1
|
Zhao D, Duan X, Zhu L, Fang M, Qin T, Bi Y. IL-6-Caspase 3 Axis Plays an Important Role in Enteritis Caused by Legionella pneumophila Pulmonary Infection. Microorganisms 2025; 13:313. [PMID: 40005679 PMCID: PMC11858493 DOI: 10.3390/microorganisms13020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Since Legionella pneumophila (Lp) is widely present in natural and artificial water environments, it has a high potential risk of outbreak. Diarrhea caused by Lp pulmonary infection is an important symptom of Legionnaires' disease (LD); however, the underlying mechanism of the diarrhea has not yet been revealed. This not only has a negative impact on clinical diagnosis and treatment, but may also cause misdiagnosis. METHODS In the present study, a mouse model of enteritis caused by pulmonary infection of Lp was established. By using this mouse model, we explored the underlying mechanisms of the enteritis caused by Lp pulmonary infection. RESULTS The results indicated that the systemic inflammatory response played a very important role in the enteritis phenotype caused by a strong-virulence strain of Lp. Furthermore, we found that the expression of Bcl-2 was downregulated by IL-6 through the p53 signaling pathway, thereby activating the caspase 3 of intestinal epithelial cells (IECs), causing the apoptosis of IECs, and ultimately leading to the enteritis phenotype. CONCLUSIONS The IL-6-caspase 3 axis plays an important role in enteritis caused by Lp pulmonary infection.
Collapse
Affiliation(s)
- Dahui Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China; (D.Z.); (X.D.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuefeng Duan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China; (D.Z.); (X.D.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China; (D.Z.); (X.D.); (L.Z.)
| | - Min Fang
- School of Life Sciences & Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Henan University, Kaifeng 475004, China;
| | - Tian Qin
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing 102206, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China; (D.Z.); (X.D.); (L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Stegmann F, Diersing C, Lepenies B. Legionella pneumophila modulates macrophage functions through epigenetic reprogramming via the C-type lectin receptor Mincle. iScience 2024; 27:110700. [PMID: 39252966 PMCID: PMC11382120 DOI: 10.1016/j.isci.2024.110700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/12/2023] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Legionella pneumophila is a pathogen which can lead to a severe form of pneumonia in humans known as Legionnaires disease after replication in alveolar macrophages. Viable L. pneumophila actively secrete effector molecules to modulate the host's immune response. Here, we report that L. pneumophila-derived factors reprogram macrophages into a tolerogenic state, a process to which the C-type lectin receptor Mincle (CLEC4E) markedly contributes. The underlying epigenetic state is characterized by increases of the closing mark H3K9me3 and decreases of the opening mark H3K4me3, subsequently leading to the reduced secretion of the cytokines TNF, IL-6, IL-12, the production of reactive oxygen species, and cell-surface expression of MHC-II and CD80 upon re-stimulation. In summary, these findings provide important implications for our understanding of Legionellosis and the contribution of Mincle to reprogramming of macrophages by L. pneumophila.
Collapse
Affiliation(s)
- Felix Stegmann
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559 Hanover, Lower Saxony, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hanover, Lower Saxony, Germany
| | - Christina Diersing
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559 Hanover, Lower Saxony, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hanover, Lower Saxony, Germany
| | - Bernd Lepenies
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559 Hanover, Lower Saxony, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hanover, Lower Saxony, Germany
| |
Collapse
|
3
|
Generalov E, Yakovenko L. Receptor basis of biological activity of polysaccharides. Biophys Rev 2023; 15:1209-1222. [PMID: 37975017 PMCID: PMC10643635 DOI: 10.1007/s12551-023-01102-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 11/19/2023] Open
Abstract
Polysaccharides, the most diverse forms of organic molecules in nature, exhibit a large number of different biological activities, such as immunomodulatory, radioprotective, antioxidant, regenerative, metabolic, signaling, antitumor, and anticoagulant. The reaction of cells to a polysaccharide is determined by its specific interaction with receptors present on the cell surface, the type of cells, and their condition. The effect of many polysaccharides depends non-linearly on their concentration. The same polysaccharide in different conditions can have very different effects on cells and organisms, up to the opposite; therefore, when conducting studies of the biological activity of polysaccharides, both for the purpose of developing new drugs or approaches to the treatment of patients, and in order to clarify the features of intracellular processes, information about already known research results is needed. There is a lot of scattered data on the biological activities of polysaccharides, but there are few reviews that would consider natural polysaccharides from various sources and possible molecular mechanisms of their action. The purpose of this review is to present the main results published at different times in order to facilitate the search for information necessary for conducting relevant studies.
Collapse
Affiliation(s)
- Evgenii Generalov
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, 119991 Russia
| | - Leonid Yakovenko
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, 119991 Russia
| |
Collapse
|
4
|
Yang JL, Li D, Zhan XY. Concept about the Virulence Factor of Legionella. Microorganisms 2022; 11:microorganisms11010074. [PMID: 36677366 PMCID: PMC9867486 DOI: 10.3390/microorganisms11010074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Pathogenic species of Legionella can infect human alveolar macrophages through Legionella-containing aerosols to cause a disease called Legionellosis, which has two forms: a flu-like Pontiac fever and severe pneumonia named Legionnaires' disease (LD). Legionella is an opportunistic pathogen that frequently presents in aquatic environments as a biofilm or protozoa parasite. Long-term interaction and extensive co-evolution with various genera of amoebae render Legionellae pathogenic to infect humans and also generate virulence differentiation and heterogeneity. Conventionally, the proteins involved in initiating replication processes and human macrophage infections have been regarded as virulence factors and linked to pathogenicity. However, because some of the virulence factors are associated with the infection of protozoa and macrophages, it would be more accurate to classify them as survival factors rather than virulence factors. Given that the molecular basis of virulence variations among non-pathogenic, pathogenic, and highly pathogenic Legionella has not yet been elaborated from the perspective of virulence factors, a comprehensive explanation of how Legionella infects its natural hosts, protozoans, and accidental hosts, humans is essential to show a novel concept regarding the virulence factor of Legionella. In this review, we overviewed the pathogenic development of Legionella from protozoa, the function of conventional virulence factors in the infections of protozoa and macrophages, the host's innate immune system, and factors involved in regulating the host immune response, before discussing a probably new definition for the virulence factors of Legionella.
Collapse
|
5
|
Ciaston I, Dobosz E, Potempa J, Koziel J. The subversion of toll-like receptor signaling by bacterial and viral proteases during the development of infectious diseases. Mol Aspects Med 2022; 88:101143. [PMID: 36152458 PMCID: PMC9924004 DOI: 10.1016/j.mam.2022.101143] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/29/2022] [Accepted: 09/09/2022] [Indexed: 02/05/2023]
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) that respond to pathogen-associated molecular patterns (PAMPs). The recognition of specific microbial ligands by TLRs triggers an innate immune response and also promotes adaptive immunity, which is necessary for the efficient elimination of invading pathogens. Successful pathogens have therefore evolved strategies to subvert and/or manipulate TLR signaling. Both the impairment and uncontrolled activation of TLR signaling can harm the host, causing tissue destruction and allowing pathogens to proliferate, thus favoring disease progression. In this context, microbial proteases are key virulence factors that modify components of the TLR signaling pathway. In this review, we discuss the role of bacterial and viral proteases in the manipulation of TLR signaling, highlighting the importance of these enzymes during the development of infectious diseases.
Collapse
Affiliation(s)
- Izabela Ciaston
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewelina Dobosz
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Oral Health and Systemic Disease, University of Louisville School of Dentistry, University of Louisville, Louisville, KY, USA.
| | - Joanna Koziel
- Department of Microbiology Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
6
|
Zubova SV, Kosyakova NI, Grachev SV, Prokhorenko IR. Rhodobacter capsulatus PG Lipopolysaccharide Blocks the Effects of a Lipoteichoic Acid, a Toll-Like Receptor 2 Agonist. Acta Naturae 2022; 14:69-74. [PMID: 36694898 PMCID: PMC9844088 DOI: 10.32607/actanaturae.11747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/02/2022] [Indexed: 01/22/2023] Open
Abstract
Lipopolysaccharides (LPS) and lipoteichoic acids (LTA) are the major inducers of the inflammatory response of blood cells caused by Gram-negative and some Gram-positive bacteria. CD14 is a common receptor for LPS and LTA that transfers the ligands to TLR4 and TLR2, respectively. In this work, we have demonstrated that the non-toxic LPS from Rhodobacter capsulatus PG blocks the synthesis of pro-inflammatory cytokines during the activation of blood cells by Streptococcus pyogenes LTA through binding to the CD14 receptor, resulting in the signal transduction to TLR2/TLR6 being blocked. The LPS from Rhodobacter capsulatus PG can be considered a prototype for developing preparations to protect blood cells against the LTA of gram-positive bacteria.
Collapse
Affiliation(s)
- S. V. Zubova
- Institute of Basic Biological Problems of RAS FRC PSCBR RAS, Pushchino, 142290 Russia
| | - N. I. Kosyakova
- Clinical Hospital at the Pushchino Research Center, Pushchino, 142290 Russia
| | - S. V. Grachev
- Institute of Basic Biological Problems of RAS FRC PSCBR RAS, Pushchino, 142290 Russia
- First Moscow State Medical University named I.M. Sechenov of Russia Health Ministry (Sechenov University), Moscow, 119991 Russia
| | - I. R. Prokhorenko
- Institute of Basic Biological Problems of RAS FRC PSCBR RAS, Pushchino, 142290 Russia
| |
Collapse
|
7
|
Francisco S, Billod JM, Merino J, Punzón C, Gallego A, Arranz A, Martin-Santamaria S, Fresno M. Induction of TLR4/TLR2 Interaction and Heterodimer Formation by Low Endotoxic Atypical LPS. Front Immunol 2022; 12:748303. [PMID: 35140704 PMCID: PMC8818788 DOI: 10.3389/fimmu.2021.748303] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/27/2021] [Indexed: 12/01/2022] Open
Abstract
The Toll-like receptor 4 (TLR4)/myeloid differentiation protein-2 (MD-2) complex is considered the major receptor of the innate immune system to recognize lipopolysaccharides (LPSs). However, some atypical LPSs with different lipid A and core saccharide moiety structures and compositions than the well-studied enterobacterial LPSs can induce a TLR2-dependent response in innate immune cells. Ochrobactrum intermedium, an opportunistic pathogen, presents an atypical LPS. In this study, we found that O. intermedium LPS exhibits a weak inflammatory activity compared to Escherichia coli LPS and, more importantly, is a specific TLR4/TLR2 agonist, able to signal through both receptors. Molecular docking analysis of O. intermedium LPS predicts a favorable formation of a TLR2/TLR4/MD-2 heterodimer complex, which was experimentally confirmed by fluorescence resonance energy transfer (FRET) in cells. Interestingly, the core saccharide plays an important role in this interaction. This study reveals for the first time TLR4/TLR2 heterodimerization that is induced by atypical LPS and may help to escape from recognition by the innate immune system.
Collapse
Affiliation(s)
- Sara Francisco
- Diomune S. L., Parque Científico de Madrid, Madrid, Spain
- Department of Molecular Biology, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
| | - Jean-Marc Billod
- Department of Structural Biology, Centro de Investigaciones Biologicas “Margarita Salas”, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid, Spain
| | - Javier Merino
- Diomune S. L., Parque Científico de Madrid, Madrid, Spain
- Department of Molecular Biology, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Punzón
- Diomune S. L., Parque Científico de Madrid, Madrid, Spain
| | - Alicia Gallego
- Department of Molecular Biology, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
| | - Alicia Arranz
- Department of Molecular Biology, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
| | - Sonsoles Martin-Santamaria
- Department of Structural Biology, Centro de Investigaciones Biologicas “Margarita Salas”, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid, Spain
| | - Manuel Fresno
- Diomune S. L., Parque Científico de Madrid, Madrid, Spain
- Department of Molecular Biology, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Human macrophages utilize a wide range of pathogen recognition receptors to recognize Legionella pneumophila, including Toll-Like Receptor 4 engaging Legionella lipopolysaccharide and the Toll-like Receptor 3 nucleic-acid sensor. PLoS Pathog 2021; 17:e1009781. [PMID: 34280250 PMCID: PMC8321404 DOI: 10.1371/journal.ppat.1009781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/29/2021] [Accepted: 07/03/2021] [Indexed: 12/15/2022] Open
Abstract
Cytokines made by macrophages play a critical role in determining the course of Legionella pneumophila infection. Prior murine-based modeling indicated that this cytokine response is initiated upon recognition of L. pneumophila by a subset of Toll-like receptors, namely TLR2, TLR5, and TLR9. Through the use of shRNA/siRNA knockdowns and subsequently CRISPR/Cas9 knockouts (KO), we determined that TRIF, an adaptor downstream of endosomal TLR3 and TLR4, is required for full cytokine secretion by human primary and cell-line macrophages. By characterizing a further set of TLR KO's in human U937 cells, we discerned that, contrary to the viewpoint garnered from murine-based studies, TLR3 and TLR4 (along with TLR2 and TLR5) are in fact vital to the macrophage response in the early stages of L. pneumophila infection. This conclusion was bolstered by showing that i) chemical inhibitors of TLR3 and TLR4 dampen the cytokine output of primary human macrophages and ii) transfection of TLR3 and TLR4 into HEK cells conferred an ability to sense L. pneumophila. TLR3- and TLR4-dependent cytokines promoted migration of human HL-60 neutrophils across an epithelial layer, pointing to the biological importance for the newfound signaling pathway. The response of U937 cells to L. pneumophila LPS was dependent upon TLR4, a further contradiction to murine-based studies, which had concluded that TLR2 is the receptor for Legionella LPS. Given the role of TLR3 in sensing nucleic acid (i.e., dsRNA), we utilized newly-made KO U937 cells to document that DNA-sensing by cGAS-STING and DNA-PK are also needed for the response of human macrophages to L. pneumophila. Given the lack of attention given them in the bacterial field, C-type lectin receptors were similarly examined; but, they were not required. Overall, this study arguably represents the most extensive, single-characterization of Legionella-recognition receptors within human macrophages.
Collapse
|
9
|
Chauhan D, Shames SR. Pathogenicity and Virulence of Legionella: Intracellular replication and host response. Virulence 2021; 12:1122-1144. [PMID: 33843434 PMCID: PMC8043192 DOI: 10.1080/21505594.2021.1903199] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bacteria of the genus Legionella are natural pathogens of amoebae that can cause a severe pneumonia in humans called Legionnaires’ Disease. Human disease results from inhalation of Legionella-contaminated aerosols and subsequent bacterial replication within alveolar macrophages. Legionella pathogenicity in humans has resulted from extensive co-evolution with diverse genera of amoebae. To replicate intracellularly, Legionella generates a replication-permissive compartment called the Legionella-containing vacuole (LCV) through the concerted action of hundreds of Dot/Icm-translocated effector proteins. In this review, we present a collective overview of Legionella pathogenicity including infection mechanisms, secretion systems, and translocated effector function. We also discuss innate and adaptive immune responses to L. pneumophila, the implications of Legionella genome diversity and future avenues for the field.
Collapse
Affiliation(s)
- Deepika Chauhan
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | | |
Collapse
|
10
|
The Role of Lipids in Legionella-Host Interaction. Int J Mol Sci 2021; 22:ijms22031487. [PMID: 33540788 PMCID: PMC7867332 DOI: 10.3390/ijms22031487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
Legionella are Gram-stain-negative rods associated with water environments: either natural or man-made systems. The inhalation of aerosols containing Legionella bacteria leads to the development of a severe pneumonia termed Legionnaires' disease. To establish an infection, these bacteria adapt to growth in the hostile environment of the host through the unusual structures of macromolecules that build the cell surface. The outer membrane of the cell envelope is a lipid bilayer with an asymmetric composition mostly of phospholipids in the inner leaflet and lipopolysaccharides (LPS) in the outer leaflet. The major membrane-forming phospholipid of Legionella spp. is phosphatidylcholine (PC)-a typical eukaryotic glycerophospholipid. PC synthesis in Legionella cells occurs via two independent pathways: the N-methylation (Pmt) pathway and the Pcs pathway. The utilisation of exogenous choline by Legionella spp. leads to changes in the composition of lipids and proteins, which influences the physicochemical properties of the cell surface. This phenotypic plasticity of the Legionella cell envelope determines the mode of interaction with the macrophages, which results in a decrease in the production of proinflammatory cytokines and modulates the interaction with antimicrobial peptides and proteins. The surface-exposed O-chain of Legionella pneumophila sg1 LPS consisting of a homopolymer of 5-acetamidino-7-acetamido-8-O-acetyl-3,5,7,9-tetradeoxy-l-glycero-d-galacto-non-2-ulosonic acid is probably the first component in contact with the host cell that anchors the bacteria in the host membrane. Unusual in terms of the structure and function of individual LPS regions, it makes an important contribution to the antigenicity and pathogenicity of Legionella bacteria.
Collapse
|
11
|
Vanithamani S, Akino Mercy CS, Kanagavel M, Sumaiya K, Bothammal P, Saranya P, Prasad M, Ponmurugan K, Muralitharan G, Al-Dhabi NA, Verma A, Vijayachari P, Natarajaseenivasan K. Biochemical analysis of leptospiral LPS explained the difference between pathogenic and non-pathogenic serogroups. Microb Pathog 2021; 152:104738. [PMID: 33529737 DOI: 10.1016/j.micpath.2021.104738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
Lipopolysaccharide (LPS) is the major surface antigen of Leptospira. In this study, the genes involved in the LPS biosynthesis were analyzed and compared by bioinformatics tools. Also, the chemical composition analysis of leptospiral lipopolysaccharides (LPS) extracted from 5 pathogenic serovars like Autumnalis, Australis, Ballum, Grippotyphosa, Pomona, and the nonpathogenic serovar Andamana was performed. Methods used were Limulus amebocyte lysate assay (LAL), gas chromatography-mass spectrometry (GC-MS), fourier transform infrared spectroscopy (FT-IR), and nuclear magnetic resonance spectroscopy (NMR). LAL assay showed a significantly higher level of endotoxicity among pathogenic serovars (~0.490 EU/mL) than that of nonpathogenic Andamana (~0.102 EU/mL). FAMES analysis showed the presence of palmitic acid (C16:0), hydroxy lauric acid (3-OH-C12:0), and oleic acid (C18:0). Palmitoleic acid (C16: 1), and 3- hydroxy palmitate (3-OH-C16:0) was detected only in pathogenic serovars. In contrast myristoleic acid (C14:1) and stearic acid (C18:0) were present in Andamana. FTIR analysis revealed C-O-C stretch of esters, 3°ROH functional groups and carbohydrate vibration range were similar among pathogenic serovars. The NMR analysis reveals similarity for 6 deoxy sugars and methyl groups of Autumnalis, Australis, and Ballum. Further, the presence of palmitoleic acid and 3-hydroxy palmitate may be the significant pathogen-associated predisposing factor. This mediates high osmolarity glycerol (HOG) mediated stress response in leptospiral LPS mediated pathogenesis.
Collapse
Affiliation(s)
- Shanmugam Vanithamani
- Medical Microbiology Laboratory, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Charles Solomon Akino Mercy
- Medical Microbiology Laboratory, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Murugesan Kanagavel
- Medical Microbiology Laboratory, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Krishnamoorthi Sumaiya
- Medical Microbiology Laboratory, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Palanisamy Bothammal
- Medical Microbiology Laboratory, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Perumal Saranya
- Medical Microbiology Laboratory, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Muthu Prasad
- Medical Microbiology Laboratory, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Karuppiah Ponmurugan
- Department of Botany & Microbiology, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia
| | - Gangatharan Muralitharan
- Medical Microbiology Laboratory, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Naif Abdullah Al-Dhabi
- Department of Botany & Microbiology, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ashutosh Verma
- Lincoln Memorial University, College of Veterinary Medicine, Harrogate, TN, 37752, USA
| | - Paluru Vijayachari
- WHO Collaborating Centre for Diagnosis, Reference, Research and Training in Leptospirosis, Regional Medical Research Centre (ICMR), Port Blair, 744103, India
| | - Kalimuthusamy Natarajaseenivasan
- Medical Microbiology Laboratory, Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India; Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
12
|
Shah JA, Emery R, Lee B, Venkatasubramanian S, Simmons JD, Brown M, Hung CF, Prins JM, Verbon A, Hawn TR, Skerrett SJ. TOLLIP deficiency is associated with increased resistance to Legionella pneumophila pneumonia. Mucosal Immunol 2019; 12:1382-1390. [PMID: 31462698 PMCID: PMC6824992 DOI: 10.1038/s41385-019-0196-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/08/2019] [Accepted: 08/02/2019] [Indexed: 02/04/2023]
Abstract
Legionella pneumophila (Lp) is a flagellated, intracellular bacterium that can cause Legionnaires' disease (LD). Lp activates multiple innate immune receptors, and TOLLIP dampens MyD88-dependent signaling and may influence susceptibility to LD. We evaluated the effect of TOLLIP on innate immunity, pneumonia severity, and LD susceptibility in mouse lungs and human populations. To accomplish this, we evaluated the effect of TOLLIP on lung-specific Lp control and immune response and associated a common functional TOLLIP variant with Lp-induced innate immune responses and LD susceptibility in humans. After aerosol Lp infection, Tollip-/- mice demonstrated significantly fewer bacterial colony-forming unit and increased cytokine responses from BAL fluid. Tollip-/- macrophages also suppressed intracellular Lp replication in a flagellin-independent manner. The presence of a previously characterized, functionally active SNP associated with decreased TOLLIP mRNA transcript in monocytes was associated with increased TNF and IL-6 secretion after Lp stimulation of PBMC ex vivo. This genotype was separately associated with decreased LD susceptibility (309 controls, 88 cases, p = 0.008, OR 0.36, 95% CI 0.16-0.76) in a candidate gene association study. These results suggest that TOLLIP decreases lung-specific TLR responses to increase LD susceptibility in human populations. Better understanding of TOLLIP may lead to novel immunomodulatory therapies.
Collapse
Affiliation(s)
- Javeed A Shah
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA.
| | - Robyn Emery
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Brian Lee
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Jason D Simmons
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Melanie Brown
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Chi F Hung
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Jan M Prins
- University of Amsterdam, Amsterdam, the Netherlands
| | | | - Thomas R Hawn
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Shawn J Skerrett
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
13
|
Human Toll-Like Receptor 4 (hTLR4): Structural and functional dynamics in cancer. Int J Biol Macromol 2019; 122:425-451. [DOI: 10.1016/j.ijbiomac.2018.10.142] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/10/2018] [Accepted: 10/18/2018] [Indexed: 12/23/2022]
|
14
|
Karaś MA, Turska-Szewczuk A, Janczarek M, Szuster-Ciesielska A. Glycoconjugates of Gram-negative bacteria and parasitic protozoa - are they similar in orchestrating the innate immune response? Innate Immun 2019; 25:73-96. [PMID: 30782045 PMCID: PMC6830889 DOI: 10.1177/1753425918821168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023] Open
Abstract
Innate immunity is an evolutionarily ancient form of host defense that serves to limit infection. The invading microorganisms are detected by the innate immune system through germline-encoded PRRs. Different classes of PRRs, including TLRs and cytoplasmic receptors, recognize distinct microbial components known collectively as PAMPs. Ligation of PAMPs with receptors triggers intracellular signaling cascades, activating defense mechanisms. Despite the fact that Gram-negative bacteria and parasitic protozoa are phylogenetically distant organisms, they express glycoconjugates, namely bacterial LPS and protozoan GPI-anchored glycolipids, which share many structural and functional similarities. By activating/deactivating MAPK signaling and NF-κB, these ligands trigger general pro-/anti-inflammatory responses depending on the related patterns. They also use conservative strategies to subvert cell-autonomous defense systems of specialized immune cells. Signals triggered by Gram-negative bacteria and parasitic protozoa can interfere with host homeostasis and, depending on the type of microorganism, lead to hypersensitivity or silencing of the immune response. Activation of professional immune cells, through a ligand which triggers the opposite effect (antagonist versus agonist) appears to be a promising solution to restoring the immune balance.
Collapse
Affiliation(s)
- Magdalena A Karaś
- Department of Genetics and Microbiology, Maria Curie–Skłodowska
University, Lublin, Poland
| | - Anna Turska-Szewczuk
- Department of Genetics and Microbiology, Maria Curie–Skłodowska
University, Lublin, Poland
| | - Monika Janczarek
- Department of Genetics and Microbiology, Maria Curie–Skłodowska
University, Lublin, Poland
| | | |
Collapse
|
15
|
Best AM, Abu Kwaik Y. Evasion of phagotrophic predation by protist hosts and innate immunity of metazoan hosts by Legionella pneumophila. Cell Microbiol 2018; 21:e12971. [PMID: 30370624 DOI: 10.1111/cmi.12971] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/08/2018] [Accepted: 10/24/2018] [Indexed: 12/18/2022]
Abstract
Legionella pneumophila is a ubiquitous environmental bacterium that has evolved to infect and proliferate within amoebae and other protists. It is thought that accidental inhalation of contaminated water particles by humans is what has enabled this pathogen to proliferate within alveolar macrophages and cause pneumonia. However, the highly evolved macrophages are equipped with more sophisticated innate defence mechanisms than are protists, such as the evolution of phagotrophic feeding into phagocytosis with more evolved innate defence processes. Not surprisingly, the majority of proteins involved in phagosome biogenesis (~80%) have origins in the phagotrophy stage of evolution. There are a plethora of highly evolved cellular and innate metazoan processes, not represented in protist biology, that are modulated by L. pneumophila, including TLR2 signalling, NF-κB, apoptotic and inflammatory processes, histone modification, caspases, and the NLRC-Naip5 inflammasomes. Importantly, L. pneumophila infects haemocytes of the invertebrate Galleria mellonella, kill G. mellonella larvae, and proliferate in and kill Drosophila adult flies and Caenorhabditis elegans. Although coevolution with protist hosts has provided a substantial blueprint for L. pneumophila to infect macrophages, we discuss the further evolutionary aspects of coevolution of L. pneumophila and its adaptation to modulate various highly evolved innate metazoan processes prior to becoming a human pathogen.
Collapse
Affiliation(s)
- Ashley M Best
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky.,Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
16
|
Ahmadishoar S, Kariminik A. Toll-like receptor 2 and its roles in immune responses against Legionella pneumophila. Life Sci 2017; 188:158-162. [DOI: 10.1016/j.lfs.2017.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/05/2017] [Indexed: 01/05/2023]
|
17
|
Naujoks J, Lippmann J, Suttorp N, Opitz B. Innate sensing and cell-autonomous resistance pathways in Legionella pneumophila infection. Int J Med Microbiol 2017; 308:161-167. [PMID: 29097162 DOI: 10.1016/j.ijmm.2017.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022] Open
Abstract
Legionella pneumophila is a facultative intracellular bacterium which can cause a severe pneumonia called Legionnaires' disease after inhalation of contaminated water droplets and replication in alveolar macrophages. The innate immune system is generally able to sense and -in most cases- control L. pneumophila infection. Comorbidities and genetic risk factors, however, can compromise the immune system and high infection doses might overwhelm its capacity, thereby enabling L. pneumophila to grow and disseminate inside the lung. The innate immune system mediates sensing of L. pneumophila by employing e.g. NOD-like receptors (NLRs), Toll-like receptors (TLRs), as well as the cGAS/STING pathway to stimulate death of infected macrophages as well as production of proinflammatory cytokines and interferons (IFNs). Control of pulmonary L. pneumophila infection is largely mediated by inflammasome-, TNFα- and IFN-dependent macrophage-intrinsic resistance mechanisms. This article summarizes the current knowledge of innate immune responses to L. pneumophila infection in general, and of macrophage-intrinsic defense mechanisms in particular.
Collapse
Affiliation(s)
- Jan Naujoks
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Juliane Lippmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Norbert Suttorp
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Bastian Opitz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Augustenburger Platz 1, 13353 Berlin, Germany; German Center for Lung Research (DZL), Germany.
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Legionella pneumophila is a facultative intracellular pathogen and an important cause of community-acquired and nosocomial pneumonia. This review focuses on the latest literature examining Legionella's virulence strategies and the mammalian host response. RECENT FINDINGS Recent studies identify novel virulence strategies used by L. pneumophila and new aspects of the host immune response to this pathogen. Legionella prevents acidification of the phagosome by recruiting Rab1, a host protein. Legionella also blocks a conserved endoplasmic reticulum stress response. To access iron from host stores, L. pneumophila upregulates more regions allowing vacuolar colocalization N. In response to Legionella, the host cell may activate caspase-1, caspase-11 (mice) or caspase-4 (humans). Caspase-3 and apoptosis are activated by a secreted, bacterial effector. Infected cells send signals to their uninfected neighbors, allowing the elaboration of inflammatory cytokines in trans. Antibody subclasses provide robust protection against Legionella. SUMMARY L. pneumophila is a significant human pathogen that lives in amoebae in the environment but may opportunistically infect the alveolar macrophage. To maintain its intracellular lifestyle, Legionella extracts essential iron from the cell, blocks inflammatory responses and manipulates trafficking to avoid fusion with the lysosome. The mammalian host has counter strategies, which include the release of proinflammatory cytokines, the activation of caspases and antibody-mediated immunity.
Collapse
|
19
|
Jung AL, Herkt CE, Schulz C, Bolte K, Seidel K, Scheller N, Sittka-Stark A, Bertrams W, Schmeck B. Legionella pneumophila infection activates bystander cells differentially by bacterial and host cell vesicles. Sci Rep 2017; 7:6301. [PMID: 28740179 PMCID: PMC5524687 DOI: 10.1038/s41598-017-06443-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/13/2017] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles from eukaryotic cells and outer membrane vesicles (OMVs) released from gram-negative bacteria have been described as mediators of pathogen-host interaction and intercellular communication. Legionella pneumophila (L. pneumophila) is a causative agent of severe pneumonia. The differential effect of bacterial and host cell vesicles in L. pneumophila infection is unknown so far. We infected THP-1-derived or primary human macrophages with L. pneumophila and isolated supernatant vesicles by differential centrifugation. We observed an increase of exosomes in the 100 k pellet by nanoparticle tracking analysis, electron microscopy, and protein markers. This fraction additionally contained Legionella LPS, indicating also the presence of OMVs. In contrast, vesicles in the 16 k pellet, representing microparticles, decreased during infection. The 100 k vesicle fraction activated uninfected primary human alveolar epithelial cells, A549 cells, and THP-1 cells. Epithelial cell activation was reduced by exosome depletion (anti-CD63, or GW4869), or blocking of IL-1β in the supernatant. In contrast, the response of THP-1 cells to vesicles was reduced by a TLR2-neutralizing antibody, UV-inactivation of bacteria, or – partially – RNase-treatment of vesicles. Taken together, we found that during L. pneumophila infection, neighbouring epithelial cells were predominantly activated by exosomes and cytokines, whereas myeloid cells were activated by bacterial OMVs.
Collapse
Affiliation(s)
- Anna Lena Jung
- Institute for Lung Research, German Center for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, 35043, Marburg, Germany
| | - Christina Elena Herkt
- Institute for Lung Research, German Center for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, 35043, Marburg, Germany
| | - Christine Schulz
- Institute for Lung Research, German Center for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, 35043, Marburg, Germany
| | - Kathrin Bolte
- Department for Cell Biology, Philipps-University Marburg, 35043, Marburg, Germany
| | - Kerstin Seidel
- Institute for Lung Research, German Center for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, 35043, Marburg, Germany
| | - Nicoletta Scheller
- Institute for Lung Research, German Center for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, 35043, Marburg, Germany
| | - Alexandra Sittka-Stark
- Institute for Lung Research, German Center for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, 35043, Marburg, Germany.,Labor Berlin Services GmbH, 13353, Berlin, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, German Center for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, 35043, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, German Center for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, 35043, Marburg, Germany. .,Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Philipps-University, 35043, Marburg, Germany.
| |
Collapse
|
20
|
The Type II Secretion System of Legionella pneumophila Dampens the MyD88 and Toll-Like Receptor 2 Signaling Pathway in Infected Human Macrophages. Infect Immun 2017; 85:IAI.00897-16. [PMID: 28138020 DOI: 10.1128/iai.00897-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/24/2017] [Indexed: 12/25/2022] Open
Abstract
Previously, we reported that mutants of Legionella pneumophila lacking a type II secretion (T2S) system elicit higher levels of cytokines (e.g., interleukin-6 [IL-6]) following infection of U937 cells, a human macrophage-like cell line. We now show that this effect of T2S is also manifest upon infection of human THP-1 macrophages and peripheral blood monocytes but does not occur during infection of murine macrophages. Supporting the hypothesis that T2S acts to dampen the triggering of an innate immune response, we observed that the mitogen-activated protein kinase (MAPK) and nuclear transcription factor kappa B (NF-κB) pathways are more highly stimulated upon infection with the T2S mutant than upon infection with the wild type. By using short hairpin RNA to deplete proteins involved in specific pathogen-associated molecular pattern (PAMP) recognition pathways, we determined that the dampening effect of the T2S system was not dependent on nucleotide binding oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible protein I (RIG-I)-like receptors (RLRs), double-stranded RNA (dsRNA)-dependent protein kinase receptor (PKR), or TIR domain-containing adaptor inducing interferon beta (TRIF) signaling or an apoptosis-associated speck-like protein containing a CARD (ASC)- or caspase-4-dependent inflammasome. However, the dampening effect of T2S on IL-6 production was significantly reduced upon gene knockdown of myeloid differentiation primary response 88 (MyD88), TANK binding kinase 1 (TBK1), or Toll-like receptor 2 (TLR2). These data indicate that the L. pneumophila T2S system dampens the signaling of the TLR2 pathway in infected human macrophages. We also document the importance of PKR, TRIF, and TBK1 in cytokine secretion during L. pneumophila infection of macrophages.
Collapse
|
21
|
|
22
|
Park B, Park G, Kim J, Lim SA, Lee KM. Innate immunity against Legionella pneumophila during pulmonary infections in mice. Arch Pharm Res 2017; 40:131-145. [PMID: 28063015 DOI: 10.1007/s12272-016-0859-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/02/2016] [Indexed: 01/01/2023]
Abstract
Legionella pneumophila is an etiological agent of the severe pneumonia known as Legionnaires' disease (LD). This gram-negative bacterium is thought to replicate naturally in various freshwater amoebae, but also replicates in human alveolar macrophages. Inside host cells, legionella induce the production of non-endosomal replicative phagosomes by injecting effector proteins into the cytosol. Innate immune responses are first line defenses against legionella during early phases of infection, and distinguish between legionella and host cells using germline-encoded pattern recognition receptors such as Toll-like receptors , NOD-like receptors, and RIG-I-like receptors, which sense pathogen-associated molecular patterns that are absent in host cells. During pulmonary legionella infections, various inflammatory cells such as macrophages, neutrophils, natural killer (NK) cells, large mononuclear cells, B cells, and CD4+ and CD8+ T cells are recruited into infected lungs, and predominantly occupy interstitial areas to control legionella. During pulmonary legionella infections, the interplay between distinct cytokines and chemokines also modulates innate host responses to clear legionella from the lungs. Recognition by NK cell receptors triggers effector functions including secretion of cytokines and chemokines, and leads to lysis of target cells. Crosstalk between NK cells and dendritic cells, monocytes, and macrophages provides a major first-line defense against legionella infection, whereas activation of T and B cells resolves the infection and mounts legionella-specific memory in the host.
Collapse
Affiliation(s)
- Bonggoo Park
- Global Research Laboratory, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Korea
| | - Gayoung Park
- Global Research Laboratory, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Korea.,Department of Biomicrosystem Technology, Korea University, Seoul, 136-701, Korea
| | - Jiyoung Kim
- Global Research Laboratory, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Korea
| | - Seon Ah Lim
- Global Research Laboratory, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Korea
| | - Kyung-Mi Lee
- Global Research Laboratory, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 126-1 Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Korea.
| |
Collapse
|
23
|
Braedel-Ruoff S, Faigle M, Hilf N, Neumeister B, Schild H. Legionella pneumophila mediated activation of dendritic cells involves CD14 and TLR2. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110020401] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, we analyzed the activation of bone-marrow derived dendritic cells (BMDCs) from mice lacking the cd14-gene with purified Legionella pneumophila lipopolysaccharide and with viable or formalin-killed L. pneumophila .We found that low concentrations of LPS and doses of L. pneumophila that are relevant to infection are dependent on CD14 to activate BMDCs. Higher concentrations of LPS are able to overcome the lack of CD14 indicating that other receptors are involved. We, therefore, included studies using BMDCs from mice lacking functional TLR2 and/or TLR4 molecules. We found that purified L. pneumophila LPS as well as L. pneumophila either viable or formalin-killed are able to activate BMDCs from TLR4-deficient C3H/HeJ mice but fail to activate BMDCs from TLR2-knockout mice. Our data show that not only purified LPS from L. pneumophila but also the microorganism itself stimulate BMDCs via TLR2 and that this stimulation is dependent on CD14 in this mouse model.
Collapse
Affiliation(s)
- Sibylla Braedel-Ruoff
- Interfakultäres Institut für Zellbiologie der Universität Tübingen, Abteilung Immunologie, Tübingen, Germany, Institut für Immunologie, Universität Mainz, Mainz, Germany
| | - Marion Faigle
- Abteilung Transfusionsmedizin, AG Infektionsbiologie, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Norbert Hilf
- Interfakultäres Institut für Zellbiologie der Universität Tübingen, Abteilung Immunologie, Tübingen, Germany
| | - Birgid Neumeister
- Abteilung Transfusionsmedizin, AG Infektionsbiologie, Universitätsklinikum Tübingen, Tübingen, Germany, -tuebingen.de
| | - Hansjörg Schild
- Interfakultäres Institut für Zellbiologie der Universität Tübingen, Abteilung Immunologie, Tübingen, Germany, Institut für Immunologie, Universität Mainz, Mainz, Germany,
| |
Collapse
|
24
|
Heine H, Gronow S, Zamyatina A, Kosma P, Brade H. Investigation on the agonistic and antagonistic biological activities of synthetic Chlamydia lipid A and its use in in vitro enzymatic assays. ACTA ACUST UNITED AC 2016; 13:126-32. [PMID: 17621554 DOI: 10.1177/0968051907079122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The synthetic 1,4′-bisphosphorylated penta-acyl and tetra-acyl lipid A structures representing the major molecular species of natural chlamydial lipid A were tested for their endotoxic activities as measured by interleukin-8 release from human embryonic kidney (HEK) 293 cells expressing Toll-like receptor (TLR) 2 or TLR4. Both compounds were unable to activate HEK293 cells transiently transfected with TLR2. The penta-acyl lipid A was a weak activator of HEK293 cells expressing TLR4/MD-2/CD14 whereas tetra-acyl lipid A was inactive even at high concentrations. The weak activity of the penta-acyl lipid A could be antagonized by the tetra-acyl derivative of Escherichia coli lipid A (compound 406) or the anti-CD14 monoclonal antibody MEM-18. Both, tetra- and pentaacyl lipid A were unable to antagonize the activity of synthetic E. coli-type lipid A (compound 506) or smooth lipopolysaccharide of Salmonella enterica serovar Friedenau. Tetra- and penta-acyl lipid A served as acceptors for Kdo transferases from E. coli, Chlamydia trachomatis and Chlamydophila psittaci as shown by in vitro assays and detection of the products by thin layer chromatography and immune staining with monoclonal antibody.
Collapse
Affiliation(s)
- Holger Heine
- Leibniz Center for Medicine and Biosciences, Research Center Borstel, Borstel, Germany
| | | | | | | | | |
Collapse
|
25
|
Trent MS, Stead CM, Tran AX, Hankins JV. Invited review: Diversity of endotoxin and its impact on pathogenesis. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120040201] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Lipopolysaccharide or LPS is localized to the outer leaflet of the outer membrane and serves as the major surface component of the bacterial cell envelope. This remarkable glycolipid is essential for virtually all Gram-negative organisms and represents one of the conserved microbial structures responsible for activation of the innate immune system. For these reasons, the structure, function, and biosynthesis of LPS has been an area of intense research. The LPS of a number of bacteria is composed of three distinct regions — lipid A, a short core oligosaccharide, and the O-antigen polysaccharide. The lipid A domain, also known as endotoxin, anchors the molecule in the outer membrane and is the bioactive component recognized by TLR4 during human infection. Overall, the biochemical synthesis of lipid A is a highly conserved process; however, investigation of the lipid A structures of various organisms shows an impressive amount of diversity. These differences can be attributed to the action of latent enzymes that modify the canonical lipid A molecule. Variation of the lipid A domain of LPS serves as one strategy utilized by Gram-negative bacteria to promote survival by providing resistance to components of the innate immune system and helping to evade recognition by TLR4. This review summarizes the biochemical machinery required for the production of diverse lipid A structures of human pathogens and how structural modification of endotoxin impacts pathogenesis.
Collapse
Affiliation(s)
- M. Stephen Trent
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA,
| | - Christopher M. Stead
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - An X. Tran
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Jessica V. Hankins
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
26
|
Chaby R, Garcia-Verdugo I, Espinassous Q, Augusto LA. Interactions between LPS and lung surfactant proteins. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110030701] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
After penetration into the lower airways, bacterial lipopolysaccharide (LPS) interacts with alveolar cells in a fluid environment consisting of pulmonary surfactant, a lipid—protein complex which prevents alveolar collapsing and participates in lung defense. The two hydrophilic surfactant components SP-A and SP-D are proteins with collagen-like and lectin domains (collectins) able to interact with carbohydrate-containing ligands present on microbial membranes, and with defined regions of LPS. This explains their capacity to damage the bacterial envelope and induce an antimicrobial effect. In addition, they modulate LPS-induced production of pro-inflammatory mediators in leukocytes by interaction with LPS or with leukocyte receptors. A third surfactant component, SP-C, is a small, highly hydrophobic lipopeptide which interacts with lipid A and reduces LPS-induced effects in macrophages and splenocyte cultures. The interaction of the different SPs with CD14 might explain their ability to modulate some LPS responses. Although the alveolar fluid contains other antiLPS and antimicrobial agents, SPs are the most abundant proteins which might contribute to protect the lung epithelium and reduce the incidence of LPS-induced lung injury. The presence of the surfactant collectins SP-A and SP-D in non-pulmonary tissues, such as the female genital tract, extends their field of action to other mucosal surfaces.
Collapse
Affiliation(s)
- Richard Chaby
- Endotoxin Group, Centre National de la Recherche Scientifique, University of Paris-Sud, Orsay, France, -psud.fr
| | - Ignacio Garcia-Verdugo
- Endotoxin Group, Centre National de la Recherche Scientifique, University of Paris-Sud, Orsay, France
| | - Quentin Espinassous
- Endotoxin Group, Centre National de la Recherche Scientifique, University of Paris-Sud, Orsay, France
| | - Luis A. Augusto
- Endotoxin Group, Centre National de la Recherche Scientifique, University of Paris-Sud, Orsay, France
| |
Collapse
|
27
|
Palusinska-Szysz M, Zdybicka-Barabas A, Cytryńska M, Wdowiak-Wróbel S, Chmiel E, Gruszecki WI. Analysis of cell surface alterations in Legionella pneumophila cells treated with human apolipoprotein E. Pathog Dis 2015; 73:1-8. [PMID: 25176171 DOI: 10.1111/2049-632x.12214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Binding of human apolipoprotein E (apoE) to Legionella pneumophila lipopolysaccharide was analysed at the molecular level by Fourier-transform infrared spectroscopy, thereby providing biophysical evidence for apoE-L. pneumophila lipopolysaccharide interaction. Atomic force microscopy imaging of apoE-exposed L. pneumophila cells revealed alterations in the bacterial cell surface topography and nanomechanical properties in comparison with control bacteria. The changes induced by apoE binding to lipopolysaccharide on the surface of L. pneumophila cells may participate in: (1) impeding the penetration of host cells by the bacteria; (2) suppression of pathogen intracellular growth and eventually; and (3) inhibition of the development of infection.
Collapse
Affiliation(s)
- Marta Palusinska-Szysz
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biology and Biochemistry, Maria Curie-Sklodowska University, Lublin, Poland
| | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biology and Biochemistry, Maria Curie-Sklodowska University, Lublin, Poland
| | - Sylwia Wdowiak-Wróbel
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Elżbieta Chmiel
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Wiesław I Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Lublin, Poland
| |
Collapse
|
28
|
Pijanowski L, Scheer M, Verburg-van Kemenade BML, Chadzinska M. Production of inflammatory mediators and extracellular traps by carp macrophages and neutrophils in response to lipopolysaccharide and/or interferon-γ2. FISH & SHELLFISH IMMUNOLOGY 2015; 42:473-82. [PMID: 25453727 DOI: 10.1016/j.fsi.2014.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 05/22/2023]
Abstract
Neutrophilic granulocytes and macrophages are crucial for the innate immune response against infections. They migrate into the focus of inflammation, where they efficiently bind, engulf and kill bacteria by proteolytic enzymes, antimicrobial peptides, reactive oxygen (ROS) and nitrogen (RNS) species. Moreover, activated neutrophils and macrophages can form extracellular traps (ETs). Fish neutrophils and macrophages are morphologically, histochemically, and functionally similar to their mammalian counterparts, but their significance for regulation of inflammatory responses and pathogen killing needs further elucidation. We compared the activity of head kidney monocytes/macrophages and neutrophilic granulocytes of common carp and established that upon lipopolysaccharide stimulation, not only neutrophils, but also carp monocytes/macrophages release extracellular DNA and are capable to form macrophage extracellular traps (METs). To clarify whether many specific LPS functions reported for piscine phagocytes might be due to impurities in the commonly used LPS preparations we studied expression of inflammatory mediators, release of DNA, ROS and RNS in cells stimulated with LPS or its highly purified form (pLPS). Also IFN-γ2 stimulation and its synergism with LPS/pLPS in stimulating expression of pro-inflammatory mediators was studied. Results substantiate that a classical stimulation of TLR4 by LPS may indeed be absent in carp as most of the classically reported LPS effects are abolished or diminished when pLPS is used. Interestingly, we also observed a potent IL-10 expression in neutrophilic granulocytes upon LPS stimulation, which, apart from their pro-inflammatory function, clearly indicates a role in restrictive control of the inflammatory reaction.
Collapse
Affiliation(s)
- L Pijanowski
- Department of Evolutionary Immunology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - M Scheer
- Cell Biology and Immunology Group, Dept of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - B M L Verburg-van Kemenade
- Cell Biology and Immunology Group, Dept of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - M Chadzinska
- Department of Evolutionary Immunology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland.
| |
Collapse
|
29
|
Bryant CE, Orr S, Ferguson B, Symmons MF, Boyle JP, Monie TP. International Union of Basic and Clinical Pharmacology. XCVI. Pattern recognition receptors in health and disease. Pharmacol Rev 2015; 67:462-504. [PMID: 25829385 PMCID: PMC4394686 DOI: 10.1124/pr.114.009928] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since the discovery of Toll, in the fruit fly Drosophila melanogaster, as the first described pattern recognition receptor (PRR) in 1996, many families of these receptors have been discovered and characterized. PRRs play critically important roles in pathogen recognition to initiate innate immune responses that ultimately link to the generation of adaptive immunity. Activation of PRRs leads to the induction of immune and inflammatory genes, including proinflammatory cytokines and chemokines. It is increasingly clear that many PRRs are linked to a range of inflammatory, infectious, immune, and chronic degenerative diseases. Several drugs to modulate PRR activity are already in clinical trials and many more are likely to appear in the near future. Here, we review the different families of mammalian PRRs, the ligands they recognize, the mechanisms of activation, their role in disease, and the potential of targeting these proteins to develop the anti-inflammatory therapeutics of the future.
Collapse
Affiliation(s)
- Clare E Bryant
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Selinda Orr
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Brian Ferguson
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Martyn F Symmons
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Joseph P Boyle
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Tom P Monie
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| |
Collapse
|
30
|
Jäger J, Keese S, Roessle M, Steinert M, Schromm AB. Fusion of Legionella pneumophila outer membrane vesicles with eukaryotic membrane systems is a mechanism to deliver pathogen factors to host cell membranes. Cell Microbiol 2014; 17:607-20. [PMID: 25363599 DOI: 10.1111/cmi.12392] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 01/19/2023]
Abstract
The formation and release of outer membrane vesicles (OMVs) is a phenomenon observed in many bacteria, including Legionella pneumophila. During infection, this human pathogen primarily invades alveolar macrophages and replicates within a unique membrane-bound compartment termed Legionella-containing vacuole. In the current study, we analysed the membrane architecture of L. pneumophila OMVs by small-angle X-ray scattering and biophysically characterized OMV membranes. We investigated the interaction of L. pneumophila OMVs with model membranes by Förster resonance energy transfer and Fourier transform infrared spectroscopy. These experiments demonstrated the incorporation of OMV membrane material into liposomes composed of different eukaryotic phospholipids, revealing an endogenous property of OMVs to fuse with eukaryotic membranes. Cellular co-incubation experiments showed a dose- and time-dependent binding of fluorophore-labelled OMVs to macrophages. Trypan blue quenching experiments disclosed a rapid internalization of OMVs into macrophages at 37 and 4 °C. Purified OMVs induced tumour necrosis factor-α production in human macrophages at concentrations starting at 300 ng ml(-1). Experiments on HEK293-TLR2 and TLR4/MD-2 cell lines demonstrated a dominance of TLR2-dependent signalling pathways. In summary, we demonstrate binding, internalization and biological activity of L. pneumophila OMVs on human macrophages. Our data support OMV membrane fusion as a mechanism for the remote delivery of virulence factors to host cells.
Collapse
Affiliation(s)
- Jens Jäger
- Department of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
31
|
Qiao Y, Sun J, Xie Z, Shi Y, Le G. Propensity to high-fat diet-induced obesity in mice is associated with the indigenous opportunistic bacteria on the interior of Peyer's patches. J Clin Biochem Nutr 2014; 55:120-8. [PMID: 25320459 PMCID: PMC4186382 DOI: 10.3164/jcbn.14-38] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 04/01/2014] [Indexed: 12/12/2022] Open
Abstract
Indigenous opportunistic bacteria on the interior of the Peyer’s patches play a key role in the development of the mucosal immune, but their population composition has been ignored. The present study was conducted to test the hypothesis that the changes in the composition of indigenous opportunistic bacteria in the Peyer’s patches are associated with obesity. C57BL/6J-male mice had been fed either a control diet or a high-fat diet. After 25 weeks, mice in high-fat diet exhibit either an obesity-prone (OP) or an obesity-resistant (OR) phenotype. Control diet group (CT) and OR group had a significant larger bacteria diversity than that in the OP group. Allobaculum and Lactobacillus were significantly decreased in high-fat diet induced OP mice compared with CT and OR mice, whereas Rhizobium and Lactococcus was significantly increased. The result of quantitative real-time PCR was consistent with that of 454 pyrosequencing. Significant correlations between mRNA expression of inflammation marks and the top 5 abundance genera bacteria on the interior of Peyer’s patches were observed by Pearson’s correlation analysis. Taken together, the indigenous opportunistic bacteria on the interior of Peyer’s patches plays a major role in the development of inflammation for an occurrence of obesity.
Collapse
Affiliation(s)
- Yi Qiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 21400 China ; Food Nutrition and Functional Factors Research Center, School of Food Science and Technology, Jiangnan University, Wuxi 21400, China
| | - Jin Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 21400 China ; Food Nutrition and Functional Factors Research Center, School of Food Science and Technology, Jiangnan University, Wuxi 21400, China
| | - Zhenxing Xie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 21400 China
| | - Yonghui Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 21400 China
| | - Guowei Le
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 21400 China ; Food Nutrition and Functional Factors Research Center, School of Food Science and Technology, Jiangnan University, Wuxi 21400, China
| |
Collapse
|
32
|
Cunha LD, Zamboni DS. Recognition of Legionella pneumophila nucleic acids by innate immune receptors. Microbes Infect 2014; 16:985-90. [PMID: 25172398 DOI: 10.1016/j.micinf.2014.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
Abstract
Innate immune receptors evolved to sense conserved molecules that are present in microbes or are released during non-physiological conditions. Activation of these receptors is essential for early restriction of microbial infections and generation of adaptive immunity. Among the conserved molecules sensed by innate immune receptors are the nucleic acids, which are abundantly contained in all infectious organisms including virus, bacteria, fungi and parasites. In this review we focus in the innate immune proteins that function to sense nucleic acids from the intracellular bacterial pathogen Legionella pneumophila and the importance of these processes to the outcome of the infection.
Collapse
Affiliation(s)
- Larissa D Cunha
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirão Preto, SP 14049-900, Brazil
| | - Dario S Zamboni
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirão Preto, SP 14049-900, Brazil.
| |
Collapse
|
33
|
Nijland R, Hofland T, van Strijp JAG. Recognition of LPS by TLR4: potential for anti-inflammatory therapies. Mar Drugs 2014; 12:4260-73. [PMID: 25056632 PMCID: PMC4113827 DOI: 10.3390/md12074260] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/10/2014] [Accepted: 07/04/2014] [Indexed: 12/29/2022] Open
Abstract
LPS molecules of marine bacteria show structures distinct from terrestrial bacteria, due to the different environment that marine bacteria live in. Because of these different structures, lipid A molecules from marine bacteria are most often poor stimulators of the Toll-like receptor 4 (TLR4) pathway. Due to their low stimulatory potential, these lipid A molecules are suggested to be applicable as antagonists of TLR4 signaling in sepsis patients, where this immune response is amplified and unregulated. Antagonizing lipid A molecules might be used for future therapies against sepsis, therapies that currently do not exist. In this review, we will discuss these differences in lipid A structures and their recognition by the immune system. The modifications present in marine lipid A structures are described, and their potential as LPS antagonists will be discussed. Finally, since clinical trials built on antagonizing lipid A molecules have proven unsuccessful, we propose to also focus on different aspects of the TLR4 signaling pathway when searching for new potential drugs. Furthermore, we put forward the notion that bacteria probably already produce inhibitors of TLR4 signaling, making these bacterial products interesting molecules to investigate for future sepsis therapies.
Collapse
Affiliation(s)
- Reindert Nijland
- Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Tom Hofland
- Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Jos A G van Strijp
- Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| |
Collapse
|
34
|
Guo Y, Fukuda T, Donai K, Kuroda K, Masuda M, Nakamura S, Yoneyama H, Isogai E. Leptospiral lipopolysaccharide stimulates the expression of toll-like receptor 2 and cytokines in pig fibroblasts. Anim Sci J 2014; 86:238-44. [DOI: 10.1111/asj.12254] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 04/09/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Yijie Guo
- Laboratory of Animal Microbiology; Graduate School of Agricultural Science; Tohoku University; Sendai Japan
| | - Tomokazu Fukuda
- Laboratory of Animal Breeding and Genetics; Graduate School of Agricultural Science; Tohoku University; Sendai Japan
| | - Kenichiro Donai
- Laboratory of Animal Breeding and Genetics; Graduate School of Agricultural Science; Tohoku University; Sendai Japan
| | - Kengo Kuroda
- Laboratory of Animal Microbiology; Graduate School of Agricultural Science; Tohoku University; Sendai Japan
| | - Mizuki Masuda
- Laboratory of Animal Microbiology; Graduate School of Agricultural Science; Tohoku University; Sendai Japan
| | - Shuichi Nakamura
- Department of Applied Physics; Graduate School of Engineering; Tohoku University; Sendai Japan
| | - Hiroshi Yoneyama
- Laboratory of Animal Microbiology; Graduate School of Agricultural Science; Tohoku University; Sendai Japan
| | - Emiko Isogai
- Laboratory of Animal Microbiology; Graduate School of Agricultural Science; Tohoku University; Sendai Japan
| |
Collapse
|
35
|
Pilla DM, Hagar JA, Haldar AK, Mason AK, Degrandi D, Pfeffer K, Ernst RK, Yamamoto M, Miao EA, Coers J. Guanylate binding proteins promote caspase-11-dependent pyroptosis in response to cytoplasmic LPS. Proc Natl Acad Sci U S A 2014; 111:6046-51. [PMID: 24715728 PMCID: PMC4000848 DOI: 10.1073/pnas.1321700111] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
IFN receptor signaling induces cell-autonomous immunity to infections with intracellular bacterial pathogens. Here, we demonstrate that IFN-inducible guanylate binding protein (Gbp) proteins stimulate caspase-11-dependent, cell-autonomous immunity in response to cytoplasmic LPS. Caspase-11-dependent pyroptosis is triggered in IFN-activated macrophages infected with the Gram-negative bacterial pathogen Legionella pneumophila. The rapid induction of pyroptosis in IFN-activated macrophages required a cluster of IFN-inducible Gbp proteins encoded on mouse chromosome 3 (Gbp(chr3)). Induction of pyroptosis in naive macrophages by infections with the cytosol-invading ΔsdhA L. pneumophila mutant was similarly dependent on Gbp(chr3), suggesting that these Gbp proteins play a role in the detection of bacteria accessing the cytosol. Cytoplasmic LPS derived from Salmonella ssp. or Escherichia coli has recently been shown to trigger caspase-11 activation and pyroptosis, but the cytoplasmic sensor for LPS and components of the caspase-11 inflammasome are not yet defined. We found that the induction of caspase-11-dependent pyroptosis by cytoplasmic L. pneumophila-derived LPS required Gbp(chr3) proteins. Similarly, pyroptosis induced by cytoplasmic LPS isolated from Salmonella was diminished in Gbp(chr3)-deficient macrophages. These data suggest a role for Gbp(chr3) proteins in the detection of cytoplasmic LPS and the activation of the noncanonical inflammasome.
Collapse
Affiliation(s)
- Danielle M. Pilla
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Jon A. Hagar
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Arun K. Haldar
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| | - Ashley K. Mason
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD 21203
| | - Daniel Degrandi
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Duesseldorf, Duesseldorf 40225, Germany; and
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Duesseldorf, Duesseldorf 40225, Germany; and
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD 21203
| | - Masahiro Yamamoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Edward A. Miao
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jörn Coers
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
36
|
Zoccal KF, Bitencourt CDS, Paula-Silva FWG, Sorgi CA, de Castro Figueiredo Bordon K, Arantes EC, Faccioli LH. TLR2, TLR4 and CD14 recognize venom-associated molecular patterns from Tityus serrulatus to induce macrophage-derived inflammatory mediators. PLoS One 2014; 9:e88174. [PMID: 24516606 PMCID: PMC3917877 DOI: 10.1371/journal.pone.0088174] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/06/2014] [Indexed: 12/12/2022] Open
Abstract
Scorpion sting-induced human envenomation provokes an intense inflammatory reaction. However, the mechanisms behind the recognition of scorpion venom and the induction of mediator release in mammalian cells are unknown. We demonstrated that TLR2, TLR4 and CD14 receptors sense Tityus serrulatus venom (TsV) and its major component, toxin 1 (Ts1), to mediate cytokine and lipid mediator production. Additionally, we demonstrated that TsV induces TLR2- and TLR4/MyD88-dependent NF-κB activation and TLR4-dependent and TLR2/MyD88-independent c-Jun activation. Similar to TsV, Ts1 induces MyD88-dependent NF-κB phosphorylation via TLR2 and TLR4 receptors, while c-Jun activation is dependent on neither TLR2 nor TLR4/MyD88. Therefore, we propose the term venom-associated molecular pattern (VAMP) to refer to molecules that are introduced into the host by stings and are recognized by PRRs, resulting in inflammation.
Collapse
Affiliation(s)
- Karina Furlani Zoccal
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Claudia da Silva Bitencourt
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Francisco Wanderley Garcia Paula-Silva
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos Artério Sorgi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Karla de Castro Figueiredo Bordon
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Eliane Candiani Arantes
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lúcia Helena Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
37
|
Ohtsuka S, Ishii Y, Matsuyama M, Ano S, Morishima Y, Yanagawa T, Warabi E, Hizawa N. SQSTM1/p62/A170 regulates the severity of Legionella pneumophila pneumonia by modulating inflammasome activity. Eur J Immunol 2014; 44:1084-92. [PMID: 24374573 DOI: 10.1002/eji.201344091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/07/2013] [Accepted: 12/20/2013] [Indexed: 01/19/2023]
Abstract
Sequestosome1/A170/p62 (SQSTM1) is a scaffold multifunctional protein involved in several cellular events, such as signal transduction, cell survival, cell death, and inflammation. SQSTM1 expression by macrophages is induced in response to environmental stresses; however, its role in macrophage-mediated host responses to environmental stimuli, such as infectious pathogens, remains unclear. In this study, we investigated the role of SQSTM1 in host responses to Legionella pneumophila, an intra-cellular pathogen that infects macrophages, in both an SQSTM1-deficient (SQSTM1(-/-) ) mouse model and macrophages from these mice. Compared with wild-type (WT) macrophages, the production and secretion of the proinflammatory cytokine IL-1β was significantly enhanced in SQSTM1(-/-) macrophages after infection with L. pneumophila. Inflammasome activity, indicated by the level of IL-18 and caspase-1 activity, was also elevated in SQSTM1(-/-) macrophages after infection with L. pneumophila. SQSTM1 may interact with nucleotide-binding oligomerization domain-like receptor family, caspase recruitment domain-containing 4 and nucleotide-binding oligomerization domain like receptor family, pyrin domain containing 3 proteins to inhibit their self-dimerization. Acute pulmonary inflammation induced by L. pneumophila and silica was enhanced in SQSTM1(-/-) mice with an increase in IL-1β levels in the bronchoalveolar lavage fluids. These findings suggest that SQSTM1 is a negative regulator of acute pulmonary inflammation, possibly by regulating inflammasome activity and subsequent proinflammatory cytokine production.
Collapse
Affiliation(s)
- Shigeo Ohtsuka
- Department of Respiratory Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ramachandran G. Gram-positive and gram-negative bacterial toxins in sepsis: a brief review. Virulence 2014; 5:213-8. [PMID: 24193365 PMCID: PMC3916377 DOI: 10.4161/viru.27024] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/28/2013] [Accepted: 10/31/2013] [Indexed: 12/31/2022] Open
Abstract
Bacterial sepsis is a major cause of fatality worldwide. Sepsis is a multi-step process that involves an uncontrolled inflammatory response by the host cells that may result in multi organ failure and death. Both gram-negative and gram-positive bacteria play a major role in causing sepsis. These bacteria produce a range of virulence factors that enable them to escape the immune defenses and disseminate to remote organs, and toxins that interact with host cells via specific receptors on the cell surface and trigger a dysregulated immune response. Over the past decade, our understanding of toxins has markedly improved, allowing for new therapeutic strategies to be developed. This review summarizes some of these toxins and their role in sepsis.
Collapse
Affiliation(s)
- Girish Ramachandran
- Center for Vaccine Development; Department of Medicine; University of Maryland School of Medicine; Baltimore, MD USA
| |
Collapse
|
39
|
A TLR6 polymorphism is associated with increased risk of Legionnaires' disease. Genes Immun 2013; 14:420-6. [PMID: 23823019 PMCID: PMC3791179 DOI: 10.1038/gene.2013.34] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/10/2013] [Accepted: 05/21/2013] [Indexed: 02/03/2023]
Abstract
Legionella pneumophila (Lp), the etiologic agent of Legionnaires’ Disease (LD), is an important cause of community-acquired and nosocomial pneumonia. However, the host immune and genetic determinants of human susceptibility to Lp are poorly understood. Here we show that both TLR6 and TLR1 cooperate with TLR2 to recognize Lp in transfected HEK293 cells. We also perform a human genetic association study of 14 candidate single nucleotide polymorphisms in Toll-like receptors (TLRs) 1, 2, and 6 in 98 LD cases and 268 controls from the Netherlands. No polymorphisms in TLR1 or TLR2 were associated with LD. A TLR6 polymorphism, 359T>C (rs5743808), was associated with an elevated risk of LD in genotypic and dominant (OR 5.83, p=7.9×10−5) models. The increased risk in persons with 359 TC or CC genotypes was further enhanced among smokers. In a multivariate model, 359T>C was associated with a higher risk of LD (OR 4.24, p=0.04), than any other variable, including age and smoking. Together, these data suggest that the human TLR6 variant, 359T>C, is an independent risk factor for LD.
Collapse
|
40
|
Polymorphisms in toll-like receptors 2, 4 and 5 are associated with Legionella pneumophila infection. Infection 2013; 41:941-8. [DOI: 10.1007/s15010-013-0444-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 03/04/2013] [Indexed: 12/12/2022]
|
41
|
Brown AS, van Driel IR, Hartland EL. Mouse models of Legionnaires' disease. Curr Top Microbiol Immunol 2013; 376:271-91. [PMID: 23918179 DOI: 10.1007/82_2013_349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Legionella pneumophila is an accidental respiratory pathogen of humans that provokes a robust inflammatory response upon infection. While most people exposed to L. pneumophila will clear the infection, certain groups with underlying susceptibility will develop Legionnaires' disease. Mice, like most humans, are inherently resistant to L. pneumophila and infection of most inbred strains reflects the response of immune competent people to L. pneumophila exposure. Hence, the use of mouse models of L. pneumophila infection has taught us a great deal about the innate and adaptive factors that lead to successful clearance of the pathogen and avoidance of Legionnaires' disease. At the same time, L. pneumophila has provided new insight into innate immunity in general and is now a model pathogen with which to study acute lung inflammation and inflammasome activation. This chapter will explore the history and use of the mouse model of L. pneumophila infection and examine what we know about the innate and adaptive factors that contribute to the control of L. pneumophila in the mouse lung.
Collapse
Affiliation(s)
- Andrew S Brown
- Department of Biochemistry and Molecular Biology and the Bio21 Institute, University of Melbourne, Victoria, 3010, Australia
| | | | | |
Collapse
|
42
|
Escoll P, Rolando M, Gomez-Valero L, Buchrieser C. From amoeba to macrophages: exploring the molecular mechanisms of Legionella pneumophila infection in both hosts. Curr Top Microbiol Immunol 2013; 376:1-34. [PMID: 23949285 DOI: 10.1007/82_2013_351] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Legionella pneumophila is a Gram-negative bacterium and the causative agent of Legionnaires' disease. It replicates within amoeba and infects accidentally human macrophages. Several similarities are seen in the L. pneumophila-infection cycle in both hosts, suggesting that the tools necessary for macrophage infection may have evolved during co-evolution of L. pneumophila and amoeba. The establishment of the Legionella-containing vacuole (LCV) within the host cytoplasm requires the remodeling of the LCV surface and the hijacking of vesicles and organelles. Then L. pneumophila replicates in a safe intracellular niche in amoeba and macrophages. In this review we will summarize the existing knowledge of the L. pneumophila infection cycle in both hosts at the molecular level and compare the factors involved within amoeba and macrophages. This knowledge will be discussed in the light of recent findings from the Acanthamoeba castellanii genome analyses suggesting the existence of a primitive immune-like system in amoeba.
Collapse
Affiliation(s)
- Pedro Escoll
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS UMR, 3525, Paris, France
| | | | | | | |
Collapse
|
43
|
Activation of host mitogen-activated protein kinases by secreted Legionella pneumophila effectors that inhibit host protein translation. Infect Immun 2012; 80:3570-5. [PMID: 22851749 DOI: 10.1128/iai.00557-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Studies of innate immunity in metazoans have largely focused on detection of microbial molecules by host pattern recognition receptors (PRRs). A complementary mode of innate immune recognition, based on detection of pathogen-encoded activities, has long been recognized in plants, where it is termed effector-triggered immunity; however, little is known about the possibility of effector-triggered immunity in metazoans. Legionella pneumophila is an intracellular bacterial pathogen that causes Legionnaires' disease, an inflammatory pneumonia. We recently demonstrated that macrophages infected with L. pneumophila exhibit mitogen-activated protein (MAP) kinase (MAPK) activation that is independent of known PRRs but dependent on a functional bacterial secretion system. Here, we show that five secreted L. pneumophila effectors are responsible for the activation of host MAP kinases. These five effectors inhibit host translation, and their activity is required for host MAPK activation. We demonstrate that MAPK activation by these effectors shapes the host transcriptional response to L. pneumophila. Furthermore, we find that uninfected macrophages treated with two different translation inhibitors exhibit activation of MAP kinases and upregulation of target genes, indicating that translation inhibition alone is sufficient to elicit this response in macrophages. MAP kinase pathways are crucial in many aspects of the immune response, including inflammation and cell motility. Our results demonstrate that this important host pathway can be activated in response to a pathogen-encoded activity, adding to an emerging body of evidence in support of this novel mode of innate immune detection in metazoans.
Collapse
|
44
|
Jamilloux Y, Jarraud S, Lina G, Etienne J, Ader F. Legionella, légionellose. Med Sci (Paris) 2012; 28:639-45. [DOI: 10.1051/medsci/2012286018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
45
|
Kutkowska J, Turska-Szewczuk A, Janczarek M, Paduch R, Kamińska T, Urbanik-Sypniewska T. Biological activity of (lipo)polysaccharides of the exopolysaccharide-deficient mutant Rt120 derived from Rhizobium leguminosarum bv. trifolii strain TA1. BIOCHEMISTRY (MOSCOW) 2012; 76:840-50. [PMID: 21999546 DOI: 10.1134/s0006297911070157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lipopolysaccharides (LPS) from Rhizobium leguminosarum biovar trifolii TA1 (RtTA1) and its mutant Rt120 in the pssBpssA intergenic region as well as degraded polysaccharides (DPS) derived from the LPS were elucidated in terms of their chemical composition and biological activities. The polysaccharide portions were examined by methylation analysis, MALDI-TOF mass spectrometry, and (1)H NMR spectroscopy. A high molecular mass carbohydrate fraction obtained from Rt120 DPS by Sephadex G-50 gel chromatography was composed mainly of L-rhamnose, 6-deoxy-L-talose, D-galactose, and D-galacturonic acid, whereas that from RtTA1 DPS contained L-fucose, 2-acetamido-2,6-dideoxy-D-glucose, D-galacturonic acid, 3-deoxy-3-methylaminofucose, D-glucose, D-glucuronic acid, and heptose. Relative intensities of the major (1)H NMR signals for O-acetyl and N-acetyl groups were 1 : 0.8 and 1 : 1.24 in DPS of Rt120 and RtTA1, respectively. The intact mutant LPS exhibited a twice higher lethal toxicity than the wild type LPS. A higher in vivo production of TNFα and IL-6 after induction of mice with Rt120 LPS correlated with the toxicity, although the mutant LPS induced the secretion of IL-1β and IFNγ more weakly than RtTA1 LPS. A polysaccharide obtained by gel chromatography on Bio-Gel P-4 of the high molecular mass material from Rt120 had a toxic effect on tumor HeLa cells but was inactive against the normal human skin fibroblast cell line. The polysaccharide from RtTA1 was inactive against either cell line. The potent inhibitory effect of the mutant DPS on tumor HeLa cells seems to be related with the differences in sugar composition.
Collapse
Affiliation(s)
- J Kutkowska
- Department of Genetics and Microbiology, M. Curie-Skłodowska University, Lublin, Poland
| | | | | | | | | | | |
Collapse
|
46
|
Narasaki CT, Toman R. Lipopolysaccharide of Coxiella burnetii. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 984:65-90. [PMID: 22711627 DOI: 10.1007/978-94-007-4315-1_4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A lipopolysaccharide (LPS) is considered to be one of the major determinants of virulence expression and infection of virulent Coxiella burnetii. The LPSs from virulent phase I (LPS I) and from avirulent phase II (LPS II) bacteria were investigated for their chemical composition, structure and biological properties. LPS II is of rough (R) type in contrast to LPS I, which is phenotypically smooth (S) and contains a noticeable amount of two sugars virenose (Vir) and dihydrohydroxystreptose (Strep), which have not been found in other LPSs and can be considered as unique biomarkers of the bacterium. Both sugars were suggested to be located mostly in terminal positions of the O-specific chain of LPS I (O-PS I) and to be involved in the immunobiology of Q fever. There is a need to establish a more detailed chemical structure of LPS I in connection with prospective, deeper studies on mechanisms of pathogenesis and immunity of Q fever, its early and reliable diagnosis, and effective prophylaxis against the disease. This will also help to better understanding of host-pathogen interactions and contribute to improved modulation of pathological reactions which in turn are prerequisite for research and development of vaccines of new type. A fundamental understanding of C. burnetii LPS biosynthesis is still lacking. The intracellular nature of the bacterium, lack of genetic tools and its status as a selected agent have made elucidating basic physiological mechanisms challenging. The GDP-β-D-Vir biosynthetic pathway proposed most recently is an important initial step in this endeavour. The current advanced technologies providing the genetic tools necessary to screen C. burnetii mutants and propagate isogenic mutants might speed the discovery process.
Collapse
Affiliation(s)
- Craig T Narasaki
- Center Department of Microbial and Molecular Pathogenesis, Texas A&M University Health Science, College Station, TX 77843, USA
| | | |
Collapse
|
47
|
Sugimoto S, Yoshimura Y, Tachikawa N. [A case of repeated upper gastrointestinal bleeding secondary to Legionella pneumonia]. ACTA ACUST UNITED AC 2011; 85:284-8. [PMID: 21706851 DOI: 10.11150/kansenshogakuzasshi.85.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A 70-year-old woman admitted for nausea and diarrhea was diagnosed with Legionella pneumonia based on chest X-ray and urinary antigen testing. Despite severe complications, she recovered thanks to ciprofloxacin administration. On hospital day 8, she went into hypovolemic shock necessitating emergency gastrointestinal (GI) fiberscopy, which showed active lower gastric bleeding. The exposed artery was clipped endoscopically and proton pump inhibitor was started. At hospital day 16, the woman's active GI bleeding recurred, requiring further endoscopic clipping. On hospital day 20, oozing occurred in the middle gastric body. To prevent recurrent bleeding, extensive gastrectomy was done on hospital day 28. Legionella pneumonia is common pneumonia, as are GI symptoms in Legionella pneumonia, but GI bleeding is rare. Only cases of GI bleeding secondary to Legionella pneumonia have been reported in Japan, in addition to our case, and four of the 5 died after GI bleeding, indicating the dismal prognosis. The relationship between Legionella pneumonia and GI bleeding, although uncertain and rare, requires especially close observation.
Collapse
Affiliation(s)
- Shinya Sugimoto
- Department of Infectious Diseases, Yokohama Municipal Citizen's Hospital
| | | | | |
Collapse
|
48
|
Massis LM, Zamboni DS. Innate immunity to legionella pneumophila. Front Microbiol 2011; 2:109. [PMID: 21833338 PMCID: PMC3153058 DOI: 10.3389/fmicb.2011.00109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 05/03/2011] [Indexed: 01/16/2023] Open
Abstract
Innate immune cells, such as macrophages, are highly adapted to rapidly recognize infections by distinct pathogens, including viruses, bacteria, fungi, and protozoa. This recognition is mediated by pattern recognition receptors (PRRs), which are found in host cell surface membranes and the host cell cytoplasm. PRRs include protein families such as the toll-like receptors, nod-like receptors, RIG-I-like receptors, and sensors of cytosolic DNA. The activation of these PRRs by pathogen-associated molecular patterns leads to transcriptional responses and specific forms of cell death. These processes effectively contribute to host resistance to infection either via cell-autonomous processes that lead to the intracellular restriction of microbial replication and/or by activating pathogen-specific adaptive immune responses. Legionella pneumophila, the causative agent of Legionnaires’ disease, is a Gram-negative bacterium that triggers responses by multiple PRRs. Here, we review a set of studies that have contributed to our specific understanding of the molecular mechanisms by which innate immune cells recognize and respond to L. pneumophila and the importance of these processes to the outcome of infection.
Collapse
Affiliation(s)
- Liliana M Massis
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
49
|
Shevchuk O, Jäger J, Steinert M. Virulence properties of the legionella pneumophila cell envelope. Front Microbiol 2011; 2:74. [PMID: 21747794 PMCID: PMC3129009 DOI: 10.3389/fmicb.2011.00074] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 03/30/2011] [Indexed: 01/15/2023] Open
Abstract
The bacterial envelope plays a crucial role in the pathogenesis of infectious diseases. In this review, we summarize the current knowledge of the structure and molecular composition of the Legionella pneumophila cell envelope. We describe lipopolysaccharides biosynthesis and the biological activities of membrane and periplasmic proteins and discuss their decisive functions during the pathogen–host interaction. In addition to adherence, invasion, and intracellular survival of L. pneumophila, special emphasis is laid on iron acquisition, detoxification, key elicitors of the immune response and the diverse functions of outer membrane vesicles. The critical analysis of the literature reveals that the dynamics and phenotypic plasticity of the Legionella cell surface during the different metabolic stages require more attention in the future.
Collapse
Affiliation(s)
- Olga Shevchuk
- Institut für Mikrobiologie, Technische Universität Braunschweig Braunschweig, Germany
| | | | | |
Collapse
|
50
|
van Maren WWC, Nierkens S, Toonen LW, Bolscher JM, Sutmuller RPM, Adema GJ. Multifaceted effects of synthetic TLR2 ligand and Legionella pneumophilia on Treg-mediated suppression of T cell activation. BMC Immunol 2011; 12:23. [PMID: 21435210 PMCID: PMC3078900 DOI: 10.1186/1471-2172-12-23] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 03/24/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Regulatory T cells (Treg) play a crucial role in maintaining immune homeostasis and self-tolerance. The immune suppressive effects of Tregs should however be limited in case effective immunity is required against pathogens or cancer cells. We previously found that the Toll-like receptor 2 (TLR2) agonist, Pam3CysSK4, directly stimulated Tregs to expand and temporarily abrogate their suppressive capabilities. In this study, we evaluate the effect of Pam3CysSK4 and Legionella pneumophila, a natural TLR2 containing infectious agent, on effector T (Teff) cells and dendritic cells (DCs) individually and in co-cultures with Tregs. RESULTS TLR2 agonists can directly provide a co-stimulatory signal inducing enhanced proliferation and cytokine production of naive CD4+ Teff cells. With respect to cytokine production, DCs appear to be most sensitive to low amounts of TLR agonists. Using wild type and TLR2-deficient cells in Treg suppression assays, we accordingly show that all cells (e.g. Treg, Teff cells and DCs) contributed to overcome Treg-mediated suppression of Teff cell proliferation. Furthermore, while TLR2-stimulated Tregs readily lost their ability to suppress Teff cell proliferation, cytokine production by Teff cells was still suppressed. Similar results were obtained upon stimulation with TLR2 ligand containing bacteria, Legionella pneumophila. CONCLUSIONS These findings indicate that both synthetic and natural TLR2 agonists affect DCs, Teff cells and Treg directly, resulting in multi-modal modulation of Treg-mediated suppression of Teff cells. Moreover, Treg-mediated suppression of Teff cell proliferation is functionally distinct from suppression of cytokine secretion.
Collapse
Affiliation(s)
- Wendy WC van Maren
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Stefan Nierkens
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Liza W Toonen
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Judith M Bolscher
- Schering-Plough Research Institute, Target Discovery Oss, Molenstraat 110, 5340 BH Oss, The Netherlands
| | - Roger PM Sutmuller
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
- Schering-Plough Research Institute, Target Discovery Oss, Molenstraat 110, 5340 BH Oss, The Netherlands
| | - Gosse J Adema
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|