1
|
Park JS, Turner LA, Gould KL, Willet AH. Characterization of temperature-sensitive alleles of anillin-like Mid1 and polo kinase Plo1 in Schizosaccharomyces pombe. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001552. [PMID: 40161431 PMCID: PMC11953740 DOI: 10.17912/micropub.biology.001552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025]
Abstract
The Schizosaccharomyces pombe anillin-like Mid1 is important for the correct positioning of the cell division site. A key regulator of Mid1 is the polo kinase Plo1 which is important for several mitotic and cytokinetic events including spindle formation and division site placement. Here, we defined the mutations within a set of temperature-sensitive mid1 and plo1 alleles and compared the growth and morphological defects of the strains. This work expands the repertoire of mid1 and plo1 mutants for studying cytokinesis and highlights the requirement of the Mid1 C2 domain and the Plo1 kinase domain C-terminal lobe as particularly important for cytokinesis.
Collapse
Affiliation(s)
- Joshua S. Park
- Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, US
| | - Lesley A. Turner
- Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, US
| | - Kathleen L. Gould
- Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, US
| | - Alaina H. Willet
- Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, US
| |
Collapse
|
2
|
Wong SS, Wainman A, Saurya S, Raff JW. Regulation of centrosome size by the cell-cycle oscillator in Drosophila embryos. EMBO J 2024; 43:414-436. [PMID: 38233576 PMCID: PMC10898259 DOI: 10.1038/s44318-023-00022-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024] Open
Abstract
Mitotic centrosomes assemble when centrioles recruit large amounts of pericentriolar material (PCM) around themselves. In early C. elegans embryos, mitotic centrosome size appears to be set by the limiting amount of a key component. In Drosophila syncytial embryos, thousands of mitotic centrosomes are assembled as the embryo proceeds through 13 rounds of rapid nuclear division, driven by a core cell cycle oscillator. These divisions slow during nuclear cycles 11-13, and we find that centrosomes respond by reciprocally decreasing their growth rate, but increasing their growth period-so that they grow to a relatively consistent size at each cycle. At the start of each cycle, moderate CCO activity initially promotes centrosome growth, in part by stimulating Polo/PLK1 recruitment to centrosomes. Later in each cycle, high CCO activity inhibits centrosome growth by suppressing the centrosomal recruitment and/or maintenance of centrosome proteins. Thus, in fly embryos, mitotic centrosome size appears to be regulated predominantly by the core cell cycle oscillator, rather than by the depletion of a limiting component.
Collapse
Affiliation(s)
- Siu-Shing Wong
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Saroj Saurya
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| |
Collapse
|
3
|
Wong S, Wilmott ZM, Saurya S, Alvarez‐Rodrigo I, Zhou FY, Chau K, Goriely A, Raff JW. Centrioles generate a local pulse of Polo/PLK1 activity to initiate mitotic centrosome assembly. EMBO J 2022; 41:e110891. [PMID: 35505659 PMCID: PMC9156973 DOI: 10.15252/embj.2022110891] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 12/03/2022] Open
Abstract
Mitotic centrosomes are formed when centrioles start to recruit large amounts of pericentriolar material (PCM) around themselves in preparation for mitosis. This centrosome "maturation" requires the centrioles and also Polo/PLK1 protein kinase. The PCM comprises several hundred proteins and, in Drosophila, Polo cooperates with the conserved centrosome proteins Spd-2/CEP192 and Cnn/CDK5RAP2 to assemble a PCM scaffold around the mother centriole that then recruits other PCM client proteins. We show here that in Drosophila syncytial blastoderm embryos, centrosomal Polo levels rise and fall during the assembly process-peaking, and then starting to decline, even as levels of the PCM scaffold continue to rise and plateau. Experiments and mathematical modelling indicate that a centriolar pulse of Polo activity, potentially generated by the interaction between Polo and its centriole receptor Ana1 (CEP295 in humans), could explain these unexpected scaffold assembly dynamics. We propose that centrioles generate a local pulse of Polo activity prior to mitotic entry to initiate centrosome maturation, explaining why centrioles and Polo/PLK1 are normally essential for this process.
Collapse
Affiliation(s)
- Siu‐Shing Wong
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Zachary M Wilmott
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
- Mathematical InstituteUniversity of OxfordOxfordUK
| | - Saroj Saurya
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | | | - Felix Y Zhou
- Ludwig Institute for Cancer ResearchNuffield Department of Clinical MedicineUniversity of OxfordOxfordUK
- Present address:
Lyda Hill Department of BioinformaticsUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Kwai‐Yin Chau
- Department of Computer ScienceUniversity of BathBathUK
| | | | - Jordan W Raff
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
4
|
Abstract
The centrosome is a multifunctional organelle that is known primarily for its microtubule organising function. Centrosomal defects caused by changes in centrosomal structure or number have been associated with human diseases ranging from congenital defects to cancer. We are only beginning to appreciate how the non-microtubule organising roles of the centrosome are related to these clinical conditions. In this review, we will discuss the historical evidence that led to the proposal that the centrosome participates in cell cycle regulation. We then summarize the body of work that describes the involvement of the mammalian centrosome in triggering cell cycle progression and checkpoint signalling. Then we will highlight work from the fission yeast model organism, revealing the molecular details that explain how the spindle pole body (SPB, the yeast functional equivalent of the centrosome), participates in these cell cycle transitions. Importantly, we will discuss some of the emerging questions from recent discoveries related to the role of the centrosome as a cell cycle regulator.
Collapse
|
5
|
Alvarez-Rodrigo I, Wainman A, Saurya S, Raff JW. Ana1 helps recruit Polo to centrioles to promote mitotic PCM assembly and centriole elongation. J Cell Sci 2021; 134:jcs258987. [PMID: 34156068 PMCID: PMC8325959 DOI: 10.1242/jcs.258987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 01/12/2023] Open
Abstract
Polo kinase (PLK1 in mammals) is a master cell cycle regulator that is recruited to various subcellular structures, often by its polo-box domain (PBD), which binds to phosphorylated S-pS/pT motifs. Polo/PLK1 kinases have multiple functions at centrioles and centrosomes, and we have previously shown that in Drosophila phosphorylated Sas-4 initiates Polo recruitment to newly formed centrioles, while phosphorylated Spd-2 recruits Polo to the pericentriolar material (PCM) that assembles around mother centrioles in mitosis. Here, we show that Ana1 (Cep295 in humans) also helps to recruit Polo to mother centrioles in Drosophila. If Ana1-dependent Polo recruitment is impaired, mother centrioles can still duplicate, disengage from their daughters and form functional cilia, but they can no longer efficiently assemble mitotic PCM or elongate during G2. We conclude that Ana1 helps recruit Polo to mother centrioles to specifically promote mitotic centrosome assembly and centriole elongation in G2, but not centriole duplication, centriole disengagement or cilia assembly. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | - Jordan W. Raff
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
6
|
Fulcher LJ, Sapkota GP. Mitotic kinase anchoring proteins: the navigators of cell division. Cell Cycle 2020; 19:505-524. [PMID: 32048898 PMCID: PMC7100989 DOI: 10.1080/15384101.2020.1728014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/14/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
The coordinated activities of many protein kinases, acting on multiple protein substrates, ensures the error-free progression through mitosis of eukaryotic cells. Enormous research effort has thus been devoted to studying the roles and regulation of these mitotic kinases, and to the identification of their physiological substrates. Central for the timely deployment of specific protein kinases to their appropriate substrates during the cell division cycle are the many anchoring proteins, which serve critical regulatory roles. Through direct association, anchoring proteins are capable of modulating the catalytic activity and/or sub-cellular distribution of the mitotic kinases they associate with. The key roles of some anchoring proteins in cell division are well-established, whilst others are still being unearthed. Here, we review the current knowledge on anchoring proteins for some mitotic kinases, and highlight how targeting anchoring proteins for inhibition, instead of the mitotic kinases themselves, could be advantageous for disrupting the cell division cycle.
Collapse
Affiliation(s)
- Luke J Fulcher
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK
| | - Gopal P Sapkota
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK
| |
Collapse
|
7
|
Alvarez-Rodrigo I, Steinacker TL, Saurya S, Conduit PT, Baumbach J, Novak ZA, Aydogan MG, Wainman A, Raff JW. Evidence that a positive feedback loop drives centrosome maturation in fly embryos. eLife 2019; 8:e50130. [PMID: 31498081 PMCID: PMC6733597 DOI: 10.7554/elife.50130] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/21/2019] [Indexed: 01/26/2023] Open
Abstract
Centrosomes are formed when mother centrioles recruit pericentriolar material (PCM) around themselves. The PCM expands dramatically as cells prepare to enter mitosis (a process termed centrosome maturation), but it is unclear how this expansion is achieved. In flies, Spd-2 and Cnn are thought to form a scaffold around the mother centriole that recruits other components of the mitotic PCM, and the Polo-dependent phosphorylation of Cnn at the centrosome is crucial for scaffold assembly. Here, we show that, like Cnn, Spd-2 is specifically phosphorylated at centrosomes. This phosphorylation appears to create multiple phosphorylated S-S/T(p) motifs that allow Spd-2 to recruit Polo to the expanding scaffold. If the ability of Spd-2 to recruit Polo is impaired, the scaffold is initially assembled around the mother centriole, but it cannot expand outwards, and centrosome maturation fails. Our findings suggest that interactions between Spd-2, Polo and Cnn form a positive feedback loop that drives the dramatic expansion of the mitotic PCM in fly embryos.
Collapse
Affiliation(s)
- Ines Alvarez-Rodrigo
- The Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Thomas L Steinacker
- The Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Saroj Saurya
- The Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Paul T Conduit
- The Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Janina Baumbach
- The Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Zsofia A Novak
- The Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Mustafa G Aydogan
- The Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Alan Wainman
- The Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Jordan W Raff
- The Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
8
|
Li G, Zhang X, Tian H, Choi YE, Tao WA, Xu JR. MST50 is involved in multiple MAP kinase signaling pathways in Magnaporthe oryzae. Environ Microbiol 2017; 19:1959-1974. [PMID: 28244240 DOI: 10.1111/1462-2920.13710] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/17/2017] [Accepted: 02/19/2017] [Indexed: 12/31/2022]
Abstract
Appressorium formation plays a critical role in Magnaporthe oryzae. Mst50 is an adapter protein of the Mst11-Mst7-Pmk1 cascade that is essential for appressorium formation. To further characterize its functions, affinity purification was used to identify Mst50-interacting proteins (MIPs) in this study. Two of the MIPs are Mst11 and Mst7 that are known to interact with Mst50 for Pmk1 activation. Surprisingly, two other MIPs are Mck1 and Mkk2 that are the upstream kinases of the Mps1 pathway. Domain deletion analysis showed that the sterile alpha-motif of Mst50 but not the Ras-association domain was important for its interaction with Mck1 and responses to cell wall and oxidative stresses. The mst50 mutant was reduced in Mps1 activation under stress conditions. MIP11 encodes a RACK1 protein that also interacted with Mck1. Deletion of MIP11 resulted in defects in cell wall integrity, Mps1 phosphorylation and plant infection. Furthermore, Mst50 interacted with histidine kinase Hik1, and the mst50 mutant was reduced in Osm1 phosphorylation. These results indicated that Mst50 is involved in all three MAPK pathways in M. oryzae although its functions differ in each pathway. Several MIPs are conserved hypothetical proteins and may be involved in responses to various signals and crosstalk among signaling pathways.
Collapse
Affiliation(s)
- Guotian Li
- Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Xue Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Huan Tian
- Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yoon-E Choi
- Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Republic of Korea
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Jin-Rong Xu
- Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
9
|
Hu H, Zhou Q, Li Z. A Novel Basal Body Protein That Is a Polo-like Kinase Substrate Is Required for Basal Body Segregation and Flagellum Adhesion in Trypanosoma brucei. J Biol Chem 2015; 290:25012-22. [PMID: 26272611 PMCID: PMC4599006 DOI: 10.1074/jbc.m115.674796] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/29/2015] [Indexed: 01/02/2023] Open
Abstract
The Polo-like kinase (PLK) in Trypanosoma brucei plays multiple roles in basal body segregation, flagellum attachment, and cytokinesis. However, the mechanistic role of TbPLK remains elusive, mainly because most of its substrates are not known. Here, we report a new substrate of TbPLK, SPBB1, and its essential roles in T. brucei. SPBB1 was identified through yeast two-hybrid screening with the kinase-dead TbPLK as the bait. It interacts with TbPLK in vitro and in vivo, and is phosphorylated by TbPLK in vitro. SPBB1 localizes to both the mature basal body and the probasal body throughout the cell cycle, and co-localizes with TbPLK at the basal body during early cell cycle stages. RNAi against SPBB1 in procyclic trypanosomes inhibited basal body segregation, disrupted the new flagellum attachment zone filament, detached the new flagellum, and caused defective cytokinesis. Moreover, RNAi of SPBB1 confined TbPLK at the basal body and the bilobe structure, resulting in constitutive phosphorylation of TbCentrin2 at the bilobe. Altogether, these results identified a basal body protein as a TbPLK substrate and its essential role in promoting basal body segregation and flagellum attachment zone filament assembly for flagellum adhesion and cytokinesis initiation.
Collapse
Affiliation(s)
- Huiqing Hu
- From the Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030
| | - Qing Zhou
- From the Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030
| | - Ziyin Li
- From the Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030
| |
Collapse
|
10
|
Bhutta MS, Roy B, Gould GW, McInerny CJ. A complex network of interactions between mitotic kinases, phosphatases and ESCRT proteins regulates septation and membrane trafficking in S. pombe. PLoS One 2014; 9:e111789. [PMID: 25356547 PMCID: PMC4214795 DOI: 10.1371/journal.pone.0111789] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/27/2014] [Indexed: 11/18/2022] Open
Abstract
Cytokinesis and cell separation are critical events in the cell cycle. We show that Endosomal Sorting Complex Required for Transport (ESCRT) genes are required for cell separation in Schizosaccharomyces pombe. We identify genetic interactions between ESCRT proteins and polo and aurora kinases and Cdc14 phosphatase that manifest as impaired growth and exacerbated defects in septation, suggesting that the encoded proteins function together to control these processes. Furthermore, we observed defective endosomal sorting in mutants of plo1, ark1 and clp1, as has been reported for ESCRT mutants, consistent with a role for these kinases in the control of ESCRT function in membrane traffic. Multiple observations indicate functional interplay between polo and ESCRT components: firstly, two-hybrid in vivo interactions are reported between Plo1p and Sst4p, Vps28p, Vps25p, Vps20p and Vps32p; secondly, co-immunoprecipitation of human homologues of Vps20p, Vps32p, Vps24p and Vps2p by human Plk1; and thirdly, in vitro phosphorylation of budding yeast Vps32p and Vps20p by polo kinase. Two-hybrid analyses also identified interactions between Ark1p and Vps20p and Vps32p, and Clp1p and Vps28p. These experiments indicate a network of interactions between ESCRT proteins, plo1, ark1 and clp1 that coordinate membrane trafficking and cell separation in fission yeast.
Collapse
Affiliation(s)
- Musab S. Bhutta
- Henry Wellcome Laboratory of Cell Biology, Davidson Building, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Brinta Roy
- Henry Wellcome Laboratory of Cell Biology, Davidson Building, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gwyn W. Gould
- Henry Wellcome Laboratory of Cell Biology, Davidson Building, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christopher J. McInerny
- Henry Wellcome Laboratory of Cell Biology, Davidson Building, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
11
|
Does a shift to limited glucose activate checkpoint control in fission yeast? FEBS Lett 2014; 588:2373-8. [PMID: 24815688 DOI: 10.1016/j.febslet.2014.04.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 11/20/2022]
Abstract
Here we review cell cycle control in the fission yeast, Schizosaccharomyces pombe, in response to an abrupt reduction of glucose concentration in culture media. S. pombe arrests cell cycle progression when transferred from media containing 2.0% glucose to media containing 0.1%. After a delay, S. pombe resumes cell division at a surprisingly fast rate, comparable to that observed in 2% glucose. We found that a number of genes, including zinc-finger transcription factor Scr1, CaMKK-like protein kinase Ssp1, and glucose transporter Ght5, enable rapid cell division in low glucose. In this article, we examine whether cell cycle checkpoint-like control operates during the delay and after resumption of cell division in limited-glucose. Using microarray analysis and genetic screening, we identified several candidate genes that may be involved in controlling this low-glucose adaptation.
Collapse
|
12
|
Tan YS, Śledź P, Lang S, Stubbs CJ, Spring DR, Abell C, Best RB. Using ligand-mapping simulations to design a ligand selectively targeting a cryptic surface pocket of polo-like kinase 1. Angew Chem Int Ed Engl 2012; 51:10078-81. [PMID: 22961729 PMCID: PMC3547296 DOI: 10.1002/anie.201205676] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Yaw Sing Tan
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge, CB2 1EW (UK)
| | - Paweł Śledź
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge, CB2 1EW (UK)
| | - Steffen Lang
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge, CB2 1EW (UK)
| | - Christopher J Stubbs
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge, CB2 1EW (UK)
| | - David R Spring
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge, CB2 1EW (UK)
| | - Chris Abell
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge, CB2 1EW (UK)
| | - Robert B Best
- Department of Chemistry, University of CambridgeLensfield Road, Cambridge, CB2 1EW (UK)
| |
Collapse
|
13
|
Tan YS, Śledź P, Lang S, Stubbs CJ, Spring DR, Abell C, Best RB. Using Ligand-Mapping Simulations to Design a Ligand Selectively Targeting a Cryptic Surface Pocket of Polo-Like Kinase 1. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Yu Z, Liu Y, Li Z. Structure-function relationship of the Polo-like kinase in Trypanosoma brucei. J Cell Sci 2012; 125:1519-30. [PMID: 22275435 PMCID: PMC3336379 DOI: 10.1242/jcs.094243] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2011] [Indexed: 12/19/2022] Open
Abstract
Polo-like kinases (Plks) play multiple roles in mitosis and cytokinesis in eukaryotes and are characterized by the C-terminal Polo-box domain (PBD), which is implicated in binding to Plk substrates, targeting Plk and regulating Plk activity. The Plk homolog in Trypanosoma brucei (TbPLK) possesses a similar architecture, but it lacks the crucial residues involved in substrate binding and regulates cytokinesis but not mitosis. Little is known about the regulation of TbPLK and the role of the PBD in TbPLK localization and function. Here, we addressed the requirement of the kinase activity and the PBD for TbPLK localization and function through coupling RNAi of endogenous TbPLK with ectopic expression of TbPLK mutants. We demonstrate that the kinase activity and phosphorylation of two threonine residues, Thr198 and Thr202, in the activation loop (T-loop) of the kinase domain are essential for TbPLK function but not for TbPLK localization. Deletion of the PBD abolishes TbPLK localization, but the PBD itself is not correctly targeted, indicating that TbPLK localization requires both the PBD and the kinase domain. Surprisingly, the kinase domain of TbPLK, but not the PBD, binds to its substrates TbCentrin2 and p110, suggesting that TbPLK might interact with its substrate through different mechanisms. Finally, the PBD interacts with the kinase domain of TbPLK and inhibits its activity, and this inhibition is relieved when Thr198 is phosphorylated. Together, these results suggest an essential role of T-loop phosphorylation in TbPLK activation and crucial roles of the PBD in regulating TbPLK activity and localization.
Collapse
Affiliation(s)
- Zhonglian Yu
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Yi Liu
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
15
|
Reis M, Sousa-Guimarães S, Vieira CP, Sunkel CE, Vieira J. Drosophila genes that affect meiosis duration are among the meiosis related genes that are more often found duplicated. PLoS One 2011; 6:e17512. [PMID: 21423746 PMCID: PMC3053365 DOI: 10.1371/journal.pone.0017512] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 02/04/2011] [Indexed: 01/06/2023] Open
Abstract
Using a phylogenetic approach, the examination of 33 meiosis/meiosis-related genes in 12 Drosophila species, revealed nine independent gene duplications, involving the genes cav, mre11, meiS332, polo and mtrm. Evidence is provided that at least eight out of the nine gene duplicates are functional. Therefore, the rate at which Drosophila meiosis/meiosis-related genes are duplicated and retained is estimated to be 0.0012 per gene per million years, a value that is similar to the average for all Drosophila genes. It should be noted that by using a phylogenetic approach the confounding effect of concerted evolution, that is known to lead to overestimation of the duplication and retention rate, is avoided. This is an important issue, since even in our moderate size sample, evidence for long-term concerted evolution (lasting for more than 30 million years) was found for the meiS332 gene pair in species of the Drosophila subgenus. Most striking, in contrast to theoretical expectations, is the finding that genes that encode proteins that must follow a close stoichiometric balance, such as polo, mtrm and meiS332 have been found duplicated. The duplicated genes may be examples of gene neofunctionalization. It is speculated that meiosis duration may be a trait that is under selection in Drosophila and that it has different optimal values in different species.
Collapse
Affiliation(s)
- Micael Reis
- Instituto de Biologia Celular e Molecular (IBMC), University of Porto, Porto, Portugal
| | - Sofia Sousa-Guimarães
- Instituto de Biologia Celular e Molecular (IBMC), University of Porto, Porto, Portugal
| | - Cristina P. Vieira
- Instituto de Biologia Celular e Molecular (IBMC), University of Porto, Porto, Portugal
| | - Cláudio E. Sunkel
- Instituto de Biologia Celular e Molecular (IBMC), University of Porto, Porto, Portugal
| | - Jorge Vieira
- Instituto de Biologia Celular e Molecular (IBMC), University of Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
16
|
Almonacid M, Celton-Morizur S, Jakubowski JL, Dingli F, Loew D, Mayeux A, Chen JS, Gould KL, Clifford DM, Paoletti A. Temporal control of contractile ring assembly by Plo1 regulation of myosin II recruitment by Mid1/anillin. Curr Biol 2011; 21:473-9. [PMID: 21376600 DOI: 10.1016/j.cub.2011.02.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 12/23/2010] [Accepted: 02/01/2011] [Indexed: 11/26/2022]
Abstract
In eukaryotes, cytokinesis generally involves an actomyosin ring, the contraction of which promotes daughter cell segregation. Assembly of the contractile ring is tightly controlled in space and time. In the fission yeast, contractile ring components are first organized by the anillin-like protein Mid1 into medial cortical nodes. These nodes then coalesce laterally into a functional contractile ring. Although Mid1 is present at the medial cortex throughout G2, recruitment of contractile ring components to nodes starts only at mitotic onset, indicating that this event is cell-cycle regulated. Polo kinases are key temporal coordinators of mitosis and cytokinesis, and the Polo-like kinase Plo1 is known to activate Mid1 nuclear export at mitotic onset, coupling division plane specification to nuclear position. Here we provide evidence that Plo1 also triggers the recruitment of contractile ring components into medial cortical nodes. Plo1 binds at least two independent sites on Mid1, including a consensus site phosphorylated by Cdc2. Plo1 phosphorylates several residues within the first 100 amino acids of Mid1, which directly interact with the IQGAP Rng2, and influences the timing of myosin II recruitment. Plo1 thereby facilitates contractile ring assembly at mitotic onset.
Collapse
|
17
|
Red1 promotes the elimination of meiosis-specific mRNAs in vegetatively growing fission yeast. EMBO J 2011; 30:1027-39. [PMID: 21317872 DOI: 10.1038/emboj.2011.32] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 01/21/2011] [Indexed: 01/01/2023] Open
Abstract
Meiosis-specific mRNAs are transcribed in vegetative fission yeast, and these meiotic mRNAs are selectively removed from mitotic cells to suppress meiosis. This RNA elimination system requires degradation signal sequences called determinant of selective removal (DSR), an RNA-binding protein Mmi1, polyadenylation factors, and the nuclear exosome. However, the detailed mechanism by which meiotic mRNAs are selectively degraded in mitosis but not meiosis is not understood fully. Here we report that Red1, a novel protein, is essential for elimination of meiotic mRNAs from mitotic cells. A red1 deletion results in the accumulation of a large number of meiotic mRNAs in mitotic cells. Red1 interacts with Mmi1, Pla1, the canonical poly(A) polymerase, and Rrp6, a subunit of the nuclear exosome, and promotes the destabilization of DSR-containing mRNAs. Moreover, Red1 forms nuclear bodies in mitotic cells, and these foci are disassembled during meiosis. These results demonstrate that Red1 is involved in DSR-directed RNA decay to prevent ectopic expression of meiotic mRNAs in vegetative cells.
Collapse
|
18
|
Seiler S, Justa-Schuch D. Conserved components, but distinct mechanisms for the placement and assembly of the cell division machinery in unicellular and filamentous ascomycetes. Mol Microbiol 2010; 78:1058-76. [PMID: 21091496 DOI: 10.1111/j.1365-2958.2010.07392.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cytokinesis is essential for cell proliferation, yet its molecular description is challenging, because >100 conserved proteins must be spatially and temporally co-ordinated. Despite the high importance of a tight co-ordination of cytokinesis with chromosome and organelle segregation, the mechanism for determining the cell division plane is one of the least conserved aspects of cytokinesis in eukaryotic cells. Budding and fission yeast have developed fundamentally distinct mechanisms to ensure proper nuclear segregation. The extent to which these pathways are conserved in multicellular fungi remains unknown. Recent progress indicates common components, but different mechanisms that are required for proper selection of the septation site in the different groups of Ascomycota. Cortical cues are used in yeast- and filament-forming species of the Saccharomycotina clade that are established at the incipient bud site or the hyphal tip respectively. In contrast, septum formation in the filament-forming Pezizomycotina species Aspergillus nidulans and Neurospora crassa seems more closely related to the fission yeast programme in that they may combine mitotic signals with a cell end-based marker system and Rho GTPase signalling. Thus, significant differences in the use and connection of conserved signalling modules become apparent that reflect the phylogenetic relationship of the analysed models.
Collapse
Affiliation(s)
- Stephan Seiler
- Institut für Mikrobiologie und Genetik, Universität Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany.
| | | |
Collapse
|
19
|
Strebhardt K. Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat Rev Drug Discov 2010; 9:643-60. [PMID: 20671765 DOI: 10.1038/nrd3184] [Citation(s) in RCA: 549] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The polo-like kinase 1 (PLK1) acts in concert with cyclin-dependent kinase 1-cyclin B1 and Aurora kinases to orchestrate a wide range of critical cell cycle events. Because PLK1 has been preclinically validated as a cancer target, small-molecule inhibitors of PLK1 have become attractive candidates for anticancer drug development. Although the roles of the closely related PLK2, PLK3 and PLK4 in cancer are less well understood, there is evidence showing that PLK2 and PLK3 act as tumour suppressors through their functions in the p53 signalling network, which guards the cell against various stress signals. In this article, recent insights into the biology of PLKs will be reviewed, with an emphasis on their role in malignant transformation, and progress in the development of small-molecule PLK1 inhibitors will be examined.
Collapse
Affiliation(s)
- Klaus Strebhardt
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe University, Theodor Stern Kai 7, 60590 Frankfurt, Germany.
| |
Collapse
|
20
|
Roberts-Galbraith RH, Gould KL. Stepping into the ring: the SIN takes on contractile ring assembly. Genes Dev 2009; 22:3082-8. [PMID: 19056889 DOI: 10.1101/gad.1748908] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The septation initiation network (SIN) regulates the timing of septum formation in Schizosaccharomyces pombe. However, whether and how the SIN functions in contractile ring formation has remained unclear. In this issue of Genes & Development, Hachet and Simanis (3205-3216) demonstrate that the SIN acts downstream from the Plo1 kinase to control a final step in contractile ring assembly. Furthermore, their careful analysis of contractile ring formation may help bridge two existing models of cytokinetic ring formation.
Collapse
Affiliation(s)
- Rachel H Roberts-Galbraith
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
21
|
Asiedu M, Wu D, Matsumura F, Wei Q. Phosphorylation of MyoGEF on Thr-574 by Plk1 promotes MyoGEF localization to the central spindle. J Biol Chem 2008; 283:28392-400. [PMID: 18694934 PMCID: PMC2568926 DOI: 10.1074/jbc.m801801200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 08/05/2008] [Indexed: 01/13/2023] Open
Abstract
We reported previously that a guanine nucleotide exchange factor, MyoGEF, localizes to the central spindle, activates RhoA, and is required for cytokinesis. In this study, we have found that Plk1 (polo-like kinase 1) can phosphorylate MyoGEF, thereby recruiting MyoGEF to the central spindle as well as enhancing MyoGEF activity toward RhoA. The in vitro kinase assay shows that Plk1 can phosphorylate MyoGEF on threonine 574. Immunoprecipitation/immunoblot analysis demonstrates that mutation of threonine 574 to alanine dramatically decreases threonine phosphorylation of MyoGEF in transfected HeLa cells, suggesting that threonine 574 is phosphorylated in vivo. Consistent with these observations, immunofluorescence shows that Plk1 and MyoGEF colocalize at the spindle pole and central spindle during mitosis and cytokinesis. Importantly, RNA interference-mediated depletion of Plk1 interferes with the localization of MyoGEF at the spindle pole and central spindle. Moreover, mutation of threonine 574 to alanine in MyoGEF or depletion of Plk1 by RNA interference leads to a decrease in MyoGEF activity toward RhoA in HeLa cells. Therefore, our results suggest that Plk1 can regulate MyoGEF activity and localization, contributing to the regulation of cytokinesis.
Collapse
Affiliation(s)
- Michael Asiedu
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | |
Collapse
|
22
|
van de Weerdt BCM, Littler DR, Klompmaker R, Huseinovic A, Fish A, Perrakis A, Medema RH. Polo-box domains confer target specificity to the Polo-like kinase family. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1783:1015-22. [PMID: 18359294 DOI: 10.1016/j.bbamcr.2008.02.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 01/30/2008] [Accepted: 02/15/2008] [Indexed: 11/29/2022]
Abstract
Polo-like kinases (Plks) contain a conserved Polo-box domain, shown to bind to phosphorylated Ser-pSer/pThr-Pro motifs. The Polo-box domain of Plk-1 mediates substrate interaction and plays an important role in subcellular localization. Intriguingly, the major interactions between the PBD and the optimal recognition peptide are mediated by highly conserved residues in the PBD, suggesting there is little target specificity conveyed by the various PBDs. However, here we show that the affinity of the purified Plk1-3 PBDs to both a physiological Cdc25C derived phospho-peptide and an optimal recognition phospho-peptide differs significantly among family members. To decipher the role of the PBDs and kinase domains in inferring Plk specificity, we exchanged the PBD of Plk1 (PBD1) with the PBD of Plk2, 3, or 4 (PBD2-4). The resulting hybrid proteins can restore bipolar spindle formation and centrosome maturation in Plk1-depleted U2OS cells to various degrees. In these experiments PBD2 was most efficient in complementing PBD-function. Using the MPM2 antibody that recognizes a large set of mitotic phospho-proteins, we could show that PBD1 and PBD2 display some limited overlap in target recognition. Thus, PBDs convey a significant deal of target specificity, indicating that there is only a limited amount of functional redundancy possible within the Plk family.
Collapse
|
23
|
Papadopoulou K, Ng SS, Ohkura H, Geymonat M, Sedgwick SG, McInerny CJ. Regulation of gene expression during M-G1-phase in fission yeast through Plo1p and forkhead transcription factors. J Cell Sci 2008; 121:38-47. [DOI: 10.1242/jcs.019489] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In fission yeast the expression of several genes during M-G1 phase is controlled by binding of the PCB binding factor (PBF) transcription factor complex to Pombe cell cycle box (PCB) promoter motifs. Three components of PBF have been identified, including two forkhead-like proteins Sep1p and Fkh2p, and a MADS-box-like protein, Mbx1p. Here, we examine how PBF is controlled and reveal a role for the Polo kinase Plo1p. plo1+ shows genetic interactions with sep1+, fkh2+ and mbx1+, and overexpression of a kinase-domain mutant of plo1 abolishes M-G1-phase transcription. Plo1p binds to and directly phosphorylates Mbx1p, the first time a Polo kinase has been shown to phosphorylate a MADS box protein in any organism. Fkh2p and Sep1p interact in vivo and in vitro, and Fkh2p, Sep1p and Plo1p contact PCB promoters in vivo. However, strikingly, both Fkh2p and Plo1p bind to PCB promoters only when PCB-controlled genes are not expressed during S- and G2-phase, whereas by contrast Sep1p contacts PCBs coincident with M-G1-phase transcription. Thus, Plo1p, Fkh2p and Sep1p control M-G1-phase gene transcription through a combination of phosphorylation and cell-cycle-specific DNA binding to PCBs.
Collapse
Affiliation(s)
- Kyriaki Papadopoulou
- Division of Biochemistry and Molecular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Szu Shien Ng
- Division of Biochemistry and Molecular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Hiroyuki Ohkura
- Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh, EH9 3JR, UK
| | - Marco Geymonat
- Stem Cell Biology and Developmental Genetics, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Steven G. Sedgwick
- Stem Cell Biology and Developmental Genetics, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Christopher J. McInerny
- Division of Biochemistry and Molecular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
24
|
Ji JH, Jang YJ. Screening of domain-specific target proteins of polo-like kinase 1: construction and application of centrosome/kinetochore-specific targeting peptide. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2006; 39:709-16. [PMID: 17129406 DOI: 10.5483/bmbrep.2006.39.6.709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mammalian polo-like kinase 1 (Plk1) acts at various stages in early and late mitosis. Plk1 localizes at the centrosome and maintains this position through mitosis. Thereafter Plk1 moves to the kinetochore and midbody region, important sites during chromosome separation and cytokinesis. The catalytic domain of Plk1 is in the Nterminus region, whereas the non-catalytic region in the Cterminus of Plk1 has a conserved motif, named the Polobox. This motif is critical for Plk localization. EGFP proteins fused with the N-terminus and C-terminus of Plk1 localize in the nucleus and centrosomes, respectively. The core sequences of the polo-box (50 amino acids) also localize in Plk1 target organelles. To screen for domainspecific target proteins of Plk1, we constructed an Nterminal domain and a tandem repeat polo-box motif, and used them as templates in a yeast two-hybrid screen. The HeLa cell cDNA library indicated several proteins including the centrosome/kinetochore components or regulators, to be characterized as positive clones. Through in vitro protein binding analyses, we confirmed an interaction between these proteins and Plk1. The data reported from this study indicate that the N- and Ctermini of Plk1 may function through recruitment and/or activation of domain-specific target proteins in dividing cells. Additionally, tandem repeats of the conserved core motif of the polo-box are sufficient for targeting and may be useful as a centrosome/kinetochore-specific targeting peptide.
Collapse
Affiliation(s)
- Jae-Hoon Ji
- Laboratory of Biochemistry, The School of Dentistry, Dankook University, 29 Anseo-Dong, Cheonan-Si, Chungnam 330-714, Korea
| | | |
Collapse
|
25
|
Doxsey S, Zimmerman W, Mikule K. Centrosome control of the cell cycle. Trends Cell Biol 2006; 15:303-11. [PMID: 15953548 DOI: 10.1016/j.tcb.2005.04.008] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 04/11/2005] [Accepted: 04/27/2005] [Indexed: 11/25/2022]
Abstract
Early observations of centrosomes, made a century ago, revealed a tiny dark structure surrounded by a radial array of cytoplasmic fibers. We now know that the fibers are microtubules and that the dark organelles are centrosomes that mediate functions far beyond the more conventional role of microtubule organization. More recent evidence demonstrates that the centrosome serves as a scaffold for anchoring an extensive number of regulatory proteins. Among these are cell-cycle regulators whose association with the centrosome is an essential step in cell-cycle control. Such studies show that the centrosome is required for several cell-cycle transitions, including G(1) to S-phase, G(2) to mitosis and metaphase to anaphase. In this review (which is part of the Chromosome Segregation and Aneuploidy series), we discuss recent data that provide the most direct links between centrosomes and cell-cycle progression.
Collapse
Affiliation(s)
- Stephen Doxsey
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | | | |
Collapse
|
26
|
Ng SS, Papadopoulou K, McInerny CJ. Regulation of gene expression and cell division by Polo-like kinases. Curr Genet 2006; 50:73-80. [PMID: 16691419 DOI: 10.1007/s00294-006-0077-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 04/11/2006] [Accepted: 04/13/2006] [Indexed: 01/31/2023]
Abstract
Much scientific research has focused on characterising regulatory pathways and mechanisms responsible for cell integrity, growth and division. This area of study is of direct relevance to human medicine as uncontrolled growth and division underlies many diseases, most strikingly cancer. In cancer cells, normal regulatory mechanisms for growth and division are often altered, or even fail to exist. This review summarises the mechanisms that control the genes and gene products regulating cytokinesis and cell separation in the fission yeast Schizosaccharomyces pombe, as well as highlighting conserved aspects in the budding yeast Saccharomyces cerevisiae and higher eukaryotes. Particular emphasis is put on the role of gene expression, the Polo-like kinases (Plks), and the signal transduction pathways that control these processes.
Collapse
Affiliation(s)
- Szu Shien Ng
- Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Scotland, UK
| | | | | |
Collapse
|
27
|
Abstract
Centrosomes, spindle pole bodies, and related structures in other organisms are a morphologically diverse group of organelles that share a common ability to nucleate and organize microtubules and are thus referred to as microtubule organizing centers or MTOCs. Features associated with MTOCs include organization of mitotic spindles, formation of primary cilia, progression through cytokinesis, and self-duplication once per cell cycle. Centrosomes bind more than 100 regulatory proteins, whose identities suggest roles in a multitude of cellular functions. In fact, recent work has shown that MTOCs are required for several regulatory functions including cell cycle transitions, cellular responses to stress, and organization of signal transduction pathways. These new liaisons between MTOCs and cellular regulation are the focus of this review. Elucidation of these and other previously unappreciated centrosome functions promises to yield exciting scientific discovery for some time to come.
Collapse
Affiliation(s)
- Stephen Doxsey
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | | | |
Collapse
|
28
|
van de Weerdt BCM, van Vugt MATM, Lindon C, Kauw JJW, Rozendaal MJ, Klompmaker R, Wolthuis RMF, Medema RH. Uncoupling anaphase-promoting complex/cyclosome activity from spindle assembly checkpoint control by deregulating polo-like kinase 1. Mol Cell Biol 2005; 25:2031-44. [PMID: 15713655 PMCID: PMC549351 DOI: 10.1128/mcb.25.5.2031-2044.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 06/14/2004] [Accepted: 11/24/2004] [Indexed: 01/25/2023] Open
Abstract
Polo-like kinase 1 (Plk1) plays a role in numerous events in mitosis, but how the multiple functions of Plk1 are separated is poorly understood. We studied regulation of Plk1 through two putative phosphorylation residues, Ser-137 and Thr-210. Using phospho-specific antibodies, we found that Thr-210 phosphorylation precedes Ser-137 phosphorylation in vivo, the latter occurring specifically in late mitosis. We show that expression of two activating mutants of these residues, S137D and T210D, results in distinct mitotic phenotypes. Whereas expression of both phospho-mimicking mutants as well as of the double mutant leads to accelerated mitotic entry, further progression through mitosis is dramatically different: the T210D mutant causes a spindle assembly checkpoint-dependent delay, whereas the expression of the S137D mutant or the double mutant results in untimely activation of the anaphase-promoting complex/cyclosome (APC/C) and frequent mitotic catastrophe. Using nonphosphorylatable Plk1-S137A and Plk1-T210A mutants, we show that both sites contribute to proper mitotic progression. Based on these observations, we propose that Plk1 function is altered at different stages of mitosis through consecutive posttranslational events, e.g., at Ser-137 and Thr-210. Furthermore, our data show that uncontrolled Plk1 activation can uncouple APC/C activity from spindle assembly checkpoint control.
Collapse
|
29
|
Abstract
Polo like kinases (Plks) are key regulators of the cell cycle, but little is known about their functions in postmitotic cells such as neurons. Recent findings indicate that Plk2 and Plk3 are dynamically regulated in neurons by synaptic activity at the mRNA and protein levels. In COS cells, Plk2 and Plk3 interact with spine-associated Rap guanosine triphosphatase-activating protein (SPAR), a regulator of actin dynamics and dendritic spine morphology, leading to its degradation through the ubiquitin-proteasome system. Induction of Plk2 in hippocampal neurons eliminates SPAR protein, depletes a core postsynaptic scaffolding molecule (PSD-95), and causes loss of mature dendritic spines and synapses. These findings implicate neuronal Plks as mediators of activity-dependent change in molecular composition and morphology of synapses. Induction of Plks might provide a homeostatic mechanism for global dampening of synaptic strength following heightened neuronal activity ('synaptic scaling'). Synapse-specific actions of induced Plks are also possible, particularly in light of the discovery of phosphoserine/threonine peptide motifs as binding targets of the polo box domain, which could allow for 'priming' phosphorylation by upstream kinases that could 'tag' Plk substrates only in specific synapses.
Collapse
Affiliation(s)
- Daniel P Seeburg
- The Picower Center for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
30
|
Glover DM. Polo kinase and progression through M phase in Drosophila: a perspective from the spindle poles. Oncogene 2005; 24:230-7. [PMID: 15640838 DOI: 10.1038/sj.onc.1208279] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genes for the mitotic kinases Polo and Aurora A were first identified in Drosophila through screens of maternal effect lethal mutations for defects in spindle pole behaviour. These enzymes have been shown to be highly conserved and required for multiple functions in mitosis. Polo is stabilized at the centrosome by association with Hsp90. It is required for centrosome maturation on M-phase entry in order to recruit the gamma-tubulin ring complex and activate the abnormal spindle protein, Asp. These events facilitate the nucleation of minus ends of microtubules at the centrosome. The localization of Polo at the kinetochore and the mid-zone of the central spindle together with the phenotypes of polo mutants point to functions at the metaphase to anaphase transition and in cytokinesis. The latter are mediated, at least in part, through the Pavarotti kinesin-like motor protein and its conserved counterparts in other metazoans.
Collapse
Affiliation(s)
- David M Glover
- Cancer Research UK Cell Cycle Genetics Research Group, Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK.
| |
Collapse
|
31
|
Abstract
The Xenopus Polo-like kinase Plx1 plays multiple roles in mitosis. Accumulating evidence shows that Plx1 is the trigger kinase for the G2/M transition that phosphorylates and activates the phosphatase Cdc25C, which subsequently dephosphorylates Cdc2/cyclin B and initiates a positive feedback loop between Cdc25C and Cdc2/cyclin B. Recent findings indicate that Plx1 itself is also in a positive feedback loop. It phosphorylates and activates the protein kinase xPlkk1, which itself then phosphorylates and further activates Plx1. Plx1 functions on the centrosome to promote bipolar spindle formation. Plx1 associates with the anaphase-promoting complex/cyclosome (APC/C) and is required to activate the APC/C for degradation of mitotic regulators required for sister chromatid separation and exit from mitosis. Plx1 is also required for cytokinesis and is localized on the midbody of the contractile ring. All known functions of Plx1 require not only its kinase activity but also an intact polo box domain in the C-terminus.
Collapse
Affiliation(s)
- Junjun Liu
- Howard Hughes Medical Institute, Department of Pharmacology, University of Colorado School of Medicine, Denver, CO 80262, USA
| | | |
Collapse
|
32
|
Rapley J, Baxter JE, Blot J, Wattam SL, Casenghi M, Meraldi P, Nigg EA, Fry AM. Coordinate regulation of the mother centriole component nlp by nek2 and plk1 protein kinases. Mol Cell Biol 2005; 25:1309-24. [PMID: 15684383 PMCID: PMC548010 DOI: 10.1128/mcb.25.4.1309-1324.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 08/17/2004] [Accepted: 11/12/2004] [Indexed: 11/20/2022] Open
Abstract
Mitotic entry requires a major reorganization of the microtubule cytoskeleton. Nlp, a centrosomal protein that binds gamma-tubulin, is a G(2)/M target of the Plk1 protein kinase. Here, we show that human Nlp and its Xenopus homologue, X-Nlp, are also phosphorylated by the cell cycle-regulated Nek2 kinase. X-Nlp is a 213-kDa mother centriole-specific protein, implicating it in microtubule anchoring. Although constant in abundance throughout the cell cycle, it is displaced from centrosomes upon mitotic entry. Overexpression of active Nek2 or Plk1 causes premature displacement of Nlp from interphase centrosomes. Active Nek2 is also capable of phosphorylating and displacing a mutant form of Nlp that lacks Plk1 phosphorylation sites. Importantly, kinase-inactive Nek2 interferes with Plk1-induced displacement of Nlp from interphase centrosomes and displacement of endogenous Nlp from mitotic spindle poles, while active Nek2 stimulates Plk1 phosphorylation of Nlp in vitro. Unlike Plk1, Nek2 does not prevent association of Nlp with gamma-tubulin. Together, these results provide the first example of a protein involved in microtubule organization that is coordinately regulated at the G(2)/M transition by two centrosomal kinases. We also propose that phosphorylation by Nek2 may prime Nlp for phosphorylation by Plk1.
Collapse
Affiliation(s)
- Joseph Rapley
- Department of Biochemistry, University of Leicester, University Rd., Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Jang YJ, Ji JH, Ahn JH, Hoe KL, Won M, Im DS, Chae SK, Song S, Yoo HS. Polo-box motif targets a centrosome regulator, RanGTPase. Biochem Biophys Res Commun 2004; 325:257-64. [PMID: 15522227 DOI: 10.1016/j.bbrc.2004.10.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2004] [Indexed: 10/26/2022]
Abstract
Mammalian polo-like kinase (Plk) acts at various stages in early and late mitosis. Plk1 localizes in the centrosome, the central spindle, the midbody as well as the kinetochore. The non-catalytic region in the C-terminus of Plk1 has conserved sequence motifs, named polo-boxes. These motifs are important for Plk localization. GFP protein fused with the core sequences of polo-box (50 amino acids) localized Plk to target organelles. We screened for Plk interacting proteins by constructing a tandem repeat of the polo-box motif, and used it as bait in the two-hybrid system with HeLa cell cDNA library. RanGTPase was detected as a positive clone. Through in vitro and in vivo protein binding analysis in synchronized cells by thymidine block and by nocodazole treatment, we confirmed the interaction between endogenous Ran and Plk1. We showed that endogenous Ran and Plk1 proteins were co-localized to centrosomes, which is a major target organelle of endogenous Plk1, in early mitotic cells by immunofluorescence. Finally, we demonstrated that Plk1 phosphorylated RanBPM, a Ran-binding protein in microtubule organizing center, through the interaction with Ran. These data suggested that the core motif of polo-box is sufficient for Plk1-targeting, and that Plk1 may play roles in centrosome through recruitment and/or activation of Ran/RanBPM proteins.
Collapse
Affiliation(s)
- Young-Joo Jang
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 52 Oeun-Dong, Yusong-Gu, Daejeon 305-333, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Barr FA, Silljé HHW, Nigg EA. Polo-like kinases and the orchestration of cell division. Nat Rev Mol Cell Biol 2004; 5:429-40. [PMID: 15173822 DOI: 10.1038/nrm1401] [Citation(s) in RCA: 855] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Francis A Barr
- Department of Cell Biology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | | | | |
Collapse
|
35
|
Affiliation(s)
- Hiroyuki Ohkura
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK.
| |
Collapse
|
36
|
Cheng KY, Lowe ED, Sinclair J, Nigg EA, Johnson LN. The crystal structure of the human polo-like kinase-1 polo box domain and its phospho-peptide complex. EMBO J 2003; 22:5757-68. [PMID: 14592974 PMCID: PMC275415 DOI: 10.1093/emboj/cdg558] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 09/09/2003] [Accepted: 09/11/2003] [Indexed: 11/14/2022] Open
Abstract
Human polo-like kinase Plk1 localizes to the centrosomes, kinetochores and central spindle structures during mitosis. It plays an essential role in promoting mitosis and cytokinesis through phosphorylation of a number of different substrates. Kinase activity is regulated by a conserved C-terminal domain, termed the polo box domain (PBD), which acts both as an autoinhibitory domain and as a subcellular localization domain. We have determined the crystal structure of Plk1 PBD (residues 367-603) to 2.2 A resolution and the structure of a phospho-peptide-PBD (residues 345-603) complex to 2.3 A resolution. The two polo boxes of the PBD exhibit identical folds based on a six-stranded beta-sheet and an alpha-helix, despite only 12% sequence identity. The phospho-peptide binds at a site between the two polo boxes. It makes a short antiparallel beta-sheet connection and critical contacts to residues Trp414, Leu490, His538 and Lys540. Most of these residues had been shown to be important for biological activity through mutational studies. The results provide an explanation for phospho-peptide recognition and create the basis for new functional studies.
Collapse
Affiliation(s)
- Kin-Yip Cheng
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | |
Collapse
|
37
|
Elia AEH, Rellos P, Haire LF, Chao JW, Ivins FJ, Hoepker K, Mohammad D, Cantley LC, Smerdon SJ, Yaffe MB. The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Cell 2003; 115:83-95. [PMID: 14532005 DOI: 10.1016/s0092-8674(03)00725-6] [Citation(s) in RCA: 603] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Polo-like kinases (Plks) perform crucial functions in cell-cycle progression and multiple stages of mitosis. Plks are characterized by a C-terminal noncatalytic region containing two tandem Polo boxes, termed the Polo-box domain (PBD), which has recently been implicated in phosphodependent substrate targeting. We show that the PBDs of human, Xenopus, and yeast Plks all recognize similar phosphoserine/threonine-containing motifs. The 1.9 A X-ray structure of a human Plk1 PBD-phosphopeptide complex shows that the Polo boxes each comprise beta6alpha structures that associate to form a 12-stranded beta sandwich domain. The phosphopeptide binds along a conserved, positively charged cleft located at the edge of the Polo-box interface. Mutations that specifically disrupt phosphodependent interactions abolish cell-cycle-dependent localization and provide compelling phenotypic evidence that PBD-phospholigand binding is necessary for proper mitotic progression. In addition, phosphopeptide binding to the PBD stimulates kinase activity in full-length Plk1, suggesting a conformational switching mechanism for Plk regulation and a dual functionality for the PBD.
Collapse
Affiliation(s)
- Andrew E H Elia
- Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Current awareness on yeast. Yeast 2003; 20:1007-14. [PMID: 14587515 DOI: 10.1002/yea.948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
39
|
MacIver FH, Tanaka K, Robertson AM, Hagan IM. Physical and functional interactions between polo kinase and the spindle pole component Cut12 regulate mitotic commitment in S. pombe. Genes Dev 2003; 17:1507-23. [PMID: 12815070 PMCID: PMC196081 DOI: 10.1101/gad.256003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2002] [Accepted: 04/15/2003] [Indexed: 11/24/2022]
Abstract
Commitment to mitosis is regulated by a protein kinase complex called MPF. MPF is inhibited by Wee1-related kinases and activated by Cdc25 phosphatase. MPF activation further boosts Cdc25 and represses Wee1. This feedback control probably involves polo kinase. A dominant cut12.s11 mutation in the Schizosaccharomyces pombe spindle pole body (SPB) component Cut12 both suppresses the conditional lethal mitotic commitment defect of cdc25.22 and promotes premature association of the S. pombe polo kinase, Plo1, with the SPB. We now show that Cut12 associated with Plo1 in two hybrid and immunoprecipitation assays. Plo1 function was required for recognition of the mitotic SPB by the phospho-specific antibody MPM-2. In vivo MPM-2 staining and in vitro kinase assays established that the loss-of-function mutation, cut12.1, reduced mitotic activation of Plo1, whereas the gain-of-function mutation, cut12.s11, promoted higher levels of Plo1 activity than were normally seen in interphase. cut12.s11 could not promote mitotic commitment of cdc25.22 cells when Plo1 function was compromised. Expression of a constitutively active plo1 allele suppressed the mitotic commitment defect of cdc25.22. These data suggest that cut12.s11 suppresses cdc25.22 by promoting Plo1 activity. Furthermore, the delayed mitotic commitment of plo1.ts2 cells suggests that Plo1 is an integral part of the core controls that modulate MPF activation in S. pombe.
Collapse
Affiliation(s)
- Fiona H MacIver
- Paterson Institute for Cancer Research, Manchester M20 4BX, UK
| | | | | | | |
Collapse
|