs imprinted on cells, is becoming an important concept in controlling cancer. Flavonoids are polyphenolic compounds found in plants, are naturally bioactive compounds, have been studied for their anticancer effects, and have fewer side effects than chemical treatments. Isoflavones are phytoestrogens belonging to the flavonoid family, and this review discusses in depth the potential anticancer effects of prunetin, one of the many flavonoid families, via the apoptotic mechanism. In addition, a glycoside called prunetin glucoside has been investigated for its anticancer effects through apoptotic mechanisms. The primary intention of this review is to identify the effects of prunetin and its glycoside, prunetin glucoside, on cell death signaling pathways in various cancers to enhance the potential anticancer effects of these natural compounds.
Collapse
Affiliation(s)
- Se Hyo Jeong
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.H.J.)
| | - Hun Hwan Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.H.J.)
| | - Min Yeong Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.H.J.)
| | - Pritam Bhangwan Bhosale
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.H.J.)
| | - Abuyaseer Abusaliya
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.H.J.)
| | - Kwang Hyun Hwang
- Biological Resources Research Group, Gyeongnam Department of Environment Toxicology and Chemistry, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Republic of Korea
| | - Yeon Gyu Moon
- Biological Resources Research Group, Gyeongnam Department of Environment Toxicology and Chemistry, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Republic of Korea
| | - Jeong Doo Heo
- Korea Institute of Toxicology, 141, Gajeong-ro, Yuseong-gu, Daejeon 35345, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju 26339, Republic of Korea
| | - Kwang Il Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.H.J.)
| | - Chung Kil Won
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.H.J.)
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (S.H.J.)
| |
Collapse
|
2
|
Cordier W, Steenkamp P, Steenkamp V. Cytostatic and cytotoxic effects of a hot water and methanol extract of Acokanthera oppositifolia in HepG2 hepatocarcinoma cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116617. [PMID: 37182674 DOI: 10.1016/j.jep.2023.116617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herb-induced liver injury is poorly described for African herbal remedies, such as Acokanthera oppositifolia. Although a commonly used treatment for pain, snake bites and anthrax, it is also a well-known arrow poison, thus toxicity is to be expected. AIM OF THE STUDY The cytotoxicity and preliminary mechanisms of toxicity in HepG2 hepatocarcinoma cells were assessed. MATERIALS AND METHODS The effect of hot water and methanol extracts were on cell density, oxidative status, mitochondrial membrane potential, fatty acids, caspase-3/7 activity, adenosine triphosphate levels, cell cycling and viability was assessed. Phytochemicals were tentatively identified using ultra-performance liquid chromatography. RESULTS The hot water extract displayed an IC50 of 24.26 μg/mL, and reduced proliferation (S- and G2/M-phase arrest) and viability (by 30.71%) as early as 24 h after incubation. The methanol extract had a comparable IC50 of 26.16 μg/mL, and arrested cells in the G2/M-phase (by 18.87%) and induced necrosis (by 13.21%). The hot water and methanol extracts depolarised the mitochondrial membrane (up to 0.84- and 0.74-fold), though did not generate reactive oxygen species. The hot water and methanol extracts decreased glutathione (0.42- and 0.62-fold) and adenosine triphosphate (0.08- and 0.26-fold) levels, while fatty acids (2.00- and 4.61-fold) and caspase-3/7 activity (1.98- and 5.82-fold) were increased. CONCLUSION Extracts were both cytostatic and cytotoxic in HepG2 cells. Mitochondrial toxicity was evident and contributed to reducing adenosine triphosphate production and fatty acid accumulation. Altered redox status perturbed proliferation and promoted necrosis. Extracts of A. oppositifolia may thus promote necrotic cell death, which poses a risk for inflammatory hepatotoxicity with associated steatosis.
Collapse
Affiliation(s)
- Werner Cordier
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Paul Steenkamp
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa.
| | - Vanessa Steenkamp
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
3
|
Acunha T, Rocha BA, Nardini V, Barbosa F, Faccioli LH. Lipidomic profiling of the Brazilian yellow scorpion venom: new insights into inflammatory responses following Tityus serrulatus envenomation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:283-295. [PMID: 36895096 DOI: 10.1080/15287394.2023.2188896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Due to the high prevalence and clinical relevance, scorpionism is a critical public health issue in several Brazilian regions. Tityus serrulatus, commonly known as the Brazilian yellow scorpion, is the most venomous genus found in Brazilian fauna and associated with severe clinical manifestations such as localized pain, hypertension, sweating, tachycardia and complex hyperinflammatory responses. In general, T. serrulatus venom contains a complex mixture of active compounds, including proteins, peptides, and amino acids. Although knowledge of the protein fractions of scorpion venom is available, venom lipid components are not yet comprehensively known. The aim of the present study was to determine and characterize the lipid constituents/profile of the T. serratus venom utilizing liquid chromatography coupled with high-resolution mass spectrometry. Lipid species (164 in total) belonging to 3 different lipid categories, glycerophospholipids, sphingolipids, and glycerolipids, were identified. A further search on MetaCore/MetaDrug platform, which is based upon a manually curated database of molecular interactions, molecular pathways, gene-disease associations, chemical metabolism, and toxicity information, exhibited several metabolic pathways for 24 of previously identified lipid species, including activation of nuclear factor kappa B and oxidative stress pathways. Further several bioactive compounds, such as plasmalogens, lyso-platelet-activating factors, and sphingomyelins, associated with systemic responses triggered by T. serrulatus envenomation were detected. Finally, lipidomic data presented provide advanced and valuable information to better comprehend the mechanisms underlying the complex pathophysiology induced by T. serrulatus envenomation.
Collapse
Affiliation(s)
| | | | | | - Fernando Barbosa
- Departamento de Análise Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Lúcia Helena Faccioli
- Departamento de Análise Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
4
|
Yang M, Sun S, Jia X, Wen X, Tian X, Niu Y, Wei J, Jin Y, Du Y. Study on mechanism of hepatoprotective effect of Chrysanthemum morifolium Ramat. based on metabolomics with network analysis and network pharmacology. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1222:123711. [PMID: 37059010 DOI: 10.1016/j.jchromb.2023.123711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
Hangju (HJ), the dried flower heads of Chrysanthemum morifolium Ramat., has a significant hepatoprotective effect. However, its underlying protection mechanism against acute liver injury (ALI) has been unclear. An integrated strategy based on metabolomics with network analysis and network pharmacology was developed to explore the potential molecular mechanism of HJ on ALI protection. Firstly, differential endogenous metabolites were screened and identified by metabolomics approach and metabolic pathway analysis was performed by MetaboAnalyst. Secondly, marker metabolites were used to construct metabolite-response-enzyme-gene networks and discover hub metabolites and potential gene targets in network analysis. Thirdly, hub genes through the protein-protein interaction (PPI) network were acquired by the aid of network pharmacology. Finally, the gene targets were taken to intersect with the relevant active ingredients for validation by molecular docking. In total, 48 flavonoids were identified in HJ, which were associated with 8 potential therapeutic targets in network pharmacological analysis. Biochemistry and histopathology analysis demonstrated that HJ exerted hepatoprotective effects. 28 biomarkers were successfully identified as possible biomarkers for the prevention of ALI. The sphingolipid metabolic pathway and the glycerophospholipid metabolic pathway was considered a crucial signaling pathway by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. In addition, phosphatidylcholine and sphingomyelin were considered as hub metabolites. Twelve enzymes and 38 genes were considered as potential targets in the network analysis. Based on the combined analysis above, HJ was shown to modulate 2 key upstream targets, including PLA2G2A and PLA2G4A. Molecular docking showed that active compounds of HJ had high binding affinity with these key targets. In conclusion, the flavonoid components of HJ can inhibit PLA2 and regulate glycerophospholipid and sphingolipid metabolism pathway to delay the pathological process of ALI, which may be a potential mechanism of HJ against ALI.
Collapse
Affiliation(s)
- Mengxin Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Shilin Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Xinming Jia
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Xuqing Wen
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Xi Tian
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Yukun Niu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Jinhuan Wei
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Yiran Jin
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China.
| | - Yingfeng Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China.
| |
Collapse
|
5
|
Yang F, Chen G. The nutritional functions of dietary sphingomyelin and its applications in food. Front Nutr 2022; 9:1002574. [PMID: 36337644 PMCID: PMC9626766 DOI: 10.3389/fnut.2022.1002574] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Sphingolipids are common structural components of cell membranes and are crucial for cell functions in physiological and pathophysiological conditions. Sphingomyelin and its metabolites, such as sphingoid bases, ceramide, ceramide-1-phosphate, and sphingosine-1-phosphate, play signaling roles in the regulation of human health. The diverse structures of sphingolipids elicit various functions in cellular membranes and signal transduction, which may affect cell growth, differentiation, apoptosis, and maintain biological activities. As nutrients, dietary sphingomyelin and its metabolites have wide applications in the food and pharmaceutical industry. In this review, we summarized the distribution, classifications, structures, digestion, absorption and metabolic pathways of sphingolipids, and discussed the nutritional functioning of sphingomyelin in chronic metabolic diseases. The possible implications of dietary sphingomyelin in the modern food preparations including dairy products and infant formula, skin improvement, delivery system and oil organogels are also evaluated. The production of endogenous sphingomyelin is linked to pathological changes in obesity, diabetes, and atherosclerosis. However, dietary supplementations of sphingomyelin and its metabolites have been shown to maintain cholesterol homeostasis and lipid metabolism, and to prevent or treat these diseases. This seemly paradoxical phenomenon shows that dietary sphingomyelin and its metabolites are candidates for food additives and functional food development for the prevention and treatment of chronic metabolic diseases in humans.
Collapse
Affiliation(s)
- Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Guoxun Chen
- Department of Nutrition, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
6
|
Pherez-Farah A, López-Sánchez RDC, Villela-Martínez LM, Ortiz-López R, Beltrán BE, Hernández-Hernández JA. Sphingolipids and Lymphomas: A Double-Edged Sword. Cancers (Basel) 2022; 14:2051. [PMID: 35565181 PMCID: PMC9104519 DOI: 10.3390/cancers14092051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
Lymphomas are a highly heterogeneous group of hematological neoplasms. Given their ethiopathogenic complexity, their classification and management can become difficult tasks; therefore, new approaches are continuously being sought. Metabolic reprogramming at the lipid level is a hot topic in cancer research, and sphingolipidomics has gained particular focus in this area due to the bioactive nature of molecules such as sphingoid bases, sphingosine-1-phosphate, ceramides, sphingomyelin, cerebrosides, globosides, and gangliosides. Sphingolipid metabolism has become especially exciting because they are involved in virtually every cellular process through an extremely intricate metabolic web; in fact, no two sphingolipids share the same fate. Unsurprisingly, a disruption at this level is a recurrent mechanism in lymphomagenesis, dissemination, and chemoresistance, which means potential biomarkers and therapeutical targets might be hiding within these pathways. Many comprehensive reviews describing their role in cancer exist, but because most research has been conducted in solid malignancies, evidence in lymphomagenesis is somewhat limited. In this review, we summarize key aspects of sphingolipid biochemistry and discuss their known impact in cancer biology, with a particular focus on lymphomas and possible therapeutical strategies against them.
Collapse
Affiliation(s)
- Alfredo Pherez-Farah
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Nuevo Leon, Mexico
| | | | - Luis Mario Villela-Martínez
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Rosales 80030, Sinaloa, Mexico
- Hospital Fernando Ocaranza, ISSSTE, Hermosillo 83190, Sonora, Mexico
- Centro Médico Dr. Ignacio Chávez, ISSSTESON, Hermosillo 83000, Sonora, Mexico
| | - Rocío Ortiz-López
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Nuevo Leon, Mexico
| | - Brady E Beltrán
- Hospital Edgardo Rebagliati Martins, Lima 15072, Peru
- Instituto de Investigaciones en Ciencias Biomédicas, Universidad Ricardo Palma, Lima 1801, Peru
| | | |
Collapse
|
7
|
Li G, Kidd J, Gehr TWB, Li PL. Podocyte Sphingolipid Signaling in Nephrotic Syndrome. Cell Physiol Biochem 2021; 55:13-34. [PMID: 33861526 PMCID: PMC8193717 DOI: 10.33594/000000356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2021] [Indexed: 11/25/2022] Open
Abstract
Podocytes play a vital role in the pathogenesis of nephrotic syndrome (NS), which is clinically characterized by heavy proteinuria, hypoalbuminemia, hyperlipidemia, and peripheral edema. The pathogenesis of NS has evolved through several hypotheses ranging from immune dysregulation theory and increased glomerular permeability theory to the current concept of podocytopathy. Podocytopathy is characterized by dysfunction or depletion of podocytes, which may be caused by unknown permeability factor, genetic disorders, drugs, infections, systemic disorders, and hyperfiltration. Over the last two decades, numerous studies have been done to explore the molecular mechanisms of podocyte injuries or NS and to develop the novel therapeutic strategies targeting podocytopathy for treatment of NS. Recent studies have shown that normal sphingolipid metabolism is essential for structural and functional integrity of podocytes. As a basic component of the plasma membrane, sphingolipids not only support the assembly of signaling molecules and interaction of receptors and effectors, but also mediate various cellular activities, such as apoptosis, proliferation, stress responses, necrosis, inflammation, autophagy, senescence, and differentiation. This review briefly summarizes current evidence demonstrating the regulation of sphingolipid metabolism in podocytes and the canonical or noncanonical roles of podocyte sphingolipid signaling in the pathogenesis of NS and associated therapeutic strategies.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jason Kidd
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Todd W B Gehr
- Division of Nephrology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA,
| |
Collapse
|
8
|
Tollis M, Ferris E, Campbell MS, Harris VK, Rupp SM, Harrison TM, Kiso WK, Schmitt DL, Garner MM, Aktipis CA, Maley CC, Boddy AM, Yandell M, Gregg C, Schiffman JD, Abegglen LM. Elephant Genomes Reveal Accelerated Evolution in Mechanisms Underlying Disease Defenses. Mol Biol Evol 2021; 38:3606-3620. [PMID: 33944920 PMCID: PMC8383897 DOI: 10.1093/molbev/msab127] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Disease susceptibility and resistance are important factors for the conservation of endangered species, including elephants. We analyzed pathology data from 26 zoos and report that Asian elephants have increased neoplasia and malignancy prevalence compared with African bush elephants. This is consistent with observed higher susceptibility to tuberculosis and elephant endotheliotropic herpesvirus (EEHV) in Asian elephants. To investigate genetic mechanisms underlying disease resistance, including differential responses between species, among other elephant traits, we sequenced multiple elephant genomes. We report a draft assembly for an Asian elephant, and defined 862 and 1,017 conserved potential regulatory elements in Asian and African bush elephants, respectively. In the genomes of both elephant species, conserved elements were significantly enriched with genes differentially expressed between the species. In Asian elephants, these putative regulatory regions were involved in immunity pathways including tumor-necrosis factor, which plays an important role in EEHV response. Genomic sequences of African bush, forest, and Asian elephant genomes revealed extensive sequence conservation at TP53 retrogene loci across three species, which may be related to TP53 functionality in elephant cancer resistance. Positive selection scans revealed outlier genes related to additional elephant traits. Our study suggests that gene regulation plays an important role in the differential inflammatory response of Asian and African elephants, leading to increased infectious disease and cancer susceptibility in Asian elephants. These genomic discoveries can inform future functional and translational studies aimed at identifying effective treatment approaches for ill elephants, which may improve conservation.
Collapse
Affiliation(s)
- Marc Tollis
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
| | - Elliott Ferris
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | | | - Valerie K Harris
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Shawn M Rupp
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Tara M Harrison
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Wendy K Kiso
- Ringling Bros Center for Elephant Conservation, Polk City, FL, USA
| | - Dennis L Schmitt
- Ringling Bros Center for Elephant Conservation, Polk City, FL, USA
- William H. Darr College of Agriculture, Missouri State University, Springfield, MO, USA
| | | | - Christina Athena Aktipis
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Amy M Boddy
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Anthropology, University of California, Santa Barbara, CA, USA
| | - Mark Yandell
- Department of Genetics, University of Utah, Salt Lake City, UT, USA
| | - Christopher Gregg
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Joshua D Schiffman
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Pediatrics & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- PEEL Therapeutics, Inc., Salt Lake City, UT, USA & Haifa, Israel
| | - Lisa M Abegglen
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Pediatrics & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- PEEL Therapeutics, Inc., Salt Lake City, UT, USA & Haifa, Israel
| |
Collapse
|
9
|
Kyriakou S, Cheung W, Mantso T, Mitsiogianni M, Anestopoulos I, Veuger S, Trafalis DT, Franco R, Pappa A, Tetard D, Panayiotidis MI. A novel methylated analogue of L-Mimosine exerts its therapeutic potency through ROS production and ceramide-induced apoptosis in malignant melanoma. Invest New Drugs 2021; 39:971-986. [PMID: 33624234 PMCID: PMC8280034 DOI: 10.1007/s10637-021-01087-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/11/2021] [Indexed: 01/01/2023]
Abstract
Melanoma is an aggressive and highly metastatic type of skin cancer where the design of new therapies is of utmost importance for the clinical management of the disease. Thus, we have aimed to investigate the mode of action by which a novel methylated analogue of L-Mimosine (e.g., L-SK-4) exerts its therapeutic potency in an in vitro model of malignant melanoma. Cytotoxicity was assessed by the Alamar Blue assay, oxidative stress by commercially available kits, ROS generation, caspase 3/7 activation and mitochondrial membrane depolarisation by flow cytometry, expression of apoptosis-related proteins by western immunoblotting and profiling of lipid biosynthesis by a metabolomic approach. Overall, higher levels of ROS, sphingolipids and apoptosis were induced by L-SK-4 suggesting that the compound's therapeutic potency is mediated through elevated ROS levels which promote the upregulation of sphingolipid (ceramide) biosynthesis thus leading to the activation of both extrinsic and intrinsic apoptosis, in an experimental model of malignant melanoma.
Collapse
Affiliation(s)
- Sotiris Kyriakou
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - William Cheung
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Theodora Mantso
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Melina Mitsiogianni
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Ioannis Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Stephany Veuger
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Dimitris T Trafalis
- Department of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska, Lincoln, USA
- School of Veterinary Medicine & Biomedical Sciences, University of Nebraska, Lincoln, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - David Tetard
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK.
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.
| |
Collapse
|
10
|
Wilhelm R, Eckes T, Imre G, Kippenberger S, Meissner M, Thomas D, Trautmann S, Merlio JP, Chevret E, Kaufmann R, Pfeilschifter J, Koch A, Jäger M. C6 Ceramide (d18:1/6:0) as a Novel Treatment of Cutaneous T Cell Lymphoma. Cancers (Basel) 2021; 13:E270. [PMID: 33450826 PMCID: PMC7828274 DOI: 10.3390/cancers13020270] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/01/2021] [Accepted: 01/11/2021] [Indexed: 01/09/2023] Open
Abstract
Cutaneous T cell lymphomas (CTCLs) represent a heterogeneous group of T cell lymphomas that primarily affect the skin. The most frequent forms of CTCL are mycosis fungoides and Sézary syndrome. Both are characterized by frequent recurrence, developing chronic conditions and high mortality with a lack of a curative treatment. In this study, we evaluated the effect of short-chain, cell-permeable C6 Ceramide (C6Cer) on CTCL cell lines and keratinocytes. C6Cer significantly reduced cell viability of CTCL cell lines and induced cell death via apoptosis and necrosis. In contrast, primary human keratinocytes and HaCaT keratinocytes were less affected by C6Cer. Both keratinocyte cell lines showed higher expressions of ceramide catabolizing enzymes and HaCaT keratinocytes were able to metabolize C6Cer faster and more efficiently than CTCL cell lines, which might explain the observed protective effects. Along with other existing skin-directed therapies, C6Cer could be a novel well-tolerated drug for the topical treatment of CTCL.
Collapse
Affiliation(s)
- Raphael Wilhelm
- Department of General Pharmacology and Toxicology, Goethe University Hospital and Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (T.E.); (G.I.); (J.P.); (A.K.)
| | - Timon Eckes
- Department of General Pharmacology and Toxicology, Goethe University Hospital and Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (T.E.); (G.I.); (J.P.); (A.K.)
| | - Gergely Imre
- Department of General Pharmacology and Toxicology, Goethe University Hospital and Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (T.E.); (G.I.); (J.P.); (A.K.)
| | - Stefan Kippenberger
- Department of Dermatology, Venerology and Allergology, Goethe University Hospital, 60590 Frankfurt am Main, Germany; (S.K.); (M.M.); (R.K.); (M.J.)
| | - Markus Meissner
- Department of Dermatology, Venerology and Allergology, Goethe University Hospital, 60590 Frankfurt am Main, Germany; (S.K.); (M.M.); (R.K.); (M.J.)
| | - Dominique Thomas
- Department of Clinical Pharmacology, Goethe University Hospital and Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (D.T.); (S.T.)
| | - Sandra Trautmann
- Department of Clinical Pharmacology, Goethe University Hospital and Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (D.T.); (S.T.)
| | - Jean-Philippe Merlio
- Cutaneous Lymphoma Oncogenesis Team, INSERM U1053 Bordeaux Research in Translational Oncology, Bordeaux University, 33076 Bordeaux, France; (J.-P.M.); (E.C.)
| | - Edith Chevret
- Cutaneous Lymphoma Oncogenesis Team, INSERM U1053 Bordeaux Research in Translational Oncology, Bordeaux University, 33076 Bordeaux, France; (J.-P.M.); (E.C.)
| | - Roland Kaufmann
- Department of Dermatology, Venerology and Allergology, Goethe University Hospital, 60590 Frankfurt am Main, Germany; (S.K.); (M.M.); (R.K.); (M.J.)
| | - Josef Pfeilschifter
- Department of General Pharmacology and Toxicology, Goethe University Hospital and Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (T.E.); (G.I.); (J.P.); (A.K.)
| | - Alexander Koch
- Department of General Pharmacology and Toxicology, Goethe University Hospital and Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (T.E.); (G.I.); (J.P.); (A.K.)
| | - Manuel Jäger
- Department of Dermatology, Venerology and Allergology, Goethe University Hospital, 60590 Frankfurt am Main, Germany; (S.K.); (M.M.); (R.K.); (M.J.)
- Hautklinik, Städtisches Klinikum Karlsruhe, Akademisches Lehrkrankenhaus der Universität Freiburg, 76133 Karlsruhe, Germany
| |
Collapse
|
11
|
Tefas C, Ciobanu L, Tanțău M, Moraru C, Socaciu C. The potential of metabolic and lipid profiling in inflammatory bowel diseases: A pilot study. Bosn J Basic Med Sci 2020; 20:262-270. [PMID: 31368421 PMCID: PMC7202185 DOI: 10.17305/bjbms.2019.4235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/10/2019] [Indexed: 01/04/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are conditions that still pose significant problems. A third of the patients are either misdiagnosed or a proper diagnosis of Crohn’s disease (CD) or ulcerative colitis (UC) cannot be made. We need new biomarkers, so that we can offer patients the best treatment and keep the disease in an inactive state for as long as possible. Alterations in metabolic profiles have been incriminated in the pathophysiology of IBD. The aim of the present study was to identify molecules that could serve as biomarkers for a positive diagnosis of IBD as well as to discriminate UC from colonic CD. Twenty-two patients with active colonic IBD (UC = 17, CD = 5) and 24 age- and gender-matched healthy controls were enrolled. Plasma lipid and metabolic profiles were quantified using ultra-high-performance liquid chromatography combined with mass spectrometry. Univariate and multivariate statistical tests were employed. Six lipid species and 7 metabolites were significantly altered in IBD patients compared to healthy controls, with the majority belonging to glycerophospholipid, linoleic acid, and sphingolipid metabolisms. Five lipid species and only 1 metabolite were significantly increased in UC compared to CD. This preliminary study suggests that lipid and metabolic profiling of serum can become diagnostic tools for IBD. In addition, they can be used to differentiate between CD and UC.
Collapse
Affiliation(s)
- Cristian Tefas
- Gastroenterology Department, "Prof. Dr. Octavian Fodor" Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania; Department of Internal Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lidia Ciobanu
- Gastroenterology Department, "Prof. Dr. Octavian Fodor" Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania; Department of Internal Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Marcel Tanțău
- Gastroenterology Department, "Prof. Dr. Octavian Fodor" Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania; Department of Internal Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Corina Moraru
- RTD Center for Applied Biotechnology BIODIATECH, SC Proplanta, Cluj-Napoca, Romania
| | - Carmen Socaciu
- RTD Center for Applied Biotechnology BIODIATECH, SC Proplanta, Cluj-Napoca, Romania
| |
Collapse
|
12
|
Piacentini L, Werba JP, Bono E, Saccu C, Tremoli E, Spirito R, Colombo GI. Genome-Wide Expression Profiling Unveils Autoimmune Response Signatures in the Perivascular Adipose Tissue of Abdominal Aortic Aneurysm. Arterioscler Thromb Vasc Biol 2019; 39:237-249. [PMID: 30567485 DOI: 10.1161/atvbaha.118.311803] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- Perivascular adipose tissue (PVAT) is thought to play a role in vascular homeostasis and in the pathogenesis of large vessel diseases, including abdominal aortic aneurysm (AAA). Herein, we tested the hypothesis that locally restricted transcriptional profiles characterize PVAT surrounding AAA, indicating specific dysfunctions associated with the disease. Approach and Results- Using a paired sample design to limit the effects of interindividual variation, we performed a microarray-based investigation of the PVAT transcriptome in 30 patients with AAA, comparing the adipose layer of the dilated abdominal aorta with that of the not-dilated aortic neck in each patient. Furthermore, we used a state-of-the-art data mining procedure to remove the effect of confounders produced by high-throughput gene expression techniques. We found substantial differences in PVAT gene expression clearly distinguishing the dilated from the not-dilated aorta, which increased in number and magnitude with increasing AAA diameter. Comparisons with other adipose depots (omental or subcutaneous fat) confirmed that gene expression changes are locally restricted. We dissected putative mechanisms associated with AAA PVAT dysfunction through a functional enrichment network analysis: both innate and adaptive immune-response genes along with genes related to cell-death pathways, metabolic processes of collagen, sphingolipids, aminoglycans, and extracellular matrix degradation were strongly overrepresented in PVAT of AAA compared with PVAT of the not-dilated aorta. Conclusions- Our results support a possible function of PVAT in AAA pathogenesis and suggest that AAA is an immunologic disease with an underlying autoimmune component. Interfering with these disease-specific pathways would clarify their precise role in AAA pathogenesis.
Collapse
Affiliation(s)
- Luca Piacentini
- From the Immunology and Functional Genomics Unit (L.P., E.B., G.I.C.), Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - José Pablo Werba
- Atherosclerosis Prevention Unit (J.P.W.), Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Elisa Bono
- From the Immunology and Functional Genomics Unit (L.P., E.B., G.I.C.), Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Claudio Saccu
- Department of Cardiovascular Surgery of the University of Milan (C.S., R.S.), Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Elena Tremoli
- Scientific Direction (E.T.), Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Rita Spirito
- Department of Cardiovascular Surgery of the University of Milan (C.S., R.S.), Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Gualtiero Ivanoe Colombo
- From the Immunology and Functional Genomics Unit (L.P., E.B., G.I.C.), Centro Cardiologico Monzino, IRCCS, Milan, Italy
| |
Collapse
|
13
|
Cañete-Molina Á, Espinosa-Bustos C, González-Castro M, Faúndez M, Mella J, Tapia RA, Cabrera AR, Brito I, Aguirre A, Salas CO. Design, synthesis, cytotoxicity and 3D-QSAR analysis of new 3,6-disubstituted-1,2,4,5-tetrazine derivatives as potential antitumor agents. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2017.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
Suhrland C, Truman J, Obeid LM, Sitharaman B. Delivery of long chain C16and C24ceramide in HeLa cells using oxidized graphene nanoribbons. J Biomed Mater Res B Appl Biomater 2019; 108:1141-1156. [DOI: 10.1002/jbm.b.34465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/24/2019] [Accepted: 07/13/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Cassandra Suhrland
- Department of Biomedical EngineeringStony Brook University Stony Brook New York
| | - Jean‐Philip Truman
- Department of Medicine and the Stony Brook Cancer Center, Health Science CenterStony Brook University Stony Brook New York
| | - Lina M. Obeid
- Department of Medicine and the Stony Brook Cancer Center, Health Science CenterStony Brook University Stony Brook New York
| | - Balaji Sitharaman
- Department of Biomedical EngineeringStony Brook University Stony Brook New York
| |
Collapse
|
15
|
Yang Y, Li F, Wei S, Liu X, Wang Y, Liu H, Wang J, Li H, Cai H, Zhao Y. Metabolomics profiling in a mouse model reveals protective effect of Sancao granule on Con A-Induced liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111838. [PMID: 30930257 DOI: 10.1016/j.jep.2019.111838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sancao granule (SCG) is a traditional Chinese herb formula, which has been used for autoimmune liver disease for decades. Previous study demonstrated that there was an exactly therapeutic effect of SCG on autoimmune hepatitis (AIH) by improving liver function and alleviating the clinical symptoms. However, studies of the mechanism by which SCG alleviates Con A-induced liver injury (CILI) should be complemented. MATERIALS AND METHODS An ultraperformance liquid chromatography with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS)-based metabolomics approach combined with principle component analysis (PCA) and orthogonal projection to latent structures discriminate analysis (OPLS-DA) were integrated applied to obtain metabolites for clarifying mechanisms of disease. RESULTS In accordance with previously study, the present study demonstrated that SCG could obviously improve the liver injury in mouse induced by Con A via downregulating serum biochemical indexes, alleviating the histological damage and inhibiting the neutrophil infiltration in liver tissues. Different expression of 9 metabolites related to 8 pathways, including fatty acid biosynthesis, arachidonic acid metabolisms, linoleic acid metabolisms, sphingolipid metabolisms, fatty acid elongation in mitochondria, glycerophospholipid metabolism, fatty acid metabolism, pyrimidine metabolism were demonstrated responsible for the efficacy of SCG in treating CILI. CONCLUSION In sum up, SCG has been indicated favorable therapeutic effect on Con A induced liver injury. And metabolomics could be a promising approach, which provide insights into mechanisms of SCG in treating CILI.
Collapse
Affiliation(s)
- Yuxue Yang
- Department of Pharmacy, 302 Military Hospital of China, Beijing, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengyi Li
- Center for Diagnosis, Treatment and Research of Infectious Diseases, 302 Military Hospital of China, Beijing, China
| | - Shizhang Wei
- Department of Pharmacy, 302 Military Hospital of China, Beijing, China
| | - Xiaoyi Liu
- Department of Integrative Medical Center, 302 Military Hospital of China, Beijing, China
| | - Yingying Wang
- Department of Pharmacy, 302 Military Hospital of China, Beijing, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honghong Liu
- Department of Integrative Medical Center, 302 Military Hospital of China, Beijing, China
| | - Jiabo Wang
- Department of Integrative Medical Center, 302 Military Hospital of China, Beijing, China
| | - Haotian Li
- Department of Pharmacy, 302 Military Hospital of China, Beijing, China
| | - Huadan Cai
- Department of Pharmacy, 302 Military Hospital of China, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, 302 Military Hospital of China, Beijing, China.
| |
Collapse
|
16
|
Abstract
Cellular toxicity and/or cell death entail complex mechanisms that require multifaceted characterization. A detailed mechanistic assessment of cytotoxicity is essential for design and construction of more effective polycations for nucleic acid delivery. A single toxicity assay cannot stand alone in determining the type and extent of damage or cell death mechanism. In this chapter we describe a lactate dehydrogenase (LDH) assay for high-throughput screening that can be used as a starting point for further detailed cytotoxicity determination. LDH release is considered an early event in necrosis but a late event in apoptosis. An accurate temporal assessment of the toxic responses is crucial as late apoptosis may convert into necrosis as well as in situations where cell death is initiated without any visible cell morphological changes or responses in assays measuring late events, resulting in early ongoing toxicity being overlooked.
Collapse
|
17
|
Kinoshita M, Suzuki KG, Murata M, Matsumori N. Evidence of lipid rafts based on the partition and dynamic behavior of sphingomyelins. Chem Phys Lipids 2018; 215:84-95. [DOI: 10.1016/j.chemphyslip.2018.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/13/2018] [Accepted: 07/10/2018] [Indexed: 01/10/2023]
|
18
|
|
19
|
Assessment of cytosolic free calcium changes during ceramide-induced cell death in MDA-MB-231 breast cancer cells expressing the calcium sensor GCaMP6m. Cell Calcium 2018; 72:39-50. [PMID: 29748132 DOI: 10.1016/j.ceca.2018.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/12/2018] [Accepted: 02/19/2018] [Indexed: 12/17/2022]
Abstract
Alterations in Ca2+ signaling can regulate key cancer hallmarks such as proliferation, invasiveness and resistance to cell death. Changes in the regulation of intracellular Ca2+ and specific components of Ca2+ influx are a feature of several cancers and/or cancer subtypes, including the basal-like breast cancer subtype, which has a poor prognosis. The development of genetically encoded calcium indicators, such as GCaMP6, represents an opportunity to measure changes in intracellular free Ca2+ during processes relevant to breast cancer progression that occur over long periods (e.g. hours), such as cell death. This study describes the development of a MDA-MB-231 breast cancer cell line stably expressing GCaMP6m. The cell line retained the key features of this aggressive basal-like breast cancer cell line. Using this model, we defined alterations in relative cytosolic free Ca2+ ([Ca2+]CYT) when the cells were treated with C2-ceramide. Cell death was measured simultaneously via assessment of propidium iodide permeability. Treatment with ceramide produced delayed and heterogeneous sustained increases in [Ca2+]CYT. Where cell death occurred, [Ca2+]CYT increases preceded cell death. The sustained increases in [Ca2+]CYT were not related to the rapid morphological changes induced by ceramide. Silencing of the plasma membrane Ca2+ ATPase isoform 1 (PMCA1) was associated with an augmentation in ceramide-induced increases in [Ca2+]CYT and also cell death. This work demonstrates the utility of GCaMP6 Ca2+ indicators for investigating [Ca2+]CYT changes in breast cancer cells during events relevant to tumor progression, which occur over hours rather than minutes.
Collapse
|
20
|
Zhao H, Chen Y, Feng H. P2X7 Receptor-Associated Programmed Cell Death in the Pathophysiology of Hemorrhagic Stroke. Curr Neuropharmacol 2018; 16:1282-1295. [PMID: 29766811 PMCID: PMC6251042 DOI: 10.2174/1570159x16666180516094500] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 07/17/2017] [Accepted: 02/28/2018] [Indexed: 12/20/2022] Open
Abstract
Hemorrhagic stroke is a life-threatening disease characterized by a sudden rupture of cerebral blood vessels, and cell death is widely believed to occur after exposure to blood metabolites or subsequently damaged cells. Recently, programmed cell death, such as apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis, has been demonstrated to play crucial roles in the pathophysiology of stroke. However, the detailed mechanisms of these novel kinds of cell death are still unclear. The P2X7 receptor, previously known for its cytotoxic activity, is an ATP-gated, nonselective cation channel that belongs to the family of ionotropic P2X receptors. Evolving evidence indicates that the P2X7 receptor plays a pivotal role in central nervous system pathology; genetic deletion and pharmacological blockade of the P2X7 receptor provide neuroprotection in various neurological disorders, including intracerebral hemorrhage and subarachnoid hemorrhage. The P2X7 receptor may regulate programmed cell death via (I) exocytosis of secretory lysosomes, (II) exocytosis of autophagosomes or autophagolysosomes during formation of the initial autophagic isolation membrane or omegasome, and (III) direct release of cytosolic IL-1β secondary to regulated cell death by pyroptosis or necroptosis. In this review, we present an overview of P2X7 receptor- associated programmed cell death for further understanding of hemorrhagic stroke pathophysiology, as well as potential therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Hengli Zhao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| |
Collapse
|
21
|
Vozella V, Basit A, Misto A, Piomelli D. Age-dependent changes in nervonic acid-containing sphingolipids in mouse hippocampus. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1502-1511. [DOI: 10.1016/j.bbalip.2017.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023]
|
22
|
Cabrera AR, Espinosa-Bustos C, Faúndez M, Meléndez J, Jaque P, Daniliuc CG, Aguirre A, Rojas RS, Salas CO. New imidoyl-indazole platinum (II) complexes as potential anticancer agents: Synthesis, evaluation of cytotoxicity, cell death and experimental-theoretical DNA interaction studies. J Inorg Biochem 2017. [PMID: 28648925 DOI: 10.1016/j.jinorgbio.2017.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Four new neutral N,N imidoyl-indazole ligands (L1, L3, L6, L7) and six new Pt(II)-based complexes (C1-5 and C7) were synthesized and characterized by spectroscopic and spectrometric techniques. Additionally, compounds L6, L7, C3, C5 and C7 were analyzed using X-ray diffraction. An evaluation of cytotoxicity and cell death in vitro for both ligands and complexes was performed by colorimetric assay and flow cytometry, in four cancer cell lines and VERO cells as the control, respectively. Cytotoxicity and selectivity demonstrated by each compound were dependent on the cancer cell line assayed. IC50 values of complexes C1-5 and C7 were lower than those exhibited for the reference drug cisplatin, and selectivity of these complexes was in general terms greater than cisplatin on three cancer cell lines studied. In HL60 cells, complexes C1 and C5 exhibited the lowest values of IC50 and were almost five times more selective than cisplatin. Flow cytometry results suggest that each complex predominantly induced necrosis, and its variant necroptosis, instead of apoptosis in all cancer cell lines studied. DNA binding assays, using agarose gel electrophoresis and UV-visible spectrophotometry studies, displayed a strong interaction only between C4 and DNA. In fact, theoretical calculations showed that C4-DNA binding complex was the most thermodynamic favorable interaction among the complexes in study. Overall, induction of cell death by dependent and independent-DNA-metal compound interactions were possible using imidoyl-indazole Pt(II) complexes as anticancer agents.
Collapse
Affiliation(s)
- Alan R Cabrera
- Departamento de Química Orgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 702843 Santiago, Chile; Universidad Bernardo O'Higgins, Departamento de Ciencias Químicas y Biológicas, Laboratorio de Bionanotecnología, General Gana 1702, Santiago, Chile.
| | - Christian Espinosa-Bustos
- Departamento de Química Orgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 702843 Santiago, Chile
| | - Mario Faúndez
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 702843 Santiago, Chile
| | - Jaime Meléndez
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 702843 Santiago, Chile
| | - Pablo Jaque
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. República 275, Santiago, Chile; Nucleus Millennium of Chemical Processes and Catalysis, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 702843 Santiago, Chile
| | - Constantin G Daniliuc
- Chemisches Institut der Universität Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Adam Aguirre
- Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 702843 Santiago, Chile
| | - Rene S Rojas
- Nucleus Millennium of Chemical Processes and Catalysis, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 702843 Santiago, Chile
| | - Cristian O Salas
- Departamento de Química Orgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 702843 Santiago, Chile; Nucleus Millennium of Chemical Processes and Catalysis, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 702843 Santiago, Chile.
| |
Collapse
|
23
|
Becerra A, Quintero C, Morales V, Valderrama M, Aguirre A, Faúndez MA, Rojas RS. Synthesis of 4(3 H )quinazolinimines with selective cytotoxic effect on human acute promyelocytic leukemia cells. Bioorg Med Chem 2017; 25:2681-2688. [DOI: 10.1016/j.bmc.2016.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 11/30/2022]
|
24
|
Vogt D, Stark H. Therapeutic Strategies and Pharmacological Tools Influencing S1P Signaling and Metabolism. Med Res Rev 2016; 37:3-51. [PMID: 27480072 DOI: 10.1002/med.21402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/01/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023]
Abstract
During the last two decades the study of the sphingolipid anabolic, catabolic, and signaling pathways has attracted enormous interest. Especially the introduction of fingolimod into market as first p.o. therapeutic for the treatment of multiple sclerosis has boosted this effect. Although the complex regulation of sphingosine-1-phosphate (S1P) and other catabolic and anabolic sphingosine-related compounds is not fully understood, the influence on different (patho)physiological states from inflammation to cytotoxicity as well as the availability of versatile pharmacological tools that represent new approaches to study these states are described. Here, we have summarized various aspects concerning the many faces of sphingolipid function modulation by different pharmacological tools up to clinical candidates. Due to the immense heterogeneity of physiological or pharmacological actions and complex cross regulations, it is difficult to predict their role in upcoming therapeutic approaches. Currently, inflammatory, immunological, and/or antitumor aspects are discussed.
Collapse
Affiliation(s)
- Dominik Vogt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438, Frankfurt, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
25
|
Abstract
Activation of ion channels and pores are essential steps during regulated cell death. Channels and pores participate in execution of apoptosis, necroptosis and other forms of caspase-independent cell death. Within the program of regulated cell death, these channels are strategically located. Ion channels can shrink cells and drive them towards apoptosis, resulting in silent, i.e. immunologically unrecognized cell death. Alternatively, activation of channels can induce cell swelling, disintegration of the cell membrane, and highly immunogenic necrotic cell death. The underlying cell death pathways are not strictly separated as identical stimuli may induce cell shrinkage and apoptosis when applied at low strength, but may also cause cell swelling at pronounced stimulation, resulting in regulated necrosis. Nevertheless, the precise role of ion channels during regulated cell death is far from being understood, as identical channels may support regulated death in some cell types, but may cause cell proliferation, cancer development, and metastasis in others. Along this line, the phospholipid scramblase and Cl(-)/nonselective channel anoctamin 6 (ANO6) shows interesting features, as it participates in apoptotic cell death during lower levels of activation, thereby inducing cell shrinkage. At strong activation, e.g. by stimulation of purinergic P2Y7 receptors, it participates in pore formation, causes massive membrane blebbing, cell swelling, and membrane disintegration. The LRRC8 proteins deserve much attention as they were found to have a major role in volume regulation, apoptotic cell shrinkage and resistance towards anticancer drugs.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Institut für Physiologie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
26
|
Folkesson M, Vorkapic E, Gulbins E, Japtok L, Kleuser B, Welander M, Länne T, Wågsäter D. Inflammatory cells, ceramides, and expression of proteases in perivascular adipose tissue adjacent to human abdominal aortic aneurysms. J Vasc Surg 2016; 65:1171-1179.e1. [PMID: 26960947 DOI: 10.1016/j.jvs.2015.12.056] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a deadly irreversible weakening and distension of the abdominal aortic wall. The pathogenesis of AAA remains poorly understood. Investigation into the physical and molecular characteristics of perivascular adipose tissue (PVAT) adjacent to AAA has not been done before and is the purpose of this study. METHODS AND RESULTS Human aortae, periaortic PVAT, and fat surrounding peripheral arteries were collected from patients undergoing elective surgical repair of AAA. Control aortas were obtained from recently deceased healthy organ donors with no known arterial disease. Aorta and PVAT was found in AAA to larger extent compared with control aortas. Immunohistochemistry revealed neutrophils, macrophages, mast cells, and T-cells surrounding necrotic adipocytes. Gene expression analysis showed that neutrophils, mast cells, and T-cells were found to be increased in PVAT compared with AAA as well as cathepsin K and S. The concentration of ceramides in PVAT was determined using mass spectrometry and correlated with content of T-cells in the PVAT. CONCLUSIONS Our results suggest a role for abnormal necrotic, inflamed, proteolytic adipose tissue to the adjacent aneurysmal aortic wall in ongoing vascular damage.
Collapse
Affiliation(s)
- Maggie Folkesson
- Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Emina Vorkapic
- Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany; Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Lukasz Japtok
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Martin Welander
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden; Department of Cardiovascular Surgery, County Council of Östergötland, Linköping, Sweden
| | - Toste Länne
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden; Department of Cardiovascular Surgery, County Council of Östergötland, Linköping, Sweden
| | - Dick Wågsäter
- Division of Drug Research, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
27
|
Bekele RT, Venkatraman G, Liu RZ, Tang X, Mi S, Benesch MGK, Mackey JR, Godbout R, Curtis JM, McMullen TPW, Brindley DN. Oxidative stress contributes to the tamoxifen-induced killing of breast cancer cells: implications for tamoxifen therapy and resistance. Sci Rep 2016; 6:21164. [PMID: 26883574 PMCID: PMC4756695 DOI: 10.1038/srep21164] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/14/2016] [Indexed: 02/07/2023] Open
Abstract
Tamoxifen is the accepted therapy for patients with estrogen receptor-α (ERα)-positive breast cancer. However, clinical resistance to tamoxifen, as demonstrated by recurrence or progression on therapy, is frequent and precedes death from metastases. To improve breast cancer treatment it is vital to understand the mechanisms that result in tamoxifen resistance. This study shows that concentrations of tamoxifen and its metabolites, which accumulate in tumors of patients, killed both ERα-positive and ERα-negative breast cancer cells. This depended on oxidative damage and anti-oxidants rescued the cancer cells from tamoxifen-induced apoptosis. Breast cancer cells responded to tamoxifen-induced oxidation by increasing Nrf2 expression and subsequent activation of the anti-oxidant response element (ARE). This increased the transcription of anti-oxidant genes and multidrug resistance transporters. As a result, breast cancer cells are able to destroy or export toxic oxidation products leading to increased survival from tamoxifen-induced oxidative damage. These responses in cancer cells also occur in breast tumors of tamoxifen-treated mice. Additionally, high levels of expression of Nrf2, ABCC1, ABCC3 plus NAD(P)H dehydrogenase quinone-1 in breast tumors of patients at the time of diagnosis were prognostic of poor survival after tamoxifen therapy. Therefore, overcoming tamoxifen-induced activation of the ARE could increase the efficacy of tamoxifen in treating breast cancer.
Collapse
Affiliation(s)
- Raie T Bekele
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Ganesh Venkatraman
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Rong-Zong Liu
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Xiaoyun Tang
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Si Mi
- Department of Agricultural, Food and Nutritional Science (Lipid Chemistry Group), University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Matthew G K Benesch
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - John R Mackey
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Jonathan M Curtis
- Department of Agricultural, Food and Nutritional Science (Lipid Chemistry Group), University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Todd P W McMullen
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada.,Department of Surgery, Walter C Mackenzie Health Science Centre, University of Alberta, Edmonton, T6G 2R7, Alberta, Canada
| | - David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| |
Collapse
|
28
|
Abstract
Studies over the past two decades have identified ceramide as a multifunctional central molecule in the sphingolipid biosynthetic pathway. Given its diverse tumor suppressive activities, molecular understanding of ceramide action will produce fundamental insights into processes that limit tumorigenesis and may identify key molecular targets for therapeutic intervention. Ceramide can be activated by a diverse array of stresses such as heat shock, genotoxic damage, oxidative stress and anticancer drugs. Ceramide triggers a variety of tumor suppressive and anti-proliferative cellular programs such as apoptosis, autophagy, senescence, and necroptosis by activating or repressing key effector molecules. Defects in ceramide generation and metabolism in cancer contribute to tumor cell survival and resistance to chemotherapy. The potent and versatile anticancer activity profile of ceramide has motivated drug development efforts to (re-)activate ceramide in established tumors. This review focuses on our current understanding of the tumor suppressive functions of ceramide and highlights the potential downstream targets of ceramide which are involved in its tumor suppressive action.
Collapse
|
29
|
Bourke L, McCormick J, Taylor V, Pericleous C, Blanchet B, Costedoat-Chalumeau N, Stuckey D, Lythgoe MF, Stephanou A, Ioannou Y. Hydroxychloroquine Protects against Cardiac Ischaemia/Reperfusion Injury In Vivo via Enhancement of ERK1/2 Phosphorylation. PLoS One 2015; 10:e0143771. [PMID: 26636577 PMCID: PMC4670100 DOI: 10.1371/journal.pone.0143771] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/09/2015] [Indexed: 01/16/2023] Open
Abstract
An increasing number of investigations including human studies demonstrate that pharmacological ischaemic preconditioning is a viable way to protect the heart from myocardial ischaemia/reperfusion (I/R) injury. This study investigated the role of hydroxychloroquine (HCQ) in the heart during I/R injury. In vitro and in vivo models of myocardial I/R injury were used to assess the effects of HCQ. It was found that HCQ was protective in neonatal rat cardiomyocytes through inhibition of apoptosis, measured by TUNEL and cleaved caspase-3. This protection in vitro was mediated through enhancement of ERK1/2 phosphorylation mediated by HCQ in a dose-dependent fashion. A decrease in infarct size was observed in an in vivo model of myocardial I/R injury in HCQ treated animals and furthermore this protection was blocked in the presence of the ERK1/2 inhibitor U0126. For the first time, we have shown that HCQ promotes a preconditioning like protection in an in vivo simulated rat myocardial I/R injury model. Moreover, it was shown that HCQ is protective via enhanced phosphorylation of the pro-survival kinase ERK1/2.
Collapse
Affiliation(s)
- Lauren Bourke
- Centre for Rheumatology, Division of Medicine University College London, Rayne Institute, London, United Kingdom
- Arthritis Research UK Centre for Adolescent Rheumatology, University College London, London, United Kingdom
| | - James McCormick
- Biochemistry Research Group, Clinical and Molecular Genetics Unit, Institute of Child Health & Great Ormond Street Hospital, University College London, London, United Kingdom
| | - Valerie Taylor
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, London, United Kingdom
| | - Charis Pericleous
- Centre for Rheumatology, Division of Medicine University College London, Rayne Institute, London, United Kingdom
| | - Benoit Blanchet
- Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Unité Fonctionnelle de Pharmacocinétique et Pharmacochimie, Paris, France
| | - Nathalie Costedoat-Chalumeau
- Université René Descartes; Centre de référence maladies auto-immunes et systémiques rares, Service de Médecine Interne, Pôle médecine, Hôpital Cochin, AP-HP, Paris, France
| | - Daniel Stuckey
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, London, United Kingdom
| | - Mark F. Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, London, United Kingdom
| | - Anastasis Stephanou
- Medical and Molecular Biology Unit, University College London, London, United Kingdom
| | - Yiannis Ioannou
- Centre for Rheumatology, Division of Medicine University College London, Rayne Institute, London, United Kingdom
- Arthritis Research UK Centre for Adolescent Rheumatology, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Metabolic Conversion of Ceramides in HeLa Cells - A Cholesteryl Phosphocholine Delivery Approach. PLoS One 2015; 10:e0143385. [PMID: 26599810 PMCID: PMC4658033 DOI: 10.1371/journal.pone.0143385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/04/2015] [Indexed: 11/19/2022] Open
Abstract
Ceramides can be delivered to cultured cells without solvents in the form of complexes with cholesteryl phosphocholine. We have analysed the delivery of three different radiolabeled D-erythro-ceramides (C6-Cer, C10-Cer and C16-Cer) to HeLa cells, and followed their metabolism as well as the cell viability. We found that all three ceramides were successfully taken up by HeLa cells when complexed to CholPC in an equimolar ratio, and show that the ceramides show different rates of cellular uptake and metabolic fate. The C6-Cer had the highest incorporation rate, followed by C10-Cer and C16-Cer, respectively. The subsequent effect on cell viability strongly correlated with the rate of incorporation, where C6-Cer had the strongest apoptotic effects. Low-dose (1 μM) treatment with C6-Cer favoured conversion of the precursor to sphingomyelin, whereas higher concentrations (25–100 μM) yielded increased conversion to C6-glucosylceramide. Similar results were obtained for C10-Cer. In the lower-dose C16-Cer experiments, most of the precursor was degraded, whereas at high-dose concentrations the precursor remained un-metabolized. Using this method, we demonstrate that ceramides with different chain lengths clearly exhibit varying rates of cellular uptake. The cellular fate of the externally delivered ceramides are clearly connected to their rate of incorporation and their subsequent effects on cell viability may be in part determined by their chain length.
Collapse
|
31
|
Kallemeijn WW, Witte MD, Wennekes T, Aerts JMFG. Mechanism-based inhibitors of glycosidases: design and applications. Adv Carbohydr Chem Biochem 2015; 71:297-338. [PMID: 25480507 DOI: 10.1016/b978-0-12-800128-8.00004-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article covers recent developments in the design and application of activity-based probes (ABPs) for glycosidases, with emphasis on the different enzymes involved in metabolism of glucosylceramide in humans. Described are the various catalytic reaction mechanisms employed by inverting and retaining glycosidases. An understanding of catalysis at the molecular level has stimulated the design of different types of ABPs for glycosidases. Such compounds range from (1) transition-state mimics tagged with reactive moieties, which associate with the target active site—forming covalent bonds in a relatively nonspecific manner in or near the catalytic pocket—to (2) enzyme substrates that exploit the catalytic mechanism of retaining glycosidase targets to release a highly reactive species within the active site of the enzyme, to (3) probes based on mechanism-based, covalent, and irreversible glycosidase inhibitors. Some applications in biochemical and biological research of the activity-based glycosidase probes are discussed, including specific quantitative visualization of active enzyme molecules in vitro and in vivo, and as strategies for unambiguously identifying catalytic residues in glycosidases in vitro.
Collapse
Affiliation(s)
- Wouter W Kallemeijn
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Martin D Witte
- Department of Bio-Organic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
| | - Tom Wennekes
- Department of Synthetic Organic Chemistry, Wageningen University, Wageningen, The Netherlands.
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Abstract
The topic of ceramidases has experienced an enormous boost during the last few years. Ceramidases catalyze the degradation of ceramide to sphingosine and fatty acids. Ceramide is not only the central hub of sphingolipid biosynthesis and degradation, it is also a key molecule in sphingolipid signaling, promoting differentiation or apoptosis. Acid ceramidase inhibition sensitizes certain types of cancer to chemo- and radio-therapy and this is suggestive of a role of acid ceramidase inhibitors as chemo-sensitizers which can act synergistically with chemo-therapeutic drugs. In this review, we summarize the development of ceramide analogues as first-generation ceramidase inhibitors together with data on their activity in cells and disease models. Furthermore, we describe the recent developments that have led to highly potent second-generation ceramidase inhibitors that act at nanomolar concentrations. In the third part, various assays of ceramidases are described and their relevance for accurately measuring ceramidase activities and for the development of novel inhibitors is highlighted. Besides potential clinical implications, the recent improvements in ceramidase inhibition and assaying may help to better understand the mechanisms of ceramide biology.
Collapse
Affiliation(s)
- Essa M Saied
- Humboldt Universität zu Berlin, Institute for Chemistry, Berlin, Germany; Suez Canal University, Chemistry Department, Faculty of Science, Ismailia, Egypt
| | - Christoph Arenz
- Humboldt Universität zu Berlin, Institute for Chemistry, Berlin, Germany.
| |
Collapse
|
33
|
Wehinger S, Ortiz R, Díaz MI, Aguirre A, Valenzuela M, Llanos P, Mc Master C, Leyton L, Quest AFG. Phosphorylation of caveolin-1 on tyrosine-14 induced by ROS enhances palmitate-induced death of beta-pancreatic cells. Biochim Biophys Acta Mol Basis Dis 2015; 1852:693-708. [PMID: 25572853 DOI: 10.1016/j.bbadis.2014.12.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 12/24/2014] [Accepted: 12/27/2014] [Indexed: 01/22/2023]
Abstract
A considerable body of evidence exists implicating high levels of free saturated fatty acids in beta pancreatic cell death, although the molecular mechanisms and the signaling pathways involved have not been clearly defined. The membrane protein caveolin-1 has long been implicated in cell death, either by sensitizing to or directly inducing apoptosis and it is normally expressed in beta cells. Here, we tested whether the presence of caveolin-1 modulates free fatty acid-induced beta cell death by reexpressing this protein in MIN6 murine beta cells lacking caveolin-1. Incubation of MIN6 with palmitate, but not oleate, induced apoptotic cell death that was enhanced by the presence of caveolin-1. Moreover, palmitate induced de novo ceramide synthesis, loss of mitochondrial transmembrane potential and reactive oxygen species (ROS) formation in MIN6 cells. ROS generation promoted caveolin-1 phosphorylation on tyrosine-14 that was abrogated by the anti-oxidant N-acetylcysteine or the incubation with the Src-family kinase inhibitor, PP2 (4-amino-5-(4-chlorophenyl)-7(dimethylethyl)pyrazolo[3,4-d]pyrimidine). The expression of a non-phosphorylatable caveolin-1 tyrosine-14 to phenylalanine mutant failed to enhance palmitate-induced apoptosis while for MIN6 cells expressing the phospho-mimetic tyrosine-14 to glutamic acid mutant caveolin-1 palmitate sensitivity was comparable to that observed for MIN6 cells expressing wild type caveolin-1. Thus, caveolin-1 expression promotes palmitate-induced ROS-dependent apoptosis in MIN6 cells in a manner requiring Src family kinase mediated tyrosine-14 phosphorylation.
Collapse
Affiliation(s)
- Sergio Wehinger
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago de Chile, Chile; Research Program of Interdisciplinary Excellence in Healthy Aging (PIEI-ES), Faculty of Health Sciences, Department of Clinical Biochemistry and Immunohematology, Universidad de Talca, 3465548 Talca, Chile
| | - Rina Ortiz
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago de Chile, Chile
| | - María Inés Díaz
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago de Chile, Chile
| | - Adam Aguirre
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago de Chile, Chile
| | - Manuel Valenzuela
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago de Chile, Chile
| | - Paola Llanos
- Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Christopher Mc Master
- Departament of Pediatrics, Atlantic Research Centre, Dalhousie University, Halifax, NS, Canada; Department of Biochemistry and Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, NS, Canada
| | - Lisette Leyton
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago de Chile, Chile
| | - Andrew F G Quest
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago de Chile, Chile.
| |
Collapse
|
34
|
Garoby-Salom S, Rouahi M, Mucher E, Auge N, Salvayre R, Negre-Salvayre A. Hyaluronan synthase-2 upregulation protects smpd3-deficient fibroblasts against cell death induced by nutrient deprivation, but not against apoptosis evoked by oxidized LDL. Redox Biol 2014; 4:118-26. [PMID: 25555205 PMCID: PMC4309855 DOI: 10.1016/j.redox.2014.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 01/02/2023] Open
Abstract
The neutral type 2 sphingomyelinase (nSMase2) hydrolyzes sphingomyelin and generates ceramide, a major bioactive sphingolipid mediator, involved in growth arrest and apoptosis. The role of nSMase2 in apoptosis is debated, and apparently contradictory results have been observed on fibroblasts isolated from nSMase2-deficient fragilitas ossium (homozygous fro/fro) mice. These mice exhibit a severe neonatal dysplasia, a lack of long bone mineralization and delayed apoptosis patterns of hypertrophic chondrocytes in the growth plate. We hypothesized that apoptosis induced by nutrient deprivation, which mimics the environmental modifications of the growth plate, requires nSMase2 activation. In this study, we have compared the resistance of fro/fro fibroblasts to different death inducers (oxidized LDL, hydrogen peroxide and nutrient starvation). The data show that nSMase2-deficient fro/fro cells resist to apoptosis evoked by nutrient starvation (fetal calf serum/glucose/pyruvate-free DMEM), whereas wt fibroblasts die after 48 h incubation in this medium. In contrast, oxidized LDL and hydrogen peroxide are similarly toxic to fro/fro and wt fibroblasts, indicating that nSMase2 is not involved in the mechanism of toxicity evoked by these agents. Interestingly, wt fibroblasts treated with the SMase inhibitor GW4869 were more resistant to starvation-induced apoptosis. The resistance of fro/fro cells to starvation-induced apoptosis is associated with an increased expression of hyaluronan synthase 2 (HAS2) mRNAs and protein, which is inhibited by ceramide. In wt fibroblasts, this HAS2 rise and its protective effect did not occur, but exogenously added HA exhibited a protective effect against starvation-induced apoptosis. The protective mechanism of HAS2 involves an increased expression of the heat-shock protein Hsp72, a chaperone with antiapoptotic activity. Taken together, these results highlight the role of nSMase2 in apoptosis evoked by nutrient starvation that could contribute to the delayed apoptosis of hypertrophic chondrocytes in the growth plate, and emphasize the antiapoptotic properties of HAS2. Apoptosis evoked by oxidized LDL and H2O2 is comparable in fro/fro and wt fibroblasts. fro/fro fibroblasts resist to apoptosis evoked by nutrient starvation. HAS2 increased expression protects fro/fro fibroblasts against apoptosis. HAS2 regulates the expression of the antiapoptotic heat-shock protein HsP72.
Collapse
Affiliation(s)
- Sandra Garoby-Salom
- INSERM UMR-1048, BP 84225, 31432 Toulouse Cedex 4, France; University of Toulouse, Toulouse, France
| | - Myriam Rouahi
- INSERM UMR-1048, BP 84225, 31432 Toulouse Cedex 4, France; University of Toulouse, Toulouse, France
| | - Elodie Mucher
- INSERM UMR-1048, BP 84225, 31432 Toulouse Cedex 4, France; University of Toulouse, Toulouse, France
| | - Nathalie Auge
- INSERM UMR-1048, BP 84225, 31432 Toulouse Cedex 4, France; University of Toulouse, Toulouse, France
| | - Robert Salvayre
- INSERM UMR-1048, BP 84225, 31432 Toulouse Cedex 4, France; University of Toulouse, Toulouse, France
| | - Anne Negre-Salvayre
- INSERM UMR-1048, BP 84225, 31432 Toulouse Cedex 4, France; University of Toulouse, Toulouse, France.
| |
Collapse
|
35
|
Li K, Wu D, Chen X, Zhang T, Zhang L, Yi Y, Miao Z, Jin N, Bi X, Wang H, Xu J, Wang D. Current and emerging biomarkers of cell death in human disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:690103. [PMID: 24949464 PMCID: PMC4052120 DOI: 10.1155/2014/690103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/17/2014] [Indexed: 01/18/2023]
Abstract
Cell death is a critical biological process, serving many important functions within multicellular organisms. Aberrations in cell death can contribute to the pathology of human diseases. Significant progress made in the research area enormously speeds up our understanding of the biochemical and molecular mechanisms of cell death. According to the distinct morphological and biochemical characteristics, cell death can be triggered by extrinsic or intrinsic apoptosis, regulated necrosis, autophagic cell death, and mitotic catastrophe. Nevertheless, the realization that all of these efforts seek to pursue an effective treatment and cure for the disease has spurred a significant interest in the development of promising biomarkers of cell death to early diagnose disease and accurately predict disease progression and outcome. In this review, we summarize recent knowledge about cell death, survey current and emerging biomarkers of cell death, and discuss the relationship with human diseases.
Collapse
Affiliation(s)
- Kongning Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Deng Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xi Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Ting Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Lu Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Ying Yi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Zhengqiang Miao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Nana Jin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xiaoman Bi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Hongwei Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jianzhen Xu
- College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China
| | - Dong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
36
|
Nono NR, Nzowa KL, Barboni L, Tapondjou AL. <i>Drymaria cordata</i> (Linn.) Willd (Caryophyllaceae): Ethnobotany, Pharmacology and Phytochemistry. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/abc.2014.42020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
C6-ceramide nanoliposomes target the Warburg effect in chronic lymphocytic leukemia. PLoS One 2013; 8:e84648. [PMID: 24367685 PMCID: PMC3868606 DOI: 10.1371/journal.pone.0084648] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/26/2013] [Indexed: 11/19/2022] Open
Abstract
Ceramide is a sphingolipid metabolite that induces cancer cell death. When C6-ceramide is encapsulated in a nanoliposome bilayer formulation, cell death is selectively induced in tumor models. However, the mechanism underlying this selectivity is unknown. As most tumors exhibit a preferential switch to glycolysis, as described in the "Warburg effect", we hypothesize that ceramide nanoliposomes selectively target this glycolytic pathway in cancer. We utilize chronic lymphocytic leukemia (CLL) as a cancer model, which has an increased dependency on glycolysis. In CLL cells, we demonstrate that C6-ceramide nanoliposomes, but not control nanoliposomes, induce caspase 3/7-independent necrotic cell death. Nanoliposomal ceramide inhibits both the RNA and protein expression of GAPDH, an enzyme in the glycolytic pathway, which is overexpressed in CLL. To confirm that ceramide targets GAPDH, we demonstrate that downregulation of GAPDH potentiates the decrease in ATP after ceramide treatment and exogenous pyruvate treatment as well as GAPDH overexpression partially rescues ceramide-induced necrosis. Finally, an in vivo murine model of CLL shows that nanoliposomal C6-ceramide treatment elicits tumor regression, concomitant with GAPDH downregulation. We conclude that selective inhibition of the glycolytic pathway in CLL cells with nanoliposomal C6-ceramide could potentially be an effective therapy for leukemia by targeting the Warburg effect.
Collapse
|
38
|
Sukumaran P, Lönnfors M, Långvik O, Pulli I, Törnquist K, Slotte JP. Complexation of c6-ceramide with cholesteryl phosphocholine - a potent solvent-free ceramide delivery formulation for cells in culture. PLoS One 2013; 8:e61290. [PMID: 23620740 PMCID: PMC3631171 DOI: 10.1371/journal.pone.0061290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/06/2013] [Indexed: 12/15/2022] Open
Abstract
Ceramides are potent bioactive molecules in cells. However, they are very hydrophobic molecules, and difficult to deliver efficiently to cells. We have made fluid bilayers from a short-chain D-erythro-ceramide (C6-Cer) and cholesteryl phosphocholine (CholPC), and have used this as a formulation to deliver ceramide to cells. C6-Cer complexed with CholPC led to much larger biological effects in cultured cells (rat thyroid FRTL-5 and human HeLa cells in culture) compared to C6-Cer dissolved in dimethyl sulfoxide (DMSO). Inhibition of cell proliferation and induction of apoptosis was significantly more efficient by C6-Cer/CholPC compared to C6-Cer dissolved in DMSO. C6-Cer/CholPC also permeated cell membranes and caused mitochondrial Ca2+ influx more efficiently than C6-Cer in DMSO. Even though CholPC was taken up by cells to some extent (from C6-Cer/CholPC bilayers), and was partially hydrolyzed to free cholesterol (about 9%), none of the antiproliferative effects were due to CholPC or excess cholesterol. The ceramide effect was not limited to D-erythro-C6-Cer, since L-erythro-C6-Cer and D-erythro-C6-dihydroCer also inhibited cell priolifereation and affected Ca2+ homeostasis. We conclude that C6-Cer complexed to CholPC increased the bioavailability of the short-chain ceramide for cells, and potentiated its effects in comparison to solvent-dissolved C6-Cer. This new ceramide formulation appears to be superior to previous solvent delivery approaches, and may even be useful with longer-chain ceramides.
Collapse
Affiliation(s)
| | - Max Lönnfors
- Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Otto Långvik
- Laboratory of Organic Chemistry, Department of Natural Sciences, Åbo Akademi University, Turku, Finland
| | - Ilari Pulli
- Cell Biology, Åbo Akademi University, Turku, Finland
| | - Kid Törnquist
- Cell Biology, Åbo Akademi University, Turku, Finland
- Minerva Foundation Institute of Medical Research, Biomedicum Helsinki, Helsinki, Finland
- * E-mail: (KT); (JPS)
| | - J. Peter Slotte
- Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
- * E-mail: (KT); (JPS)
| |
Collapse
|
39
|
Parra V, Moraga F, Kuzmicic J, López-Crisosto C, Troncoso R, Torrealba N, Criollo A, Díaz-Elizondo J, Rothermel BA, Quest AFG, Lavandero S. Calcium and mitochondrial metabolism in ceramide-induced cardiomyocyte death. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1334-44. [PMID: 23602992 DOI: 10.1016/j.bbadis.2013.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 10/27/2022]
Abstract
Ceramides are important intermediates in the biosynthesis and degradation of sphingolipids that regulate numerous cellular processes, including cell cycle progression, cell growth, differentiation and death. In cardiomyocytes, ceramides induce apoptosis by decreasing mitochondrial membrane potential and promoting cytochrome-c release. Ca(2+) overload is a common feature of all types of cell death. The aim of this study was to determine the effect of ceramides on cytoplasmic Ca(2+) levels, mitochondrial function and cardiomyocyte death. Our data show that C2-ceramide induces apoptosis and necrosis in cultured cardiomyocytes by a mechanism involving increased Ca(2+) influx, mitochondrial network fragmentation and loss of the mitochondrial Ca(2+) buffer capacity. These biochemical events increase cytosolic Ca(2+) levels and trigger cardiomyocyte death via the activation of calpains.
Collapse
Affiliation(s)
- Valentina Parra
- Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Químicas y Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Aguirre A, Shoji KF, Sáez JC, Henríquez M, Quest AFG. FasL-triggered death of Jurkat cells requires caspase 8-induced, ATP-dependent cross-talk between Fas and the purinergic receptor P2X(7). J Cell Physiol 2013; 228:485-93. [PMID: 22806078 DOI: 10.1002/jcp.24159] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Fas ligation via the ligand FasL activates the caspase-8/caspase-3-dependent extrinsic death pathway. In so-called type II cells, an additional mechanism involving tBid-mediated caspase-9 activation is required to efficiently trigger cell death. Other pathways linking FasL-Fas interaction to activation of the intrinsic cell death pathway remain unknown. However, ATP release and subsequent activation of purinergic P2X(7) receptors (P2X(7)Rs) favors cell death in some cells. Here, we evaluated the possibility that ATP release downstream of caspase-8 via pannexin1 hemichannels (Panx1 HCs) and subsequent activation of P2X(7)Rs participate in FasL-stimulated cell death. Indeed, upon FasL stimulation, ATP was released from Jurkat cells in a time- and caspase-8-dependent manner. Fas and Panx1 HCs colocalized and inhibition of the latter, but not connexin hemichannels, reduced FasL-induced ATP release. Extracellular apyrase, which hydrolyzes ATP, reduced FasL-induced death. Also, oxidized-ATP or Brilliant Blue G, two P2X(7)R blockers, reduced FasL-induced caspase-9 activation and cell death. These results represent the first evidence indicating that the two death receptors, Fas and P2X(7)R connect functionally via caspase-8 and Panx1 HC-mediated ATP release to promote caspase-9/caspase-3-dependent cell death in lymphoid cells. Thus, a hitherto unsuspected route was uncovered connecting the extrinsic to the intrinsic pathway to amplify death signals emanating from the Fas receptor in type II cells.
Collapse
Affiliation(s)
- Adam Aguirre
- Centro de Estudios Moleculares de la Célula, Universidad de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
41
|
Kim YM, Park TS, Kim SG. The role of sphingolipids in drug metabolism and transport. Expert Opin Drug Metab Toxicol 2013; 9:319-31. [PMID: 23289866 DOI: 10.1517/17425255.2013.748749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Sphingolipids represent a diverse class of lipid molecules. In addition to their function as membrane structural components, they serve as signaling molecules involved in various biological processes such as cell metabolism, growth, differentiation, stress and inflammatory responses and apoptosis. Sphingolipids may modulate the activity and/or expression of cytochrome P450s (CYPs) and transporters, which suggests that they may affect drug metabolism and excretion. AREAS COVERED In this review, the authors provide an overview of the properties of sphingolipid structures and metabolism. They also describe the effects of sphingolipids on the activity and expression of CYPs and transporters. In addition, the authors discuss the pathologic conditions where the sphingolipid metabolism is dysregulated particularly in association with inflammation and cancer. EXPERT OPINION Sphingolipidomic approaches have become accessible with the aid of advances in analytical technology. Sphingolipid profiles are modified by diseases, genetic disorders or certain drug treatment. The consequent changes in sphingolipid contents may alter the activities of detoxifying enzymes and those associated with cell viability. Since CYPs and transporters play roles in xenobiotics metabolism and excretion, sphingolipidomic information may be of use in understanding drug effect and toxicity.
Collapse
Affiliation(s)
- Young Mi Kim
- Seoul National University, Research Institute of Pharmaceutical Sciences, College of Pharmacy, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-742, Korea
| | | | | |
Collapse
|
42
|
Abstract
Cellular toxicity and/or cell death entail complex mechanisms that require detailed evaluation for proper characterization. A detailed mechanistic assessment of cytotoxicity is essential for design and construction of more effective polycations for nucleic acid delivery. A single toxicity assay cannot stand alone in determining the type and extent of damage or cell death mechanism. In this chapter we describe a lactate dehydrogenase (LDH) assay for high-throughput screening that can be used as a starting point for further detailed cytotoxicity determination. LDH release is considered an early event in necrosis but a late event in apoptosis. An accurate temporal assessment of the toxic responses is crucial as late apoptosis may convert into necrosis as well as in situations where cell death is initiated without any visible cell morphological changes or responses in assays measuring late events, resulting in early ongoing toxicity being overlooked.
Collapse
|
43
|
Milhas D, Andrieu-Abadie N, Levade T, Benoist H, Ségui B. The tricyclodecan-9-yl-xanthogenate D609 triggers ceramide increase and enhances FasL-induced caspase-dependent and -independent cell death in T lymphocytes. Int J Mol Sci 2012; 13:8834-8852. [PMID: 22942738 PMCID: PMC3430269 DOI: 10.3390/ijms13078834] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 06/30/2012] [Accepted: 07/04/2012] [Indexed: 01/02/2023] Open
Abstract
D609 is known to modulate death receptor-induced ceramide generation and cell death. We show that in Jurkat cells, non-toxic D609 concentrations inhibit sphingomyelin synthase and, to a lesser extent, glucosylceramide synthase, and transiently increase the intracellular ceramide level. D609 significantly enhanced FasL-induced caspase activation and apoptosis. D609 stimulated FasL-induced cell death in caspase-8-deficient Jurkat cells, indicating that D609 acts downstream of caspase-8. At high FasL concentration (500 ng/mL), cell death was significantly, but not completely, inhibited by zVAD-fmk, a broad-spectrum caspase inhibitor, indicating that FasL can activate both caspase-dependent and -independent cell death signaling pathways. FasL-induced caspase activation was abolished by zVAD-fmk, whereas ceramide production was only partially impaired. D609 enhanced caspase-independent ceramide increase and cell death in response to FasL. Also, D609 overcame zVAD-fmk-conferred resistance to a FasL concentration as low as 50 ng/mL and bypassed RIP deficiency. It is likely that mitochondrial events were involved, since Bcl-xL over-expression impaired D609 effects. In PHA-activated human T lymphocytes, D609 enhanced FasL-induced cell death in the presence or absence of zVAD-fmk. Altogether, our data strongly indicate that the inhibition of ceramide conversion to complex sphingolipids by D609 is accompanied by an enhancement of FasL-induced caspase-dependent and -independent cell death in T lymphocytes.
Collapse
Affiliation(s)
- Delphine Milhas
- Team 4, Cancer Research Center of Toulouse, INSERM UMR1037, BP84225, 31432 Toulouse Cedex 4, France; E-Mails: (D.M.); (N.A.-A.); (T.L.); (H.B.)
| | - Nathalie Andrieu-Abadie
- Team 4, Cancer Research Center of Toulouse, INSERM UMR1037, BP84225, 31432 Toulouse Cedex 4, France; E-Mails: (D.M.); (N.A.-A.); (T.L.); (H.B.)
| | - Thierry Levade
- Team 4, Cancer Research Center of Toulouse, INSERM UMR1037, BP84225, 31432 Toulouse Cedex 4, France; E-Mails: (D.M.); (N.A.-A.); (T.L.); (H.B.)
| | - Hervé Benoist
- Team 4, Cancer Research Center of Toulouse, INSERM UMR1037, BP84225, 31432 Toulouse Cedex 4, France; E-Mails: (D.M.); (N.A.-A.); (T.L.); (H.B.)
- Department of Cell Biology, Hematology and Immunology, Faculty of Pharmaceutical Sciences, Paul Sabatier University (Toulouse III), 31062 Toulouse, France
| | - Bruno Ségui
- Team 4, Cancer Research Center of Toulouse, INSERM UMR1037, BP84225, 31432 Toulouse Cedex 4, France; E-Mails: (D.M.); (N.A.-A.); (T.L.); (H.B.)
- Department of Cell Biology, Hematology and Immunology, Faculty of Pharmaceutical Sciences, Paul Sabatier University (Toulouse III), 31062 Toulouse, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-5-61-32-35-31; Fax: +33-5-61-32-20-84
| |
Collapse
|
44
|
Inactivation of ceramide transfer protein during pro-apoptotic stress by Golgi disassembly and caspase cleavage. Biochem J 2012; 442:391-401. [PMID: 22129459 DOI: 10.1042/bj20111461] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mammalian Golgi apparatus is composed of multiple stacks of cisternal membranes organized laterally into a polarized ribbon. Furthermore, trans-Golgi membranes come in close apposition with ER (endoplasmic reticulum) membranes to form ER-trans-Golgi contact sites, which may facilitate transfer of newly synthesized ceramide from the ER to SM (sphingomyelin) synthase at the trans-Golgi via CERT (ceramide transfer protein). CERT interacts with both ER and Golgi membranes, and together with Golgi morphology contributes to efficient SM synthesis. In the present study, we show that Golgi disassembly during pro-apoptotic stress induced by TNFα (tumour necrosis factor α) and anisomycin results in decreased levels of CERT at the Golgi region. This is accompanied by a caspase-dependent loss of full-length CERT and reduction in de novo SM synthesis. In vitro, CERT is cleaved by caspases 2, 3 and 9. Truncated versions of CERT corresponding to fragments generated by caspase 2 cleavage at Asp213 were mislocalized and did not promote efficient de novo SM synthesis. Thus it is likely that during cellular stress, disassembly of Golgi structure together with inactivation of CERT by caspases causes a reduction in ceramide trafficking and SM synthesis, and could contribute to the cellular response to pro-apoptotic stress.
Collapse
|
45
|
Pérez-Donoso JM, Monrás JP, Bravo D, Aguirre A, Quest AF, Osorio-Román IO, Aroca RF, Chasteen TG, Vásquez CC. Biomimetic, mild chemical synthesis of CdTe-GSH quantum dots with improved biocompatibility. PLoS One 2012; 7:e30741. [PMID: 22292028 PMCID: PMC3264638 DOI: 10.1371/journal.pone.0030741] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 12/25/2011] [Indexed: 11/30/2022] Open
Abstract
Multiple applications of nanotechnology, especially those involving highly fluorescent nanoparticles (NPs) or quantum dots (QDs) have stimulated the research to develop simple, rapid and environmentally friendly protocols for synthesizing NPs exhibiting novel properties and increased biocompatibility. In this study, a simple protocol for the chemical synthesis of glutathione (GSH)-capped CdTe QDs (CdTe-GSH) resembling conditions found in biological systems is described. Using only CdCl2, K2TeO3 and GSH, highly fluorescent QDs were obtained under pH, temperature, buffer and oxygen conditions that allow microorganisms growth. These CdTe-GSH NPs displayed similar size, chemical composition, absorbance and fluorescence spectra and quantum yields as QDs synthesized using more complicated and expensive methods. CdTe QDs were not freely incorporated into eukaryotic cells thus favoring their biocompatibility and potential applications in biomedicine. In addition, NPs entry was facilitated by lipofectamine, resulting in intracellular fluorescence and a slight increase in cell death by necrosis. Toxicity of the as prepared CdTe QDs was lower than that observed with QDs produced by other chemical methods, probably as consequence of decreased levels of Cd+2 and higher amounts of GSH. We present here the simplest, fast and economical method for CdTe QDs synthesis described to date. Also, this biomimetic protocol favors NPs biocompatibility and helps to establish the basis for the development of new, “greener” methods to synthesize cadmium-containing QDs.
Collapse
Affiliation(s)
- José M. Pérez-Donoso
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Laboratorio de Bioquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- * E-mail: (JMP); (CCV)
| | - Juan P. Monrás
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Laboratorio de Bioquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Denisse Bravo
- Laboratorio de Comunicaciones Celulares, Centro de Estudios Moleculares de la Célula (CEMC), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Adam Aguirre
- Laboratorio de Comunicaciones Celulares, Centro de Estudios Moleculares de la Célula (CEMC), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrew F. Quest
- Laboratorio de Comunicaciones Celulares, Centro de Estudios Moleculares de la Célula (CEMC), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Igor O. Osorio-Román
- Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo F. Aroca
- Materials and Surface Science Group, Faculty of Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Thomas G. Chasteen
- Department of Chemistry, Sam Houston State University, Huntsville, Texas, United States of America
| | - Claudio C. Vásquez
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- * E-mail: (JMP); (CCV)
| |
Collapse
|
46
|
Kujjo LL, Perez GI. Ceramide and mitochondrial function in aging oocytes: joggling a new hypothesis and old players. Reproduction 2012; 143:1-10. [DOI: 10.1530/rep-11-0350] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Maternal aging adversely affects oocyte quality (function and developmental potential) and consequently lowers pregnancy rates while increasing spontaneous abortions. Substantial evidence, especially from egg donation studies, implicates the decreased quality of an aging oocyte as a major factor in the etiology of female infertility. Nevertheless, the cellular and molecular mechanisms responsible for the decreased oocyte quality with advanced maternal aging are not fully characterized. Herein we present information in the published literature and our own data to support the hypothesis that during aging induced decreases in mitochondrial ceramide levels and associated alterations in mitochondrial structure and function are prominent elements contributing to reduced oocyte quality. Hence, by examining the molecular determinants that underlie impairments in oocyte mitochondria, we expect to sieve to a better understanding of the mechanistic anatomy of oocyte aging.
Collapse
|
47
|
Targeting the mitochondrial pathway to induce apoptosis/necrosis through ROS by a newly developed Schiff’s base to overcome MDR in cancer. Biochimie 2012; 94:166-83. [DOI: 10.1016/j.biochi.2011.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 10/12/2011] [Indexed: 11/18/2022]
|
48
|
Echeverría C, Becerra A, Nuñez-Villena F, Muñoz-Castro A, Stehberg J, Zheng Z, Arratia-Perez R, Simon F, Ramírez-Tagle R. The paramagnetic and luminescent [Re6Se8I6]3− cluster. Its potential use as an antitumoral and biomarker agent. NEW J CHEM 2012. [DOI: 10.1039/c2nj21016a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Wang YD, Zhang L, Cai GY, Zhang XG, Lv Y, Hong Q, Shi SZ, Yin Z, Liu XF, Chen XM. Fasudil ameliorates rhabdomyolysis-induced acute kidney injury via inhibition of apoptosis. Ren Fail 2011; 33:811-8. [PMID: 21797820 DOI: 10.3109/0886022x.2011.601830] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During times of war or natural disasters, rhabdomyolysis leading to acute kidney injury (AKI) can assume epidemic proportions. Fasudil attenuates ischemia/reperfusion-induced AKI. We investigated the therapeutic effect of an early application of fasudil on AKI induced by rhabdomyolysis and explored the potential mechanisms. Male Wistar rats were randomly divided into a control group (saline, 7 mL/kg, i.m.), a Gly group (50% glycerol, 7 mL/kg, i.m.), and a fasudil group (50% glycerol, 7 mL/kg, i.m.; fasudil, 20 mg/kg bodyweight, i.p., three times every 24 h beginning 72 h before glycerol administration). Serum creatinine, blood urea nitrogen (BUN), and histopathological changes were used to demonstrate kidney function 24 h after the glycerol injection. Cell apoptosis and the expression of rho-associated protein kinase member (ROCK1), phosphatase and tensin homolog (PTEN), P-Akt, and caspase-8, -9, and -3 were measured. Serum creatinine and BUN levels increased significantly in Gly group compared with control group. Both levels decreased after fasudil treatment. The renal tubular damage score was significantly lower and cell apoptosis was significantly less in fasudil group compared with Gly group. The expression levels of ROCK1, PTEN, and caspase-8, -9, and -3 were upregulated significantly in Gly group, and their expression was reduced in the fasudil group. The P-Akt level was decreased in Gly group and upregulated significantly in fasudil group. Early application of fasudil reduced rhabdomyolysis-associated renal injury by inhibiting Rho kinase and thereby activating the PI-3K/Akt pathway, which decreased cell apoptosis via both the intrinsic and extrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Yuan-da Wang
- Department of Nephrology, Chinese PLA General Hospital, State Key Laboratory of Kidney Disease, Beijing, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gu C, Zhang J, Chen Y, Lei J. A trigger model of apoptosis induced by tumor necrosis factor signaling. BMC SYSTEMS BIOLOGY 2011; 5 Suppl 1:S13. [PMID: 21689472 PMCID: PMC3121113 DOI: 10.1186/1752-0509-5-s1-s13] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The ability of living cells to respond appropriately to apoptosis signals is crucial for the proper development and homeostasis of multicellular organisms. For example, viable cells must be stable enough to appropriately respond to apoptosis signaling so that an irreversible death program is only induced when apoptosis signaling reaches a certain threshold. Previous studies have introduced bistability models in which signaling by caspase-3 activity represents a key regulator of cell fate in response to apoptosis stimuli. RESULTS In this study, apoptosis induced by tumor necrosis factor (TNF) signaling is investigated, and a mathematical model without the requirement for bistability is proposed. In this model, rapid degradation of the active forms of caspases -8 and -3 are included, and TNF-signaling is found to induce a pulse of caspase-3 activation and trigger an irreversible death program. This result agrees with experimental observations. The ability of a cell to respond to, or resist, apoptosis stimuli is also discussed. Furthermore, the activation efficiencies of caspases -8 and -3 that are essential to a cell's response to extracellular apoptosis stimuli are defined. Based on the simulations performed, it is observed that activation efficiencies must be sufficiently sensitive to appropriately compromise a cell's resistance and effectiveness in response to apoptosis stimuli. CONCLUSIONS Our results suggest that bistability may not be a necessary condition for the induction of apoptosis by TNF signaling. Rather, a sharp increase in caspase-3 activity might be sufficient to trigger the induction of an irreversible death program. Accordingly, regulation of caspase activity and degradation of active caspases is essential for a cell's response to apoptosis stimuli.
Collapse
Affiliation(s)
- Chang Gu
- School of Mathematical Sciences, Peking University, Beijing 100871, China
| | - Junjie Zhang
- The Key Laboratory for Cell Proliferation and Regulation Biology of Ministry of Education, Institute of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yingyu Chen
- Laboratory of Medical Immunology, School of Basic Medical Science, Health Science Center, Peking University, 38 Xueyuan Road, Beijing 100083, China
- Center for Human Disease Genomics, Peking University, 38 Xueyuan Road, Beijing 100083, China
| | - Jinzhi Lei
- Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, China
| |
Collapse
|