1
|
Du X, Liu R, Jiang Z, Zhang C, Yang Z, Hu S, Zhang Z. Chondrocyte lysates activate NLRP3 inflammasome-induced pyroptosis in synovial fibroblasts to exacerbate knee synovitis by downregulating caveolin-1. Arthritis Res Ther 2025; 27:104. [PMID: 40375346 PMCID: PMC12083164 DOI: 10.1186/s13075-025-03573-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Synovitis, among the most common signs of early-stage osteoarthritis (OA), is mainly mediated by fibroblast-like synoviocytes (FLSs). Cartilage destruction creates chondrocyte lysates (CLs) that activate synovial inflammation. A comprehensive understanding of chondrocyte-FLS communication might offer novel, specific therapeutic targets for treating synovitis and OA. Hence, we sought to uncover the specific role of CLs in OA-FLSs and synovitis. METHODS Isolated CLs were cocultured with FLSs to test whether they could stimulate synovial inflammation. A model of medial meniscus destabilization was prepared in C57BL/6 mice and NLRP3 knockout mice, and adeno-associated virus overexpressing Caveolin-1 (CAV1) was intra-articularly injected for 8 weeks once a week after dissection of the medial meniscus (DMM). Proteins expressed in FLSs with and without CL coculture were screened using liquid chromatography-tandem mass spectrometry to identify CL-specific regulators of NLRP3 inflammasome-mediated pyroptosis. RESULTS CLs were engulfed by FLSs, which aggravated inflammatory cytokine release and NLRP3 inflammasome-mediated FLS pyroptosis. NLRP3 expression was significantly upregulated in human OA-FLSs and FLSs cocultured with CLs, while CAV1 was downregulated. CAV1 overexpression reversed the inflammatory phenotype in FLSs and simultaneously rescued pyroptosis in CL-pre-treated FLSs. Both synovial hyperplasia and inflammatory infiltration in C57BL/6 mice with DMM surgery were alleviated after intra-articular AAV-CAV1 injection. Moreover, the CL-specific protein LIM-containing lipoma preferred partner (LPP) markedly exacerbated FLS pyroptosis and inflammation. CONCLUSIONS CLs were endocytosed by FLSs through CAV1, and the CL-specific protein LPP stimulated NLRP3 inflammasome-mediated pyroptosis and synovitis by inhibiting CAV1 expression. Our findings offer a novel therapeutic target for treating synovitis.
Collapse
Affiliation(s)
- Xue Du
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Shandong, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Ruonan Liu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Zongrui Jiang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Chengyun Zhang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Zhijian Yang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Shu Hu
- Department of Joint Surgery, Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China.
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China.
- Department of Joint Surgery and Sports Medicine, The Third Affiliated Hospital of Southern Medical University, Shandong, China.
| | - Zhiqi Zhang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
2
|
Howarth S, Sneddon G, Allinson KR, Razvi S, Mitchell AL, Pearce SHS. Replication of association at the LPP and UBASH3A loci in a UK autoimmune Addison's disease cohort. Eur J Endocrinol 2023; 188:lvac010. [PMID: 36651163 DOI: 10.1093/ejendo/lvac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/21/2022] [Accepted: 11/30/2022] [Indexed: 01/13/2023]
Abstract
Autoimmune Addison's disease (AAD) arises from a complex interplay between multiple genetic susceptibility polymorphisms and environmental factors. The first genome wide association study (GWAS) with patients from Scandinavian Addison's registries has identified association signals at four novel loci in the genes LPP, SH2B3, SIGLEC5, and UBASH3A. To verify these novel risk loci, we performed a case-control association study in our independent cohort of 420 patients with AAD from the across the UK. We report significant association of alleles of the LPP and UBASH3A genes [odds ratio (95% confidence intervals), 1.46 (1.21-1.75)and 1.40 (1.16-1.68), respectively] with AAD in our UK cohort. In addition, we report nominal association of AAD with SH2B3 [OR 1.18 (1.02-1.35)]. We confirm that variants at the LPP and UBASH3A loci confer susceptibility to AAD in a UK population. Further studies with larger patient cohorts are required to robustly confirm the association of SH2B3 and SIGLEC5/SPACA6 alleles.
Collapse
Affiliation(s)
- Sophie Howarth
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Georgina Sneddon
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Kathleen R Allinson
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Salman Razvi
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Anna L Mitchell
- Department of Endocrinology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Simon H S Pearce
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
- Department of Endocrinology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| |
Collapse
|
3
|
Sporkova A, Ghosh S, Al-Hasani J, Hecker M. Lin11-Isl1-Mec3 Domain Proteins as Mechanotransducers in Endothelial and Vascular Smooth Muscle Cells. Front Physiol 2021; 12:769321. [PMID: 34867475 PMCID: PMC8640458 DOI: 10.3389/fphys.2021.769321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Arterial hypertension is the leading risk factor for cardiovascular morbidity and mortality worldwide. However, little is known about the cellular mechanisms underlying it. In small arteries and arterioles, a chronic increase in blood pressure raises wall tension and hence stretches, namely, the medial vascular smooth muscle cells (VSMC) but also endothelial cell (EC) to cell contacts. Initially compensated by an increase in vascular tone, the continuous biomechanical strain causes a prominent change in gene expression in both cell types, frequently driving an arterial inward remodeling process that ultimately results in a reduction in lumen diameter, stiffening of the vessel wall, and fixation of blood pressure, namely, diastolic blood pressure, at the elevated level. Sensing and propagation of this supraphysiological stretch into the nucleus of VSMC and EC therefore seems to be a crucial step in the initiation and advancement of hypertension-induced arterial remodeling. Focal adhesions (FA) represent an important interface between the extracellular matrix and Lin11-Isl1-Mec3 (LIM) domain-containing proteins, which can translocate from the FA into the nucleus where they affect gene expression. The varying biomechanical cues to which vascular cells are exposed can thus be rapidly and specifically propagated to the nucleus. Zyxin was the first protein described with such mechanotransducing properties. It comprises 3 C-terminal LIM domains, a leucine-rich nuclear export signal, and N-terminal features that support its association with the actin cytoskeleton. In the cytoplasm, zyxin promotes actin assembly and organization as well as cell motility. In EC, zyxin acts as a transcription factor, whereas in VSMC, it has a less direct effect on mechanosensitive gene expression. In terms of homology and structural features, lipoma preferred partner is the nearest relative of zyxin among the LIM domain proteins. It is almost exclusively expressed by smooth muscle cells in the adult, resides like zyxin at FA but seems to affect mechanosensitive gene expression indirectly, possibly via altering cortical actin dynamics. Here, we highlight what is currently known about the role of these LIM domain proteins in mechanosensing and transduction in vascular cells.
Collapse
Affiliation(s)
- Alexandra Sporkova
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Subhajit Ghosh
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Jaafar Al-Hasani
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site, Heidelberg/Mannheim, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site, Heidelberg/Mannheim, Germany
| |
Collapse
|
4
|
Liu Y, Wang Y, Qi R, Mao X, Jin F. Expression of lipoma preferred partner in mammary and extramammary Paget disease. Medicine (Baltimore) 2020; 99:e23443. [PMID: 33371071 PMCID: PMC7748372 DOI: 10.1097/md.0000000000023443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/23/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGOUND This study aims to identify the expression of lipoma preferred partner (LPP) in Paget disease (PD) and to further understand the pathogenesis of PD. METHODS Tissue microarray was used to evaluate the expression of LPP by immunohistochemistry in 40 PD patients. The results of LPP expression were combined with clinical and histopathological characteristics. Patient files were analyzed retrospectively. RESULTS Twenty-one cases were mammary Paget disease (MPD) and 19 extramammary Paget disease (EMPD) involving the vulva, scrotum, and penis. LPP was expressed in PD and this expression was significantly greater in MPD versus EMPD (P = .031). The expression of LPP in MPD was significantly related with age (P = .009) and expression of Ki-67 (P = .011). No statistically significant differences were observed in LPP expression as related to sex, body location, and time of PD diagnosis. CONCLUSIONS While LPP is expressed in both MPD and EMPD, the intensity of this expression is greater in MPD. LPP expression is positively correlated with Ki-67 and is more prevalent in middle-aged versus senior MPD patients. Further research is needed to determine its potential role in tumorigenesis and distribution.
Collapse
Affiliation(s)
- Ye Liu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University
| | - Yangbin Wang
- Department of Dermatology, The First Hospital of China Medical University, Heping District, Shenyang, Liaoning Province, P.R. China
| | - Ruiqun Qi
- Department of Dermatology, The First Hospital of China Medical University, Heping District, Shenyang, Liaoning Province, P.R. China
| | - Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University
| |
Collapse
|
5
|
Chen YJ, Chang WA, Wu LY, Huang CF, Chen CH, Kuo PL. Identification of Novel Genes in Osteoarthritic Fibroblast-Like Synoviocytes Using Next-Generation Sequencing and Bioinformatics Approaches. Int J Med Sci 2019; 16:1057-1071. [PMID: 31523167 PMCID: PMC6743272 DOI: 10.7150/ijms.35611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/05/2019] [Indexed: 01/15/2023] Open
Abstract
Synovitis in osteoarthritis (OA) the consequence of low grade inflammatory process caused by cartilage breakdown products that stimulated the production of pro-inflammatory mediators by fibroblast-like synoviocytes (FLS). FLS participate in joint homeostasis and low grade inflammation in the joint microenvironment triggers FLS transformation. In the current study, we aimed to identify differentially expressed genes and potential miRNA regulations in human OA FLS through deep sequencing and bioinformatics approaches. The 245 differentially expressed genes in OA FLS were identified, and pathway analysis using various bioinformatics databases indicated their enrichment in functions related to altered extracellular matrix organization, cell adhesion and cellular movement. Moreover, among the 14 dysregulated genes with potential miRNA regulations identified, src kinase associated phosphoprotein 2 (SKAP2), adaptor related protein complex 1 sigma 2 subunit (AP1S2), PHD finger protein 21A (PHF21A), lipoma preferred partner (LPP), and transcription factor AP-2 alpha (TFAP2A) showed similar expression patterns in OA FLS and OA synovial tissue datasets in Gene Expression Omnibus database. Ingenuity Pathway Analysis identified the dysregulated LPP participated in cell migration and cell spreading of OA FLS, which was potentially regulated by miR-141-3p. The current findings suggested new perspectives into understanding the novel molecular signatures of FLS involved in the pathogenesis of OA, which may be potential therapeutic targets.
Collapse
Affiliation(s)
- Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ling-Yu Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ching-Fen Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chia-Hsin Chen
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.,Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Center for Cancer Research, Kaohsiung Medical University
| |
Collapse
|
6
|
Abstract
Polymerase δ-interacting protein 2 (Poldip2) is a multifunctional protein originally described as a binding partner of the p50 subunit of DNA polymerase δ and proliferating cell nuclear antigen. In addition to its role in DNA replication and damage repair, Poldip2 has been implicated in mitochondrial function, extracellular matrix regulation, cell cycle progression, focal adhesion turnover, and cell migration. However, Poldip2 functions are incompletely understood. In this review, we discuss recent literature on Poldip2 tissue distribution, subcellular localization, and function. We also address the putative function of Poldip2 in cardiovascular disease, neurodegenerative conditions and in renal pathophysiology.
Collapse
|
7
|
Ngan E, Kiepas A, Brown CM, Siegel PM. Emerging roles for LPP in metastatic cancer progression. J Cell Commun Signal 2017; 12:143-156. [PMID: 29027626 DOI: 10.1007/s12079-017-0415-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/03/2017] [Indexed: 01/21/2023] Open
Abstract
LIM domain containing proteins are important regulators of diverse cellular processes, and play pivotal roles in regulating the actin cytoskeleton. Lipoma Preferred Partner (LPP) is a member of the zyxin family of LIM proteins that has long been characterized as a promoter of mesenchymal/fibroblast cell migration. More recently, LPP has emerged as a critical inducer of tumor cell migration, invasion and metastasis. LPP is thought to contribute to these malignant phenotypes by virtue of its ability to shuttle into the nucleus, localize to adhesions and, most recently, to promote invadopodia formation. In this review, we will examine the mechanisms through which LPP regulates the functions of adhesions and invadopodia, and discuss potential roles of LPP in mediating cellular responses to mechanical cues within these mechanosensory structures.
Collapse
Affiliation(s)
- Elaine Ngan
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 508, Montréal, Québec, H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Alex Kiepas
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Claire M Brown
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 508, Montréal, Québec, H3A 1A3, Canada. .,Department of Medicine, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
8
|
Kuriyama S, Yoshida M, Yano S, Aiba N, Kohno T, Minamiya Y, Goto A, Tanaka M. LPP inhibits collective cell migration during lung cancer dissemination. Oncogene 2015; 35:952-64. [DOI: 10.1038/onc.2015.155] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 03/13/2015] [Accepted: 03/20/2015] [Indexed: 12/13/2022]
|
9
|
Van Itallie CM, Tietgens AJ, Aponte A, Fredriksson K, Fanning AS, Gucek M, Anderson JM. Biotin ligase tagging identifies proteins proximal to E-cadherin, including lipoma preferred partner, a regulator of epithelial cell-cell and cell-substrate adhesion. J Cell Sci 2013; 127:885-95. [PMID: 24338363 DOI: 10.1242/jcs.140475] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Known proteins associated with the cell-adhesion protein E-cadherin include catenins and proteins involved in signaling, trafficking and actin organization. However, the list of identified adherens junction proteins is likely to be incomplete, limiting investigation into this essential cell structure. To expand the inventory of potentially relevant proteins, we expressed E-cadherin fused to biotin ligase in MDCK epithelial cells, and identified by mass spectrometry neighboring proteins that were biotinylated. The most abundant of the 303 proteins identified were catenins and nearly 40 others that had been previously reported to influence cadherin function. Many others could be rationalized as novel candidates for regulating the adherens junction, cytoskeleton, trafficking or signaling. We further characterized lipoma preferred partner (LPP), which is present at both cell contacts and focal adhesions. Knockdown of LPP demonstrated its requirement for E-cadherin-dependent adhesion and suggested that it plays a role in coordination of the cell-cell and cell-substrate cytoskeletal interactions. The analysis of LPP function demonstrates proof of principle that the proteomic analysis of E-cadherin proximal proteins expands the inventory of components and tools for understanding the function of E-cadherin.
Collapse
Affiliation(s)
- Christina M Van Itallie
- Laboratory of Tight Junction Structure and Function, NHLBI, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Mesenchymal cell migration is important for embryogenesis and tissue regeneration. In addition, it has been implicated in pathological conditions such as the dissemination of cancer cells. A characteristic of mesenchymal-migrating cells is the presence of actin stress fibres, which are thought to mediate myosin II-based contractility in close cooperation with associated focal adhesions. Myosin II-based contractility regulates various cellular activities, which occur in a spatial and temporal manner to achieve directional cell migration. These myosin II-based activities involve the maturation of integrin-based adhesions, generation of traction forces, establishment of the front-to-back polarity axis, retraction of the trailing edge, extracellular matrix remodelling and mechanotransduction. Growing evidence suggests that actin stress fibre subtypes, namely dorsal stress fibres, transverse arcs and ventral stress fibres, could provide this spatial and temporal myosin II-based activity. Consistent with their functional differences, recent studies have demonstrated that the molecular composition of actin stress fibre subtypes differ significantly. This present review focuses on the current view of the molecular composition of actin stress fibre subtypes and how these fibre subtypes regulate mesenchymal cell migration.
Collapse
Affiliation(s)
- Tea Vallenius
- Institute of Biotechnology, University of Helsinki, PO Box 56, Helsinki 00014, Finland.
| |
Collapse
|
11
|
Hooper CL, Paudyal A, Dash PR, Boateng SY. Modulation of stretch-induced myocyte remodeling and gene expression by nitric oxide: a novel role for lipoma preferred partner in myofibrillogenesis. Am J Physiol Heart Circ Physiol 2013; 304:H1302-13. [PMID: 23504181 DOI: 10.1152/ajpheart.00004.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prolonged hemodynamic load as a result of hypertension eventually leads to maladaptive cardiac adaptation and heart failure. The signaling pathways that underlie these changes are still poorly understood. The adaptive response to mechanical load is mediated by mechanosensors that convert the mechanical stimuli into a biological response. We examined the effect of cyclic mechanical stretch on myocyte adaptation using neonatal rat ventricular myocytes with 10% (adaptive) or 20% (maladaptive) maximum strain at 1 Hz for 48 h to mimic in vivo mechanical stress. Cells were also treated with and without nitro-L-arginine methyl ester (L-NAME), a general nitric oxide synthase (NOS) inhibitor to suppress NO production. Maladaptive 20% mechanical stretch led to a significant loss of intact sarcomeres that were rescued by L-NAME (P < 0.05; n ≥ 5 cultures). We hypothesized that the mechanism was through NO-induced alteration of myocyte gene expression. L-NAME upregulated the mechanosensing proteins muscle LIM protein (MLP; by 100%; P < 0.05; n = 5 cultures) and lipoma preferred partner (LPP), a novel cardiac protein (by 80%; P < 0.05; n = 4 cultures). L-NAME also significantly altered the subcellular localization of LPP and MLP in a manner that favored growth and adaptation. These findings suggest that NO participates in stretch-mediated adaptation. The use of isoform selective NOS inhibitors indicated a complex interaction between inducible NOS and neuronal NOS isoforms regulate gene expression. LPP knockdown by small intefering RNA led to formation of α-actinin aggregates and Z bodies showing that myofibrillogenesis was impaired. There was an upregulation of E3 ubiquitin ligase (MUL1) by 75% (P < 0.05; n = 5 cultures). This indicates that NO contributes to stretch-mediated adaptation via the upregulation of proteins associated with mechansensing and myofibrillogenesis, thereby presenting potential therapeutic targets during the progression of heart failure.
Collapse
Affiliation(s)
- Charlotte L Hooper
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| | | | | | | |
Collapse
|
12
|
Ngan E, Northey JJ, Brown CM, Ursini-Siegel J, Siegel PM. A complex containing LPP and α-actinin mediates TGFβ-induced migration and invasion of ErbB2-expressing breast cancer cells. J Cell Sci 2013; 126:1981-91. [PMID: 23447672 DOI: 10.1242/jcs.118315] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Transforming growth factor β (TGFβ) is a potent modifier of the malignant phenotype in ErbB2-expressing breast cancers. We demonstrate that epithelial-derived breast cancer cells, which undergo a TGFβ-induced epithelial-to-mesenchymal transition (EMT), engage signaling molecules that normally facilitate cellular migration and invasion of mesenchymal cells. We identify lipoma preferred partner (LPP) as an indispensable regulator of TGFβ-induced migration and invasion of ErbB2-expressing breast cancer cells. We show that LPP re-localizes to focal adhesion complexes upon TGFβ stimulation and is a critical determinant in TGFβ-mediated focal adhesion turnover. Finally, we have determined that the interaction between LPP and α-actinin, an actin cross-linking protein, is necessary for TGFβ-induced migration and invasion of ErbB2-expressing breast cancer cells. Thus, our data reveal that LPP, which is normally operative in cells of mesenchymal origin, can be co-opted by breast cancer cells during an EMT to promote their migration and invasion.
Collapse
Affiliation(s)
- Elaine Ngan
- Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada
| | | | | | | | | |
Collapse
|
13
|
Qu Z, Yu J, Ruan Q. TGF-β1-induced LPP expression dependant on Rho kinase during differentiation and migration of bone marrow-derived smooth muscle progenitor cells. ACTA ACUST UNITED AC 2012; 32:459-465. [PMID: 22886954 DOI: 10.1007/s11596-012-0080-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Indexed: 12/24/2022]
Abstract
Lipoma preferred partner (LPP) has been identified as a protein which is highly selective for smooth muscle progenitor cells (SMPCs) and regulates differentiation and migration of SMPCs, but mechanisms of LPP expression are not elucidated clearly. The aim of the present study was to discuss the mechanisms by which LPP expression is regulated in the differentiation and migration of SMPCs induced by TGF-β1. It was found that TGF-β1 could significantly increase the expression of LPP, smooth muscle α-actin, smooth muscle myosin heavy chain (SM-MHC), and smoothelin in SMPCs. Moreover, inactivation of Rho kinase (ROK) with ROK inhibitors significantly inhibited LPP mRNA expression in TGF-β1-treated SMPCs and mouse aortic smooth muscle cells (MAoSMCs). At the same time, LPP silencing with short interfering RNA significantly decreased SMPCs migration. In conclusion, LPP appears to be a ROK-dependant SMPCs differentiation marker that plays a role in regulating SMPCs migration.
Collapse
Affiliation(s)
- Zhiling Qu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Yu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiurong Ruan
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
14
|
Hooper CL, Dash PR, Boateng SY. Lipoma preferred partner is a mechanosensitive protein regulated by nitric oxide in the heart. FEBS Open Bio 2012; 2:135-44. [PMID: 23650592 PMCID: PMC3642136 DOI: 10.1016/j.fob.2012.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/27/2012] [Accepted: 05/29/2012] [Indexed: 12/17/2022] Open
Abstract
Adaptor proteins play an important role in signaling pathways by providing a platform on which many other proteins can interact. Malfunction or mislocalization of these proteins may play a role in the development of disease. Lipoma preferred partner (LPP) is a nucleocytoplasmic shuttling adaptor protein. Previous work shows that LPP plays a role in the function of smooth muscle cells and in atherosclerosis. In this study we wanted to determine whether LPP has a role in the myocardium. LPP expression increased by 56% in hearts from pressure overload aortic-banded rats (p < 0.05 n = 4), but not after myocardial infarction, suggesting hemodynamic load regulates its expression. In vitro, LPP expression was 87% higher in cardiac fibroblasts than myocytes (p < 0.05 n = 3). LPP expression was downregulated in the absence of the actin cytoskeleton but not when microtubules were disassembled. We mechanically stretched cardiac fibroblasts using the Flexcell 4000 for 48 h (1 Hz, 5% maximum strain), which decreased total LPP total expression and membrane localization in subcellular fractions (p < 0.05, n = 5). However, L-NAME, an inhibitor of nitric oxide synthase (NOS), significantly upregulated LPP expression. These findings suggest that LPP is regulated by a complex interplay between NO and mechanical cues and may play a role in heart failure induced by increased hemodynamic load.
Collapse
Affiliation(s)
- Charlotte L Hooper
- Institute of Cardiovascular and Metabolic Research. The Schools of Biological Sciences and Pharmacy, University of Reading, Reading Berkshire, United Kingdom
| | | | | |
Collapse
|
15
|
Cell Adhesion and Transcriptional Activity - Defining the Role of the Novel Protooncogene LPP. Transl Oncol 2011; 2:107-16. [PMID: 19701494 DOI: 10.1593/tlo.09112] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 02/20/2009] [Accepted: 02/25/2009] [Indexed: 12/13/2022] Open
Abstract
Integrating signals from the extracellular matrix through the cell surface into the nucleus is an essential feature of metazoan life. To date, many signal transducers known as shuttle proteins have been identified to act as both a cytoskeletal and a signaling protein. Among them, the most prominent representatives are zyxin and lipoma preferred (translocation) partner (LPP). These proteins belong to the LIM domain protein family and are associated with cell migration, proliferation, and transcription. LPP was first identified in benign human lipomas and was subsequently found to be overexpressed in human malignancies such as lung carcinoma, soft tissue sarcoma, and leukemia. This review portrays LPP in the context of human neoplasia based on a study of the literature to define its important role as a novel protooncogene in carcinogenesis.
Collapse
|
16
|
Renfranz PJ, Blankman E, Beckerle MC. The cytoskeletal regulator zyxin is required for viability in Drosophila melanogaster. Anat Rec (Hoboken) 2010; 293:1455-69. [PMID: 20648572 PMCID: PMC2939194 DOI: 10.1002/ar.21193] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The zyxin family of proteins function as cytoskeletal regulators in adhesion, actin assembly, and cell motility. Though fibroblasts derived from zyxin-null mice show striking defects in motility and response to mechanical stimuli, the mice are viable and fertile. In Drosophila melanogaster, the family is represented by a single homologue, Zyx102. To study the role of zyxin during development, we generated a zyx102 RNA-interference transgenic line that allows for the conditional knockdown of Zyx102. When UAST-zyx102-dsRNAi expression is driven broadly by Actin5C-GAL4, loss of Zyx102 results in lethality during the pharate adult stage, a narrow developmental window during which the fly must molt, resorb molting fluid, fill adult trachea with air, and execute a behavioral program to eclose. Zyx102 knockdown animals attempt to emerge, but their adult trachea do not fill with air. If dissected from the pupal case, knockdown individuals appear morphologically normal, but remain inviable.
Collapse
Affiliation(s)
| | | | - Mary C. Beckerle
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Biology, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
17
|
Targeted disruption of the mouse Lipoma Preferred Partner gene. Biochem Biophys Res Commun 2008; 379:368-73. [PMID: 19111675 DOI: 10.1016/j.bbrc.2008.12.074] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 12/11/2008] [Indexed: 01/13/2023]
Abstract
LPP (Lipoma Preferred Partner) is a zyxin-related cell adhesion protein that is involved in the regulation of cell migration. We generated mice with a targeted disruption of the Lpp gene and analysed the importance of Lpp for embryonic development and adult functions. Aberrant Mendelian inheritance in heterozygous crosses suggested partial embryonic lethality of Lpp(-/-) females. Fertility of Lpp(-/-) males was proven to be normal, however, females from Lpp(-/-) x Lpp(-/-) crosses produced a strongly reduced number of offspring, probably due to a combination of female embryonic lethality and aberrant pregnancies. Apart from these developmental and reproductive abnormalities, Lpp(-/-) mice that were born reached adulthood without displaying any additional macroscopic defects. On the other hand, Lpp(-/-) mouse embryonic fibroblasts exhibited reduced migration capacity, reduced viability, and reduced expression of some Lpp interaction partners. Finally, we discovered a short nuclear form of Lpp, expressed mainly in testis via an alternative promoter.
Collapse
|
18
|
Petit MM, Lindskog H, Larsson E, Wasteson P, Athley E, Breuer S, Angstenberger M, Hertfelder D, Mattsson E, Nordheim A, Nelander S, Lindahl P. Smooth Muscle Expression of Lipoma Preferred Partner Is Mediated by an Alternative Intronic Promoter That Is Regulated by Serum Response Factor/Myocardin. Circ Res 2008; 103:61-9. [DOI: 10.1161/circresaha.108.177436] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lipoma preferred partner (LPP) was recently recognized as a smooth muscle marker that plays a role in smooth muscle cell migration. In this report, we focus on the transcriptional regulation of the LPP gene. In particular, we investigate whether LPP is directly regulated by serum response factor (SRF). We show that the LPP gene contains 3 evolutionarily conserved CArG boxes and that 1 of these is part of an alternative promoter in intron 2. Quantitative RT-PCR shows that this alternative promoter directs transcription specifically to smooth muscle containing tissues in vivo. By using chromatin immunoprecipitation, we demonstrate that 2 of the CArG boxes, including the promoter-associated CArG box, bind to endogenous SRF in cultured aortic smooth muscle cells. Electrophoretic mobility-shift assays show that the conserved CArG boxes bind SRF in vitro. In reporter experiments, we show that the alternative promoter has transcriptional capacity that is dependent on SRF/myocardin and that the promoter associated CArG box is required for that activity. Finally, we show by quantitative RT-PCR that the alternative promoter is strongly downregulated in SRF-deficient embryonic stem cells and in smooth muscle tissues derived from conditional SRF knockout mice. Collectively, our data demonstrate that expression of LPP in smooth muscle is mediated by an alternative promoter that is regulated by SRF/myocardin.
Collapse
Affiliation(s)
- Marleen M.R. Petit
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Henrik Lindskog
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Erik Larsson
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Per Wasteson
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Elisabeth Athley
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Silke Breuer
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Meike Angstenberger
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - David Hertfelder
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Erney Mattsson
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Alfred Nordheim
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Sven Nelander
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| | - Per Lindahl
- From the Wallenberg Laboratory (M.M.R.P., H.L., E.L., P.W., E.A., S.B., E.M., S.N., P.L.), Sahlgrenska University Hospital, Göteborg, Sweden; Institute of Biomedicine (E.L., P.W., P.L.), Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Göteborg, Göteborg, Sweden; and Interfaculty Institute for Cell Biology (M.A., D.H., A.N.), Tuebingen University, Germany. Present address for M.M.R.P.: Department of Human Genetics, University of Leuven, Belgium. Present
| |
Collapse
|
19
|
Hansen MDH, Beckerle MC. alpha-Actinin links LPP, but not zyxin, to cadherin-based junctions. Biochem Biophys Res Commun 2008; 371:144-8. [PMID: 18413140 PMCID: PMC2676570 DOI: 10.1016/j.bbrc.2008.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 04/03/2008] [Indexed: 11/26/2022]
Abstract
The actin regulator VASP localizes to cell-cell junctions and has been implicated in cell-cell adhesion. VASP is recruited to sites of actin dynamics by interactions with proline rich FPPPPP motifs. Zyxin and its relative LPP use FPPPPP motifs to recruit VASP to specific cellular locations, thus directing changes in actin dynamics. It has been proposed that zyxin and LPP localize to cell-cell junctions by binding alpha-actinin. However, the role of alpha-actinin in recruiting zyxin and LPP to cell-cell contacts has not been experimentally tested. Here we use zyxin and LPP fragments to demonstrate that the alpha-actinin binding site of both proteins independently targets to cell-cell junctions. While the alpha-actinin binding site is required for LPP localization and function at cell-cell contacts, zyxin localization and function at cell-cell contacts is independent of the alpha-actinin binding site. Perturbation of LPP function, but not that of zyxin, results in changes in anchoring of alpha-actinin to detergent-insoluble networks at cell-cell contacts.
Collapse
Affiliation(s)
- Marc D. H. Hansen
- Physiology and Developmental Biology, Brigham Young University, 574 WIDB, Provo, UT 84602, Phone: (801) 422-4998, Fax: (801) 422-0700,
| | - Mary C. Beckerle
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84102, phone: (801) 581-4485, fax: (801) 581-2175,
| |
Collapse
|
20
|
Vervenne HBVK, Crombez KRMO, Lambaerts K, Carvalho L, Köppen M, Heisenberg CP, Van de Ven WJM, Petit MMR. Lpp is involved in Wnt/PCP signaling and acts together with Scrib to mediate convergence and extension movements during zebrafish gastrulation. Dev Biol 2008; 320:267-77. [PMID: 18582857 DOI: 10.1016/j.ydbio.2008.05.529] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 05/09/2008] [Accepted: 05/09/2008] [Indexed: 01/03/2023]
Abstract
The zyxin-related LPP protein is localized at focal adhesions and cell-cell contacts and is involved in the regulation of smooth muscle cell migration. A known interaction partner of LPP in human is the tumor suppressor protein SCRIB. Knocking down scrib expression during zebrafish embryonic development results in defects of convergence and extension (C&E) movements, which occur during gastrulation and mediate elongation of the anterior-posterior body axis. Mediolateral cell polarization underlying C&E is regulated by a noncanonical Wnt signaling pathway constituting the vertebrate planar cell polarity (PCP) pathway. Here, we investigated the role of Lpp during early zebrafish development. We show that morpholino knockdown of lpp results in defects of C&E, phenocopying noncanonical Wnt signaling mutants. Time-lapse analysis associates the defective dorsal convergence movements with a reduced ability to migrate along straight paths. In addition, expression of Lpp is significantly reduced in Wnt11 morphants and in embryos overexpressing Wnt11 or a dominant-negative form of Rho kinase 2, which is a downstream effector of Wnt11, suggesting that Lpp expression is dependent on noncanonical Wnt signaling. Finally, we demonstrate that Lpp interacts with the PCP protein Scrib in zebrafish, and that Lpp and Scrib cooperate for the mediation of C&E.
Collapse
Affiliation(s)
- Hilke B V K Vervenne
- Laboratory for Molecular Oncology, Department of Human Genetics, K.U. Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Bai CY, Ohsugi M, Abe Y, Yamamoto T. ZRP-1 controls Rho GTPase-mediated actin reorganization by localizing at cell-matrix and cell-cell adhesions. J Cell Sci 2007; 120:2828-37. [PMID: 17652164 DOI: 10.1242/jcs.03477] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Focal adhesion protein ZRP-1/TRIP6 has been implicated in actin reorganization and cell motility. The role of ZRP-1, however, remained obscure because previously reported data are often conflicting one another. In the present study, we examined roles of ZRP-1 in HeLa cells. ZRP-1 is localized to the cell-cell contact sites as well as to cell-matrix contact sites in HeLa cells. RNA-interference-mediated depletion of ZRP-1 from HeLa cells revealed that ZRP-1 is essential not only for the formation of stress fibers and assembly of mature focal adhesions, but also for the actin reorganization at cell-cell contact sites and for correct cell-cell adhesion and, thus, for collective cell migration. Impairment of focal adhesions and stress fibers caused by ZRP-1 depletion has been associated with reduced tyrosine phosphorylation of FAK. However, maturation of focal adhesions could not be recovered by expression of active FAK. Interestingly, stress fibers in ZRP-1-depleted cells were ameliorated by exogenous expression of RhoA. We also found that total Rac1 activity is elevated in ZRP-1-depleted cells, resulting in abnormal burst of actin polymerization and dynamic membrane protrusions. Taken together, we conclude that that ZRP-1 plays a crucial role in coupling the cell-matrix/cell-cell-contact signals with Rho GTPase-mediated actin remodeling by localizing at cell-matrix and cell-cell contact sites.
Collapse
Affiliation(s)
- Chen-Yu Bai
- Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
22
|
Guo B, Sallis RE, Greenall A, Petit MMR, Jansen E, Young L, Van de Ven WJM, Sharrocks AD. The LIM domain protein LPP is a coactivator for the ETS domain transcription factor PEA3. Mol Cell Biol 2006; 26:4529-38. [PMID: 16738319 PMCID: PMC1489114 DOI: 10.1128/mcb.01667-05] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
PEA3 is a member of a subfamily of ETS domain transcription factors which is regulated by a number of signaling cascades, including the mitogen-activated protein (MAP) kinase pathways. PEA3 activates gene expression and is thought to play an important role in promoting tumor metastasis and also in neuronal development. Here, we have identified the LIM domain protein LPP as a novel coregulatory binding partner for PEA3. LPP has intrinsic transactivation capacity, forms a complex with PEA3, and is found associated with PEA3-regulated promoters. By manipulating LPP levels, we show that it acts to upregulate the transactivation capacity of PEA3. LPP can also functionally interact in a similar manner with the related family member ER81. Thus, we have uncovered a novel nuclear function for the LIM domain protein LPP as a transcriptional coactivator. As LPP continually shuttles between the cell periphery and the nucleus, it represents a potential novel link between cell surface events and changes in gene expression.
Collapse
Affiliation(s)
- Baoqiang Guo
- Faculty of Life Sciences, University of Manchester, Michael Smith Bldg., Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lai YJ, Chen CS, Lin WC, Lin FT. c-Src-mediated phosphorylation of TRIP6 regulates its function in lysophosphatidic acid-induced cell migration. Mol Cell Biol 2005; 25:5859-68. [PMID: 15988003 PMCID: PMC1168818 DOI: 10.1128/mcb.25.14.5859-5868.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
TRIP6 (thyroid receptor-interacting protein 6), also known as ZRP-1 (zyxin-related protein 1), is a member of the zyxin family that has been implicated in cell motility. Previously we have shown that TRIP6 binds to the LPA2 receptor and associates with several components of focal complexes in an agonist-dependent manner and, thus, enhances lysophosphatidic acid (LPA)-induced cell migration. Here we further report that the function of TRIP6 in LPA signaling is regulated by c-Src-mediated phosphorylation of TRIP6 at the Tyr-55 residue. LPA stimulation induces tyrosine phosphorylation of endogenous TRIP6 in NIH 3T3 cells and c-Src-expressing fibroblasts, which is virtually eliminated in Src-null fibroblasts. Strikingly, both phosphotyrosine-55 and proline-58 residues of TRIP6 are required for Crk binding in vitro and in cells. Mutation of Tyr-55 to Phe does not alter the ability of TRIP6 to localize at focal adhesions or associate with actin. However, it abolishes the association of TRIP6 with Crk and p130cas in cells and significantly reduces the function of TRIP6 to promote LPA-induced ERK activation. Ultimately, these signaling events control TRIP6 function in promoting LPA-induced morphological changes and cell migration.
Collapse
Affiliation(s)
- Yun-Ju Lai
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA
| | | | | | | |
Collapse
|
24
|
The tumor suppressor Scrib interacts with the zyxin-related protein LPP, which shuttles between cell adhesion sites and the nucleus. BMC Cell Biol 2005; 6:1. [PMID: 15649318 PMCID: PMC546208 DOI: 10.1186/1471-2121-6-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Accepted: 01/13/2005] [Indexed: 11/22/2022] Open
Abstract
Background At sites of cell adhesion, proteins exist that not only perform structural tasks but also have a signaling function. Previously, we found that the Lipoma Preferred Partner (LPP) protein is localized at sites of cell adhesion such as focal adhesions and cell-cell contacts, and shuttles to the nucleus where it has transcriptional activation capacity. LPP is a member of the zyxin family of proteins, which contains five members: ajuba, LIMD1, LPP, TRIP6 and zyxin. LPP has three LIM domains (zinc-finger protein interaction domains) at its carboxy-terminus, which are preceded by a proline-rich pre-LIM region containing a number of protein interaction domains. Results To catch the role of LPP at sites of cell adhesion, we made an effort to identify binding partners of LPP. We found the tumor suppressor protein Scrib, which is a component of cell-cell contacts, as interaction partner of LPP. Human Scrib, which is a functional homologue of Drosophila scribble, is a member of the leucine-rich repeat and PDZ (LAP) family of proteins that is involved in the regulation of cell adhesion, cell shape and polarity. In addition, Scrib displays tumor suppressor activity. The binding between Scrib and LPP is mediated by the PDZ domains of Scrib and the carboxy-terminus of LPP. Both proteins localize in cell-cell contacts. Whereas LPP is also localized in focal adhesions and in the nucleus, Scrib could not be detected at these locations in MDCKII and CV-1 cells. Furthermore, our investigations indicate that Scrib is dispensable for targeting LPP to focal adhesions and to cell-cell contacts, and that LPP is not necessary for localizing Scrib in cell-cell contacts. We show that all four PDZ domains of Scrib are dispensable for localizing this protein in cell-cell contacts. Conclusions Here, we identified an interaction between one of zyxin's family members, LPP, and the tumor suppressor protein Scrib. Both proteins localize in cell-cell contacts. This interaction links Scrib to a communication pathway between cell-cell contacts and the nucleus, and implicates LPP in Scrib-associated functions.
Collapse
|
25
|
Li B, Zhuang L, Trueb B. Zyxin interacts with the SH3 domains of the cytoskeletal proteins LIM-nebulette and Lasp-1. J Biol Chem 2004; 279:20401-10. [PMID: 15004028 DOI: 10.1074/jbc.m310304200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Zyxin is a versatile component of focal adhesions in eukaryotic cells. Here we describe a novel binding partner of zyxin, which we have named LIM-nebulette. LIM-nebulette is an alternative splice variant of the sarcomeric protein nebulette, which, in contrast to nebulette, is expressed in non-muscle cells. It displays a modular structure with an N-terminal LIM domain, three nebulin-like repeats, and a C-terminal SH3 domain and shows high similarity to another cytoskeletal protein, Lasp-1 (LIM and SH3 protein-1). Co-precipitation studies and results obtained with the two-hybrid system demonstrate that LIM-nebulette and Lasp-1 interact specifically with zyxin. Moreover, the SH3 domain from LIM-nebulette is both necessary and sufficient for zyxin binding. The SH3 domains from Lasp-1 and nebulin can also interact with zyxin, but the SH3 domains from more distantly related proteins such as vinexin and sorting nexin 9 do not. On the other hand, the binding site in zyxin is situated at the extreme N terminus as shown by site-directed mutagenesis. LIM-nebulette and Lasp-1 use the same linear binding motif. This motif shows some similarity to a class II binding site but does not contain the classical PXXP sequence. LIM-nebulette reveals a subcellular distribution at focal adhesions similar to Lasp-1. Thus, LIM-nebulette, Lasp-1, and zyxin may play an important role in the organization of focal adhesions.
Collapse
Affiliation(s)
- Bo Li
- ITI Research Institute, University of Bern, P. O. Box 54, CH-3010 Bern, Switzerland
| | | | | |
Collapse
|
26
|
Gorenne I, Nakamoto RK, Phelps CP, Beckerle MC, Somlyo AV, Somlyo AP. LPP, a LIM protein highly expressed in smooth muscle. Am J Physiol Cell Physiol 2003; 285:C674-85. [PMID: 12760907 DOI: 10.1152/ajpcell.00608.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An 80-kDa protein, prominently expressed in smooth muscle, was microsequenced and identified as LPP, the product of the lipoma-preferred partner gene (Petit MMR, Mols R, Schoenmakers EFPM, Mandahl N, and Van de Ven WJM. Genomics 36: 118-129, 1996). Using a specific anti-LPP antibody, we showed, in Western blots and with immunofluorescence microscopy, the selective expression of LPP in vascular and visceral smooth muscles (approximately 0.5-1 ng/microg total protein). In other mature (noncultured) tissues, including heart and skeletal muscle, the protein is present only in trace amounts and is closely correlated with the levels of the smooth muscle marker alpha-actin. In freshly isolated guinea pig bladder smooth muscle cells, immunofluorescence images showed LPP as linear arrays of punctate, longitudinally oriented staining superimposed with vinculin staining on the plasma membrane surface. A corresponding pattern of periodic labeling at the membrane in transverse sections of bladder smooth muscle suggested an association of LPP with peripheral dense bodies. In cultured rat aortic smooth muscle cells, LPP colocalized with vinculin at focal adhesions but not with p120 catenin or alpha-actinin. Overexpression of the protein increased EGF-stimulated migration of vascular smooth muscle cells in Transwell assays, suggesting the participation of LPP in cell motility. The Rho-kinase inhibitor Y-27632 dissociated focal adhesions and LPP staining at the cell periphery and enhanced the nuclear accumulation of LPP induced by leptomycin B, indicating that LPP has a potential for relocating to the nucleus through a shuttling mechanism that is sensitive to inhibition of Rho-kinase.
Collapse
Affiliation(s)
- Isabelle Gorenne
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|