1
|
Torres MC, Rebok A, Sun D, Spratt TE. Activity of DNA polymerase κ across the genome in human fibroblasts. Proc Natl Acad Sci U S A 2024; 121:e2403130121. [PMID: 38950369 PMCID: PMC11252913 DOI: 10.1073/pnas.2403130121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/17/2024] [Indexed: 07/03/2024] Open
Abstract
DNA polymerase κ (Polκ) is a specialized polymerase that has multiple cellular roles such as translesion DNA synthesis, replication of repetitive sequences, and nucleotide excision repair. We have developed a method for capturing DNA synthesized by Polκ utilizing a Polκ-specific substrate, N2-(4-ethynylbenzyl)-2'-deoxyguanosine (EBndG). After shearing of the DNA into 200 to 500 bp lengths, the EBndG-containing DNA was covalently bound to biotin using the Cu(I)-catalyzed alkyne-azide cycloaddition reaction and isolated with streptavidin beads. Isolated DNA was then ligated to adaptors, followed by PCR amplification and next-generation sequencing to generate genome-wide repair maps. We have termed this method polymerase κ sequencing. Here, we present the human genome maps for Polκ activity in an undamaged cell line. We found that Polκ activity was enhanced in GC-rich regions, euchromatin regions, the promoter of genes, and in DNA that is replicated early in the S phase.
Collapse
Affiliation(s)
- Mariela C. Torres
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Hershey, PA17033
| | - Abbey Rebok
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Hershey, PA17033
| | - Dongxiao Sun
- Department of Pharmacology, Pennsylvania State University, Hershey, PA17033
| | - Thomas E. Spratt
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Hershey, PA17033
| |
Collapse
|
2
|
Bainbridge LJ, Daigaku Y. Adaptive use of error-prone DNA polymerases provides flexibility in genome replication during tumorigenesis. Cancer Sci 2024; 115:2125-2137. [PMID: 38651239 PMCID: PMC11247608 DOI: 10.1111/cas.16188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
Human cells possess many different polymerase enzymes, which collaborate in conducting DNA replication and genome maintenance to ensure faithful duplication of genetic material. Each polymerase performs a specialized role, together providing a balance of accuracy and flexibility to the replication process. Perturbed replication increases the requirement for flexibility to ensure duplication of the entire genome. Flexibility is provided via the use of error-prone polymerases, which maintain the progression of challenged DNA replication at the expense of mutagenesis, an enabling characteristic of cancer. This review describes our recent understanding of mechanisms that alter the usage of polymerases during tumorigenesis and examines the implications of this for cell survival and tumor progression. Although expression levels of polymerases are often misregulated in cancers, this does not necessarily alter polymerase usage since an additional regulatory step may govern the use of these enzymes. We therefore also examine how the regulatory mechanisms of DNA polymerases, such as Rad18-mediated PCNA ubiquitylation, may impact the functionalization of error-prone polymerases to tolerate oncogene-induced replication stress. Crucially, it is becoming increasingly evident that cancer cells utilize error-prone polymerases to sustain ongoing replication in response to oncogenic mutations which inactivate key DNA replication and repair pathways, such as BRCA deficiency. This accelerates mutagenesis and confers chemoresistance, but also presents a dependency that can potentially be exploited by therapeutics.
Collapse
Affiliation(s)
- Lewis J. Bainbridge
- Cancer Genome Dynamics Project, Cancer InstituteJapanese Foundation for Cancer ResearchTokyoJapan
| | - Yasukazu Daigaku
- Cancer Genome Dynamics Project, Cancer InstituteJapanese Foundation for Cancer ResearchTokyoJapan
| |
Collapse
|
3
|
Venkadakrishnan J, Lahane G, Dhar A, Xiao W, Bhat KM, Pandita TK, Bhat A. Implications of Translesion DNA Synthesis Polymerases on Genomic Stability and Human Health. Mol Cell Biol 2023; 43:401-425. [PMID: 37439479 PMCID: PMC10448981 DOI: 10.1080/10985549.2023.2224199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/03/2023] [Accepted: 06/01/2023] [Indexed: 07/14/2023] Open
Abstract
Replication fork arrest-induced DNA double strand breaks (DSBs) caused by lesions are effectively suppressed in cells due to the presence of a specialized mechanism, commonly referred to as DNA damage tolerance (DDT). In eukaryotic cells, DDT is facilitated through translesion DNA synthesis (TLS) carried out by a set of DNA polymerases known as TLS polymerases. Another parallel mechanism, referred to as homology-directed DDT, is error-free and involves either template switching or fork reversal. The significance of the DDT pathway is well established. Several diseases have been attributed to defects in the TLS pathway, caused either by mutations in the TLS polymerase genes or dysregulation. In the event of a replication fork encountering a DNA lesion, cells switch from high-fidelity replicative polymerases to low-fidelity TLS polymerases, which are associated with genomic instability linked with several human diseases including, cancer. The role of TLS polymerases in chemoresistance has been recognized in recent years. In addition to their roles in the DDT pathway, understanding noncanonical functions of TLS polymerases is also a key to unraveling their importance in maintaining genomic stability. Here we summarize the current understanding of TLS pathway in DDT and its implication for human health.
Collapse
Affiliation(s)
| | - Ganesh Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Hyderabad, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Hyderabad, India
| | - Wei Xiao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Krishna Moorthi Bhat
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Tej K. Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Audesh Bhat
- Center for Molecular Biology, Central University of Jammu, UT Jammu and Kashmir, India
| |
Collapse
|
4
|
Egger T, Aze A, Maiorano D. Detection of endogenous translesion DNA synthesis in single mammalian cells. CELL REPORTS METHODS 2023; 3:100501. [PMID: 37426760 PMCID: PMC10326377 DOI: 10.1016/j.crmeth.2023.100501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/07/2023] [Accepted: 05/18/2023] [Indexed: 07/11/2023]
Abstract
Translesion DNA synthesis (TLS) is an evolutionarily conserved process that cells activate to tolerate DNA damage. TLS facilitates proliferation under DNA damage conditions and is exploited by cancer cells to gain therapy resistance. It has been so far challenging to analyze endogenous TLS factors such as PCNAmUb and TLS DNA polymerases in single mammalian cells due to a lack of suitable detection tools. We have adapted a flow cytometry-based quantitative method allowing detection of endogenous, chromatin-bound TLS factors in single mammalian cells, either untreated or exposed to DNA-damaging agents. This high-throughput procedure is quantitative, accurate, and allows unbiased analysis of TLS factors' recruitment to chromatin, as well as occurrence of DNA lesions with respect to the cell cycle. We also demonstrate detection of endogenous TLS factors by immunofluorescence microscopy and provide insights into TLS dynamics upon DNA replication forks stalled by UV-C-induced DNA damage.
Collapse
Affiliation(s)
- Tom Egger
- Institut de Génétique Humaine (IGH) CNRS UMR9002, Université de Montpellier, Molecular Bases of Human Pathologies Department, “Genome Surveillance and Stability” Laboratory, 34396 Cedex 5 Montpellier, France
| | - Antoine Aze
- Institut de Génétique Humaine (IGH) CNRS UMR9002, Université de Montpellier, Molecular Bases of Human Pathologies Department, “Genome Surveillance and Stability” Laboratory, 34396 Cedex 5 Montpellier, France
| | - Domenico Maiorano
- Institut de Génétique Humaine (IGH) CNRS UMR9002, Université de Montpellier, Molecular Bases of Human Pathologies Department, “Genome Surveillance and Stability” Laboratory, 34396 Cedex 5 Montpellier, France
| |
Collapse
|
5
|
Al-Kawaz A, Ali R, Toss MS, Miligy IM, Mohammed OJ, Green AR, Madhusudan S, Rakha EA. The frequency and clinical significance of DNA polymerase beta (POLβ) expression in breast ductal carcinoma in situ (DCIS). Breast Cancer Res Treat 2021; 190:39-51. [PMID: 34406589 PMCID: PMC8557137 DOI: 10.1007/s10549-021-06357-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/06/2021] [Indexed: 11/06/2022]
Abstract
Background The prediction of clinical behaviour of breast ductal carcinoma in situ (DCIS) and its progression to invasive disease remains a challenge. Alterations of DNA damage repair mechanisms are associated with invasive breast cancer (BC). This study aims to assess the role of base excision repair (BER) DNA Polymerase Beta (POLβ) in DCIS. Methods A cohort of DCIS comprising pure DCIS (n = 776) and DCIS coexisting with invasive BC (n = 239) were prepared as tissue microarrays. POLβ protein expression was assessed using immunohistochemistry and correlated with clinicopathological parameters and patient outcome. Preclinically, we investigated the impact of POLβ depletion on stem cell markers in representative DCIS cell line models. Results Reduced POLβ expression was associated with aggressive DCIS features including high nuclear grade, comedo necrosis, larger tumour size, hormonal receptor negativity, HER2 overexpression and high Ki67 index. Combined low nuclear/low cytoplasmic POLβ expression showed the strongest association with the features’ characteristics of aggressive behaviour. There was a gradual reduction in the POLβ expression from normal breast tissue, to DCIS, with the lowest expression observed in the invasive BC. Low POLβ expression was an independent predictor of recurrence in DCIS patients treated with breast conserving surgery (BCS). POLβ knockdown was associated with a significant increase in cell stemness markers including SOX2, NANOG and OCT4 levels in MCF10-DCIS cell lines. Conclusion Loss of POLβ in DCIS is associated with aggressive behaviour and it can predict recurrence. POLβ expression in DCIS provides an additional feature for patients’ risk stratification for personalised therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s10549-021-06357-7.
Collapse
Affiliation(s)
- Abdulbaqi Al-Kawaz
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK.,Department of Pathology, College of Dentistry, Al Mustansiriya University, Baghdad, Iraq
| | - Reem Ali
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Michael S Toss
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Islam M Miligy
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK.,Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Omar J Mohammed
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Andrew R Green
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Srinivasan Madhusudan
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Emad A Rakha
- Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, UK. .,Department of Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt. .,Department of Histopathology, Nottingham University Hospital NHS Trust, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK.
| |
Collapse
|
6
|
'PIPs' in DNA polymerase: PCNA interaction affairs. Biochem Soc Trans 2021; 48:2811-2822. [PMID: 33196097 DOI: 10.1042/bst20200678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/15/2023]
Abstract
Interaction of PCNA with DNA polymerase is vital to efficient and processive DNA synthesis. PCNA being a homotrimeric ring possesses three hydrophobic pockets mostly involved in an interaction with its binding partners. PCNA interacting proteins contain a short sequence of eight amino acids, popularly coined as PIP motif, which snuggly fits into the hydrophobic pocket of PCNA to stabilize the interaction. In the last two decades, several PIP motifs have been mapped or predicted in eukaryotic DNA polymerases. In this review, we summarize our understandings of DNA polymerase-PCNA interaction, the function of such interaction during DNA synthesis, and emphasize the lacunae that persist. Because of the presence of multiple ligands in the replisome complex and due to many interaction sites in DNA polymerases, we also propose two modes of DNA polymerase positioning on PCNA required for DNA synthesis to rationalize the tool-belt model of DNA replication.
Collapse
|
7
|
Shilkin ES, Boldinova EO, Stolyarenko AD, Goncharova RI, Chuprov-Netochin RN, Khairullin RF, Smal MP, Makarova AV. Translesion DNA Synthesis and Carcinogenesis. BIOCHEMISTRY (MOSCOW) 2021; 85:425-435. [PMID: 32569550 DOI: 10.1134/s0006297920040033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tens of thousands of DNA lesions are formed in mammalian cells each day. DNA translesion synthesis is the main mechanism of cell defense against unrepaired DNA lesions. DNA polymerases iota (Pol ι), eta (Pol η), kappa (Pol κ), and zeta (Pol ζ) have active sites that are less stringent toward the DNA template structure and efficiently incorporate nucleotides opposite DNA lesions. However, these polymerases display low accuracy of DNA synthesis and can introduce mutations in genomic DNA. Impaired functioning of these enzymes can lead to an increased risk of cancer.
Collapse
Affiliation(s)
- E S Shilkin
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - E O Boldinova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - A D Stolyarenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - R I Goncharova
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, 220072, Republic of Belarus
| | - R N Chuprov-Netochin
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - R F Khairullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, 420012, Russia
| | - M P Smal
- Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, 220072, Republic of Belarus.
| | - A V Makarova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| |
Collapse
|
8
|
Mastro TL, Tripathi VP, Forsburg SL. Translesion synthesis polymerases contribute to meiotic chromosome segregation and cohesin dynamics in Schizosaccharomycespombe. J Cell Sci 2020; 133:jcs238709. [PMID: 32317395 PMCID: PMC7325440 DOI: 10.1242/jcs.238709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/26/2020] [Indexed: 12/17/2022] Open
Abstract
Translesion synthesis polymerases (TLSPs) are non-essential error-prone enzymes that ensure cell survival by facilitating DNA replication in the presence of DNA damage. In addition to their role in bypassing lesions, TLSPs have been implicated in meiotic double-strand break repair in several systems. Here, we examine the joint contribution of four TLSPs to meiotic progression in the fission yeast Schizosaccharomyces pombe. We observed a dramatic loss of spore viability in fission yeast lacking all four TLSPs, which is accompanied by disruptions in chromosome segregation during meiosis I and II. Rec8 cohesin dynamics are altered in the absence of the TLSPs. These data suggest that the TLSPs contribute to multiple aspects of meiotic chromosome dynamics.
Collapse
Affiliation(s)
- Tara L Mastro
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| | - Vishnu P Tripathi
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| | - Susan L Forsburg
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| |
Collapse
|
9
|
Temprine K, Campbell NR, Huang R, Langdon EM, Simon-Vermot T, Mehta K, Clapp A, Chipman M, White RM. Regulation of the error-prone DNA polymerase Polκ by oncogenic signaling and its contribution to drug resistance. Sci Signal 2020; 13:13/629/eaau1453. [PMID: 32345725 DOI: 10.1126/scisignal.aau1453] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The DNA polymerase Polκ plays a key role in translesion synthesis, an error-prone replication mechanism. Polκ is overexpressed in various tumor types. Here, we found that melanoma and lung and breast cancer cells experiencing stress from oncogene inhibition up-regulated the expression of Polκ and shifted its localization from the cytoplasm to the nucleus. This effect was phenocopied by inhibition of the kinase mTOR, by induction of ER stress, or by glucose deprivation. In unstressed cells, Polκ is continually transported out of the nucleus by exportin-1. Inhibiting exportin-1 or overexpressing Polκ increased the abundance of nuclear-localized Polκ, particularly in response to the BRAFV600E-targeted inhibitor vemurafenib, which decreased the cytotoxicity of the drug in BRAFV600E melanoma cells. These observations were analogous to how Escherichia coli encountering cell stress and nutrient deprivation can up-regulate and activate DinB/pol IV, the bacterial ortholog of Polκ, to induce mutagenesis that enables stress tolerance or escape. However, we found that the increased expression of Polκ was not excessively mutagenic, indicating that noncatalytic or other functions of Polκ could mediate its role in stress responses in mammalian cells. Repressing the expression or nuclear localization of Polκ might prevent drug resistance in some cancer cells.
Collapse
Affiliation(s)
- Kelsey Temprine
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nathaniel R Campbell
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Tri-Institutional M.D./Ph.D. Program, Weill Cornell Medical College, New York, NY 10065, USA
| | - Richard Huang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Erin M Langdon
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Theresa Simon-Vermot
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Krisha Mehta
- Division of General Internal Medicine, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | - Mollie Chipman
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Richard M White
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
10
|
Li M, Larsen L, Hedglin M. Rad6/Rad18 Competes with DNA Polymerases η and δ for PCNA Encircling DNA. Biochemistry 2020; 59:407-416. [PMID: 31887036 DOI: 10.1021/acs.biochem.9b00938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Translesion DNA synthesis (TLS) bypasses DNA lesions encountered during S-phase and is critical for cell survival after exposure to DNA-damaging agents. In humans, Rad6/Rad18 attaches single ubiquitin moieties (i.e., monoubiquitination) to proliferating cell nuclear antigen (PCNA) sliding clamps encircling primer/template (P/T) junctions that are stalled at DNA lesions. TLS occurs via PCNA monoubiquitination-independent and -dependent pathways, and both contribute to cell survival. The interaction of Rad6/Rad18 with PCNA is paramount to PCNA monoubiquitination and remains poorly defined. In particular, the location of the Rad6/Rad18 binding site on PCNA is unknown. Many PCNA-binding proteins, particularly DNA polymerases (pols), converge on PCNA encircling stalled P/T junctions in human cells, and all interact in a similar manner with the universal binding sites on PCNA. We reasoned the following: if Rad6/Rad18 utilizes the universal binding sites (or nearby sites), then PCNA monoubiquitination may be suppressed by pols involved in TLS. Results from quantitative studies reveal that (1) a Y-family pol (pol η) and a B-family pol (pol δ) critical to TLS each inhibit the transfer of ubiquitin from Rad6/Rad18 to PCNA and that (2) the observed inhibitions are dependent on the interaction of these pols with PCNA encircling DNA. These studies suggest that Rad6/Rad18 utilizes the universal PCNA-binding sites or nearby sites and, hence, competes for PCNA encircling DNA with pols η and δ and possibly other PCNA-binding proteins involved in TLS. These findings provide valuable insight into the nature of the interaction between Rad6/Rad18 and PCNA and have important implications for the division of human TLS pathways.
Collapse
Affiliation(s)
- Mingjie Li
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Leah Larsen
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Mark Hedglin
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
11
|
Stern HR, Sefcikova J, Chaparro VE, Beuning PJ. Mammalian DNA Polymerase Kappa Activity and Specificity. Molecules 2019; 24:E2805. [PMID: 31374881 PMCID: PMC6695781 DOI: 10.3390/molecules24152805] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 12/31/2022] Open
Abstract
DNA polymerase (pol) kappa is a Y-family translesion DNA polymerase conserved throughout all domains of life. Pol kappa is special6 ized for the ability to copy DNA containing minor groove DNA adducts, especially N2-dG adducts, as well as to extend primer termini containing DNA damage or mismatched base pairs. Pol kappa generally cannot copy DNA containing major groove modifications or UV-induced photoproducts. Pol kappa can also copy structured or non-B-form DNA, such as microsatellite DNA, common fragile sites, and DNA containing G quadruplexes. Thus, pol kappa has roles both in maintaining and compromising genomic integrity. The expression of pol kappa is altered in several different cancer types, which can lead to genome instability. In addition, many cancer-associated single-nucleotide polymorphisms have been reported in the POLK gene, some of which are associated with poor survival and altered chemotherapy response. Because of this, identifying inhibitors of pol kappa is an active area of research. This review will address these activities of pol kappa, with a focus on lesion bypass and cellular mutagenesis.
Collapse
Affiliation(s)
- Hannah R Stern
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Jana Sefcikova
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Victoria E Chaparro
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Penny J Beuning
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Gallo D, Brown GW. Post-replication repair: Rad5/HLTF regulation, activity on undamaged templates, and relationship to cancer. Crit Rev Biochem Mol Biol 2019; 54:301-332. [PMID: 31429594 DOI: 10.1080/10409238.2019.1651817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
The eukaryotic post-replication repair (PRR) pathway allows completion of DNA replication when replication forks encounter lesions on the DNA template and are mediated by post-translational ubiquitination of the DNA sliding clamp proliferating cell nuclear antigen (PCNA). Monoubiquitinated PCNA recruits translesion synthesis (TLS) polymerases to replicate past DNA lesions in an error-prone manner while addition of K63-linked polyubiquitin chains signals for error-free template switching to the sister chromatid. Central to both branches is the E3 ubiquitin ligase and DNA helicase Rad5/helicase-like transcription factor (HLTF). Mutations in PRR pathway components lead to genomic rearrangements, cancer predisposition, and cancer progression. Recent studies have challenged the notion that the PRR pathway is involved only in DNA lesion tolerance and have shed new light on its roles in cancer progression. Molecular details of Rad5/HLTF recruitment and function at replication forks have emerged. Mounting evidence indicates that PRR is required during lesion-less replication stress, leading to TLS polymerase activity on undamaged templates. Analysis of PRR mutation status in human cancers and PRR function in cancer models indicates that down regulation of PRR activity is a viable strategy to inhibit cancer cell growth and reduce chemoresistance. Here, we review these findings, discuss how they change our views of current PRR models, and look forward to targeting the PRR pathway in the clinic.
Collapse
Affiliation(s)
- David Gallo
- Department of Biochemistry and Donnelly Centre, University of Toronto , Toronto , Canada
| | - Grant W Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto , Toronto , Canada
| |
Collapse
|
13
|
Trakselis MA, Cranford MT, Chu AM. Coordination and Substitution of DNA Polymerases in Response to Genomic Obstacles. Chem Res Toxicol 2017; 30:1956-1971. [PMID: 28881136 DOI: 10.1021/acs.chemrestox.7b00190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability for DNA polymerases (Pols) to overcome a variety of obstacles in its path to maintain genomic stability during replication is a complex endeavor. It requires the coordination of multiple Pols with differing specificities through molecular control and access to the replisome. Although a number of contacts directly between Pols and accessory proteins have been identified, forming the basis of a variety of holoenzyme complexes, the dynamics of Pol active site substitutions remain uncharacterized. Substitutions can occur externally by recruiting new Pols to replisome complexes through an "exchange" of enzyme binding or internally through a "switch" in the engagement of DNA from preformed associated enzymes contained within supraholoenzyme complexes. Models for how high fidelity (HiFi) replication Pols can be substituted by translesion synthesis (TLS) Pols at sites of damage during active replication will be discussed. These substitution mechanisms may be as diverse as the number of Pol families and types of damage; however, common themes can be recognized across species. Overall, Pol substitutions will be controlled by explicit protein contacts, complex multiequilibrium processes, and specific kinetic activities. Insight into how these dynamic processes take place and are regulated will be of utmost importance for our greater understanding of the specifics of TLS as well as providing for future novel chemotherapeutic and antimicrobial strategies.
Collapse
Affiliation(s)
- Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University , Waco, Texas 76798, United States
| | - Matthew T Cranford
- Department of Chemistry and Biochemistry, Baylor University , Waco, Texas 76798, United States
| | - Aurea M Chu
- Department of Chemistry and Biochemistry, Baylor University , Waco, Texas 76798, United States
| |
Collapse
|
14
|
Mansilla SF, Bertolin AP, Bergoglio V, Pillaire MJ, González Besteiro MA, Luzzani C, Miriuka SG, Cazaux C, Hoffmann JS, Gottifredi V. Cyclin Kinase-independent role of p21 CDKN1A in the promotion of nascent DNA elongation in unstressed cells. eLife 2016; 5. [PMID: 27740454 PMCID: PMC5120883 DOI: 10.7554/elife.18020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 10/07/2016] [Indexed: 01/01/2023] Open
Abstract
The levels of the cyclin-dependent kinase (CDK) inhibitor p21 are low in S phase and insufficient to inhibit CDKs. We show here that endogenous p21, instead of being residual, it is functional and necessary to preserve the genomic stability of unstressed cells. p21depletion slows down nascent DNA elongation, triggers permanent replication defects and promotes the instability of hard-to-replicate genomic regions, namely common fragile sites (CFS). The p21’s PCNA interacting region (PIR), and not its CDK binding domain, is needed to prevent the replication defects and the genomic instability caused by p21 depletion. The alternative polymerase kappa is accountable for such defects as they were not observed after simultaneous depletion of both p21 and polymerase kappa. Hence, in CDK-independent manner, endogenous p21 prevents a type of genomic instability which is not triggered by endogenous DNA lesions but by a dysregulation in the DNA polymerase choice during genomic DNA synthesis. DOI:http://dx.doi.org/10.7554/eLife.18020.001 Cancer develops when cells in the body mutate in ways that allow them to rapidly grow and divide. To protect cells from becoming cancerous, various molecules act like guardians to prevent cells from dividing when their DNA is damaged, or if they are short of energy. Other guardian molecules monitor the DNA copying process to ensure that the newly-made DNA is as identical as possible to the original DNA template. A protein called p21 belongs to the first group of guardian molecules: DNA damage triggers the production of p21, which prevents the cell from copying its DNA. This role relies on a section of the protein called the CDK binding domain. Cells that have already started to copy their genetic material also have low levels of p21. Mansilla et al. used human cells to investigate whether p21 is also involved in the process of copying DNA. The experiments show that the low levels of p21 act to increase the speed at which the DNA is copied. This activity helps to ensure that all of the cell’s DNA is copied within the time available, including sections of DNA that are harder to copy because they are more fragile and prone to damage. This newly identified role does not involve the CDK binding domain, but instead requires a different section of the p21 protein known as the PCNA interacting region. Mansilla et al. propose that p21 plays a dual role in protecting us from developing cancer. The PCNA interacting region is also found in other proteins that are involved in copying DNA. Therefore, a future challenge is to find out how these proteins interact with each other to ensure that cells accurately copy their DNA in a timely fashion. DOI:http://dx.doi.org/10.7554/eLife.18020.002
Collapse
Affiliation(s)
- Sabrina F Mansilla
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Agustina P Bertolin
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Valérie Bergoglio
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,INSERM, Universite Paul Sabatier-CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Equipe labellisée La Ligue contre le Cancer, Toulouse, France
| | - Marie-Jeanne Pillaire
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,INSERM, Universite Paul Sabatier-CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Equipe labellisée La Ligue contre le Cancer, Toulouse, France
| | - Marina A González Besteiro
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Carlos Luzzani
- Laboratorio de Investigaciones Aplicadas en Neurociencias, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia, Belén de Escobar, Argentina
| | - Santiago G Miriuka
- Laboratorio de Investigaciones Aplicadas en Neurociencias, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia, Belén de Escobar, Argentina
| | - Christophe Cazaux
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,INSERM, Universite Paul Sabatier-CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Equipe labellisée La Ligue contre le Cancer, Toulouse, France
| | - Jean-Sébastien Hoffmann
- Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,INSERM, Universite Paul Sabatier-CNRS, Université de Toulouse, Toulouse, France.,Laboratoire d'Excellence TOUCAN, Toulouse, France.,Equipe labellisée La Ligue contre le Cancer, Toulouse, France
| | - Vanesa Gottifredi
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
15
|
Bostian ACL, Eoff RL. Aberrant Kynurenine Signaling Modulates DNA Replication Stress Factors and Promotes Genomic Instability in Gliomas. Chem Res Toxicol 2016; 29:1369-80. [PMID: 27482758 DOI: 10.1021/acs.chemrestox.6b00255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metabolism of the essential amino acid L-tryptophan (TRP) is implicated in a number of neurological conditions including depression, neurodegenerative diseases, and cancer. The TRP catabolite kynurenine (KYN) has recently emerged as an important neuroactive factor in brain tumor pathogenesis, with additional studies implicating KYN in other types of cancer. Often highlighted as a modulator of the immune response and a contributor to immune escape for malignant tumors, it is well-known that KYN has effects on the production of the coenzyme nicotinamide adenine dinucleotide (NAD(+)), which can have a direct impact on DNA repair, replication, cell division, redox signaling, and mitochondrial function. Additional effects of KYN signaling are imparted through its role as an endogenous agonist for the aryl hydrocarbon receptor (AhR), and it is largely through activation of the AhR that KYN appears to mediate malignant progression in gliomas. We have recently reported on the ability of KYN signaling to modulate expression of human DNA polymerase kappa (hpol κ), a translesion enzyme involved in bypass of bulky DNA lesions and activation of the replication stress response. Given the impact of KYN on NAD(+) production, AhR signaling, and translesion DNA synthesis, it follows that dysregulation of KYN signaling in cancer may promote malignancy through alterations in the level of endogenous DNA damage and replication stress. In this perspective, we discuss the connections between KYN signaling, DNA damage tolerance, and genomic instability, as they relate to cancer.
Collapse
Affiliation(s)
- April C L Bostian
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , 4301 W. Markham Street, Little Rock, Arkansas 72205-7199, United States
| | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , 4301 W. Markham Street, Little Rock, Arkansas 72205-7199, United States
| |
Collapse
|
16
|
Wit N, Buoninfante OA, van den Berk PCM, Jansen JG, Hogenbirk MA, de Wind N, Jacobs H. Roles of PCNA ubiquitination and TLS polymerases κ and η in the bypass of methyl methanesulfonate-induced DNA damage. Nucleic Acids Res 2014; 43:282-94. [PMID: 25505145 PMCID: PMC4288191 DOI: 10.1093/nar/gku1301] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (Pcna(K164R)) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage.
Collapse
Affiliation(s)
- Niek Wit
- Division of Biological Stress Responses, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Paul C M van den Berk
- Division of Biological Stress Responses, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jacob G Jansen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marc A Hogenbirk
- Division of Biological Stress Responses, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Niels de Wind
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Heinz Jacobs
- Division of Biological Stress Responses, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Pillaire MJ, Bétous R, Hoffmann JS. Role of DNA polymerase κ in the maintenance of genomic stability. Mol Cell Oncol 2014; 1:e29902. [PMID: 27308312 PMCID: PMC4905163 DOI: 10.4161/mco.29902] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 12/28/2022]
Abstract
To ensure high cell viability and genomic stability, cells have evolved two major mechanisms to deal with the constant challenge of DNA replication fork arrest during S phase of the cell cycle: (1) induction of the ataxia telangiectasia and Rad3-related (ATR) replication checkpoint mechanism, and (2) activation of a pathway that bypasses DNA damage and DNA with abnormal structure and is mediated by translesion synthesis (TLS) Y-family DNA polymerases. This review focuses on how DNA polymerase kappa (Pol κ), one of the most highly conserved TLS DNA polymerases, is involved in each of these pathways and thereby coordinates them to choreograph the response to a stalled replication fork. We also describe how loss of Pol κ regulation, which occurs frequently in human cancers, affects genomic stability and contributes to cancer development.
Collapse
Affiliation(s)
- Marie-Jeanne Pillaire
- Labellisée Ligue contre le Cancer 2013; INSERM Unit 1037; CNRS ERL 5294; Cancer Research Center of Toulouse; CHU Purpan; Toulouse, France; Université Paul Sabatier; University of Toulouse III; Toulouse, France
| | - Rémy Bétous
- Labellisée Ligue contre le Cancer 2013; INSERM Unit 1037; CNRS ERL 5294; Cancer Research Center of Toulouse; CHU Purpan; Toulouse, France; Université Paul Sabatier; University of Toulouse III; Toulouse, France
| | - Jean-Sébastien Hoffmann
- Labellisée Ligue contre le Cancer 2013; INSERM Unit 1037; CNRS ERL 5294; Cancer Research Center of Toulouse; CHU Purpan; Toulouse, France; Université Paul Sabatier; University of Toulouse III; Toulouse, France
| |
Collapse
|
18
|
Shao M, Jin B, Niu Y, Ye J, Lu D, Han B. Association of POLK Polymorphisms with Platinum-Based Chemotherapy Response and Severe Toxicity in Non-small Cell Lung Cancer Patients. Cell Biochem Biophys 2014; 70:1227-37. [DOI: 10.1007/s12013-014-0046-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Tsanov N, Kermi C, Coulombe P, Van der Laan S, Hodroj D, Maiorano D. PIP degron proteins, substrates of CRL4Cdt2, and not PIP boxes, interfere with DNA polymerase η and κ focus formation on UV damage. Nucleic Acids Res 2014; 42:3692-706. [PMID: 24423875 PMCID: PMC3973308 DOI: 10.1093/nar/gkt1400] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a well-known scaffold for many DNA replication and repair proteins, but how the switch between partners is regulated is currently unclear. Interaction with PCNA occurs via a domain known as a PCNA-Interacting Protein motif (PIP box). More recently, an additional specialized PIP box has been described, the « PIP degron », that targets PCNA-interacting proteins for proteasomal degradation via the E3 ubiquitin ligase CRL4Cdt2. Here we provide evidence that CRL4Cdt2-dependent degradation of PIP degron proteins plays a role in the switch of PCNA partners during the DNA damage response by facilitating accumulation of translesion synthesis DNA polymerases into nuclear foci. We show that expression of a nondegradable PIP degron (Cdt1) impairs both Pol η and Pol κ focus formation on ultraviolet irradiation and reduces cell viability, while canonical PIP box-containing proteins have no effect. Furthermore, we identify PIP degron-containing peptides from several substrates of CRL4Cdt2 as efficient inhibitors of Pol η foci formation. By site-directed mutagenesis we show that inhibition depends on a conserved threonine residue that confers high affinity for PCNA-binding. Altogether these findings reveal an important regulative role for the CRL4Cdt2 pathway in the switch of PCNA partners on DNA damage.
Collapse
Affiliation(s)
- Nikolay Tsanov
- Genome Surveillance and Stability Laboratory, Department of Molecular Bases of Human Diseases, CNRS-UPR1142, Institute of Human Genetics, 141, rue de la cardonille, 34396 Cedex 5, Montpellier, France and Replication and Genome Dynamics Laboratory, Department of Genome Dynamics, CNRS-UPR1142, Institute of Human Genetics, 141, rue de la cardonille, 34396 Cedex 5, Montpellier, France
| | | | | | | | | | | |
Collapse
|
20
|
Suzuki M, Takahashi T. Aberrant DNA replication in cancer. Mutat Res 2012; 743-744:111-117. [PMID: 22968031 DOI: 10.1016/j.mrfmmm.2012.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/26/2012] [Accepted: 07/31/2012] [Indexed: 12/11/2022]
Abstract
Genomic instability plays an important role in cancer susceptibility, though the mechanics of its development remain unclear. An often-stated hypothesis is that error-prone phenotypes in DNA replication or aberrations in translesion DNA synthesis lead to genomic instability and cancer. Mutations in core DNA replication proteins have been identified in human cancer, although DNA replication is essential for cell proliferation and most mutations eliminating this function are deleterious. With recent developments in this field we review and discuss the possible involvement of DNA replication proteins in carcinogenesis.
Collapse
Affiliation(s)
- Motoshi Suzuki
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Takashi Takahashi
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
21
|
Dysregulation of DNA polymerase κ recruitment to replication forks results in genomic instability. EMBO J 2011; 31:908-18. [PMID: 22157819 DOI: 10.1038/emboj.2011.457] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 11/18/2011] [Indexed: 11/08/2022] Open
Abstract
Translesion synthesis polymerases (TLS Pols) are required to tolerate DNA lesions that would otherwise cause replication arrest and cell death. Aberrant expression of these specialized Pols may be responsible for increased mutagenesis and loss of genome integrity in human cancers. The molecular events that control the usage of TLS Pols in non-pathological conditions remain largely unknown. Here, we show that aberrant recruitment of TLS Polκ to replication forks results in genomic instability and can be mediated through the loss of the deubiquitinase USP1. Moreover, artificial tethering of Polκ to proliferating cell nuclear antigen (PCNA) circumvents the need for its ubiquitin-binding domain in the promotion of genomic instability. Finally, we show that the loss of USP1 leads to a dramatic reduction of replication fork speed in a Polκ-dependent manner. We propose a mechanism whereby reversible ubiquitination of PCNA can prevent spurious TLS Pol recruitment and regulate replication fork speed to ensure the maintenance of genome integrity.
Collapse
|
22
|
Hile SE, Wang X, Lee MYWT, Eckert KA. Beyond translesion synthesis: polymerase κ fidelity as a potential determinant of microsatellite stability. Nucleic Acids Res 2011; 40:1636-47. [PMID: 22021378 PMCID: PMC3287198 DOI: 10.1093/nar/gkr889] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Microsatellite DNA synthesis represents a significant component of human genome replication that must occur faithfully. However, yeast replicative DNA polymerases do not possess high fidelity for microsatellite synthesis. We hypothesized that the structural features of Y-family polymerases that facilitate accurate translesion synthesis may promote accurate microsatellite synthesis. We compared human polymerases κ (Pol κ) and η (Pol η) fidelities to that of replicative human polymerase δ holoenzyme (Pol δ4), using the in vitro HSV-tk assay. Relative polymerase accuracy for insertion/deletion (indel) errors within 2-3 unit repeats internal to the HSV-tk gene concurred with the literature: Pol δ4 >> Pol κ or Pol η. In contrast, relative polymerase accuracy for unit-based indel errors within [GT](10) and [TC](11) microsatellites was: Pol κ ≥ Pol δ4 > Pol η. The magnitude of difference was greatest between Pols κ and δ4 with the [GT] template. Biochemically, Pol κ displayed less synthesis termination within the [GT] allele than did Pol δ4. In dual polymerase reactions, Pol κ competed with either a stalled or moving Pol δ4, thereby reducing termination. Our results challenge the ideology that pol κ is error prone, and suggest that DNA polymerases with complementary biochemical properties can function cooperatively at repetitive sequences.
Collapse
Affiliation(s)
- Suzanne E Hile
- Department of Pathology, Gittlen Cancer Research Foundation, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
23
|
Krijger PHL, van den Berk PCM, Wit N, Langerak P, Jansen JG, Reynaud CA, de Wind N, Jacobs H. PCNA ubiquitination-independent activation of polymerase η during somatic hypermutation and DNA damage tolerance. DNA Repair (Amst) 2011; 10:1051-9. [PMID: 21889916 DOI: 10.1016/j.dnarep.2011.08.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 07/21/2011] [Accepted: 08/08/2011] [Indexed: 12/23/2022]
Abstract
The generation of high affinity antibodies in B cells critically depends on translesion synthesis (TLS) polymerases that introduce mutations into immunoglobulin genes during somatic hypermutation (SHM). The majority of mutations at A/T base pairs during SHM require ubiquitination of PCNA at lysine 164 (PCNA-Ub), which activates TLS polymerases. By comparing the mutation spectra in B cells of WT, TLS polymerase η (Polη)-deficient, PCNA(K164R)-mutant, and PCNA(K164R);Polη double-mutant mice, we now find that most PCNA-Ub-independent A/T mutagenesis during SHM is mediated by Polη. In addition, upon exposure to various DNA damaging agents, PCNA(K164R) mutant cells display strongly impaired recruitment of TLS polymerases, reduced daughter strand maturation and hypersensitivity. Interestingly, compared to the single mutants, PCNA(K164R);Polη double-mutant cells are dramatically delayed in S phase progression and far more prone to cell death following UV exposure. Taken together, these data support the existence of PCNA ubiquitination-dependent and -independent activation pathways of Polη during SHM and DNA damage tolerance.
Collapse
Affiliation(s)
- Peter H L Krijger
- Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Hoffmann JS, Cazaux C. Aberrant expression of alternative DNA polymerases: a source of mutator phenotype as well as replicative stress in cancer. Semin Cancer Biol 2010; 20:312-9. [PMID: 20934518 DOI: 10.1016/j.semcancer.2010.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 10/01/2010] [Indexed: 12/22/2022]
Abstract
The cell life span depends on a subtle equilibrium between the accurate duplication of the genomic DNA and less stringent DNA transactions which allow cells to tolerate mutations associated with DNA damage. The physiological role of the alternative, specialized or TLS (translesion synthesis) DNA polymerases could be to favor the necessary "flexibility" of the replication machinery, by allowing DNA replication to occur even in the presence of blocking DNA damage. As these alternative DNA polymerases are inaccurate when replicating undamaged DNA, the regulation of their expression needs to be carefully controlled. Evidence in the literature supports that dysregulation of these error-prone enzymes contributes to the acquisition of a mutator phenotype that, along with defective cell cycle control or other genome stability pathways, could be a motor for accelerated tumor progression.
Collapse
Affiliation(s)
- Jean-Sébastien Hoffmann
- CNRS, IPBS (Institute of Pharmacology and Structural Biology), 205, route de Narbonne, University of Toulouse, UPS, 31077 Toulouse, France.
| | | |
Collapse
|
25
|
Lemée F, Bergoglio V, Fernandez-Vidal A, Machado-Silva A, Pillaire MJ, Bieth A, Gentil C, Baker L, Martin AL, Leduc C, Lam E, Magdeleine E, Filleron T, Oumouhou N, Kaina B, Seki M, Grimal F, Lacroix-Triki M, Thompson A, Roché H, Bourdon JC, Wood RD, Hoffmann JS, Cazaux C. DNA polymerase theta up-regulation is associated with poor survival in breast cancer, perturbs DNA replication, and promotes genetic instability. Proc Natl Acad Sci U S A 2010; 107:13390-5. [PMID: 20624954 PMCID: PMC2922118 DOI: 10.1073/pnas.0910759107] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
"Replicative stress" is one of the main factors underlying neoplasia from its early stages. Genes involved in DNA synthesis may therefore represent an underexplored source of potential prognostic markers for cancer. To this aim, we generated gene expression profiles from two independent cohorts (France, n=206; United Kingdom, n=117) of patients with previously untreated primary breast cancers. We report here that among the 13 human nuclear DNA polymerase genes, DNA Polymerase (POLQ) is the only one significantly up-regulated in breast cancer compared with normal breast tissues. Importantly, POLQ up-regulation significantly correlates with poor clinical outcome (4.3-fold increased risk of death in patients with high POLQ expression), and this correlation is independent of Cyclin E expression or the number of positive nodes, which are currently considered as markers for poor outcome. POLQ expression provides thus an additional indicator for the survival outcome of patients with high Cyclin E tumor expression or high number of positive lymph nodes. Furthermore, to decipher the molecular consequences of POLQ up-regulation in breast cancer, we generated human MRC5-SV cell lines that stably overexpress POLQ. Strong POLQ expression was directly associated with defective DNA replication fork progression and chromosomal damage. Therefore, POLQ overexpression may be a promising genetic instability and prognostic marker for breast cancer.
Collapse
Affiliation(s)
- Fanny Lemée
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale and Université de Toulouse, Université Paul Sabatier, 31077 Toulouse, France
| | - Valérie Bergoglio
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale and Université de Toulouse, Université Paul Sabatier, 31077 Toulouse, France
| | - Anne Fernandez-Vidal
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale and Université de Toulouse, Université Paul Sabatier, 31077 Toulouse, France
| | - Alice Machado-Silva
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale and Université de Toulouse, Université Paul Sabatier, 31077 Toulouse, France
- European Associated Laboratory, University of Dundee, Institut National de la Santé et de la Recherche Médicale U858, Dundee DD1 9SY, United Kingdom
| | - Marie-Jeanne Pillaire
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale and Université de Toulouse, Université Paul Sabatier, 31077 Toulouse, France
| | - Anne Bieth
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale and Université de Toulouse, Université Paul Sabatier, 31077 Toulouse, France
| | - Catherine Gentil
- Service d’ Epidémiologie, Institut National de la Santé et de la Recherche Médicale U558, Centre Hospitalier Universitaire de Toulouse, Université de Toulouse, Université Paul Sabatier, 31073 Toulouse, France
| | - Lee Baker
- Department of Surgery and Molecular Oncology, Ninewells Hospital, Dundee DD1 9SY, United Kingdom
| | - Anne-Laure Martin
- Fédération des Centres de Lutte Contre le Cancer, 75654 Paris, France
| | - Claire Leduc
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale and Université de Toulouse, Université Paul Sabatier, 31077 Toulouse, France
| | - Elena Lam
- Department of Toxicology, University of Mainz, D-55131 Mainz, Germany
| | - Eddy Magdeleine
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale and Université de Toulouse, Université Paul Sabatier, 31077 Toulouse, France
| | - Thomas Filleron
- Institut Claudius Régaud, Université de Toulouse, Université Paul Sabatier, 31052 Toulouse, France
| | - Naïma Oumouhou
- Service d’ Epidémiologie, Institut National de la Santé et de la Recherche Médicale U558, Centre Hospitalier Universitaire de Toulouse, Université de Toulouse, Université Paul Sabatier, 31073 Toulouse, France
| | - Bernd Kaina
- Department of Toxicology, University of Mainz, D-55131 Mainz, Germany
| | - Mineaki Seki
- Laboratories for Organismal Biosystems, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Fanny Grimal
- Département d’ Oncogenèse et de Signalisation des Cellules Hématopoïétiques, Institut National de la Santé et de la Recherche Médicale U563, Université de Toulouse, Université Paul Sabatier, 31059 Toulouse, France; and
| | - Magali Lacroix-Triki
- Institut Claudius Régaud, Université de Toulouse, Université Paul Sabatier, 31052 Toulouse, France
| | - Alastair Thompson
- Department of Surgery and Molecular Oncology, Ninewells Hospital, Dundee DD1 9SY, United Kingdom
| | - Henri Roché
- Institut Claudius Régaud, Université de Toulouse, Université Paul Sabatier, 31052 Toulouse, France
| | - Jean-Christophe Bourdon
- European Associated Laboratory, University of Dundee, Institut National de la Santé et de la Recherche Médicale U858, Dundee DD1 9SY, United Kingdom
| | - Richard D. Wood
- Science Park–Research Division, University of Texas Graduate School of Biomedical Sciences at Houston, M. D. Anderson Cancer Center, Smithville, TX 78957
| | - Jean-Sébastien Hoffmann
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale and Université de Toulouse, Université Paul Sabatier, 31077 Toulouse, France
| | - Christophe Cazaux
- Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale and Université de Toulouse, Université Paul Sabatier, 31077 Toulouse, France
| |
Collapse
|
26
|
Guo C, Kosarek-Stancel JN, Tang TS, Friedberg EC. Y-family DNA polymerases in mammalian cells. Cell Mol Life Sci 2009; 66:2363-81. [PMID: 19367366 PMCID: PMC11115694 DOI: 10.1007/s00018-009-0024-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/05/2009] [Accepted: 03/23/2009] [Indexed: 11/26/2022]
Abstract
Eukaryotic genomes are replicated with high fidelity to assure the faithful transmission of genetic information from one generation to the next. The accuracy of replication relies heavily on the ability of replicative DNA polymerases to efficiently select correct nucleotides for the polymerization reaction and, using their intrinsic exonuclease activities, to excise mistakenly incorporated nucleotides. Cells also possess a variety of specialized DNA polymerases that, by a process called translesion DNA synthesis (TLS), help overcome replication blocks when unrepaired DNA lesions stall the replication machinery. This review considers the properties of the Y-family (a subset of specialized DNA polymerases) and their roles in modulating spontaneous and genotoxic-induced mutations in mammals. We also review recent insights into the molecular mechanisms that regulate PCNA monoubiquitination and DNA polymerase switching during TLS and discuss the potential of using Y-family DNA polymerases as novel targets for cancer prevention and therapy.
Collapse
Affiliation(s)
- Caixia Guo
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9072, USA.
| | | | | | | |
Collapse
|
27
|
Faumont N, Le Clorennec C, Teira P, Goormachtigh G, Coll J, Canitrot Y, Cazaux C, Hoffmann JS, Brousset P, Delsol G, Feuillard J, Meggetto F. Regulation of DNA polymerase beta by the LMP1 oncoprotein of EBV through the nuclear factor-kappaB pathway. Cancer Res 2009; 69:5177-85. [PMID: 19491276 DOI: 10.1158/0008-5472.can-08-2866] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The repair DNA polymerase beta (Polbeta), when overexpressed, plays a critical role in generating genetic instability via its interference with the genomic replication program. Up-regulation of Polbeta has been reported in many tumor types that exhibit genetic aberrations, including EBV-related B-cell lymphomas. However, the mechanisms responsible for its overexpression have never been examined. Here, we report that both expression and activity of Polbeta, in EBV-immortalized B cells, are induced by several natural genetic variants of LMP1, an oncoprotein associated with the vast majority of EBV-related tumors. Conversely, we found that the expression of Polbeta decreased when LMP1 signaling was down-regulated by a dominant negative of LMP1 or an inhibitor of the nuclear factor-kappaB (NF-kappaB) pathway, the main transduction pathway activated by LMP1, strongly supporting a role of NF-kappaB in the LMP1-mediated Polbeta regulation. Using electrophoretic mobility shift assay experiments from several EBV-immortalized B-cell nuclear extracts, we identified an LMP1-dependent p50/c-Rel heterodimer on a proximal kappaB binding site (-211 to -199nt) of the Polbeta promoter. This result was correlated with a specific Polbeta kappaB transcriptional activity. Taken together, our data enlighten a new mechanism responsible for Polbeta overexpression in EBV-infected cells, mediated by LMP1 and dependent on NF-kappaB activation.
Collapse
Affiliation(s)
- Nathalie Faumont
- Institut National de la Sante et de la Recherche Medicale-U563, CPTP
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Waters LS, Minesinger BK, Wiltrout ME, D'Souza S, Woodruff RV, Walker GC. Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol Mol Biol Rev 2009; 73:134-54. [PMID: 19258535 PMCID: PMC2650891 DOI: 10.1128/mmbr.00034-08] [Citation(s) in RCA: 457] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DNA repair and DNA damage tolerance machineries are crucial to overcome the vast array of DNA damage that a cell encounters during its lifetime. In this review, we summarize the current state of knowledge about the eukaryotic DNA damage tolerance pathway translesion synthesis (TLS), a process in which specialized DNA polymerases replicate across from DNA lesions. TLS aids in resistance to DNA damage, presumably by restarting stalled replication forks or filling in gaps that remain in the genome due to the presence of DNA lesions. One consequence of this process is the potential risk of introducing mutations. Given the role of these translesion polymerases in mutagenesis, we discuss the significant regulatory mechanisms that control the five known eukaryotic translesion polymerases: Rev1, Pol zeta, Pol kappa, Pol eta, and Pol iota.
Collapse
Affiliation(s)
- Lauren S Waters
- Department of Biology, Massachusetts Institute of Technology, Building 68, Room 653, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
29
|
Godoy VG, Jarosz DF, Simon SM, Abyzov A, Ilyin V, Walker GC. UmuD and RecA directly modulate the mutagenic potential of the Y family DNA polymerase DinB. Mol Cell 2007; 28:1058-70. [PMID: 18158902 PMCID: PMC2265384 DOI: 10.1016/j.molcel.2007.10.025] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 07/23/2007] [Accepted: 10/18/2007] [Indexed: 11/25/2022]
Abstract
DinB is the only translesion Y family DNA polymerase conserved among bacteria, archaea, and eukaryotes. DinB and its orthologs possess a specialized lesion bypass function but also display potentially deleterious -1 frameshift mutagenic phenotypes when overproduced. We show that the DNA damage-inducible proteins UmuD(2) and RecA act in concert to modulate this mutagenic activity. Structural modeling suggests that the relatively open active site of DinB is enclosed by interaction with these proteins, thereby preventing the template bulging responsible for -1 frameshift mutagenesis. Intriguingly, residues that define the UmuD(2)-interacting surface on DinB statistically covary throughout evolution, suggesting a driving force for the maintenance of a regulatory protein-protein interaction at this site. Together, these observations indicate that proteins like RecA and UmuD(2) may be responsible for managing the mutagenic potential of DinB orthologs throughout evolution.
Collapse
Affiliation(s)
- Veronica G. Godoy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Northeastern University, Boston, MA 02115
| | - Daniel F. Jarosz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Sharotka M. Simon
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Alexej Abyzov
- Department of Biology, Northeastern University, Boston, MA 02115
| | - Valentin Ilyin
- Department of Biology, Northeastern University, Boston, MA 02115
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
30
|
Guo C, Tang TS, Bienko M, Dikic I, Friedberg EC. Requirements for the interaction of mouse Polkappa with ubiquitin and its biological significance. J Biol Chem 2007; 283:4658-64. [PMID: 18162470 DOI: 10.1074/jbc.m709275200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polkappa protein is a eukaryotic member of the DinB/Polkappa branch of the Y-family DNA polymerases, which are involved in the tolerance of DNA damage by replicative bypass. Despite universal conservation through evolution, the precise role(s) of Polkappa in this process has remained unknown. Here we report that mouse Polkappa can physically interact with ubiquitin by yeast two-hybrid screening, glutathione S-transferase pulldown, and immunoprecipitation methods. The association of Polkappa with ubiquitin requires the ubiquitin-binding motifs located at the C terminus of Polkappa. In addition, Polkappa binds with monoubiquitinated proliferating cell nuclear antigen (PCNA) more robustly than with non-ubiquitinated PCNA. The ubiquitin-binding motifs mediate the enhanced association between monoubiquitinated PCNA and Polkappa. The ubiquitin-binding motifs are also required for Polkappa to form nuclear foci after UV radiation. However, the ubiquitin-binding motifs do not affect Polkappa half-life. Finally, we have examined levels of Polkappa expression following the exposure of mouse cells to benzo[a]pyrene-dihydrodiol epoxide or UVB radiation.
Collapse
Affiliation(s)
- Caixia Guo
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9072, USA
| | | | | | | | | |
Collapse
|
31
|
Barkley LR, Ohmori H, Vaziri C. Integrating S-phase checkpoint signaling with trans-lesion synthesis of bulky DNA adducts. Cell Biochem Biophys 2007; 47:392-408. [PMID: 17652783 PMCID: PMC3103048 DOI: 10.1007/s12013-007-0032-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/12/2023]
Abstract
Bulky adducts are DNA lesions generated in response to environmental agents including benzo[a]pyrene (a combustion product) and solar ultraviolet radiation. Error-prone replication of adducted DNA can cause mutations, which may result in cancer. To minimize the detrimental effects of bulky adducts and other DNA lesions, S-phase checkpoint mechanisms sense DNA damage and integrate DNA repair with ongoing DNA replication. The essential protein kinase Chk1 mediates the S-phase checkpoint, inhibiting initiation of new DNA synthesis and promoting stabilization and recovery of stalled replication forks. Here we review the mechanisms by which Chk1 is activated in response to bulky adducts and potential mechanisms by which Chk1 signaling inhibits the initiation stage of DNA synthesis. Additionally, we discuss mechanisms by which Chk1 signaling facilitates bypass of bulky lesions by specialized Y-family DNA polymerases, thereby attenuating checkpoint signaling and allowing resumption of normal cell cycle progression.
Collapse
Affiliation(s)
- Laura R Barkley
- Department of Genetics and Genomics, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | | | |
Collapse
|
32
|
Sweasy JB, Lauper JM, Eckert KA. DNA polymerases and human diseases. Radiat Res 2006; 166:693-714. [PMID: 17067213 DOI: 10.1667/rr0706.1] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 07/12/2006] [Indexed: 11/03/2022]
Abstract
DNA polymerases function in DNA replication, repair, recombination and translesion synthesis. Currently, 15 DNA polymerase genes have been identified in human cells, belonging to four distinct families. In this review, we briefly describe the biochemical activities and known cellular roles of each DNA polymerase. Our major focus is on the phenotypic consequences of mutation or ablation of individual DNA polymerase genes. We discuss phenotypes of current mouse models and altered polymerase functions and the relationship of DNA polymerase gene mutations to human cell phenotypes. Interestingly, over 120 single nucleotide polymorphisms (SNPs) have been identified in human populations that are predicted to result in nonsynonymous amino acid substitutions of DNA polymerases. We discuss the putative functional consequences of these SNPs in relation to human disease.
Collapse
Affiliation(s)
- Joann B Sweasy
- Department of Therapeutic Radiology, Yale University School of Medicine, 15 York Street, HRT 313D, P.O. Box 208040, New Haven, CT 06520-8040, USA.
| | | | | |
Collapse
|
33
|
Lemée F, Bavoux C, Pillaire MJ, Bieth A, Machado CR, Pena SD, Guimbaud R, Selves J, Hoffmann JS, Cazaux C. Characterization of promoter regulatory elements involved in downexpression of the DNA polymerase kappa in colorectal cancer. Oncogene 2006; 26:3387-94. [PMID: 17099721 DOI: 10.1038/sj.onc.1210116] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The low-fidelity DNA polymerases thought to be specialized in DNA damage processing are frequently misregulated in cancers. We show here that DNA polymerase kappa (polkappa), prone to replicate across oxidative and aromatic adducts and known to function in nucleotide excision repair (NER), is downregulated in colorectal tumour biopsies. Contrary to the replicative poldelta and polalpha, for which only activating domains were described, we identified an upstream 465-bp-long repressor region in the promoter of POLK. We also found an activating 237-bp region that includes stimulating protein-1 (SP1) and cyclic AMP-responsive element (CRE)-binding sites. Mutations at one CRE-binding site led to a dramatic 80% decrease in promoter activity. Alterations of the SP1-binding site also affected, to a lesser extent, the transcription. Gel shift assays confirmed the role played by CRE/SP1 recognition sequences. Moreover, ectopic expression of SP1 or CRE-binding protein (CREB) protein favoured polkappa transcription. Finally, we found that polkappa downexpression in colorectal biopsies correlated with a decreased level of CREB and SP1 transcripts. This work shows that the promoter of POLK is cis-controlled and suggests that silencing of CREB and SP1 proteins could contribute to downregulation of this repair polymerase in colorectal tumours.
Collapse
Affiliation(s)
- F Lemée
- 1Laboratory Genetic Instability and Cancer, Institute of Pharmacology and Structural Biology, UMR CNRS 5089, Paul Sabatier University, Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lin X, Howell SB. DNA mismatch repair and p53 function are major determinants of the rate of development of cisplatin resistance. Mol Cancer Ther 2006; 5:1239-47. [PMID: 16731756 DOI: 10.1158/1535-7163.mct-05-0491] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As opposed to factors that control sensitivity to the acute cytotoxic effect of cisplatin, little is known about the factors that determine the rate at which resistance develops. This study examined how loss of p53 or DNA mismatch repair (MMR) function affected the rate of development of resistance to cisplatin in human colon carcinoma cells during sequential cycles of cisplatin exposure that mimic the way the drug is used in the clinic. We used a panel of sublines molecularly engineered to express either the MMR- and p53-proficient phenotype or singly or doubly deficient phenotypes. Loss of either MMR or p53 alone increased the rate of development of resistance to cisplatin by 1.8- and 2.4-fold, respectively; however, loss of both MMR and p53 increased the rate by 4.8-fold. Inhibition of DNA polymerase zeta by suppression of the expression of its REV3 subunit eliminated the increased rate of development of resistance observed in the MMR-deficient cells. Loss of p53 or MMR increased the steady-state level of REV3 and of REV1 mRNA; loss of both functions increased these levels much further by a factor of 20.2-fold for REV3 and 10.3-fold for REV1. The basal level of homologous recombination measured using a reporter vector was 1.3- to 1.7-fold higher in cells that had lost either p53 or MMR function, and 2.6-fold higher in cells that had lost both. In the p53- and MMR-proficient cells, cisplatin induced a 17-fold increase in homologous recombination even when the recombining sequences that did not contain cisplatin adducts; the magnitude of induction was even greater in cells that had lost either one or both functions. We conclude that separate from effects on sensitivity to the acute cytotoxic effect of cisplatin, loss of MMR, especially when combined with loss of p53, results in rapid evolution of cisplatin resistance during sequential rounds of drug exposure that is likely mediated by enhanced mutagenic translesion synthesis. The DNA damage response activated by cisplatin is accompanied by a p53- and MMR-dependent increase in homologous recombination even between adduct-free sequences.
Collapse
Affiliation(s)
- Xinjian Lin
- Department of Medicine 0058, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
35
|
Holmquist GP, Ashley T. Chromosome organization and chromatin modification: influence on genome function and evolution. Cytogenet Genome Res 2006; 114:96-125. [PMID: 16825762 DOI: 10.1159/000093326] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 12/15/2005] [Indexed: 11/19/2022] Open
Abstract
Histone modifications of nucleosomes distinguish euchromatic from heterochromatic chromatin states, distinguish gene regulation in eukaryotes from that of prokaryotes, and appear to allow eukaryotes to focus recombination events on regions of highest gene concentrations. Four additional epigenetic mechanisms that regulate commitment of cell lineages to their differentiated states are involved in the inheritance of differentiated states, e.g., DNA methylation, RNA interference, gene repositioning between interphase compartments, and gene replication time. The number of additional mechanisms used increases with the taxon's somatic complexity. The ability of siRNA transcribed from one locus to target, in trans, RNAi-associated nucleation of heterochromatin in distal, but complementary, loci seems central to orchestration of chromatin states along chromosomes. Most genes are inactive when heterochromatic. However, genes within beta-heterochromatin actually require the heterochromatic state for their activity, a property that uniquely positions such genes as sources of siRNA to target heterochromatinization of both the source locus and distal loci. Vertebrate chromosomes are organized into permanent structures that, during S-phase, regulate simultaneous firing of replicon clusters. The late replicating clusters, seen as G-bands during metaphase and as meiotic chromomeres during meiosis, epitomize an ontological utilization of all five self-reinforcing epigenetic mechanisms to regulate the reversible chromatin state called facultative (conditional) heterochromatin. Alternating euchromatin/heterochromatin domains separated by band boundaries, and interphase repositioning of G-band genes during ontological commitment can impose constraints on both meiotic interactions and mammalian karyotype evolution.
Collapse
Affiliation(s)
- G P Holmquist
- Biology Department, City of Hope Medical Center, Duarte, CA, USA.
| | | |
Collapse
|
36
|
Bi X, Barkley LR, Slater DM, Tateishi S, Yamaizumi M, Ohmori H, Vaziri C. Rad18 regulates DNA polymerase kappa and is required for recovery from S-phase checkpoint-mediated arrest. Mol Cell Biol 2006; 26:3527-40. [PMID: 16611994 PMCID: PMC1447421 DOI: 10.1128/mcb.26.9.3527-3540.2006] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated mechanisms that recruit the translesion synthesis (TLS) DNA polymerase Polkappa to stalled replication forks. The DNA polymerase processivity factor PCNA is monoubiquitinated and interacts with Polkappa in cells treated with the bulky adduct-forming genotoxin benzo[a]pyrene dihydrodiol epoxide (BPDE). A monoubiquitination-defective mutant form of PCNA fails to interact with Polkappa. Small interfering RNA-mediated downregulation of the E3 ligase Rad18 inhibits BPDE-induced PCNA ubiquitination and association between PCNA and Polkappa. Conversely, overexpressed Rad18 induces PCNA ubiquitination and association between PCNA and Polkappa in a DNA damage-independent manner. Therefore, association of Polkappa with PCNA is regulated by Rad18-mediated PCNA ubiquitination. Cells from Rad18(-/-) transgenic mice show defective recovery from BPDE-induced S-phase checkpoints. In Rad18(-/-) cells, BPDE induces elevated and persistent activation of checkpoint kinases, indicating persistently stalled forks due to defective TLS. Rad18-deficient cells show reduced viability after BPDE challenge compared with wild-type cells (but survival after hydroxyurea or ionizing radiation treatment is unaffected by Rad18 deficiency). Inhibition of RPA/ATR/Chk1-mediated S-phase checkpoint signaling partially inhibited BPDE-induced PCNA ubiquitination and prevented interactions between PCNA and Polkappa. Taken together, our results indicate that ATR/Chk1 signaling is required for Rad18-mediated PCNA monoubiquitination. Recruitment of Polkappa to ubiquitinated PCNA enables lesion bypass and eliminates stalled forks, thereby attenuating the S-phase checkpoint.
Collapse
Affiliation(s)
- Xiaohui Bi
- Department of Genetics and Genomics, Boston University School of Medicine, 80 E. Concord St., Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Youds JL, O'Neil NJ, Rose AM. Homologous recombination is required for genome stability in the absence of DOG-1 in Caenorhabditis elegans. Genetics 2006; 173:697-708. [PMID: 16547095 PMCID: PMC1526509 DOI: 10.1534/genetics.106.056879] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In C. elegans, DOG-1 prevents deletions that initiate in polyG/polyC tracts (G/C tracts), most likely by unwinding secondary structures that can form in G/C tracts during lagging-strand DNA synthesis. We have used the dog-1 mutant to assay the in vivo contribution of various repair genes to the maintenance of G/C tracts. Here we show that DOG-1 and the BLM ortholog, HIM-6, act synergistically during replication; simultaneous loss of function of both genes results in replicative stress and an increase in the formation of small deletions that initiate in G/C tracts. Similarly, we demonstrate that the C. elegans orthologs of the homologous recombination repair genes BARD1, RAD51, and XPF and the trans-lesion synthesis polymerases poleta and polkappa contribute to the prevention of deletions in dog-1 mutants. Finally, we provide evidence that the small deletions generated in the dog-1 background are not formed through homologous recombination, nucleotide excision repair, or nonhomologous end-joining mechanisms, but appear to result from a mutagenic repair mechanism acting at G/C tracts. Our data support the hypothesis that absence of DOG-1 leads to replication fork stalling that can be repaired by deletion-free or deletion-prone mechanisms.
Collapse
Affiliation(s)
- Jillian L Youds
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | |
Collapse
|
38
|
Choi JY, Guengerich FP. Kinetic evidence for inefficient and error-prone bypass across bulky N2-guanine DNA adducts by human DNA polymerase iota. J Biol Chem 2006; 281:12315-24. [PMID: 16527824 DOI: 10.1074/jbc.m600112200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase (pol) iota has been proposed to be involved in translesion synthesis past minor groove DNA adducts via Hoogsteen base pairing. The N2 position of G, located in minor groove side of duplex DNA, is a major site for DNA modification by various carcinogens. Oligonucleotides with varying adduct size at G N2 were analyzed for bypass ability and fidelity with human pol iota. Pol iota effectively bypassed N2-methyl (Me)G and N2-ethyl(Et)G, partially bypassed N2-isobutyl(Ib)G and N2-benzylG, and was blocked at N2-CH2(2-naphthyl)G (N2-NaphG), N2-CH2(9-anthracenyl)G (N2-AnthG), and N2-CH2(6-benzo[a]pyrenyl)G. Steady-state kinetic analysis showed decreases of kcat/Km for dCTP insertion opposite N2-G adducts according to size, with a maximal decrease opposite N2-AnthG (61-fold). dTTP misinsertion frequency opposite template G was increased 3-11-fold opposite adducts (highest with N2-NaphG), indicating the additive effect of bulk (or possibly hydrophobicity) on T misincorporation. N2-IbG, N2-NaphG, and N2-AnthG also decreased the pre-steady-state kinetic burst rate compared with unmodified G. High kinetic thio effects (S(p)-2'-deoxycytidine 5'-O-(1-thiotriphosphate)) opposite N2-EtG and N2-AnthG (but not G) suggest that the chemistry step is largely interfered with by adducts. Severe inhibition of polymerization opposite N2,N2-diMeG compared with N2-EtG by pol eta but not by pol iota is consistent with Hoogsteen base pairing by pol iota. Thus, polymerization by pol iota is severely inhibited by a bulky group at G N2 despite an advantageous mode of Hoogsteen base pairing; pol iota may play a limited role in translesion synthesis on bulky N2-G adducts in cells.
Collapse
Affiliation(s)
- Jeong-Yun Choi
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
39
|
Hinz JM, Tebbs RS, Wilson PF, Nham PB, Salazar EP, Nagasawa H, Urbin SS, Bedford JS, Thompson LH. Repression of mutagenesis by Rad51D-mediated homologous recombination. Nucleic Acids Res 2006; 34:1358-68. [PMID: 16522646 PMCID: PMC1390685 DOI: 10.1093/nar/gkl020] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Homologous recombinational repair (HRR) restores chromatid breaks arising during DNA replication and prevents chromosomal rearrangements that can occur from the misrepair of such breaks. In vertebrates, five Rad51 paralogs are identified that contribute in a nonessential but critical manner to HRR proficiency. We constructed and characterized a knockout of the paralog Rad51D in widely studied CHO cells. The rad51d mutant (clone 51D1) displays sensitivity to a diverse spectrum of induced DNA damage including γ-rays, ultraviolet (UV)-C radiation, and methyl methanesulfonate (MMS), indicating the broad relevance of HRR to genotoxicity. Spontaneous chromatid breaks/gaps and isochromatid breaks are elevated 3- to 12-fold, but the chromosome number distribution remains unchanged. Most importantly, 51D1 cells exhibit a 12-fold-increased rate of hprt mutation, as well as 4- to 10-fold increased rates of gene amplification at the dhfr and CAD loci, respectively. Xrcc3 irs1SF cells from the same parental CHO line show similarly elevated mutagenesis at these three loci. Collectively, these results confirm the a priori expectation that HRR acts in an error-free manner to repress three classes of genetic alterations (chromosomal aberrations, loss of gene function and increased gene expression), all of which are associated with carcinogenesis.
Collapse
Affiliation(s)
| | | | - Paul F. Wilson
- Department of Environmental and Radiological Health Sciences Colorado State UniversityFort Collins, CO 80523, USA
| | | | | | - Hatsumi Nagasawa
- Department of Environmental and Radiological Health Sciences Colorado State UniversityFort Collins, CO 80523, USA
| | | | - Joel S. Bedford
- Department of Environmental and Radiological Health Sciences Colorado State UniversityFort Collins, CO 80523, USA
| | - Larry H. Thompson
- To whom correspondence should be addressed. Tel: +1 925 422 5658; Fax: +1 925 422 2099;
| |
Collapse
|
40
|
Murakumo Y, Mizutani S, Yamaguchi M, Ichihara M, Takahashi M. Analyses of ultraviolet-induced focus formation of hREV1 protein. Genes Cells 2006; 11:193-205. [PMID: 16483309 DOI: 10.1111/j.1365-2443.2006.00938.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Translesional DNA synthesis (TLS) is one of the DNA damage tolerance mechanisms that allow cells with DNA damage to continue DNA replication. Each of the mammalian Y-family DNA polymerases (Pol eta, Pol iota, Pol kappa, and REV1) has been shown to carry out TLS by itself or in combination with another enzyme in vitro. Recently, the C-terminal region of mammalian REV1 (the total 1251 residues in human) was found to interact with Pol eta, Pol iota, and Pol kappa, as well as with the REV7 subunit of another TLS enzyme, Pol zeta. Thus, it is proposed that REV1 plays a pivotal role in TLS in vivo. We here describe our study on the localization of human REV1 protein (hREV1) in nondamaged and ultraviolet (UV)-irradiated cells. Ectopically expressed hREV1 in mammalian cells was localized to the nucleus and exhibited dozens of tiny foci in approximately 3% of nondamaged cells. The percentage of focus-forming cells markedly increased after UV irradiation in a time- and dose-dependent manner. The focus formation was associated with UV-induced DNA damage. Interestingly, although the hREV1 foci in S-phase cells colocalized with PCNA foci, suggesting the association of hREV1 with the replication machinery, hREV1 focus formation was observed not only in the S phase but also outside S phase. Furthermore, it was found that the hREV1 focus formation after UV irradiation required a region near the C-terminal (826-1178).
Collapse
Affiliation(s)
- Yoshiki Murakumo
- Department of Pathology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
| | - Tracey McGregor Mason
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, Maryland 21205
| | - Paul S. Miller
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, Maryland 21205
| |
Collapse
|
42
|
Yagi Y, Ogawara D, Iwai S, Hanaoka F, Akiyama M, Maki H. DNA polymerases eta and kappa are responsible for error-free translesion DNA synthesis activity over a cis-syn thymine dimer in Xenopus laevis oocyte extracts. DNA Repair (Amst) 2005; 4:1252-69. [PMID: 16055392 DOI: 10.1016/j.dnarep.2005.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 06/15/2005] [Accepted: 06/17/2005] [Indexed: 10/25/2022]
Abstract
In translesion synthesis (TLS), specialized DNA polymerases (pols) facilitate progression of replication forks stalled by DNA damage. Although multiple TLS pols have been identified in eukaryotes, little is known about endogenous TLS pols and their relative contributions to TLS in vivo because of their low cellular abundance. Taking advantage of Xenopus laevis oocyte cells, with their extraordinary size and abundant enzymes involved in DNA metabolism, we have identified and characterized endogenous TLS pols for DNA damage induced by ultraviolet (UV) irradiation. We designed a TLS assay which monitors primer elongation on a synthetic oligomer template over a single UV-induced lesion, either a cys-syn cyclobutane pyrimidine dimer (CPD) or a pyrimidine (6-4) pyrimidone photoproduct. Four distinct TLS activities (TLS1-TLS4) were identified in X. laevis oocyte extracts, using three template/primer (T/P) DNA substrates having various sites at which primer extension is initiated relative to the lesion. TLS1 and TLS2 activities appear to be sequence-dependent. TLS3 and TLS4 extended the primers over the CPD in an error-free manner irrespective of sequence context. Base insertion opposite the CPD of the T/P substrate in which the 3'-end of the primer is placed one base upstream of the lesion was observed only with TLS3. TLS3 and TLS4 showed primer extension with similar efficiencies on the T/P substrate whose 3'-primer terminal dinucleotide (AA) was complementary to the CPD lesion. Investigations with antibodies and recombinant pols revealed that TLS3 and TLS4 were most likely attributable to pol eta and pol kappa, respectively. These results indicate that error-free insertion in CPD bypass is due mainly to pol eta (TLS3) in the extracts, and suggest that pol kappa (TLS4) may assist pol eta (TLS3) in error-free extension during CPD bypass.
Collapse
Affiliation(s)
- Yoshihiko Yagi
- Department of Molecular Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Albertella MR, Lau A, O'Connor MJ. The overexpression of specialized DNA polymerases in cancer. DNA Repair (Amst) 2005; 4:583-93. [PMID: 15811630 DOI: 10.1016/j.dnarep.2005.01.005] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Accepted: 01/24/2005] [Indexed: 12/23/2022]
Abstract
Specialized DNA polymerases are required to bypass DNA damage lesions that would otherwise cause replication arrest and cell death. When operating on non-canonical templates, such as undamaged DNA or on non-cognate lesions, these polymerases exhibit considerably reduced fidelity, resulting in the generation of mutations. Ectopic overexpression of these polymerases can also lead to an increased mutation rate and an enhanced capability of DNA repair, suggesting that they could potentially act as oncogenes if they were overexpressed in cancers. Here, we examine expression patterns of DNA polymerases in matched normal and tumor samples from a diverse range of tissues. As well as investigating the specialized polymerases beta, lambda, iota and kappa, we also investigate the expression of the replicative polymerases alpha, delta and epsilon. The data presented provide evidence for the overexpression of specialized polymerases in tumors, with more than 45% of the 68 tumor samples studied demonstrating greater than two-fold enhanced expression of at least one specialized polymerase. Of particular note, DNA polymerase beta (pol beta) was found to be overexpressed at both the mRNA and protein level in approximately one third of all tumor types studied, with overexpression being particularly frequent in uterus, ovary, prostate and stomach samples. Pols lambda, and iota were also found to be overexpressed to a significant extent in a range of tumor types, albeit less frequently than pol beta. In contrast, pol kappa was rarely found to be overexpressed in tumors but was found to be commonly underexpressed in many samples. Downregulation of pol beta expression by siRNA resulted in an increased sensitivity to the chemotherapeutic agent cisplatin, suggesting a role for this polymerase in providing tolerance to cisplatin-induced damage. These observations suggest that specialised DNA polymerases, and particularly pol beta, could be considered both as caretaker genes altered during tumorigenesis, and as potential drug targets to sensitise tumors to chemotherapy.
Collapse
Affiliation(s)
- Mark R Albertella
- KuDOS Pharmaceuticals Limited, 327 Cambridge Science Park, Milton Road, Cambridge CB4 OWG, UK
| | | | | |
Collapse
|
44
|
Bi X, Slater DM, Ohmori H, Vaziri C. DNA polymerase kappa is specifically required for recovery from the benzo[a]pyrene-dihydrodiol epoxide (BPDE)-induced S-phase checkpoint. J Biol Chem 2005; 280:22343-55. [PMID: 15817457 DOI: 10.1074/jbc.m501562200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previously we identified an intra-S-phase cell cycle checkpoint elicited by the DNA-damaging carcinogen benzo[a]pyrene-dihydrodiol epoxide (BPDE). Here we have investigated the roles of lesion bypass DNA polymerases polkappa and poleta in the BPDE-induced S-phase checkpoint. BPDE treatment induced the re-localization of an ectopically expressed green fluorescent protein-polkappa fusion protein to nuclear foci containing sites of active DNA synthesis in human lung carcinoma H1299 cells. In contrast, a similarly expressed yellow fluorescent protein-poleta fusion protein showed a constitutive nuclear focal distribution at replication forks (in the same cells) that was unchanged in response to BPDE. BPDE-induced formation of green fluorescent protein-polkappa nuclear foci was temporally coincident with checkpoint-mediated S-phase arrest. Unlike "wild-type" cells, Polk(-/-) mouse embryonic fibroblasts (MEFs) failed to recover from BPDE-induced S-phase arrest, while exhibiting normal recovery from S-phase arrest induced by ionizing radiation and hydroxyurea. XPV fibroblasts lacking poleta showed a normal S-phase checkpoint response to BPDE (but failed to recover from the UV light-induced S-phase checkpoint), in sharp contrast to Polk(-/-) MEFs. The persistent S-phase arrest in BPDE-treated Polk(-/-) cells was associated with increased levels of histone gammaH2AX (a marker of DNA double-strand breaks (DSBs)) and activation of the DSB-responsive kinases ATM and Chk2. These data suggest that in the absence of polkappa, replication forks stall at sites of damage and collapse and generate DSBs. Therefore, we conclude that the trans-lesion synthesis enzyme polkappa is specifically required for normal recovery from the BPDE-induced S-phase checkpoint.
Collapse
Affiliation(s)
- Xiaohui Bi
- Department of Genetics and Genomics, Boston University School of Medicine, 80 E. Concord Street, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
45
|
Bavoux C, Hoffmann JS, Cazaux C. Adaptation to DNA damage and stimulation of genetic instability: the double-edged sword mammalian DNA polymerase kappa. Biochimie 2005; 87:637-46. [PMID: 15989980 DOI: 10.1016/j.biochi.2005.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 02/10/2005] [Indexed: 12/31/2022]
Abstract
A major tolerance mechanism that functions to replicate damaged genomic DNA across lesions that have escaped elimination by repair mechanism is translesion DNA synthesis (TLS). DNA polymerase kappa (Pol kappa), a specialised low-fidelity DNA polymerase which is able to perform DNA synthesis across several damaged bases, is one of the enzymes involved in the process. The mutagenic nature of Pol kappa implies that its expression must be tightly regulated to prevent the formation of excessive genetic disorders along undamaged parts of the genome. Indeed, Pol kappa overexpression, which is notably observed in lung cancer, results not only in increased spontaneous mutagenesis, but also in pleiotropic alterations such as DNA breaks, genetic exchanges and aneuploidy. This review will discuss both aspects of DNA polymerase kappa, which can be considered as a genomic supervisor participating in genome maintenance and when misregulated as a genetic instability enhancer as well.
Collapse
Affiliation(s)
- C Bavoux
- Laboratory Genetic instability and cancer, Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, 205, route de Narbonne, 31077 Toulouse cedex, France
| | | | | |
Collapse
|
46
|
Bavoux C, Leopoldino AM, Bergoglio V, O-Wang J, Ogi T, Bieth A, Judde JG, Pena SDJ, Poupon MF, Helleday T, Tagawa M, Machado C, Hoffmann JS, Cazaux C. Up-Regulation of the Error-Prone DNA Polymerase κ Promotes Pleiotropic Genetic Alterations and Tumorigenesis. Cancer Res 2005. [DOI: 10.1158/0008-5472.325.65.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
It is currently widely accepted that genetic instability is key to cancer development. Many types of cancers arise as a consequence of a gradual accumulation of nucleotide aberrations, each mutation conferring growth and/or survival advantage. Genetic instability could also proceed in sudden bursts leading to a more drastic upheaval of structure and organization of the genome. Genetic instability, as an operative force, will produce genetic variants and the greater the instability, the larger the number of variants. We report here that the overexpression of human DNA polymerase κ, an error-prone enzyme that is up-regulated in lung cancers, induces DNA breaks and stimulates DNA exchanges as well as aneuploidy. Probably as the result of so many perturbations, excess polymerase κ favors the proliferation of competent tumor cells as observed in immunodeficient mice. These data suggest that altered regulation of DNA metabolism might be related to cancer-associated genetic changes and phenotype.
Collapse
Affiliation(s)
- Clarisse Bavoux
- 1Laboratory ≪ Genetic instability and cancer ≫, Institute of Pharmacology and Structural Biology, Centre National de la Recherche Scientifique, Toulouse, France
| | | | - Valérie Bergoglio
- 1Laboratory ≪ Genetic instability and cancer ≫, Institute of Pharmacology and Structural Biology, Centre National de la Recherche Scientifique, Toulouse, France
| | - Jiyang O-Wang
- 3Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama, Japan
| | - Tomoo Ogi
- 4Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, United Kingdom
| | - Anne Bieth
- 1Laboratory ≪ Genetic instability and cancer ≫, Institute of Pharmacology and Structural Biology, Centre National de la Recherche Scientifique, Toulouse, France
| | - Jean-Gabriel Judde
- 5FRE2584 Centre National de la Recherche Scientifique, Section Recherche, Institut Curie-Centre National de la Recherche Scientifique, Paris, France
| | - Sérgio Danilo Junho Pena
- 2Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marie-France Poupon
- 5FRE2584 Centre National de la Recherche Scientifique, Section Recherche, Institut Curie-Centre National de la Recherche Scientifique, Paris, France
| | - Thomas Helleday
- 6Institute for Cancer Studies, University of Sheffield, Medical School, Sheffield, United Kingdom; and
| | - Masatoshi Tagawa
- 7Division of Pathology, Chiba Cancer Center Research Institute, Chiba, Japan
| | - CarlosRenato Machado
- 2Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jean-Sébastien Hoffmann
- 1Laboratory ≪ Genetic instability and cancer ≫, Institute of Pharmacology and Structural Biology, Centre National de la Recherche Scientifique, Toulouse, France
| | - Christophe Cazaux
- 1Laboratory ≪ Genetic instability and cancer ≫, Institute of Pharmacology and Structural Biology, Centre National de la Recherche Scientifique, Toulouse, France
| |
Collapse
|
47
|
Ogi T, Kannouche P, Lehmann AR. Localisation of human Y-family DNA polymerase kappa: relationship to PCNA foci. J Cell Sci 2004; 118:129-36. [PMID: 15601657 DOI: 10.1242/jcs.01603] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA polymerases of the Y-family are involved in translesion DNA synthesis past different types of DNA damage. Previous work has shown that DNA polymerases eta and iota are localised in replication factories during S phase, where they colocalise one-to-one with PCNA. Cells with factories containing these polymerases accumulate after treatment with DNA damaging agents because replication forks are stalled at sites of damage. We now show that DNA polymerase kappa (pol(kappa)) has a different localisation pattern. Although, like the other Y-family polymerases, it is exclusively localised in the nucleus, pol(kappa) is found in replication foci in only a small proportion of S-phase cells. It does not colocalise in those foci with proliferating cell nuclear antigen (PCNA) in the majority of cells. This reduced number of cells with pol(kappa) foci, when compared with those containing pol(eta) foci, is observed both in untreated cells and in cells treated with hydroxyurea, UV irradiation or benzo[a]pyrene. The C-terminal 97 amino acids of pol(kappa)are sufficient for this limited localisation into nuclear foci, and include a C2HC zinc finger, bipartite nuclear localisation signal and putative PCNA binding site.
Collapse
Affiliation(s)
- Tomoo Ogi
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, BN1 9RR, UK
| | | | | |
Collapse
|
48
|
Mukhopadhyay S, Clark DR, Watson NB, Zacharias W, McGregor WG. REV1 accumulates in DNA damage-induced nuclear foci in human cells and is implicated in mutagenesis by benzo[a]pyrenediolepoxide. Nucleic Acids Res 2004; 32:5820-6. [PMID: 15523096 PMCID: PMC528789 DOI: 10.1093/nar/gkh903] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The REV1 gene encodes a Y-family DNA polymerase that has been postulated to have both catalytic and structural functions in translesion replication past UV photoproducts in mammalian cells. To examine if REV1 is implicated in DNA damage tolerance mechanisms after exposure of human cells to a chemical carcinogen, we generated a plasmid expressing REV1 protein fused at its C-terminus with green fluorescent protein (GFP). In transient transfection experiments, virtually all of the transfected cells had a diffuse nuclear pattern in the absence of carcinogen exposure. In contrast, in cells exposed to benzo[a]pyrenediolepoxide, the fusion protein accumulated in a focal pattern in the nucleus in 25% of the cells, and co-localized with PCNA. These data support the idea that REV1 is present at stalled replication forks. We also examined the mutagenic response at the HPRT locus of human cells that had greatly reduced levels of REV1 mRNA due to the stable expression of gene-specific ribozymes, and compared them to wild-type cells. The mutant frequency was greatly reduced in the ribozyme-expressing cells. These data indicate that REV1 is implicated in the mutagenic DNA damage tolerance response to BPDE and support the development of strategies to target this protein to prevent such mutations.
Collapse
Affiliation(s)
- Suparna Mukhopadhyay
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, Louisville, KY, USA
| | | | | | | | | |
Collapse
|
49
|
Plosky BS, Woodgate R. Switching from high-fidelity replicases to low-fidelity lesion-bypass polymerases. Curr Opin Genet Dev 2004; 14:113-9. [PMID: 15196456 DOI: 10.1016/j.gde.2004.02.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Replication of damaged DNA often requires a DNA polymerase in addition to the cell's normal replicase. Recent research has begun to shed light on the switch from a high-fidelity replicative polymerase to a low-fidelity translesion polymerase that occurs at a stalled replication fork. A picture is emerging in which eukaryotic replicative clamps are posttranslationally modified by ubiquitination, SUMOylation or phosphorylation. It is believed that such modifications help to regulate the access of translesion polymerases to the nascent primer terminus.
Collapse
Affiliation(s)
- Brian S Plosky
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725, USA
| | | |
Collapse
|
50
|
Karpinets TV, Foy BD. Model of the developing tumorigenic phenotype in mammalian cells and the roles of sustained stress and replicative senescence. J Theor Biol 2004; 227:253-64. [PMID: 14990389 DOI: 10.1016/j.jtbi.2003.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 10/24/2003] [Accepted: 11/04/2003] [Indexed: 12/22/2022]
Abstract
The molecular mechanisms that drive mammalian cells to the development of cancer are the subject of intense biochemical, genetic and medical studies. But for the present, there is no comprehensive model that might serve as a general framework for the interpretation of experimental data. This paper is an attempt to create a conceptual model of the mechanism of the developing tumorigenic phenotype in mammalian cells, defined as having high genomic instability and proliferative activity. The basic statement in the model is that mutations acquired by tumor cells are not caused directly by external DNA damaging agents, but instead are produced by the cell itself as an output of a Mutator Response similar to the bacterial "SOS response" and characterized by the initiation of error-prone cell cycle progression and an elevated rate of mutation. This response may be induced in arrested mammalian cells by intracellular and extracellular proliferative signals combined with blocked apoptosis. The mutant cells originated by this response are subjected to natural selection via apoptosis and turnover. This selection process favors the survival of cells with high proliferative activity and the suppression of apoptosis resulting in the long run in the appearance of immortalized cells with high proliferative activity. Either a sustained stressful environment accompanied by continuing apoptotic cell death, or replicative senescence, provides conditions suitable for activation of the Mutator Response, namely the emergence of arrested cells with blocked apoptosis and the induction of proliferative signal. It also accelerates the selection process by providing continuing cell turnover. The proposed mechanism is described at the level of involved metabolic pathways and proteins and substantiated by the related experimental data available in the literature.
Collapse
Affiliation(s)
- Tatiana V Karpinets
- Department of Physics, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| | | |
Collapse
|