1
|
Huang J, Gu L, Sun Y, Zhang L, Huang Y, Yang Z. Declining aqueous calcium and fish predation risk interactively modify the phenotypic plasticity in Daphnia pulex. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124266. [PMID: 38821339 DOI: 10.1016/j.envpol.2024.124266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Aqueous calcium (Ca) decline is threatening freshwater ecosystems worldwide. There are great concerns about the possible ecological consequences of Ca limitation combined with biological pressures like predation. Here we investigated the interactions between Ca restriction and fish predation risk on the phenotypic plasticity in the keystone herbivore Daphnia, together with physiological responses underlying the plastic trait changes. Fish predation risk induced D. pulex to mature earlier and produce more but smaller offspring at adequate Ca. Declining Ca inhibited the expression of defensive traits, with the inhibitive degree showing a linear or threshold-limited dynamic. The presence of predation risk mitigated the negative effect of declining Ca on reducing body size but exacerbated the delay in maturity, indicating a life history trade-off for larger body size rather than the current reproduction in multi-stressed Daphnia. Actin 3-mediated cytoskeleton and AMPK β-mediated energy metabolism were highly correlated with these plastic trait changes. Altered phenotypic plasticity in planktonic animals is expected to trigger many ecological impacts from individual fitness to community structure, thus providing new insights into the mechanisms underlying decreased Ca affecting lake ecosystems.
Collapse
Affiliation(s)
- Jing Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 2 Mengxi Road, Zhenjiang 212100, China
| | - Lei Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
2
|
Ishida H, Woodman AG, Kitada N, Aizawa T, Vogel HJ. The Dictyostelium discoideum FimA protein, unlike yeast and plant fimbrins, is regulated by calcium similar to mammalian plastins. Sci Rep 2023; 13:16208. [PMID: 37758724 PMCID: PMC10533516 DOI: 10.1038/s41598-023-42682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Plastins, also known as fimbrins, are highly conserved eukaryotic multidomain proteins that are involved in actin-bundling. They all contain four independently folded Calponin Homology-domains and an N-terminal headpiece that is comprised of two calcium-binding EF-hand motifs. Since calcium-binding has been shown to be integral to regulating the activity of the three mammalian plastin proteins, we decided to study the properties of the headpiece regions of fimbrins from the model plant Arabidopsis thaliana, the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe and the amoeba Dictyostelium discoideum. Of these protein domains only the FimA headpiece from the amoeba protein possesses calcium binding properties. Structural characterization of this protein domain by multidimensional NMR and site-directed mutagenesis studies indicates that this EF-hand region of FimA also contains a regulatory 'switch helix' that is essential to regulating the activity of the human L-plastin protein. Interestingly this regulatory helical region seems to be lacking in the plant and yeast proteins and in fimbrins from all other nonmotile systems. Typical calmodulin antagonists can displace the switch-helix from the FimA headpiece, suggesting that such drugs can deregulate the Ca2+-regulation of the actin-bunding in the amoeba, thereby making it a useful organism for drug screening against mammalian plastins.
Collapse
Affiliation(s)
- Hiroaki Ishida
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Andrew G Woodman
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Naoya Kitada
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Tomoyasu Aizawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
3
|
Staehlke S, Brief J, Senz V, Eickner T, Nebe JB. Optimized Gingiva Cell Behavior on Dental Zirconia as a Result of Atmospheric Argon Plasma Activation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4203. [PMID: 37374388 DOI: 10.3390/ma16124203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023]
Abstract
Several physico-chemical modifications have been developed to improve cell contact with prosthetic oral implant surfaces. The activation with non-thermal plasmas was one option. Previous studies found that gingiva fibroblasts on laser-microstructured ceramics were hindered in their migration into cavities. However, after argon (Ar) plasma activation, the cells concentrated in and around the niches. The change in surface properties of zirconia and, subsequently, the effect on cell behavior is unclear. In this study, polished zirconia discs were activated by atmospheric pressure Ar plasma using the kINPen®09 jet for 1 min. Surfaces were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), and water contact angle. In vitro studies with human gingival fibroblasts (HGF-1) focused on spreading, actin cytoskeleton organization, and calcium ion signaling within 24 h. After Ar plasma activation, surfaces were more hydrophilic. XPS revealed decreased carbon and increased oxygen, zirconia, and yttrium content after Ar plasma. The Ar plasma activation boosted the spreading (2 h), and HGF-1 cells formed strong actin filaments with pronounced lamellipodia. Interestingly, the cells' calcium ion signaling was also promoted. Therefore, argon plasma activation of zirconia seems to be a valuable tool to bioactivate the surface for optimal surface occupation by cells and active cell signaling.
Collapse
Affiliation(s)
- Susanne Staehlke
- Institute for Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Jakob Brief
- VITA Zahnfabrik H. Rauter GmbH & Co. KG, 79713 Bad Säckingen, Germany
| | - Volkmar Senz
- Institute for Biomedical Engineering, Rostock University Medical Center, 18119 Rostock, Germany
| | - Thomas Eickner
- Institute for Biomedical Engineering, Rostock University Medical Center, 18119 Rostock, Germany
| | - J Barbara Nebe
- Institute for Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
- Department Science and Technology of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
4
|
Spontaneous Local Calcium Transients Regulate Oligodendrocyte Development in Culture through Store-Operated Ca 2+ Entry and Release. eNeuro 2020; 7:ENEURO.0347-19.2020. [PMID: 32409508 PMCID: PMC7438061 DOI: 10.1523/eneuro.0347-19.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Oligodendrocytes (OLs) insulate axonal fibers for fast conduction of nerve impulses by wrapping axons of the CNS with compact myelin membranes. Differentiating OLs undergo drastic chances in cell morphology. Bipolar oligodendroglial precursor cells (OPCs) transform into highly ramified multipolar OLs, which then expand myelin membranes that enwrap axons. While significant progress has been made in understanding the molecular and genetic mechanisms underlying CNS myelination and its disruption in diseases, the cellular mechanisms that regulate OL differentiation are not fully understood. Here, we report that developing rat OLs in culture exhibit spontaneous Ca2+ local transients (sCaLTs) in their process arbors in the absence of neurons. Importantly, we find that the frequency of sCaLTs markedly increases as OLs undergo extensive process outgrowth and branching. We further show that sCaLTs are primarily generated through a combination of Ca2+ influx through store-operated Ca2+ entry (SOCE) and Ca2+ release from internal Ca2+ stores. Inhibition of sCaLTs impairs the elaboration and branching of OL processes, as well as substantially reduces the formation of large myelin sheets in culture. Together, our findings identify an important role for spontaneous local Ca2+ signaling in OL development.
Collapse
|
5
|
Calcium in Cell-Extracellular Matrix Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:1079-1102. [PMID: 31646546 DOI: 10.1007/978-3-030-12457-1_43] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In multicellular organisms, the cells are surrounded by persistent, dynamic extracellular matrix (ECM), the largest calcium reservoir in animals. ECM regulates several aspects of cell behavior including cell migration and adhesion, survival, gene expression and differentiation, thus playing a significant role in health and disease. Calcium is reported to be important in the assembly of ECM, where it binds to many ECM proteins. While serving as a calcium reservoir, ECM macromolecules can directly interact with cell surface receptors resulting in calcium transport across the membrane. This chapter mainly focusses on the role of cell-ECM interactions in cellular calcium regulation and how calcium itself mediates these interactions.
Collapse
|
6
|
Anft M, Netter P, Urlaub D, Prager I, Schaffner S, Watzl C. NK cell detachment from target cells is regulated by successful cytotoxicity and influences cytokine production. Cell Mol Immunol 2019; 17:347-355. [PMID: 31471588 DOI: 10.1038/s41423-019-0277-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells participate in early immune defenses against pathogens and tumors and play a major role as immune effector and regulatory cells. The NK cell-mediated elimination of an infected or cancerous cell is a highly regulated process that requires the formation of a cell contact, the establishment of an immunological synapse and the polarization and release of lytic granules. Additionally, the detachment of NK cells from target cells is important for NK cells to bind and kill other cells in a process called serial killing. However, very little is known about this detachment process. Here, we show that NK detachment is directly connected to the successful killing of a target cell. The inhibition of killing due to reduced NK cell cytotoxicity or increased target cell resistance results in defective detachment and prolonged contact times. This effect leads to sustained Ca2+ flux in NK cells and the hypersecretion of proinflammatory cytokines. Linking defective cytotoxicity with enhanced cytokine secretion via reduced detachment may explain inflammatory pathologies in several diseases.
Collapse
Affiliation(s)
- Moritz Anft
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Petra Netter
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Doris Urlaub
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Isabel Prager
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Samantha Schaffner
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany.,University of British Columbia, Vancouver, BC, Canada
| | - Carsten Watzl
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany.
| |
Collapse
|
7
|
Tang J, Tang X, Qin Y, He Q, Yi Y, Ji Z. Karst rocky desertification progress: Soil calcium as a possible driving force. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:1250-1259. [PMID: 30308895 DOI: 10.1016/j.scitotenv.2018.08.242] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/05/2018] [Accepted: 08/18/2018] [Indexed: 06/08/2023]
Abstract
Karst rocky desertification is a severe irreversible ecosystem failure. The karst ecosystem is so fragile that it is vulnerable to environmental changes, degrading into rocky desertification. Prior studies revealed the potential connections between the soil bacterial community, the edaphic properties and the aboveground vegetation cover in the karst ecosystem. However, how these three elements affect each other and work together in propelling in the karst rocky desertification progress largely remains unexplored. To answer this question, we monitored the bacterial community variations in soils sampled from multiple sites at a successional karst rocky desertification region by sequencing the 16S rRNA V3-V4 regions. Overall, we detected 34 bacterial phyla in the karst soils, of which Proteobacteria, Actinobacteria, and Acidobacteria are the most abundant. Network analysis of the bacterial community- vegetation-edaphic property-vegetation interactions identified 6 bacterial herds that had significant correlation with soil Ca2+ and available phosphorus change during vegetation degradation. Further functional simulation of these bacterial herds unveiled the change of Ca2+ and available phosphorus might disturb the soil carbon and nitrogen metabolism, and thus weakened soil quality. In summary, we hypothesized a calcium-driven bacterial response mechanism in the karst rocky desertification progress.
Collapse
Affiliation(s)
- Jing Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, PR China; State Key Laboratory of Plant Physiology and Development in Guizhou Province, School of Life Sciences, Guizhou Normal University, Guiyang 550001, Guizhou, PR China
| | - XiaoXin Tang
- State Key Laboratory of Plant Physiology and Development in Guizhou Province, School of Life Sciences, Guizhou Normal University, Guiyang 550001, Guizhou, PR China
| | - YangMei Qin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, PR China
| | - QiuShun He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Yin Yi
- State Key Laboratory of Plant Physiology and Development in Guizhou Province, School of Life Sciences, Guizhou Normal University, Guiyang 550001, Guizhou, PR China.
| | - ZhiLiang Ji
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, PR China.
| |
Collapse
|
8
|
Chung JM, Kim HU, Kim GJ, Jeoung D, Jung HS. The actin bundling activity of actin bundling protein 34 is inhibited by calcium binding to the EF2. Biochem Biophys Res Commun 2018; 503:1836-1840. [PMID: 30057320 DOI: 10.1016/j.bbrc.2018.07.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 07/23/2018] [Indexed: 11/30/2022]
Abstract
Actin bundling protein 34 (ABP34) is the one of 11 actin-crosslinking proteins identified in Dictyostelium discoideum, a novel model organism for the study of actin-associated neurodegenerative disorders such as Alzheimer's disease and Huntington's disease. ABP34 localizes at the leading and trailing edges of locomotory cells, i.e., at the cell cortex, filopodia, and pseudopodia. Functionally, it serves to stabilize membrane-associated actin at sites of cell-cell contact. In addition, this small crosslinking protein is involved in actin bundle formation, and its bundling activity is regulated by the concentration of calcium ion. Several studies have sought to determine the mechanism underlying the calcium-regulated actin bundling activity of ABP34, but it remains unclear. Using several mutational and structural analyses, we revealed that calcium binding to the EF2 motif disrupts the inter-domain interaction between the N- and C-domains, thereby inhibiting the actin bundling activity of ABP34. This finding provides clues about the pathogenesis of neurodegenerative disorders related to actin bundling.
Collapse
Affiliation(s)
- Jeong Min Chung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Han-Ul Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Gwang Joong Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
9
|
IP 3R3 silencing induced actin cytoskeletal reorganization through ARHGAP18/RhoA/mDia1/FAK pathway in breast cancer cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:945-958. [PMID: 29630900 DOI: 10.1016/j.bbamcr.2018.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 01/02/2023]
Abstract
Cell morphology is altered in the migration process, and the underlying cytoskeleton remodeling is highly dependent of intracellular Ca2+ concentration. Many calcium channels are known to be involved in migration. Inositol 1,4,5-trisphosphate receptor (IP3R) was demonstrated to be implicated in breast cancer cells migration, but its involvement in morphological changes during the migration process remains unclear. In the present work, we showed that IP3R3 expression was correlated to cell morphology. IP3R3 silencing induced rounding shape and decreased adhesion in invasive breast cancer cell lines. Moreover, IP3R3 silencing decreased ARHGAP18 expression, RhoA activity, Cdc42 expression and Y861FAK phosphorylation. Interestingly, IP3R3 was able to regulate profilin remodeling, without inducing any myosin II reorganization. IP3R3 silencing revealed an oscillatory calcium signature, with a predominant oscillating profile occurring in early wound repair. To summarize, we demonstrated that IP3R3 is able to modulate intracellular Ca2+ availability and to coordinate the remodeling of profilin cytoskeleton organization through the ARHGAP18/RhoA/mDia1/FAK pathway.
Collapse
|
10
|
Liu Y, Xiao W, Shinde M, Field J, Templeton DM. Cadmium favors F-actin depolymerization in rat renal mesangial cells by site-specific, disulfide-based dimerization of the CAP1 protein. Arch Toxicol 2018; 92:1049-1064. [PMID: 29222746 PMCID: PMC6925060 DOI: 10.1007/s00204-017-2142-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 12/05/2017] [Indexed: 12/30/2022]
Abstract
Cadmium is a toxic metal that produces oxidative stress and has been shown to disrupt the actin cytoskeleton in rat renal mesangial cells (RMC). In a survey of proteins that might undergo Cd2+-dependent disulfide crosslinking, we identified the adenylyl cyclase-associated protein, CAP1, as undergoing a dimerization in response to Cd2+ (5-40 µM) that was sensitive to disulfide reducing agents, was reproduced by the disulfide crosslinking agent diamide, and was shown by site-directed mutagenesis to involve the Cys29 residue of the protein. Reactive oxygen species are not involved in the thiol oxidation, and glutathione modulates background levels of dimer. CAP1 is known to enhance cofilin's F-actin severing activity through binding to F-actin and cofilin. F-actin sedimentation and GST-cofilin pulldown studies of CAP1 demonstrated enrichment of the CAP1 dimer's association with cofilin, and in the cofilin-F-actin pellet, suggesting that Cd2+-induced dimer increases the formation of a CAP1-cofilin-F-actin complex. Both siRNA-based silencing of CAP1 and overexpression of a CAP1 mutant lacking Cys29 (and therefore, incapable of dimerization in response to Cd2+) increased RMC viability and provided some protection of F-actin structures against Cd2+. It is concluded that Cd2+ brings about disruption of the RMC cytoskeleton in part through formation of a CAP1 dimer that increases recruitment of cofilin to F-actin filaments.
Collapse
Affiliation(s)
- Ying Liu
- Laboratory Medicine and Pathobiology 1 King's College Circle, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Weiqun Xiao
- Laboratory Medicine and Pathobiology 1 King's College Circle, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Manasi Shinde
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jeffrey Field
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Douglas M Templeton
- Laboratory Medicine and Pathobiology 1 King's College Circle, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
11
|
Arora PD, Di Gregorio M, He P, McCulloch CA. TRPV4 mediates the Ca 2+ influx required for the interaction between flightless-1 and non-muscle myosin, and collagen remodeling. J Cell Sci 2017; 130:2196-2208. [PMID: 28526784 DOI: 10.1242/jcs.201665] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/14/2017] [Indexed: 12/15/2022] Open
Abstract
Fibroblasts remodel extracellular matrix collagen, in part, through phagocytosis. This process requires formation of cell extensions, which in turn involves interaction of the actin-binding protein flightless-1 (FliI) with non-muscle myosin IIA (NMMIIA; heavy chain encoded by MYH9) at cell-matrix adhesion sites. As Ca2+ plays a central role in controlling actomyosin-dependent functions, we examined how Ca2+ controls the generation of cell extensions and collagen remodeling. Ratio fluorimetry demonstrated localized Ca2+ influx at the extensions of fibroblasts. Western blotting and quantitative (q)PCR showed high expression levels of the Ca2+-permeable transient receptor potential vanilloid-4 (TRPV4) channel, which co-immunoprecipitated with β1 integrin and localized to adhesions. Treatment with α2β1-integrin-blocking antibody or the TRPV4-specific antagonist AB159908, as well as reduction of TRPV4 expression through means of siRNA, blocked Ca2+ influx. These treatments also inhibited the interaction of FliI with NMMIIA, reduced the number and length of cell extensions, and blocked collagen remodeling. Pulldown assays showed that Ca2+ depletion inhibited the interaction of purified FliI with NMMIIA filaments. Fluorescence resonance energy transfer experiments showed that FliI-NMMIIA interactions require Ca2+ influx. We conclude that Ca2+ influx through the TRPV4 channel regulates FliI-NMMIIA interaction, which in turn enables generation of the cell extensions essential for collagen remodeling.
Collapse
Affiliation(s)
- Pamma D Arora
- University of Toronto, Room 244, Fitzgerald Building, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Madeleine Di Gregorio
- University of Toronto, Room 244, Fitzgerald Building, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Pei He
- University of Toronto, Room 244, Fitzgerald Building, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Christopher A McCulloch
- University of Toronto, Room 244, Fitzgerald Building, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| |
Collapse
|
12
|
Ishikawa-Ankerhold HC, Daszkiewicz W, Schleicher M, Müller-Taubenberger A. Actin-Interacting Protein 1 Contributes to Intranuclear Rod Assembly in Dictyostelium discoideum. Sci Rep 2017; 7:40310. [PMID: 28074884 PMCID: PMC5225641 DOI: 10.1038/srep40310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/02/2016] [Indexed: 12/21/2022] Open
Abstract
Intranuclear rods are aggregates consisting of actin and cofilin that are formed in the nucleus in consequence of chemical or mechanical stress conditions. The formation of rods is implicated in a variety of pathological conditions, such as certain myopathies and some neurological disorders. It is still not well understood what exactly triggers the formation of intranuclear rods, whether other proteins are involved, and what the underlying mechanisms of rod assembly or disassembly are. In this study, Dictyostelium discoideum was used to examine appearance, stages of assembly, composition, stability, and dismantling of rods. Our data show that intranuclear rods, in addition to actin and cofilin, are composed of a distinct set of other proteins comprising actin-interacting protein 1 (Aip1), coronin (CorA), filactin (Fia), and the 34 kDa actin-bundling protein B (AbpB). A finely tuned spatio-temporal pattern of protein recruitment was found during formation of rods. Aip1 is important for the final state of rod compaction indicating that Aip1 plays a major role in shaping the intranuclear rods. In the absence of both Aip1 and CorA, rods are not formed in the nucleus, suggesting that a sufficient supply of monomeric actin is a prerequisite for rod formation.
Collapse
Affiliation(s)
| | - Wioleta Daszkiewicz
- Department of Cell Biology (Anatomy III), Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Michael Schleicher
- Department of Cell Biology (Anatomy III), Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | | |
Collapse
|
13
|
Afratis NA, Nikitovic D, Multhaupt HAB, Theocharis AD, Couchman JR, Karamanos NK. Syndecans – key regulators of cell signaling and biological functions. FEBS J 2016; 284:27-41. [DOI: 10.1111/febs.13940] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Nikolaos A. Afratis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group Laboratory of Biochemistry Department of Chemistry University of Patras Greece
- Biotech Research & Innovation Center University of Copenhagen Denmark
| | - Dragana Nikitovic
- Laboratory of Anatomy‐Histology‐Embryology School of Medicine University of Crete Heraklion Greece
| | | | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group Laboratory of Biochemistry Department of Chemistry University of Patras Greece
| | - John R. Couchman
- Biotech Research & Innovation Center University of Copenhagen Denmark
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group Laboratory of Biochemistry Department of Chemistry University of Patras Greece
| |
Collapse
|
14
|
Kim TH, Gill NK, Nyberg KD, Nguyen AV, Hohlbauch SV, Geisse NA, Nowell CJ, Sloan EK, Rowat AC. Cancer cells become less deformable and more invasive with activation of β-adrenergic signaling. J Cell Sci 2016; 129:4563-4575. [PMID: 27875276 DOI: 10.1242/jcs.194803] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/06/2016] [Indexed: 12/22/2022] Open
Abstract
Invasion by cancer cells is a crucial step in metastasis. An oversimplified view in the literature is that cancer cells become more deformable as they become more invasive. β-adrenergic receptor (βAR) signaling drives invasion and metastasis, but the effects on cell deformability are not known. Here, we show that activation of β-adrenergic signaling by βAR agonists reduces the deformability of highly metastatic human breast cancer cells, and that these stiffer cells are more invasive in vitro We find that βAR activation also reduces the deformability of ovarian, prostate, melanoma and leukemia cells. Mechanistically, we show that βAR-mediated cell stiffening depends on the actin cytoskeleton and myosin II activity. These changes in cell deformability can be prevented by pharmacological β-blockade or genetic knockout of the β2-adrenergic receptor. Our results identify a β2-adrenergic-Ca2+-actin axis as a new regulator of cell deformability, and suggest that the relationship between cell mechanical properties and invasion might be dependent on context.
Collapse
Affiliation(s)
- Tae-Hyung Kim
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095, USA.,Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles 90095, USA
| | - Navjot Kaur Gill
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095, USA
| | - Kendra D Nyberg
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095, USA.,Department of Bioengineering, University of California, Los Angeles 90095, USA
| | - Angelyn V Nguyen
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095, USA
| | - Sophia V Hohlbauch
- Asylum Research, an Oxford Instruments Company, Santa Barbara, CA 93117, USA
| | - Nicholas A Geisse
- Asylum Research, an Oxford Instruments Company, Santa Barbara, CA 93117, USA
| | - Cameron J Nowell
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Erica K Sloan
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles 90095, USA.,Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles 90095, USA.,UCLA AIDS Institute, University of California, Los Angeles 90095, USA
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095, USA .,Department of Bioengineering, University of California, Los Angeles 90095, USA.,UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles 90095, USA
| |
Collapse
|
15
|
Chung JM, Lee S, Jung HS. Effective non-denaturing purification method for improving the solubility of recombinant actin-binding proteins produced by bacterial expression. Protein Expr Purif 2016; 133:193-198. [PMID: 27353495 DOI: 10.1016/j.pep.2016.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/18/2016] [Accepted: 06/24/2016] [Indexed: 11/24/2022]
Abstract
Bacterial expression is commonly used to produce recombinant and truncated mutant eukaryotic proteins. However, heterologous protein expression may render synthesized proteins insoluble. The conventional method used to express a poorly soluble protein, which involves denaturation and refolding, is time-consuming and inefficient. There are several non-denaturing approaches that can increase the solubility of recombinant proteins that include using different bacterial cell strains, altering the time of induction, lowering the incubation temperature, and employing different detergents for purification. In this study, we compared several non-denaturing protocols to express and purify two insoluble 34 kDa actin-bundling protein mutants. The solubility of the mutant proteins was not affected by any of the approaches except for treatment with the detergent sarkosyl. These results indicate that sarkosyl can effectively improve the solubility of insoluble proteins during bacterial expression.
Collapse
Affiliation(s)
- Jeong Min Chung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Sangmin Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea.
| |
Collapse
|
16
|
Miarelli M, Drumo R, Signorelli F, Marchitelli C, Pavone S, Pesciaroli M, Ruggieri J, Chirullo B, Ammendola S, Battistoni A, Alborali GL, Manuali E, Pasquali P. Salmonella Typhimurium infection primes a nutriprive mechanism in piglets. Vet Microbiol 2016; 186:117-25. [DOI: 10.1016/j.vetmic.2016.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 12/14/2022]
|
17
|
Tseng TC, Hsieh FY, Hsu SH. Increased cell survival of cells exposed to superparamagnetic iron oxide nanoparticles through biomaterial substrate-induced autophagy. Biomater Sci 2016; 4:670-7. [DOI: 10.1039/c5bm00573f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enhanced autophagy response by culturing cells on chitosan substrate is linked to a high cell survival rate under excessive NP endocytosis conditions.
Collapse
Affiliation(s)
- Ting-Chen Tseng
- Institute of Polymer Science and Engineering
- National Taiwan University
- Taipei
- Taiwan
| | - Fu-Yu Hsieh
- Institute of Polymer Science and Engineering
- National Taiwan University
- Taipei
- Taiwan
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering
- National Taiwan University
- Taipei
- Taiwan
- Research Center for Developmental Biology and Regenerative Medicine
| |
Collapse
|
18
|
Kryukova NA, Chertkova EA, Semenova AD, Glazachev YI, Slepneva IA, Glupov VV. VENOM FROM THE ECTOPARASITIC WASP Habrobracon hebetor ACTIVATES CALCIUM-DEPENDENT DEGRADATION OF Galleria mellonella LARVAL HEMOCYTES. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 90:117-130. [PMID: 26089096 DOI: 10.1002/arch.21247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ectoparasitoids inject venom into hemolymph during oviposition. We determined the influence of envenomation by the parasitoid, Habrobracon hebetor, on the hemocytes of its larval host, Galleria mellonella. An increase in both intracellular Са(2+) content and phospholipase C activity of the host hemocytes was recorded during 2 days following envenomation by the parasitoid. The decreased hemocyte viability was detected 1, 2, and 24 h after the envenomation. Injecting of the crude venom (final protein concentration 3 μg/ml) into the G. mellonella larvae led to the reduced hemocyte adhesion. The larval envenomation caused a decrease in transmembrane potential of the hemocytes. These findings document the suppression of hemocytic immune effectors in the parasitized host larvae.
Collapse
Affiliation(s)
- Natalia A Kryukova
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina A Chertkova
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexandra D Semenova
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yuri I Glazachev
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Irina A Slepneva
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Victor V Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
19
|
Kim MK, Kim JH, Kim JS, Kang SO. Structure of the 34 kDa F-actin-bundling protein ABP34 from Dictyostelium discoideum. ACTA ACUST UNITED AC 2015; 71:1835-49. [PMID: 26327373 DOI: 10.1107/s139900471501264x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/30/2015] [Indexed: 11/11/2022]
Abstract
The crystal structure of the 34 kDa F-actin-bundling protein ABP34 from Dictyostelium discoideum was solved by Ca(2+)/S-SAD phasing and refined at 1.89 Å resolution. ABP34 is a calcium-regulated actin-binding protein that cross-links actin filaments into bundles. Its in vitro F-actin-binding and F-actin-bundling activities were confirmed by a co-sedimentation assay and transmission electron microscopy. The co-localization of ABP34 with actin in cells was also verified. ABP34 adopts a two-domain structure with an EF-hand-containing N-domain and an actin-binding C-domain, but has no reported overall structural homologues. The EF-hand is occupied by a calcium ion with a pentagonal bipyramidal coordination as in the canonical EF-hand. The C-domain structure resembles a three-helical bundle and superposes well onto the rod-shaped helical structures of some cytoskeletal proteins. Residues 216-244 in the C-domain form part of the strongest actin-binding sites (193-254) and exhibit a conserved sequence with the actin-binding region of α-actinin and ABP120. Furthermore, the second helical region of the C-domain is kinked by a proline break, offering a convex surface towards the solvent area which is implicated in actin binding. The F-actin-binding model suggests that ABP34 binds to the side of the actin filament and residues 216-244 fit into a pocket between actin subdomains -1 and -2 through hydrophobic interactions. These studies provide insights into the calcium coordination in the EF-hand and F-actin-binding site in the C-domain of ABP34, which are associated through interdomain interactions.
Collapse
Affiliation(s)
- Min-Kyu Kim
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ji-Hye Kim
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ji-Sun Kim
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sa-Ouk Kang
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
20
|
Pallo SP, Johnson GVW. Tau facilitates Aβ-induced loss of mitochondrial membrane potential independent of cytosolic calcium fluxes in mouse cortical neurons. Neurosci Lett 2015; 597:32-7. [PMID: 25888814 DOI: 10.1016/j.neulet.2015.04.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/09/2015] [Accepted: 04/12/2015] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is defined by presence of two pathological hallmarks, the intraneuronal neurofibrillary tangle (NFT) formed by abnormally processed tau, and the extracellular amyloid plaques formed primarily by the amyloid beta peptide (Aβ). In AD it is likely that these two proteins act in concert to impair neuronal function, and there is evidence to suggest that one of the key targets on which they converge is the mitochondria. For example, overexpression of a pathologic form of tau in rat primary cortical neurons exacerbates Aβ-induced mitochondrial membrane potential (ΔΨm) loss due to impairment of the calcium (Ca(2+)) buffering capability of mitochondria. However the role of physiological levels of tau in mediating Aβ-induced mitochondrial dysfunction was not examined. Therefore in this present study we used primary neurons from wild type (WT) and tau knockout (tau(-/-)) mice to investigate whether endogenous tau facilitates Aβ-induced ΔΨm loss and alterations in cytosolic calcium (Ca(2+)cyt). Knocking out tau significantly protected mouse primary cortical neurons from loss of ΔΨm caused by low concentrations of Aβ42, which supports our previous findings. However, the absence of tau resulted in significantly greater increases in Ca(2+)cyt in response to Aβ treatment when compared to those observed in WT mouse primary cortical neurons. This unexpected outcome may be explained by findings that suggest tau(-/-) neurons display certain phenotypic abnormalities associated with alterations in Ca(2+)cyt. Overall, data indicate that tau facilitates Aβ-induced mitochondrial dysfunction and this effect is independent of Aβ-induced alterations in Ca(2+)cyt.(1).
Collapse
Affiliation(s)
- Susanne P Pallo
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Gail V W Johnson
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
21
|
Intracellular calcium dynamics dependent on defined microtopographical features of titanium. Biomaterials 2015; 46:48-57. [DOI: 10.1016/j.biomaterials.2014.12.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/10/2014] [Accepted: 12/16/2014] [Indexed: 02/06/2023]
|
22
|
Peng HY, Qi YP, Lee J, Yang LT, Guo P, Jiang HX, Chen LS. Proteomic analysis of Citrus sinensis roots and leaves in response to long-term magnesium-deficiency. BMC Genomics 2015; 16:253. [PMID: 25887480 PMCID: PMC4383213 DOI: 10.1186/s12864-015-1462-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 03/09/2015] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Magnesium (Mg)-deficiency is frequently observed in Citrus plantations and is responsible for the loss of productivity and poor fruit quality. Knowledge on the effects of Mg-deficiency on upstream targets is scarce. Seedlings of 'Xuegan' [Citrus sinensis (L.) Osbeck] were irrigated with Mg-deficient (0 mM MgSO4) or Mg-sufficient (1 mM MgSO4) nutrient solution for 16 weeks. Thereafter, we first investigated the proteomic responses of C. sinensis roots and leaves to Mg-deficiency using two-dimensional electrophoresis (2-DE) in order to (a) enrich our understanding of the molecular mechanisms of plants to deal with Mg-deficiency and (b) understand the molecular mechanisms by which Mg-deficiency lead to a decrease in photosynthesis. RESULTS Fifty-nine upregulated and 31 downregulated protein spots were isolated in Mg-deficient leaves, while only 19 upregulated and 12 downregulated protein spots in Mg-deficient roots. Many Mg-deficiency-responsive proteins were involved in carbohydrate and energy metabolism, followed by protein metabolism, stress responses, nucleic acid metabolism, cell wall and cytoskeleton metabolism, lipid metabolism and cell transport. The larger changes in leaf proteome versus root one in response to Mg-deficiency was further supported by our observation that total soluble protein concentration was decreased by Mg-deficiency in leaves, but unaffected in roots. Mg-deficiency had decreased levels of proteins [i.e. ribulose-1,5-bisphosphate carboxylase (Rubisco), rubisco activase, oxygen evolving enhancer protein 1, photosynthetic electron transfer-like protein, ferredoxin-NADP reductase (FNR), aldolase] involved in photosynthesis, thus decreasing leaf photosynthesis. To cope with Mg-deficiency, C. sinensis leaves and roots might respond adaptively to Mg-deficiency through: improving leaf respiration and lowering root respiration, but increasing (decreasing) the levels of proteins related to ATP synthase in roots (leaves); enhancing the levels of proteins involved in reactive oxygen species (ROS) scavenging and other stress-responsive proteins; accelerating proteolytic cleavage of proteins by proteases, protein transport and amino acid metabolism; and upregulating the levels of proteins involved in cell wall and cytoskeleton metabolism. CONCLUSIONS Our results demonstrated that proteomics were more affected by long-term Mg-deficiency in leaves than in roots, and that the adaptive responses differed between roots and leaves when exposed to long-term Mg-deficiency. Mg-deficiency decreased the levels of many proteins involved in photosynthesis, thus decreasing leaf photosynthesis.
Collapse
Affiliation(s)
- Hao-Yang Peng
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou, 350001, China.
| | - Jinwook Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, 702-701, ROK.
| | - Lin-Tong Yang
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Peng Guo
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Huan-Xin Jiang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Li-Song Chen
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
23
|
Mansuri MS, Bhattacharya S, Bhattacharya A. A novel alpha kinase EhAK1 phosphorylates actin and regulates phagocytosis in Entamoeba histolytica. PLoS Pathog 2014; 10:e1004411. [PMID: 25299184 PMCID: PMC4192601 DOI: 10.1371/journal.ppat.1004411] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/19/2014] [Indexed: 01/09/2023] Open
Abstract
Phagocytosis plays a key role in nutrient uptake and virulence of the protist parasite Entamoeba histolytica. Phagosomes have been characterized by proteomics, and their maturation in the cells has been studied. However, there is so far not much understanding about initiation of phagocytosis and formation of phagosomes at the molecular level. Our group has been studying initiation of phagocytosis and formation of phagosomes in E. histolytica, and have described some of the molecules that play key roles in the process. Here we show the involvement of EhAK1, an alpha kinase and a SH3 domain containing protein in the pathway that leads to formation of phagosomes using red blood cell as ligand particle. A number of approaches, such as proteomics, biochemical, confocal imaging using specific antibodies or GFP tagged molecules, expression down regulation by antisense RNA, over expression of wild type and mutant proteins, were used to understand the role of EhAK1 in phagocytosis. EhAK1 was found in the phagocytic cups during the progression of cups, until closure of phagosomes, but not in the phagosomes themselves. It is recruited to the phagosomes through interaction with the calcium binding protein EhCaBP1. A reduction in phagocytosis was observed when EhAK1 was down regulated by antisense RNA, or by over expression of the kinase dead mutant. G-actin was identified as one of the major substrates of EhAK1. Phosphorylated actin preferentially accumulated at the phagocytic cups and over expression of a phosphorylation defective actin led to defects in phagocytosis. In conclusion, we describe an important component of the pathway that is initiated on attachment of red blood cells to E. histolytica cells. The main function of EhAK1 is to couple signalling events initiated after accumulation of EhC2PK to actin dynamics.
Collapse
Affiliation(s)
- M. Shahid Mansuri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
24
|
Leung CS, Yeung TL, Yip KP, Pradeep S, Balasubramanian L, Liu J, Wong KK, Mangala LS, Armaiz-Pena GN, Lopez-Berestein G, Sood AK, Birrer MJ, Mok SC. Calcium-dependent FAK/CREB/TNNC1 signalling mediates the effect of stromal MFAP5 on ovarian cancer metastatic potential. Nat Commun 2014; 5:5092. [PMID: 25277212 PMCID: PMC4185407 DOI: 10.1038/ncomms6092] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/28/2014] [Indexed: 12/13/2022] Open
Abstract
Ovarian cancer is the most lethal gynaecologic malignancy in the United States, and advanced serous ovarian adenocarcinoma is responsible for most ovarian cancer deaths. However, the stroma-derived molecular determinants that modulate patient survival are yet to be characterized. Here we identify a stromal gene signature for advanced high-grade serous ovarian cancer using microdissected stromal ovarian tumour samples and find that stromal microfibrillar-associated protein 5 (MFAP5) is a prognostic marker for poor survival. Further functional studies reveal that FAK/CREB/TNNC1 signalling pathways mediate the effect of MFAP5 on ovarian cancer cell motility and invasion potential. Targeting stromal MFAP5 using MFAP5-specific siRNA encapsulated in chitosan nanoparticles significantly decreases ovarian tumour growth and metastasis in vivo, suggesting that it may be a new modality of ovarian cancer treatment.
Collapse
Affiliation(s)
- Cecilia S. Leung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Tsz-Lun Yeung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kay-Pong Yip
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33612, USA
| | - Sunila Pradeep
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lavanya Balasubramanian
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33612, USA
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kwong-Kwok Wong
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Lingegowda S. Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guillermo N. Armaiz-Pena
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gabriel Lopez-Berestein
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael J. Birrer
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Samuel C. Mok
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| |
Collapse
|
25
|
Koopmans T, Anaparti V, Castro-Piedras I, Yarova P, Irechukwu N, Nelson C, Perez-Zoghbi J, Tan X, Ward JPT, Wright DB. Ca2+ handling and sensitivity in airway smooth muscle: emerging concepts for mechanistic understanding and therapeutic targeting. Pulm Pharmacol Ther 2014; 29:108-20. [PMID: 24831539 DOI: 10.1016/j.pupt.2014.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/28/2014] [Accepted: 05/01/2014] [Indexed: 02/01/2023]
Abstract
Free calcium ions within the cytosol serve as a key secondary messenger system for a diverse range of cellular processes. Dysregulation of cytosolic Ca(2+) handling in airway smooth muscle (ASM) has been implicated in asthma, and it has been hypothesised that this leads, at least in part, to associated changes in both the architecture and function of the lung. Significant research is therefore directed towards furthering our understanding of the mechanisms which control ASM cytosolic calcium, in addition to those regulating the sensitivity of its downstream effector targets to calcium. Key aspects of the recent developments in this field were discussed at the 8th Young Investigators' Symposium on Smooth Muscle (2013, Groningen, The Netherlands), and are outlined in this review.
Collapse
Affiliation(s)
- T Koopmans
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - V Anaparti
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - I Castro-Piedras
- Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, TX, USA
| | - P Yarova
- Cardiff School of Biosciences, Cardiff University, UK
| | - N Irechukwu
- Division of Asthma, Allergy and Lung Biology, King's College London, UK
| | - C Nelson
- School of Science & Technology, Nottingham Trent University, Nottingham, UK
| | - J Perez-Zoghbi
- Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, TX, USA
| | - X Tan
- Lung Inflammation & Infection Lab, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - J P T Ward
- Division of Asthma, Allergy and Lung Biology, King's College London, UK
| | - D B Wright
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Division of Asthma, Allergy and Lung Biology, King's College London, UK.
| |
Collapse
|
26
|
Griffin P, Furukawa R, Piggott C, Maselli A, Fechheimer M. Requirements for Hirano body formation. EUKARYOTIC CELL 2014; 13:625-34. [PMID: 24632241 PMCID: PMC4060480 DOI: 10.1128/ec.00044-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/06/2014] [Indexed: 11/20/2022]
Abstract
Hirano bodies are paracrystalline F-actin-rich structures associated with diverse conditions, including neurodegeneration and aging. Generation of model Hirano bodies using altered forms of Dictyostelium 34-kDa actin-bundling protein allows studies of their physiological function and mechanism of formation. We describe a novel 34-kDa protein mutant, E60K, with a point mutation within the inhibitory domain of the 34-kDa protein. Expression of E60K in Dictyostelium induces the formation of model Hirano bodies. The E60K protein has activated actin binding and is calcium regulated, unlike other forms of the 34-kDa protein that induce Hirano bodies and that have activated actin binding but lack calcium regulation. Actin filaments in the presence of E60K in vitro show enhanced resistance to disassembly induced by latrunculin B. Actin filaments in model Hirano bodies are also protected from latrunculin-induced depolymerization. We used nocodazole and blebbistatin to probe the role of the microtubules and myosin II, respectively, in the formation of model Hirano bodies. In the presence of these inhibitors, model Hirano bodies can form but are smaller than controls at early times of formation. The ultrastructure of model Hirano bodies did not reveal any major difference in structure and organization in the presence of inhibitors. In summary, these results support the conclusion that formation of model Hirano bodies is promoted by gain-of-function actin filament bundling, which enhances actin filament stabilization. Microtubules and myosin II contribute to but are not required for formation of model Hirano bodies.
Collapse
Affiliation(s)
- Paul Griffin
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Ruth Furukawa
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Cleveland Piggott
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Andrew Maselli
- Department of Biological Sciences, Chicago State University, Chicago, Illinois, USA
| | - Marcus Fechheimer
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
27
|
Choong G, Liu Y, Templeton DM. Interplay of calcium and cadmium in mediating cadmium toxicity. Chem Biol Interact 2014; 211:54-65. [PMID: 24463198 DOI: 10.1016/j.cbi.2014.01.007] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/31/2013] [Accepted: 01/13/2014] [Indexed: 01/30/2023]
Abstract
The environmentally important toxic metal, cadmium, exists as the Cd(2+) ion in biological systems, and in this state structurally resembles Ca(2+). Thus, although cadmium exerts a broad range of adverse actions on cells by virtue of its propensity to bind to protein thiol groups, it is now well appreciated that Cd(2+) participates in a number of Ca(2+)-dependent pathways, attributable to its actions as a Ca(2+) mimetic, with a central role for calmodulin, and the Ca(2+)/calmodlin-dependent protein kinase II (CaMK-II) that mediates effects on cytoskeletal dynamics and apoptotic cell death. Cadmium interacts with receptors and ion channels on the cell surface, and with the intracellular estrogen receptor where it binds competitively to residues shared by Ca(2+). It increases cytosolic [Ca(2+)] through several mechanisms, but also decreases transcript levels of some Ca(2+)-transporter genes. It initiates mitochondrial apoptotic pathways, and activates calpains, contributing to mitochondria-independent apoptosis. However, the recent discovery of the role CaMK-II plays in Cd(2+)-induced cell death, and subsequent implication of CaMK-II in Cd(2+)-dependent alterations of cytoskeletal dynamics, has opened a new area of mechanistic cadmium toxicology that is a focus of this review. Calmodulin is necessary for induction of apoptosis by several agents, yet induction of apoptosis by Cd(2+) is prevented by CaMK-II block, and Ca(2+)-dependent phosphorylation of CaMK-II has been linked to increased Cd(2+)-dependent apoptosis. Calmodulin antagonism suppresses Cd(2+)-induced phosphorylation of Erk1/2 and the Akt survival pathway. The involvement of CaMK-II in the effects of Cd(2+) on cell morphology, and particularly the actin cytoskeleton, is profound, favouring actin depolymerization, disrupting focal adhesions, and directing phosphorylated FAK into a cellular membrane. CaMK-II is also implicated in effects of Cd(2+) on microtubules and cadherin junctions. A key question for future cadmium research is whether cytoskeletal disruption leads to apoptosis, or rather if apoptosis initiates cytoskeletal disruption in the context of Cd(2+).
Collapse
Affiliation(s)
- Grace Choong
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada
| | - Ying Liu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada
| | - Douglas M Templeton
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.
| |
Collapse
|
28
|
Kwon MS, Park KR, Kim YD, Na BR, Kim HR, Choi HJ, Piragyte I, Jeon H, Chung KH, Song WK, Eom SH, Jun CD. Swiprosin-1 is a novel actin bundling protein that regulates cell spreading and migration. PLoS One 2013; 8:e71626. [PMID: 23977092 PMCID: PMC3744483 DOI: 10.1371/journal.pone.0071626] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/28/2013] [Indexed: 11/18/2022] Open
Abstract
Protein functions are often revealed by their localization to specialized cellular sites. Recent reports demonstrated that swiprosin-1 is found together with actin and actin-binding proteins in the cytoskeleton fraction of human mast cells and NK-like cells. However, direct evidence of whether swiprosin-1 regulates actin dynamics is currently lacking. We found that swiprosin-1 localizes to microvilli-like membrane protrusions and lamellipodia and exhibits actin-binding activity. Overexpression of swiprosin-1 enhanced lamellipodia formation and cell spreading. In contrast, swiprosin-1 knockdown showed reduced cell spreading and migration. Swiprosin-1 induced actin bundling in the presence of Ca(2+), and deletion of the EF-hand motifs partially reduced bundling activity. Swiprosin-1 dimerized in the presence of Ca(2+) via its coiled-coil domain, and a lysine (Lys)-rich region in the coiled-coil domain was essential for regulation of actin bundling. Consistent with these observations, mutations of the EF-hand motifs and coiled-coil region significantly reduced cell spreading and lamellipodia formation. We provide new evidence of how swiprosin-1 influences cytoskeleton reorganization and cell spreading.
Collapse
Affiliation(s)
- Min-Sung Kwon
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Kyoung Ryoung Park
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Young-Dae Kim
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Bo-Ra Na
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Hye-Ran Kim
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Hak-Jong Choi
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Indre Piragyte
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Hyesung Jeon
- Biomedical Research Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, Korea
| | - Kyung Hwun Chung
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Woo Keun Song
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Soo Hyun Eom
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Chang-Duk Jun
- School of Life Sciences, Immune Synapse Research Center and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
29
|
Bury M, Girault A, Mégalizzi V, Spiegl-Kreinecker S, Mathieu V, Berger W, Evidente A, Kornienko A, Gailly P, Vandier C, Kiss R. Ophiobolin A induces paraptosis-like cell death in human glioblastoma cells by decreasing BKCa channel activity. Cell Death Dis 2013; 4:e561. [PMID: 23538442 PMCID: PMC3615734 DOI: 10.1038/cddis.2013.85] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/19/2013] [Accepted: 02/25/2013] [Indexed: 01/31/2023]
Abstract
Glioblastoma multiforme (GBM) is the most lethal and common malignant human brain tumor. The intrinsic resistance of highly invasive GBM cells to radiation- and chemotherapy-induced apoptosis accounts for the generally dismal treatment outcomes. This study investigated ophiobolin A (OP-A), a fungal metabolite from Bipolaris species, for its promising anticancer activity against human GBM cells exhibiting varying degrees of resistance to proapoptotic stimuli. We found that OP-A induced marked changes in the dynamic organization of the F-actin cytoskeleton, and inhibited the proliferation and migration of GBM cells, likely by inhibiting big conductance Ca(2+)-activated K(+) channel (BKCa) channel activity. Moreover, our results indicated that OP-A induced paraptosis-like cell death in GBM cells, which correlated with the vacuolization, possibly brought about by the swelling and fusion of mitochondria and/or the endoplasmic reticulum (ER). In addition, the OP-A-induced cell death did not involve the activation of caspases. We also showed that the expression of BKCa channels colocalized with these two organelles (mitochondria and ER) was affected in this programmed cell death pathway. Thus, this study reveals a novel mechanism of action associated with the anticancer effects of OP-A, which involves the induction of paraptosis through the disruption of internal potassium ion homeostasis. Our findings offer a promising therapeutic strategy to overcome the intrinsic resistance of GBM cells to proapoptotic stimuli.
Collapse
Affiliation(s)
- M Bury
- Laboratoire de Toxicologie, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - A Girault
- INSERM U1069, Laboratoire Nutrition Croissance Cancer, Université de Tours, Tours, France
| | - V Mégalizzi
- Laboratoire de Toxicologie, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - S Spiegl-Kreinecker
- Department of Neurosurgery, Landesnervenklinik Wagner-Jauregg Hospital, Linz, Austria
| | - V Mathieu
- Laboratoire de Toxicologie, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - W Berger
- Department of Medicine I, Comprehensive Cancer Center and Institute of Cancer Research, Medical University Vienna, Vienna, Austria
| | - A Evidente
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant'Angelo, Napoli, Italy
| | - A Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - P Gailly
- Laboratoire de Physiologie Cellulaire, Institut des Neurosciences, Université Catholique de Louvain, Brussels, Belgium
| | - C Vandier
- INSERM U1069, Laboratoire Nutrition Croissance Cancer, Université de Tours, Tours, France
| | - R Kiss
- Laboratoire de Toxicologie, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
30
|
Maus M, Medgyesi D, Kiss E, Schneider AE, Enyedi A, Szilágyi N, Matkó J, Sármay G. B cell receptor-induced Ca2+ mobilization mediates F-actin rearrangements and is indispensable for adhesion and spreading of B lymphocytes. J Leukoc Biol 2013; 93:537-47. [PMID: 23362305 DOI: 10.1189/jlb.0312169] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
B cells acquire membrane-bound cognate antigens from the surface of the APCs by forming an IS, similar to that seen in T cells. Recognition of membrane-bound antigens on the APCs initiates adhesion of B lymphocytes to the antigen-tethered surface, which is followed by the formation of radial lamellipodia-like structures, a process known as B cell spreading. The spreading response requires the rearrangement of the submembrane actin cytoskeleton and is regulated mainly via signals transmitted by the BCR. Here, we show that cytoplasmic calcium is a regulator of actin cytoskeleton dynamics in B lymphocytes. We find that BCR-induced calcium mobilization is indispensible for adhesion and spreading of B cells and that PLCγ and CRAC-mediated calcium mobilization are critical regulators of these processes. Measuring calcium and actin dynamics in live cells, we found that a generation of actin-based membrane protrusion is strongly linked to the dynamics of a cytoplasmic-free calcium level. Finally, we demonstrate that PLCγ and CRAC channels regulate the activity of actin-severing protein cofilin, linking BCR-induced calcium signaling to the actin dynamics.
Collapse
Affiliation(s)
- Máté Maus
- Eötvös Lóránd University, Pázmány Péter sétány 1/c, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Korkmaz N, Kim YJ, Nam CH. Bacteriophages as Templates for Manufacturing Supramolecular Structures. Macromol Biosci 2012; 13:376-87. [DOI: 10.1002/mabi.201200290] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/18/2012] [Indexed: 01/31/2023]
|
32
|
Zou X, Cheng H, Zhang Y, Fang C, Xia Y. The antigen-binding fragment of anti-double-stranded DNA IgG enhances F-actin formation in mesangial cells by binding to alpha-actinin-4. Exp Biol Med (Maywood) 2012; 237:1023-31. [PMID: 22929799 DOI: 10.1258/ebm.2012.012033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Anti-double-stranded DNA (dsDNA) IgG causes renal damage in patients with lupus nephritis by cross-reacting with multiple autoantigens, including alpha-actinin-4, in mesangial cells (MCs). However, how the cross-reactions play a role in mesangial phenotypic abnormalities is not well understood. Here, we investigated the effects of the fragment antigen-binding (Fab) of anti-dsDNA IgG3 on the biochemical properties of alpha-actinin-4. Experiments revealed that anti-dsDNA Fab specifically binds to alpha-actinin-4, but not G-actin. The binding by anti-dsDNA Fab sequentially increases the positive charge of alpha-actinin-4 and inhibits the affinity of alpha-actinin-4 to calcium ions. By the low shear viscosity and a co-sedimentation assay, we found that the alpha-actinin-4-induced F-actin gelation improves when anti-dsDNA Fab is added. However, the Fab control has no such effect on F-actin gelation. Furthermore, the in vitro cultured MCs exhibit higher F-actin expression and transforming growth factor- β1 synthesis after the incubation with anti-dsDNA Fab. Therefore, our results indicated that anti-dsDNA Fab may enhance F-actin formation by the proprietary modification of alpha-actinin-4, which could partially explain the myofibroblast-like phenotype of MCs in anti-dsDNA-positive lupus nephritis.
Collapse
Affiliation(s)
- Xiaoyan Zou
- Department of Medicine, Renmin Hospital of Wuhan University, Wuhan 430060
- Department of Dermatology, Hubei Maternity and Child Health Hospital, Wuhan 430070
| | - Hong Cheng
- Department of Medicine, Renmin Hospital of Wuhan University, Wuhan 430060
| | - Yi Zhang
- Department of Medicine, Renmin Hospital of Wuhan University, Wuhan 430060
- Department of Medicine, Gezhouba Central Hospital, The Third Clinical Hospital of Three Gorges University, Yichang 443002
| | - Chunhong Fang
- Department of Dermatology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| | - Yumin Xia
- Department of Dermatology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| |
Collapse
|
33
|
Jayadev R, Kuk CY, Low SH, Murata-Hori M. Calcium sensitivity of α-actinin is required for equatorial actin assembly during cytokinesis. Cell Cycle 2012; 11:1929-37. [PMID: 22544326 DOI: 10.4161/cc.20277] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The actin cross-linking protein, α-actinin, plays a crucial role in mediating furrow ingression during cytokinesis. However, the mechanism by which its dynamics are regulated during this process is poorly understood. Here we have investigated the role of calcium sensitivity of α-actinin in the regulation of its dynamics by generating a functional calcium-insensitive mutant (EFM). GFP-tagged EFM (EFM-GFP) localized to the equatorial regions during cell division. However, the maximal equatorial accumulation of EFM-GFP was significantly smaller in comparison to α-actinin-GFP when it was expressed in normal cells and cells depleted of endogenous α-actinin. No apparent defects in cytokinesis were observed in these cells. However, F-actin levels at the equator were significantly reduced in cells expressing EFM-GFP as compared with α-actinin-GFP at furrow initiation but were recovered during furrow ingression. These results suggest that calcium sensitivity of α-actinin is required for its equatorial accumulation that is crucial for the initial equatorial actin assembly but is dispensable for cytokinesis. Equatorial RhoA localization was not affected by EFM-GFP overexpression, suggesting that equatorial actin assembly is predominantly driven by the RhoA-dependent mechanism. Our observations shed new light on the role and regulation of the accumulation of pre-existing actin filaments in equatorial actin assembly during cytokinesis.
Collapse
Affiliation(s)
- Ranjay Jayadev
- Cell Biology Program, Temasek Life Sciences Laboratory; Singapore
| | | | | | | |
Collapse
|
34
|
Araki T, Williams JG. Perturbations of the actin cytoskeleton activate a Dictyostelium STAT signalling pathway. Eur J Cell Biol 2012; 91:420-5. [PMID: 22365144 PMCID: PMC3315007 DOI: 10.1016/j.ejcb.2012.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/05/2012] [Accepted: 01/05/2012] [Indexed: 12/02/2022] Open
Abstract
The Dictyostelium transcription factor STATc is tyrosine phosphorylated and accumulates in the nucleus when cells are exposed either to hyper-osmotic stress or to the prestalk-inducing polyketide DIF-1. In the case of stress STAT activation is mediated by regulated dephosphorylation; whereby two serine residues on PTP3, the tyrosine phosphatase that de-activates STATc, become phosphorylated after exposure to stress so inhibiting enzymatic activity. We now show that the more highly regulated of the two PTP3 serine residues, S747, is also phosphorylated in response to DIF-1, suggesting a common activation mechanism. Hyper-osmotic stress causes a re-distribution of F-actin to the cortex, cell rounding and shrinkage and we show that DIF-1 induces a similar but transient F-actin re-distribution and rounding response. We also find that two mechanistically distinct inhibitors of actin polymerization, latrunculin A and cytochalasin A induce phosphorylation at S747 of PTP3 and activate STATc. We suggest that PTP3 phosphorylation, and consequent STATc activation, are regulated by changes in F-actin polymerization status during stress and DIF-induced cytoskeletal remodelling.
Collapse
Affiliation(s)
- Tsuyoshi Araki
- College of Life Sciences, Welcome Trust Biocentre, University of Dundee, Dow St., Dundee DD1 5EH, United Kingdom
| | | |
Collapse
|
35
|
Hua SZ, Gottlieb PA, Heo J, Sachs F. A mechanosensitive ion channel regulating cell volume. Am J Physiol Cell Physiol 2010; 298:C1424-30. [PMID: 20457830 DOI: 10.1152/ajpcell.00503.2009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cells respond to a hyposmotic challenge by swelling and then returning toward the resting volume, a process known as the regulatory volume decrease or RVD. The sensors for this process have been proposed to include cationic mechanosensitive ion channels that are opened by membrane tension. We tested this hypothesis using a microfluidic device to measure cell volume and the peptide GsMTx4, a specific inhibitor of cationic mechanosensitive channels. GsMTx4 had no effect on RVD in primary rat astrocytes or Madin-Darby canine kidney (MDCK) cells but was able to completely inhibit RVD and the associated Ca(2+) uptake in normal rat kidney (NRK-49F) cells in a dose-dependent manner. Gadolinium (Gd(3+)), a nonspecific blocker of many mechanosensitive channels, inhibited RVD and Ca(2+) uptake in all three cell types, demonstrating the existence of at least two types of volume sensors. Single-channel stretch-activated currents are present in outside-out patches from NRK-49F, MDCK, and astrocytes, and they are reversibly inhibited by GsMTx4. While mechanosensitive channels are involved in volume regulation, their role for volume sensing is specialized. The NRK cells form a stable platform from which to screen drugs that affect volume regulation via mechanosensory channels and as a sensitive system to clone the channel.
Collapse
Affiliation(s)
- Susan Z Hua
- Department of Physiology and Biophysics, SUNY, Buffalo, NY 14214, USA.
| | | | | | | |
Collapse
|
36
|
Barrantes I, Glockner G, Meyer S, Marwan W. Transcriptomic changes arising during light-induced sporulation in Physarum polycephalum. BMC Genomics 2010; 11:115. [PMID: 20163733 PMCID: PMC2837032 DOI: 10.1186/1471-2164-11-115] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 02/17/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Physarum polycephalum is a free-living amoebozoan protist displaying a complex life cycle, including alternation between single- and multinucleate stages through sporulation, a simple form of cell differentiation. Sporulation in Physarum can be experimentally induced by several external factors, and Physarum displays many biochemical features typical for metazoan cells, including metazoan-type signaling pathways, which makes this organism a model to study cell cycle, cell differentiation and cellular reprogramming. RESULTS In order to identify the genes associated to the light-induced sporulation in Physarum, especially those related to signal transduction, we isolated RNA before and after photoinduction from sporulation- competent cells, and used these RNAs to synthesize cDNAs, which were then analyzed using the 454 sequencing technology. We obtained 16,669 cDNAs that were annotated at every computational level. 13,169 transcripts included hit count data, from which 2,772 displayed significant differential expression (upregulated: 1,623; downregulated: 1,149). Transcripts with valid annotations and significant differential expression were later integrated into putative networks using interaction information from orthologs. CONCLUSIONS Gene ontology analysis suggested that most significantly downregulated genes are linked to DNA repair, cell division, inhibition of cell migration, and calcium release, while highly upregulated genes were involved in cell death, cell polarization, maintenance of integrity, and differentiation. In addition, cell death- associated transcripts were overrepresented between the upregulated transcripts. These changes are associated to a network of actin-binding proteins encoded by genes that are differentially regulated before and after light induction.
Collapse
Affiliation(s)
- Israel Barrantes
- Max Planck Institute for Dynamics of Complex Technical Systems and Magdeburg Centre for Systems Biology (MaCS), Otto von Guericke University, Magdeburg, Germany
| | | | | | | |
Collapse
|
37
|
Baviskar SN, Shields MS. RNAi silenced Dd-grp94 (Dictyostelium discoideum glucose-regulated protein 94 kDa) cell lines in Dictyostelium exhibit marked reduction in growth rate and delay in development. Gene Expr 2010; 15:75-87. [PMID: 21526718 PMCID: PMC6043831 DOI: 10.3727/105221611x12973615737587] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glucose-regulated 94 kDa protein (Grp94) is a resident of the endoplasmic reticulum (ER) of multicellular eukaryotes. It is a constitutively expressed protein that is overexpressed in certain abnormal conditions of the cell such as depletion of glucose and calcium, and low oxygen and pH. The protein is also implicated in diseased conditions like cancer and Alzheimer's disease. In this study, the consequences of downregulation of Grp94 were investigated at both unicellular and multicellular stages of Dictyostelium discoideum. Previous studies have shown the expression of Dd-Grp94 (Dictyostelium discoideum glucose-regulated 94 kDa protein) in wild-type cells varies during development, and overexpression of Dd-Grp94 leads to abnormal cell shape and inhibition of development (i.e., formation of fruiting bodies). Grp94 is a known calcium binding protein and an efficient calcium buffer. Therefore, in the present study we hypothesized that downregulation of Dd-Grp94 protein would affect Dictyostelium cell structure, growth, and development. We found that Dd-grp94 RNAi recombinants exhibited reduced growth rate, cell size, and a subtle change in cell motility compared to the parental cells. The recombinants also exhibited a delay in development and small fruiting bodies. These results establish that Dd-grp94 plays a crucial role in determining normal cell structure, growth and differentiation.
Collapse
Affiliation(s)
- Sandhya N Baviskar
- Department of Biological Sciences, University of Arkansas-Fort Smith, Fort Smith, AR 72913, USA.
| | | |
Collapse
|
38
|
Wang J, Hu H, Wang S, Shi J, Chen S, Wei H, Xu X, Lu L. The important role of actinin-like protein (AcnA) in cytokinesis and apical dominance of hyphal cells in Aspergillus nidulans. Microbiology (Reading) 2009; 155:2714-2725. [DOI: 10.1099/mic.0.029215-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The actin cytoskeleton is involved in many processes in eukaryotic cells, including interaction with a wide variety of actin-binding proteins such as the actin-capping proteins, the actin filament nucleators and the actin cross-linking proteins. Here, we report the identification and characterization of an actinin-like protein (AcnA) from the filamentous fungus Aspergillus nidulans. Not only did the depletion of AcnA by alcA(p) promoter repression or the deletion of AcnA result in explicit abnormalities in septation and conidiation, but also the acnA mutants induced a loss of apical dominance in cells with dichotomous branching, in which a new branch was formed by splitting the existing tip in two. Consequently, the colony showed flabellate edges. Moreover, we found that the localization of the GFP–AcnA fusion was quite dynamic. In the isotropic expansion phase of the germinated spore, GFP–AcnA was organized as cortical patches with cables lining the cell wall. Subsequently, GFP–AcnA was localized to the actively growing hyphal tips and to the sites of septation in the form of combined double contractile rings. Our data suggest that AcnA plays an important role in cytokinesis and apical dominance of hyphal cells, possibly via actin-dependent polarization maintenance and medial ring establishment in A. nidulans. This is the first report, to our knowledge, of the function of an actinin-like protein in filamentous fungi.
Collapse
Affiliation(s)
- Jinjun Wang
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Hongqin Hu
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Sha Wang
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Jie Shi
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Shaochun Chen
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Hua Wei
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Xushi Xu
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Ling Lu
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| |
Collapse
|
39
|
Michaud JLR, Hosseini-Abardeh M, Farah K, Kennedy CRJ. Modulating α-actinin-4 dynamics in podocytes. ACTA ACUST UNITED AC 2009; 66:166-78. [DOI: 10.1002/cm.20339] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Kim DH, Davis RC, Furukawa R, Fechheimer M. Autophagy contributes to degradation of Hirano bodies. Autophagy 2009; 5:44-51. [PMID: 18989098 DOI: 10.4161/auto.5.1.7228] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hirano bodies are actin-rich inclusions reported most frequently in the hippocampus in association with a variety of conditions including neurodegenerative diseases, and aging. We have developed a model system for formation of Hirano bodies in Dictyostelium and cultured mammalian cells to permit detailed studies of the dynamics of these structures in living cells. Model Hirano bodies are frequently observed in membrane-enclosed vesicles in mammalian cells consistent with a role of autophagy in the degradation of these structures. Clearance of Hirano bodies by an exocytotic process is supported by images from electron microscopy showing extracellular release of Hirano bodies, and observation of Hirano bodies in the culture medium of Dictyostelium and mammalian cells. An autophagosome marker protein Atg8-GFP, was co-localized with model Hirano bodies in wild type Dictyostelium cells, but not in atg5(-) or atg1-1 autophagy mutant strains. Induction of model Hirano bodies in Dictyostelium with a high level expression of 34 kDa DeltaEF1 from the inducible discoidin promoter resulted in larger Hirano bodies and a cessation of cell doubling. The degradation of model Hirano bodies still occurred rapidly in autophagy mutant (atg5(-)) Dictyostelium, suggesting that other mechanisms such as the ubiquitin-mediated proteasome pathway could contribute to the degradation of Hirano bodies. Chemical inhibition of the proteasome pathway with lactacystin, significantly decreased the turnover of Hirano bodies in Dictyostelium providing direct evidence that autophagy and the proteasome can both contribute to degradation of Hirano bodies. Short term treatment of mammalian cells with either lactacystin or 3-methyl adenine results in higher levels of Hirano bodies and a lower level of viable cells in the cultures, supporting the conclusion that both autophagy and the proteasome contribute to degradation of Hirano bodies.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
41
|
Schaloske RH, Blaesius D, Schlatterer C, Lusche DF. Arachidonic acid is a chemoattractant for Dictyostelium discoideum cells. J Biosci 2008; 32:1281-9. [PMID: 18202452 DOI: 10.1007/s12038-007-0137-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cyclic AMP (cAMP)is a natural chemoattractant of the social amoeba Dictyostelium discoideum. It is detected by cell surface cAMP receptors. Besides a signalling cascade involving phosphatidylinositol 3,4,5-trisphosphate (PIP3), Ca2+ signalling has been shown to have a major role in chemotaxis. Previously, we have shown that arachidonic acid (AA) induces an increase in the cytosolic Ca2+ concentration by causing the release of Ca2+ from intracellular stores and activating influx of extracellular Ca2+. Here we report that AA is a chemoattractant for D. discoideum cells differentiated for 8-9 h. Motility towards a glass capillary filled with an AA solution was dose-dependent and qualitatively comparable to cAMP-induced chemotaxis. Ca2+ played an important role in AA chemotaxis of wild-type Ax2 as ethyleneglycol-bis(b-aminoethyl)-N,N,N',N'-tetraacetic acid (EGTA) added to the extracellular buffer strongly inhibited motility. In the HM1049 mutant whose iplA gene encoding a putative Ins(1,4,5)P3 -receptor had been knocked out, chemotaxis was only slightly affected by EGTA. Chemotaxis in the presence of extracellular Ca2+ was similar in both strains. Unlike cAMP, addition of AA to a cell suspension did not change cAMP or cGMP levels. A model for AA chemotaxis based on the findings in this and previous work is presented.
Collapse
Affiliation(s)
- Ralph H Schaloske
- Department of Chemistry and Biochemistry, University of California at San Diego,9500 Gilman Drive, La Jolla, CA 92093-0601, USA
| | | | | | | |
Collapse
|
42
|
Graidist P, Yazawa M, Tonganunt M, Nakatomi A, Lin CJ, Chang JY, Phongdara A, Fujise K. Fortilin binds Ca2+ and blocks Ca2+-dependent apoptosis in vivo. Biochem J 2007; 408:181-91. [PMID: 17705784 PMCID: PMC2267342 DOI: 10.1042/bj20070679] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Fortilin, a 172-amino-acid polypeptide present both in the cytosol and nucleus, possesses potent anti-apoptotic activity. Although fortilin is known to bind Ca2+, the biochemistry and biological significance of such an interaction remains unknown. In the present study we report that fortilin must bind Ca2+ in order to protect cells against Ca2+-dependent apoptosis. Using a standard Ca2+-overlay assay, we first validated that full-length fortilin binds Ca2+ and showed that the N-terminus (amino acids 1-72) is required for its Ca2+-binding. We then used flow dialysis and CD spectropolarimetry assays to demonstrate that fortilin binds Ca2+ with a dissociation constant (Kd) of approx. 10 mM and that the binding of fortilin to Ca2+ induces a significant change in the secondary structure of fortilin. In order to evaluate the impact of the binding of fortilin to Ca2+ in vivo, we measured intracellular Ca2+ levels upon thapsigargin challenge and found that the lack of fortilin in the cell results in the exaggerated elevation of intracellular Ca2+ in the cell. We then tested various point mutants of fortilin for their Ca2+ binding and identified fortilin(E58A/E60A) to be a double-point mutant of fortilin lacking the ability of Ca2+-binding. We then found that wild-type fortilin, but not fortilin(E58A/E60A), protected cells against thapsigargin-induced apoptosis, suggesting that the binding of fortilin to Ca2+ is required for fortilin to protect cells against Ca2+-dependent apoptosis. Together, these results suggest that fortilin is an intracellular Ca2+ scavenger, protecting cells against Ca2+-dependent apoptosis by binding and sequestering Ca2+ from the downstream Ca2+-dependent apoptotic pathways.
Collapse
Affiliation(s)
- Potchanapond Graidist
- *Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Hat-Yai, Songkhla, Thailand, 90110
- †Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Houston, TX 77030, U.S.A
| | - Michio Yazawa
- ‡Faculty of Advanced Life Science, Division of Cellular Life Science, Hokkaido University, Sapporo, Japan, 060-0810
| | - Moltira Tonganunt
- †Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Houston, TX 77030, U.S.A
- §Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, Thailand, 90112
| | - Akiko Nakatomi
- ‡Faculty of Advanced Life Science, Division of Cellular Life Science, Hokkaido University, Sapporo, Japan, 060-0810
| | - Curtis Chun-Jen Lin
- †Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Houston, TX 77030, U.S.A
| | - Jui-Yoa Chang
- †Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Houston, TX 77030, U.S.A
| | - Amornrat Phongdara
- §Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, Thailand, 90112
| | - Ken Fujise
- †Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Houston, TX 77030, U.S.A
- ∥Division of Cardiology, Department of Internal Medicine, Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, U.S.A
- ¶St. Luke's Episcopal Hospital, Houston, TX 77030, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
43
|
Schaloske RH, Blaesius D, Schlatterer C, Lusche DF. Arachidonic acid is a chemoattractant for Dictyostelium discoideum cells. J Biosci 2007. [DOI: 10.1007/s12038-007-0126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Salbreux G, Joanny JF, Prost J, Pullarkat P. Shape oscillations of non-adhering fibroblast cells. Phys Biol 2007; 4:268-84. [DOI: 10.1088/1478-3975/4/4/004] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Alafag JII, Moon EK, Hong YC, Chung DI, Kong HH. Molecular and biochemical characterization of a novel actin bundling protein in Acanthamoeba. THE KOREAN JOURNAL OF PARASITOLOGY 2007; 44:331-41. [PMID: 17170575 PMCID: PMC2559136 DOI: 10.3347/kjp.2006.44.4.331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Actin binding proteins play key roles in cell structure and movement particularly as regulators of the assembly, stability and localization of actin filaments in the cytoplasm. In the present study, a cDNA clone encoding an actin bundling protein named as AhABP was isolated from Acanthamoeba healyi, a causative agent of granulomatous amebic encephalitis. This clone exhibited high similarity with genes of Physarum polycephalum and Dictyostelium discoideum, which encode actin bundling proteins. Domain search analysis revealed the presence of essential conserved regions, i.e., an active actin binding site and 2 putative calcium binding EF-hands. Transfected amoeba cells demonstrated that AhABP is primarily localized in phagocytic cups, peripheral edges, pseudopods, and in cortical cytoplasm where actins are most abundant. Moreover, AhABP after the deletion of essential regions formed ellipsoidal inclusions within transfected cells. High-speed co-sedimentation assays revealed that AhABP directly interacted with actin in the presence of up to 10 microM of calcium. Under the electron microscope, thick parallel bundles were formed by full length AhABP, in contrast to the thin actin bundles formed by constructs with deletion sites. In the light of these results, we conclude that AhABP is a novel actin bundling protein that is importantly associated with actin filaments in the cytoplasm.
Collapse
Affiliation(s)
- Joanna It-Itan Alafag
- Department of Parasitology, Kyungpook National University School of Medicine, Daegu, Korea
| | | | | | | | | |
Collapse
|
46
|
Blaser H, Reichman-Fried M, Castanon I, Dumstrei K, Marlow FL, Kawakami K, Solnica-Krezel L, Heisenberg CP, Raz E. Migration of Zebrafish Primordial Germ Cells: A Role for Myosin Contraction and Cytoplasmic Flow. Dev Cell 2006; 11:613-27. [PMID: 17084355 DOI: 10.1016/j.devcel.2006.09.023] [Citation(s) in RCA: 292] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 09/25/2006] [Accepted: 09/29/2006] [Indexed: 11/19/2022]
Abstract
The molecular and cellular mechanisms governing cell motility and directed migration in response to the chemokine SDF-1 are largely unknown. Here, we demonstrate that zebrafish primordial germ cells whose migration is guided by SDF-1 generate bleb-like protrusions that are powered by cytoplasmic flow. Protrusions are formed at sites of higher levels of free calcium where activation of myosin contraction occurs. Separation of the acto-myosin cortex from the plasma membrane at these sites is followed by a flow of cytoplasm into the forming bleb. We propose that polarized activation of the receptor CXCR4 leads to a rise in free calcium that in turn activates myosin contraction in the part of the cell responding to higher levels of the ligand SDF-1. The biased formation of new protrusions in a particular region of the cell in response to SDF-1 defines the leading edge and the direction of cell migration.
Collapse
Affiliation(s)
- Heiko Blaser
- Germ Cell Development, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cotado-Sampayo M, Ojha M, Ortega-Pérez R, Chappuis ML, Barja F. Proteolytic cleavage of a spectrin-related protein by calcium-dependent protease in Neurospora crassa. Curr Microbiol 2006; 53:311-6. [PMID: 16972126 DOI: 10.1007/s00284-006-0057-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 05/18/2006] [Indexed: 11/27/2022]
Abstract
To investigate the functional significance of a cytoskeletal spectrin-like protein, we studied its localization pattern in Neurospora crassa and sought the answer to whether it is a substrate for another apically localized protein, the calcium-dependent protease (CDP II). Immunoblots of crude extracts from exponentially growing mycelia, separated by one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis using antichicken alpha/beta-spectrin antibodies, revealed a single band of approximately relative mass (Mr) 100 kDa with an isoeletric point (pI) in the range of 6.5 to 7.0. Despite rigorous efforts, we could not confirm the presence of an Mr 240- to 220-kDa spectrin-like protein in N. crassa. The immunofluorescence- and immunogold-labeling Mr 100-kDa protein showed its predominance along the plasma membrane of the conidia during the swelling phase of germination. In contrast, in the germ tubes and the growing hyphae, the localization was polarized and concentrated mainly in the apical region. The in vitro proteolysis experiments showed that indeed this protein is a preferred substrate of CDP II which is, as mentioned previously, also localized in the apical regions of the hyphae. These results indicate a putative functional relationship between these two proteins (spectrin-like protein and CDP II) in the dynamics of tip growth.
Collapse
Affiliation(s)
- M Cotado-Sampayo
- Laboratory of Bioenergetics and Microbiology, University of Geneva, 10 Chemin des Embrouchis, CH-1254, Jussy-Geneva, Switzerland
| | | | | | | | | |
Collapse
|
48
|
Koch KV, Reinders Y, Ho TH, Sickmann A, Gräf R. Identification and isolation of Dictyostelium microtubule-associated protein interactors by tandem affinity purification. Eur J Cell Biol 2006; 85:1079-90. [PMID: 16782229 DOI: 10.1016/j.ejcb.2006.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tandem affinity purification (TAP) is a method originally established in yeast to isolate highly purified protein complexes in a very gentle and efficient way. In this work, we have modified TAP for Dictyostelium applications and have proved it as a useful method to specifically isolate and identify microtubule-associated protein (MAP) complexes. MAPs are known to interact with other proteins to fulfill their complex functions in balancing the dynamic instability of microtubules as well as anchoring microtubules at the cell cortex, controlling mitosis at the centrosome and guiding transport along them. DdEB1 and the Dictyostelium member of the XMAP215 protein family, DdCP224, are known to be part of complexes at the microtubule tips as well as at the centrosome. Employing TAP and mass spectrometry we were able to prove an interaction between EB1 and the DdCP224. Additionally, among other interactions that remain to be confirmed by other methods, an interaction between DdCP224 and a TACC-family protein could be shown for the first time in Dictyostelium and was confirmed by colocalization and co-immunoprecipitation analyses.
Collapse
Affiliation(s)
- Katrin V Koch
- Adolf-Butenandt-Institut/Zellbiologie, Ludwig-Maximilians-Universität, Schillerstrasse 42, D-80336 München, Germany
| | | | | | | | | |
Collapse
|
49
|
Michaud JLR, Chaisson KM, Parks RJ, Kennedy CRJ. FSGS-associated alpha-actinin-4 (K256E) impairs cytoskeletal dynamics in podocytes. Kidney Int 2006; 70:1054-61. [PMID: 16837921 DOI: 10.1038/sj.ki.5001665] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mutations in the ACTN4 gene, encoding the actin crosslinking protein alpha-actinin-4, are associated with a familial form of focal segmental glomerulosclerosis (FSGS). Mice with podocyte-specific expression of K256E alpha-actinin-4 develop foot process effacement and glomerulosclerosis, highlighting the importance of the cytoskeleton in podocyte structure and function. K256E alpha-actinin-4 exhibits increased affinity for F-actin. However, the downstream effects of this aberrant binding on podocyte dynamics remain unclear. Wild-type and K256E alpha-actinin-4 were expressed in cultured podocytes via adenoviral infection to determine the effect of the mutation on alpha-actinin-4 subcellular localization and on cytoskeletal-dependent processes such as adhesion, spreading, migration, and formation of foot process-like peripheral projections. Wild-type alpha-actinin-4 was detected primarily in the Triton-soluble fraction of podocyte lysates and localized to membrane-associated cortical actin and focal adhesions, with some expression along stress fibers. Conversely, K256E alpha-actinin-4 was detected predominantly in the Triton-insoluble fraction, was excluded from cortical actin, and localized almost exclusively along stress fibers. Both wild-type and K256E alpha-actinin-4-expressing podocytes adhered equally to an extracellular matrix (collagen-I). However, podocytes expressing K256E alpha-actinin-4 showed a reduced ability to spread and migrate on collagen-I. Lastly, K256E alpha-actinin-4 expression reduced the mean number of actin-rich peripheral projections. Our data suggest that aberrant sequestering of K256E alpha-actinin-4 impairs podocyte spreading, motility, and reduces the number of peripheral projections. Such intrinsic cytoskeletal derangements may underlie initial podocyte damage and foot process effacement encountered in ACTN4-associated FSGS.
Collapse
Affiliation(s)
- J-L R Michaud
- Kidney Research Centre and Molecular Medicine Program, Ottawa Health Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
50
|
Pikzack C, Prassler J, Furukawa R, Fechheimer M, Rivero F. Role of calcium-dependent actin-bundling proteins: characterization of Dictyostelium mutants lacking fimbrin and the 34-kilodalton protein. ACTA ACUST UNITED AC 2006; 62:210-31. [PMID: 16265631 DOI: 10.1002/cm.20098] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Actin-bundling proteins organize actin filaments into densely packed bundles. In Dictyostelium discoideum two abundant proteins display calcium-regulated bundling activity, fimbrin and the 34-kDa protein (ABP34). Using a GFP fusion we observed transient localization of fimbrin at the phagocytic cup and macropinosomes. The distribution of truncated constructs encompassing the EF hands and the first actin-binding domain (EA1) or both actin-binding domains devoid of EF hands (A1A2) was indistinguishable from that of the full length protein. The role of fimbrin and a possible functional overlap with ABP34 was investigated in fim- and double 34-/fim- mutants. Except for a moderate cell size defect, fim- mutants did not show defects in growth, endocytosis, exocytosis, and chemotaxis. Double mutants were characterized by a small cell size and a defect in morphogenesis resulting in small fruiting bodies and a low spore yield. The cell size defect could not be overcome by expression of fimbrin fragments EA1 or A1A2, suggesting that both bundling activity and regulation by calcium are important. Induction of filopod formation in 34-/fim- cells was not impaired, indicating that both proteins are dispensable for this process. We searched in the Dictyostelium genome database for fimbrin-like proteins that could compensate for the fimbrin defect and identified three unconventional fimbrins and two more proteins with actin-binding domains of the type present in fimbrins.
Collapse
Affiliation(s)
- Claudia Pikzack
- Zentrum für Biochemie, Medizinische Fakultät, Universität zu Köln, Köln, Germany
| | | | | | | | | |
Collapse
|