1
|
Lu X, Jiang L, Chen L, Ding W, Wu H, Ma Z. Establishment and evaluation of targeted molecular screening model for the ryanodine receptor or sarco/endoplasmic reticulum calcium ATPase. PEST MANAGEMENT SCIENCE 2024; 80:3369-3378. [PMID: 38391097 DOI: 10.1002/ps.8040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUD Endoplasmic reticulum/sarcoplasmic reticulum (ER/SR) is crucial for maintaining intracellular calcium homeostasis due to the calcium-signaling-related proteins on its membrane. While ryanodine receptors (RyR) on insect ER/SR membranes are well-known as targets for diamide insecticides, little is known about other calcium channels. Given the resistance of diamide insecticides, the establishment of molecular screening models targeting RyR or sarco/endoplasmic reticulum calcium ATPase (SERCA) is conducive to the discovery of new insecticidal molecules. RESULTS The morphological features of Mythimna separata SR have closed vesicles with integrity and high density. The 282 proteins in the SR component contained RyR and SERCA. A measurement model for the release and uptake of calcium was successfully established by detecting calcium ions outside the SR membrane using a fluorescence spectrophotometer. In vitro testing systems using SR vesicles found that diamide insecticides could activate dose-dependently RyR, with EC50 values of 0.14 μM (Chlorantraniliprole), 0.21 μM (Flubendiamide), and 0.57 μM (Cyantraniliprole), respectively. However, dantrolene inhibited RyR-mediated calcium release with an IC50 value of 353.9 μM, suggesting that dantrolene can weakly antagonize RyR. Moreover, cyclopiazonic acid significantly reduced the enzyme activity and calcium uptake capacity of SERCA. On the contrary, CDN1163 markedly activated the enzyme activity and improved the calcium transport capacity of SERCA. CONCLUSIONS SR vesicles can be used to study the function of unknown proteins on the SR membranes, as well as for high-throughput screening of highly active compounds targeting RyR or SERCA. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaopeng Lu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, China
| | - Linlin Jiang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, China
| | - Li Chen
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, China
| | - Wenwei Ding
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, China
| | - Hua Wu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, China
| | - Zhiqing Ma
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A & F University, Yangling, China
| |
Collapse
|
2
|
Hadiatullah H, Zhang Y, Samurkas A, Xie Y, Sundarraj R, Zuilhof H, Qiao J, Yuchi Z. Recent progress in the structural study of ion channels as insecticide targets. INSECT SCIENCE 2022; 29:1522-1551. [PMID: 35575601 DOI: 10.1111/1744-7917.13032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 06/15/2023]
Abstract
Ion channels, many expressed in insect neural and muscular systems, have drawn huge attention as primary targets of insecticides. With the recent technical breakthroughs in structural biology, especially in cryo-electron microscopy (cryo-EM), many new high-resolution structures of ion channel targets, apo or in complex with insecticides, have been solved, shedding light on the molecular mechanism of action of the insecticides and resistance mutations. These structures also provide accurate templates for structure-based insecticide screening and rational design. This review summarizes the recent progress in the structural studies of 5 ion channel families: the ryanodine receptor (RyR), the nicotinic acetylcholine receptor (nAChR), the voltage-gated sodium channel (VGSC), the transient receptor potential (TRP) channel, and the ligand-gated chloride channel (LGCC). We address the selectivity of the channel-targeting insecticides by examining the conservation of key coordinating residues revealed by the structures. The possible resistance mechanisms are proposed based on the locations of the identified resistance mutations on the 3D structures of the target channels and their impacts on the binding of insecticides. Finally, we discuss how to develop "green" insecticides with a novel mode of action based on these high-resolution structures to overcome the resistance.
Collapse
Affiliation(s)
- Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yongliang Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Arthur Samurkas
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Yunxuan Xie
- Department of Environmental Science, Tianjin University, Tianjin, China
| | - Rajamanikandan Sundarraj
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Han Zuilhof
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Jianjun Qiao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute & Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
3
|
Schiemann R, Buhr A, Cordes E, Walter S, Heinisch JJ, Ferrero P, Milting H, Paululat A, Meyer H. Neprilysins regulate muscle contraction and heart function via cleavage of SERCA-inhibitory micropeptides. Nat Commun 2022; 13:4420. [PMID: 35906206 PMCID: PMC9338278 DOI: 10.1038/s41467-022-31974-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/06/2022] [Indexed: 12/26/2022] Open
Abstract
Muscle contraction depends on strictly controlled Ca2+ transients within myocytes. A major player maintaining these transients is the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase, SERCA. Activity of SERCA is regulated by binding of micropeptides and impaired expression or function of these peptides results in cardiomyopathy. To date, it is not known how homeostasis or turnover of the micropeptides is regulated. Herein, we find that the Drosophila endopeptidase Neprilysin 4 hydrolyzes SERCA-inhibitory Sarcolamban peptides in membranes of the sarcoplasmic reticulum, thereby ensuring proper regulation of SERCA. Cleavage is necessary and sufficient to maintain homeostasis and function of the micropeptides. Analyses on human Neprilysin, sarcolipin, and ventricular cardiomyocytes indicates that the regulatory mechanism is evolutionarily conserved. By identifying a neprilysin as essential regulator of SERCA activity and Ca2+ homeostasis in cardiomyocytes, these data contribute to a more comprehensive understanding of the complex mechanisms that control muscle contraction and heart function in health and disease.
Collapse
Affiliation(s)
- Ronja Schiemann
- Department of Zoology & Developmental Biology, Osnabrück University, 49076, Osnabrück, Germany
| | - Annika Buhr
- Department of Zoology & Developmental Biology, Osnabrück University, 49076, Osnabrück, Germany
| | - Eva Cordes
- Department of Zoology & Developmental Biology, Osnabrück University, 49076, Osnabrück, Germany
| | - Stefan Walter
- Center of Cellular Nanoanalytics Osnabrück - CellNanOs, 49076, Osnabrück, Germany
| | - Jürgen J Heinisch
- Center of Cellular Nanoanalytics Osnabrück - CellNanOs, 49076, Osnabrück, Germany.,Department of Genetics, Osnabrück University, 49076, Osnabrück, Germany
| | - Paola Ferrero
- Center for Cardiovascular Research - CONICET/National University of La Plata, 1900, La Plata, Argentina
| | - Hendrik Milting
- Heart & Diabetes Center NRW, University of Bochum, Erich & Hanna Klessmann-Institute for Cardiovascular Research and Development, 32545, Bad Oeynhausen, Germany
| | - Achim Paululat
- Department of Zoology & Developmental Biology, Osnabrück University, 49076, Osnabrück, Germany.,Center of Cellular Nanoanalytics Osnabrück - CellNanOs, 49076, Osnabrück, Germany
| | - Heiko Meyer
- Department of Zoology & Developmental Biology, Osnabrück University, 49076, Osnabrück, Germany. .,Center of Cellular Nanoanalytics Osnabrück - CellNanOs, 49076, Osnabrück, Germany.
| |
Collapse
|
4
|
Abstract
Cell shape changes based on actomyosin contractility provide a driving force in tissue morphogenesis. The temporally and spatially coordinated constrictions of many cells result in changes in tissue morphology. Given the networks of complex and mutual cellular interactions, the mechanisms underlying the emergence in tissue behavior are challenging to pinpoint. Important in the analysis of such interactions are novel methods for noninvasive interference with single-cell resolution and sub-minute timescale temporal control. Here we characterize an optochemical approach of Ca2+ uncaging to control cell contractility in Drosophila embryos. We describe in detail the method of sample preparation, microinjection, Ca2+ uncaging, and data analysis.
Collapse
Affiliation(s)
- Deqing Kong
- Department of Biology, Philipps University, Marburg, Germany
| | - Jörg Großhans
- Department of Biology, Philipps University, Marburg, Germany.
| |
Collapse
|
5
|
A Comparative Perspective on Functionally-Related, Intracellular Calcium Channels: The Insect Ryanodine and Inositol 1,4,5-Trisphosphate Receptors. Biomolecules 2021; 11:biom11071031. [PMID: 34356655 PMCID: PMC8301844 DOI: 10.3390/biom11071031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 02/03/2023] Open
Abstract
Calcium (Ca2+) homeostasis is vital for insect development and metabolism, and the endoplasmic reticulum (ER) is a major intracellular reservoir for Ca2+. The inositol 1,4,5- triphosphate receptor (IP3R) and ryanodine receptor (RyR) are large homotetrameric channels associated with the ER and serve as two major actors in ER-derived Ca2+ supply. Most of the knowledge on these receptors derives from mammalian systems that possess three genes for each receptor. These studies have inspired work on synonymous receptors in insects, which encode a single IP3R and RyR. In the current review, we focus on a fundamental, common question: “why do insect cells possess two Ca2+ channel receptors in the ER?”. Through a comparative approach, this review covers the discovery of RyRs and IP3Rs, examines their structures/functions, the pathways that they interact with, and their potential as target sites in pest control. Although insects RyRs and IP3Rs share structural similarities, they are phylogenetically distinct, have their own structural organization, regulatory mechanisms, and expression patterns, which explains their functional distinction. Nevertheless, both have great potential as target sites in pest control, with RyRs currently being targeted by commercial insecticide, the diamides.
Collapse
|
6
|
Yeates CJ, Frank CA. Homeostatic Depression Shows Heightened Sensitivity to Synaptic Calcium. Front Cell Neurosci 2021; 15:618393. [PMID: 34025355 PMCID: PMC8139420 DOI: 10.3389/fncel.2021.618393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/13/2021] [Indexed: 12/18/2022] Open
Abstract
Synapses and circuits rely on homeostatic forms of regulation in order to transmit meaningful information. The Drosophila melanogaster neuromuscular junction (NMJ) is a well-studied synapse that shows robust homeostatic control of function. Most prior studies of homeostatic plasticity at the NMJ have centered on presynaptic homeostatic potentiation (PHP). PHP happens when postsynaptic muscle neurotransmitter receptors are impaired, triggering retrograde signaling that causes an increase in presynaptic neurotransmitter release. As a result, normal levels of evoked excitation are maintained. The counterpart to PHP at the NMJ is presynaptic homeostatic depression (PHD). Overexpression of the Drosophila vesicular glutamate transporter (VGlut) causes an increase in the amplitude of spontaneous events. PHD happens when the synapse responds to the challenge by decreasing quantal content (QC) during evoked neurotransmissionagain, resulting in normal levels of postsynaptic excitation. We hypothesized that there may exist a class of molecules that affects both PHP and PHD. Impairment of any such molecule could hurt a synapses ability to respond to any significant homeostatic challenge. We conducted an electrophysiology-based screen for blocks of PHD. We did not observe a block of PHD in the genetic conditions screened, but we found loss-of-function conditions that led to a substantial deficit in evoked amplitude when combined with VGlut overexpression. The conditions causing this phenotype included a double heterozygous loss-of-function condition for genes encoding the inositol trisphosphate receptor (IP3R itpr) and ryanodine receptor (RyR). IP3Rs and RyRs gate calcium release from intracellular stores. Pharmacological agents targeting IP3R and RyR recapitulated the genetic losses of these factors, as did lowering calcium levels from other sources. Our data are consistent with the idea that the homeostatic signaling process underlying PHD is especially sensitive to levels of calcium at the presynapse.
Collapse
Affiliation(s)
- Catherine J Yeates
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
| | - C Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States.,Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
7
|
Dhandapani P, Dondapati SK, Zemella A, Bräuer D, Wüstenhagen DA, Mergler S, Kubick S. Targeted esterase-induced dye (TED) loading supports direct calcium imaging in eukaryotic cell-free systems. RSC Adv 2021; 11:16285-16296. [PMID: 35479141 PMCID: PMC9030739 DOI: 10.1039/d0ra08397f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/25/2021] [Indexed: 11/21/2022] Open
Abstract
Calcium imaging is an important functional tool for analysing ion channels, transporters and pumps for drug screening in living cells. Depicted eukaryotic cell-free systems utilize microsomes, derived from the endoplasmic reticulum to incorporate the synthesized membrane proteins-like ion channels. Carboxylesterase is required to cleave the acetoxymethyl ester moiety of the chemical calcium indicators in order to ensure its immobility across the endoplasmic reticulum membrane. Absence or an inadequate amount of carboxylesterase in the endoplasmic reticulum of different eukaryotic cells poses a hindrance to perform calcium imaging in microsomes. In this work, we try to overcome this drawback and adapt the cell-based calcium imaging principle to a cell-free protein synthesis platform. Carboxylesterase synthesized in a Spodoptera frugiperda Sf21 lysate translation system is established as a viable calcium imaging tool in microsomes. Cell-free synthesized carboxylesterase inside microsomes is validated with esterase and dye loading assays. Native proteins from the endoplasmic reticulum, such as ryanodine channels and calcium ATPase, are analysed. Cell-free synthesized transient receptor potential channels are used as model proteins to demonstrate the realization of this concept. Carboxylesterase, the key enzyme to handle ester-based dyes, is synthesized in microsomes using eukaryotic cell-free protein synthesis platform and established as a viable calcium imaging tool to analyze native and cell-free synthesized ion channels.![]()
Collapse
Affiliation(s)
- Priyavathi Dhandapani
- Fraunhofer Institute of Cell Therapy and Immunology, Branch of Bioanalytics and Bioprocesses (IZI-BB) Am Muehlenberg 13 Potsdam-Golm Germany
| | - Srujan Kumar Dondapati
- Fraunhofer Institute of Cell Therapy and Immunology, Branch of Bioanalytics and Bioprocesses (IZI-BB) Am Muehlenberg 13 Potsdam-Golm Germany
| | - Anne Zemella
- Fraunhofer Institute of Cell Therapy and Immunology, Branch of Bioanalytics and Bioprocesses (IZI-BB) Am Muehlenberg 13 Potsdam-Golm Germany
| | - Dennis Bräuer
- Fraunhofer Institute of Cell Therapy and Immunology, Branch of Bioanalytics and Bioprocesses (IZI-BB) Am Muehlenberg 13 Potsdam-Golm Germany
| | - Doreen Anja Wüstenhagen
- Fraunhofer Institute of Cell Therapy and Immunology, Branch of Bioanalytics and Bioprocesses (IZI-BB) Am Muehlenberg 13 Potsdam-Golm Germany
| | - Stefan Mergler
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin Campus Virchow-Hospital Berlin Germany
| | - Stefan Kubick
- Fraunhofer Institute of Cell Therapy and Immunology, Branch of Bioanalytics and Bioprocesses (IZI-BB) Am Muehlenberg 13 Potsdam-Golm Germany .,Faculty of Health Sciences, Joint Faculty of Brandenburg University of Technology, Cottbus - Senftenberg, Theodor Fontane Medical School of Brandenburg, University of Potsdam Germany
| |
Collapse
|
8
|
Maksoud MJE, Tellios V, Xiang YY, Lu WY. Nitric oxide displays a biphasic effect on calcium dynamics in microglia. Nitric Oxide 2021; 108:28-39. [PMID: 33418057 DOI: 10.1016/j.niox.2021.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/11/2020] [Accepted: 01/01/2021] [Indexed: 01/13/2023]
Abstract
Calcium is a critical secondary messenger in microglia. In response to inflammation, microglia mobilize intracellular calcium and increase the expression of inducible nitric oxide synthase (iNOS), which produces nitric oxide (NO). This study set to explore whether NO regulates intracellular calcium dynamics through transient receptor potential (TRP) channels in primary wildtype (WT) and iNOS knockout (iNOS-/-) microglia, and the BV2 microglial cell line using calcium imaging and voltage-clamp recordings. Our results demonstrated that application of the NO-donor SNAP induced a biphasic calcium response in naïve murine microglia. Specifically, phase I was characterized by a rapid decline in calcium influx that was attenuated by pretreatment of the store operated calcium channel (SOCC) inhibitor 2APB, while phase II presented as a slow calcium influx that was abolished by pretreatment with the TRP vanilloid type 2 (TRPV2) channel inhibitor tranilast. Importantly, in the presence of a protein kinase G (PKG) inhibitor, the SNAP-mediated calcium decline in phase I persisted while the calcium influx in phase II was abolished. Application of thapsigargin to activate SOCCs caused a calcium influx through a nonselective cation conductance in BV2 microglia, which was abruptly attenuated by SNAP. Importantly, iNOS-/- microglia displayed a significantly larger calcium influx though SOCCs while expressing less stromal interaction molecule 1, Orai1, and TRP canonical type 1 and 3 mRNA, when compared to WT microglia. Together, these results demonstrate that NO signaling restricts calcium influx through SOCCs independent of PKG signaling and increases calcium influx through TRPV2 channels in a PKG-dependent mechanism in microglia.
Collapse
Affiliation(s)
- Matthew J E Maksoud
- Graduate Program of Neuroscience, The University of Western Ontario, Canada; Robarts Research Institute, The University of Western Ontario, Canada.
| | - Vasiliki Tellios
- Graduate Program of Neuroscience, The University of Western Ontario, Canada; Robarts Research Institute, The University of Western Ontario, Canada.
| | - Yun-Yan Xiang
- Robarts Research Institute, The University of Western Ontario, Canada.
| | - Wei-Yang Lu
- Graduate Program of Neuroscience, The University of Western Ontario, Canada; Robarts Research Institute, The University of Western Ontario, Canada; Department of Physiology and Pharmacology, University of Western Ontario, Canada.
| |
Collapse
|
9
|
James TD, Zwiefelhofer DJ, Frank CA. Maintenance of homeostatic plasticity at the Drosophila neuromuscular synapse requires continuous IP 3-directed signaling. eLife 2019; 8:39643. [PMID: 31180325 PMCID: PMC6557630 DOI: 10.7554/elife.39643] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 05/27/2019] [Indexed: 12/18/2022] Open
Abstract
Synapses and circuits rely on neuroplasticity to adjust output and meet physiological needs. Forms of homeostatic synaptic plasticity impart stability at synapses by countering destabilizing perturbations. The Drosophila melanogaster larval neuromuscular junction (NMJ) is a model synapse with robust expression of homeostatic plasticity. At the NMJ, a homeostatic system detects impaired postsynaptic sensitivity to neurotransmitter and activates a retrograde signal that restores synaptic function by adjusting neurotransmitter release. This process has been separated into temporally distinct phases, induction and maintenance. One prevailing hypothesis is that a shared mechanism governs both phases. Here, we show the two phases are separable. Combining genetics, pharmacology, and electrophysiology, we find that a signaling system consisting of PLCβ, inositol triphosphate (IP3), IP3 receptors, and Ryanodine receptors is required only for the maintenance of homeostatic plasticity. We also find that the NMJ is capable of inducing homeostatic signaling even when its sustained maintenance process is absent. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Thomas D James
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, United States.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, United States
| | - Danielle J Zwiefelhofer
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, United States
| | - C Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, United States.,Interdisciplinary Programs in Neuroscience, Genetics and Molecular Medicine, University of Iowa, Iowa City, United States
| |
Collapse
|
10
|
Kaiser M, Arvidson R, Zarivach R, Adams ME, Libersat F. Molecular cross-talk in a unique parasitoid manipulation strategy. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 106:64-78. [PMID: 30508629 DOI: 10.1016/j.ibmb.2018.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/18/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Envenomation of cockroach cerebral ganglia by the parasitoid Jewel wasp, Ampulex compressa, induces specific, long-lasting behavioural changes. We hypothesized that this prolonged action results from venom-induced changes in brain neurochemistry. Here, we address this issue by first identifying molecular targets of the venom, i.e., proteins to which venom components bind and interact with to mediate altered behaviour. Our results show that venom components bind to synaptic proteins and likely interfere with both pre- and postsynaptic processes. Since behavioural changes induced by the sting are long-lasting and reversible, we hypothesized further that long-term effects of the venom must be mediated by up or down regulation of cerebral ganglia proteins. We therefore characterize changes in cerebral ganglia protein abundance of stung cockroaches at different time points after the sting by quantitative mass spectrometry. Our findings indicate that numerous proteins are differentially expressed in cerebral ganglia of stung cockroaches, many of which are involved in signal transduction, such as the Rho GTPase pathway, which is implicated in synaptic plasticity. Altogether, our data suggest that the Jewel wasp commandeers cockroach behaviour through molecular cross-talk between venom components and molecular targets in the cockroach central nervous system, leading to broad-based alteration of synaptic efficacy and behavioural changes that promote successful development of wasp progeny.
Collapse
Affiliation(s)
- Maayan Kaiser
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva, 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva, 84105, Israel
| | - Ryan Arvidson
- Graduate Program in Biochemistry and Molecular Biology, University of California, Riverside, CA, 92521, USA; Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva, 84105, Israel
| | - Michael E Adams
- Graduate Program in Biochemistry and Molecular Biology, University of California, Riverside, CA, 92521, USA; Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, 92521, USA; Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Frederic Libersat
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva, 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva, 84105, Israel.
| |
Collapse
|
11
|
Kolosov D, Donly C, MacMillan H, O'Donnell MJ. Transcriptomic analysis of the Malpighian tubules of Trichoplusia ni: Clues to mechanisms for switching from ion secretion to ion reabsorption in the distal ileac plexus. JOURNAL OF INSECT PHYSIOLOGY 2019; 112:73-89. [PMID: 30562492 DOI: 10.1016/j.jinsphys.2018.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/02/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Excretion of metabolic wastes and toxins in insect Malpighian tubules (MTs) is coupled to secretion of ions and fluid. Larval lepidopterans demonstrate a complex and regionalized MT morphology, and recent studies of larvae of the cabbage looper, Trichoplusia ni, have revealed several unusual aspects of ion transport in the MTs. Firstly, cations are reabsorbed via secondary cells (SCs) in T. ni, whereas in most insects SCs secrete ions. Secondly, SCs are coupled to neighbouring principal cells (PCs) via gap junctions to enable such ion reabsorption. Thirdly, PCs in the SC-containing distal ileac plexus (DIP) region of the tubule reverse from cation secretion to reabsorption in response to dietary ion loading. Lastly, antidiuresis is observed in response to a kinin neuropeptide, which targets both PCs and SCs, whereas in most insects kinins are diuretics that act exclusively via SCs. Recent studies have generated a basic model of ion transport in the DIP of the larval T. ni. RNAseq was used to elucidate previously uncharacterised aspects of ion transport and endocrine regulation in the DIP, with the aim of painting a composite picture of ion transport and identifying putative regulatory mechanisms of ion transport reversal in this tissue. Results indicated an overall expression of 9103 transcripts in the DIP, 993 and 382 of which were differentially expressed in the DIP of larvae fed high-K+ and high-Na+ diets respectively. Differentially expressed transcripts include ion-motive ATPases, ion channels and co-transporters, aquaporins, nutrient and xenobiotic transporters, cell adhesion and junction components, and endocrine receptors. Notably, several transcripts for voltage-gated ion channels and cell volume regulation-associated products were detected in the DIP and differentially expressed in larvae fed ion-rich diet. The study provides insights into the transport of solutes (sugars, amino acids, xenobiotics, phosphate and inorganic ions) by the DIP of lepidopterans. Our data suggest that this region of the MT in lepidopterans (as previously reported) transports cations, fluid, and xenobiotics/toxic metals. Besides this, the DIP expresses genes coding for the machinery involved in Na+- and H+-dependent reabsorption of solutes, chloride transport, and base recovery. Additionally, many of the transcripts expressed by the DIP a capacity of this region to respond to, process, and sometimes produce, neuropeptides, steroid hormones and neurotransmitters. Lastly, the DIP appears to possess an arsenal of septate junction components, differential expression of which may indicate junctional restructuring in the DIP of ion-loaded larvae.
Collapse
Affiliation(s)
| | - Cam Donly
- Department of Biology, University of Western Ontario, Canada; London Research and Development Centre, Agriculture and Agri-Food Canada, Canada
| | | | | |
Collapse
|
12
|
Sarkar S, Khatun S, Dutta M, Roy S. Trans-generational transmission of altered phenotype resulting from flubendiamide-induced changes in apoptosis in larval imaginal discs of Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:350-360. [PMID: 29121551 DOI: 10.1016/j.etap.2017.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 06/07/2023]
Abstract
The eye and wing morphology of Drosophila melanogaster maintain unique, stable pattern of genesis from larval eye and wing imaginal discs. Increased apoptosis in cells of eye and wing discs was found to be associated with flubendiamide (fluoride containing insecticide) exposure (at the range 0.25-10μg/mL) in D. melanogaster larvae. The chemical fed larvae on attaining adulthood revealed alterations in morphology and symmetry of their compound eyes and wings through scanning electron microscopy. Nearly 40% and 30% of flies (P generation) demonstrated alterations in eyes and wings respectively. Transmission electron microscopic study (at the range 1-20μg/mL) also established variation in the rhabdomere and pigment cell orientation as well as in the shape of the ommatidium. Subsequent SEM study with F1 and F2 generation flies also revealed structural variation in eye and wing. Decrease in percentage of altered eye and wing phenotype was noted in subsequent generations (P> F1>F2). Thus, the diamide insecticide, flubendiamide, expected to be environmentally safe at sub-lethal concentrations was found to increase apoptosis in larvae and thereby cause morphological alteration in the adult D. melanogaster. This study further demonstrated trans-generational transmission of altered phenotype in three subsequent generations of a non-target insect model, D. melanogaster.
Collapse
Affiliation(s)
- Saurabh Sarkar
- Toxicology Research Unit, Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Salma Khatun
- Toxicology Research Unit, Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Moumita Dutta
- Toxicology Research Unit, Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Sumedha Roy
- Toxicology Research Unit, Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
13
|
Sugimachi S, Matsumoto Y, Mizunami M, Okada J. Effects of Caffeine on Olfactory Learning in Crickets. Zoolog Sci 2016; 33:513-519. [DOI: 10.2108/zs150209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Mitochondria in the Aging Muscles of Flies and Mice: New Perspectives for Old Characters. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9057593. [PMID: 27630760 PMCID: PMC5007348 DOI: 10.1155/2016/9057593] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/30/2016] [Accepted: 05/16/2016] [Indexed: 12/22/2022]
Abstract
Sarcopenia is the loss of muscle mass accompanied by a decrease in muscle strength and resistance and is the main cause of disability among the elderly. Muscle loss begins long before there is any clear physical impact in the senior adult. Despite all this, the molecular mechanisms underlying muscle aging are far from being understood. Recent studies have identified that not only mitochondrial metabolic dysfunction but also mitochondrial dynamics and mitochondrial calcium uptake could be involved in the degeneration of skeletal muscle mass. Mitochondrial homeostasis influences muscle quality which, in turn, could play a triggering role in signaling of systemic aging. Thus, it has become apparent that mitochondrial status in muscle cells could be a driver of whole body physiology and organismal aging. In the present review, we discuss the existing evidence for the mitochondria related mechanisms underlying the appearance of muscle aging and sarcopenia in flies and mice.
Collapse
|
15
|
Drosophila wing imaginal discs respond to mechanical injury via slow InsP3R-mediated intercellular calcium waves. Nat Commun 2016; 7:12450. [PMID: 27503836 PMCID: PMC4980486 DOI: 10.1038/ncomms12450] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/05/2016] [Indexed: 11/08/2022] Open
Abstract
Calcium signalling is a highly versatile cellular communication system that modulates basic functions such as cell contractility, essential steps of animal development such as fertilization and higher-order processes such as memory. We probed the function of calcium signalling in Drosophila wing imaginal discs through a combination of ex vivo and in vivo imaging and genetic analysis. Here we discover that wing discs display slow, long-range intercellular calcium waves (ICWs) when mechanically stressed in vivo or cultured ex vivo. These slow imaginal disc intercellular calcium waves (SIDICs) are mediated by the inositol-3-phosphate receptor, the endoplasmic reticulum (ER) calcium pump SERCA and the key gap junction component Inx2. The knockdown of genes required for SIDIC formation and propagation negatively affects wing disc recovery after mechanical injury. Our results reveal a role for ICWs in wing disc homoeostasis and highlight the utility of the wing disc as a model for calcium signalling studies. It is unclear what role calcium signalling plays in the Drosophila wing disc. Here, the authors show that on mechanical stress, slow, long-range intercellular calcium waves are initiated in vivo and ex vivo, mediated by the inositol-3-phosphate receptor, the calcium pump SERCA and gap junction component Inx2.
Collapse
|
16
|
Li S, Fei J, Cheng D, Jin Y, Zhang W, Zhang Y, Lv Z. BIOINFORMATICS, TISSUE DISTRIBUTION, AND SUBCELLULAR LOCALIZATION ANALYSES OF FK506 BINDING PROTEIN 12B FROM SILKWORMS. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 91:109-123. [PMID: 26679986 DOI: 10.1002/arch.21312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
FK506 binding proteins (FKBPs) are intracellular receptors of the immunosuppressant FK506 and play important roles in the correct folding of new proteins and the self-assembly of biological macromolecules. FKBP12 is a member of the FKBP family that is widely expressed and highly conserved in many species. In this study, we identified the complete cDNA sequence encoding the FKBP12 ortholog in Bombyx mori, named Bm-FKBP12B (GenBank accession no. DQ443423). Multiple-sequence alignment among different species revealed a high similarity among FKBP12 paralogs and orthologs. Bioinformatics analysis of the Bm-FKBP12B gene showed that it is located on chromosome 20 and consists of three exons and two introns. We cloned, expressed, and purified the Bm-FKBP12B protein in Escherichia coli and generated a specific polyclonal antibody against Bm-FKBP12B. The real-time quantitative reverse-transcription (qRT) PCR and Western blotting results showed that Bm-FKBP12B was present throughout all of the development stages, but it was abundant in the adult and embryo stages. Bm-FKBP12B expression was higher in the silk gland and gut, suggesting that it might play important roles in regulating gene expression in the silk gland and during silk fiber formation. Bm-FKBP12B protein was distributed in the cytoplasm, nucleus, and nuclear membrane.
Collapse
Affiliation(s)
- Si Li
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - JingJing Fei
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - DanDan Cheng
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yongfeng Jin
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wenping Zhang
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yaozhou Zhang
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhengbing Lv
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
17
|
Kaneuchi T, Sartain CV, Takeo S, Horner VL, Buehner NA, Aigaki T, Wolfner MF. Calcium waves occur as Drosophila oocytes activate. Proc Natl Acad Sci U S A 2015; 112:791-6. [PMID: 25564670 PMCID: PMC4311822 DOI: 10.1073/pnas.1420589112] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Egg activation is the process by which a mature oocyte becomes capable of supporting embryo development. In vertebrates and echinoderms, activation is induced by fertilization. Molecules introduced into the egg by the sperm trigger progressive release of intracellular calcium stores in the oocyte. Calcium wave(s) spread through the oocyte and induce completion of meiosis, new macromolecular synthesis, and modification of the vitelline envelope to prevent polyspermy. However, arthropod eggs activate without fertilization: in the insects examined, eggs activate as they move through the female's reproductive tract. Here, we show that a calcium wave is, nevertheless, characteristic of egg activation in Drosophila. This calcium rise requires influx of calcium from the external environment and is induced as the egg is ovulated. Pressure on the oocyte (or swelling by the oocyte) can induce a calcium rise through the action of mechanosensitive ion channels. Visualization of calcium fluxes in activating eggs in oviducts shows a wave of increased calcium initiating at one or both oocyte poles and spreading across the oocyte. In vitro, waves also spread inward from oocyte pole(s). Wave propagation requires the IP3 system. Thus, although a fertilizing sperm is not necessary for egg activation in Drosophila, the characteristic of increased cytosolic calcium levels spreading through the egg is conserved. Because many downstream signaling effectors are conserved in Drosophila, this system offers the unique perspective of egg activation events due solely to maternal components.
Collapse
Affiliation(s)
- Taro Kaneuchi
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Caroline V Sartain
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853; and
| | - Satomi Takeo
- Faculty of Life and Environmental Sciences and Life Science Center of Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki 305-8572, Japan
| | - Vanessa L Horner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853; and
| | - Norene A Buehner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853; and
| | - Toshiro Aigaki
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan;
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853; and
| |
Collapse
|
18
|
Nie Y, Huang F, Dong S, Li L, Gao P, Zhao H, Wang Y, Han S. Identification of inositol 1,4,5-trisphosphate-binding proteins by heparin-agarose affinity purification and LTQORBITRAPMS in Oryza sativa. Proteomics 2014; 14:2335-8. [DOI: 10.1002/pmic.201400042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/04/2014] [Accepted: 07/18/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Yanli Nie
- Beijing Key Laboratory of Gene Resource and Molecular Development; Beijing Normal University, College of Life Sciences; Beijing P. R. China
| | - Feifei Huang
- Beijing Key Laboratory of Gene Resource and Molecular Development; Beijing Normal University, College of Life Sciences; Beijing P. R. China
| | - Shujun Dong
- Beijing Key Laboratory of Gene Resource and Molecular Development; Beijing Normal University, College of Life Sciences; Beijing P. R. China
| | - Lin Li
- National Institute of Biological Sciences; Beijing P. R. China
| | - Ping Gao
- Beijing Key Laboratory of Gene Resource and Molecular Development; Beijing Normal University, College of Life Sciences; Beijing P. R. China
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development; Beijing Normal University, College of Life Sciences; Beijing P. R. China
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development; Beijing Normal University, College of Life Sciences; Beijing P. R. China
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resource and Molecular Development; Beijing Normal University, College of Life Sciences; Beijing P. R. China
| |
Collapse
|
19
|
Qi S, Lümmen P, Nauen R, Casida JE. Diamide insecticide target site specificity in the Heliothis and Musca ryanodine receptors relative to toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4077-4082. [PMID: 24745606 DOI: 10.1021/jf501236h] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Anthranilic and phthalic diamides act on the ryanodine receptor (RyR), which constitutes the Ca(2+)-activated Ca(2+) channel and can be assayed as shown here in Heliothis thoracic muscle tissue with anthranilic diamide [(3)H]chlorantraniliprole ([(3)H]Chlo), phthalic diamide [(3)H]flubendiamide ([(3)H]Flu), and [(3)H]ryanodine ([(3)H]Ry). Using Heliothis with [(3)H]Chlo or [(3)H]Flu gives very similar anthranilic and phthalic diamide binding site structure-activity correlations, indicating a common binding site. The anthranilic and phthalic diamide stimulation of [(3)H]Ry binding in Heliothis generally parallels their inhibition of [(3)H]Chlo and [(3)H]Flu binding. In Musca adults [(3)H]Ry binding site stimulation is a good predictor of in vivo activity for anthranilic but not phthalic diamides, and no high-affinity [(3)H]Flu specific binding site is observed. These relationships establish species differences in diamide target site specificity important in structure optimization and target site-based resistance mechanisms.
Collapse
Affiliation(s)
- Suzhen Qi
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California , Berkeley, California 94720-3112, United States
| | | | | | | |
Collapse
|
20
|
Abraham DM, Wolf MJ. Disruption of sarcoendoplasmic reticulum calcium ATPase function in Drosophila leads to cardiac dysfunction. PLoS One 2013; 8:e77785. [PMID: 24098595 PMCID: PMC3789689 DOI: 10.1371/journal.pone.0077785] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/11/2013] [Indexed: 11/18/2022] Open
Abstract
Abnormal sarcoendoplasmic reticulum Calcium ATPase (SERCA) function has been associated with poor cardiac function in humans. While modifiers of SERCA function have been identified and studied using animal models, further investigation has been limited by the absence of a model system that is amenable to large-scale genetic screens. Drosophila melanogaster is an ideal model system for the investigation of SERCA function due to the significant homology to human SERCA and the availability of versatile genetic screening tools. To further the use of Drosophila as a model for examining the role of SERCA in cardiac function, we examined cardiac function in adult flies. Using optical coherence tomography (OCT) imaging in awake, adult Drosophila, we have been able to characterize cardiac chamber dimensions in flies with disrupted in Drosophila SERCA (CaP60A). We found that the best studied CaP60A mutant, the conditional paralytic mutant CaP60Akum170, develops marked bradycardia and chamber enlargement that is closely linked to the onset of paralysis and dependent on extra cardiac CaP60A. In contrast to prior work, we show that disruption of CaP60A in a cardiac specific manner results in cardiac dilation and dysfunction rather than alteration in heart rate. In addition, the co-expression of a calcium release channel mutation with CaP60A kum170 is sufficient to rescue the cardiac phenotype but not paralysis. Finally, we show that CaP60A overexpression is able to rescue cardiac function in a model of Drosophila cardiac dysfunction similar to what is observed in mammals. Thus, we present a cardiac phenotype associated with Drosophila SERCA dysfunction that would serve as additional phenotyping for further large-scale genetic screens for novel modifiers of SERCA function.
Collapse
Affiliation(s)
- Dennis M. Abraham
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Matthew J. Wolf
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
21
|
Parasitoid wasp venom SERCA regulates Drosophila calcium levels and inhibits cellular immunity. Proc Natl Acad Sci U S A 2013; 110:9427-32. [PMID: 23690612 DOI: 10.1073/pnas.1222351110] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Because parasite virulence factors target host immune responses, identification and functional characterization of these factors can provide insight into poorly understood host immune mechanisms. The fruit fly Drosophila melanogaster is a model system for understanding humoral innate immunity, but Drosophila cellular innate immune responses remain incompletely characterized. Fruit flies are regularly infected by parasitoid wasps in nature and, following infection, flies mount a cellular immune response culminating in the cellular encapsulation of the wasp egg. The mechanistic basis of this response is largely unknown, but wasps use a mixture of virulence proteins derived from the venom gland to suppress cellular encapsulation. To gain insight into the mechanisms underlying wasp virulence and fly cellular immunity, we used a joint transcriptomic/proteomic approach to identify venom genes from Ganaspis sp.1 (G1), a previously uncharacterized Drosophila parasitoid species, and found that G1 venom contains a highly abundant sarco/endoplasmic reticulum calcium ATPase (SERCA) pump. Accordingly, we found that fly immune cells termed plasmatocytes normally undergo a cytoplasmic calcium burst following infection, and that this calcium burst is required for activation of the cellular immune response. We further found that the plasmatocyte calcium burst is suppressed by G1 venom in a SERCA-dependent manner, leading to the failure of plasmatocytes to become activated and migrate toward G1 eggs. Finally, by genetically manipulating plasmatocyte calcium levels, we were able to alter fly immune success against G1 and other parasitoid species. Our characterization of parasitoid wasp venom proteins led us to identify plasmatocyte cytoplasmic calcium bursts as an important aspect of fly cellular immunity.
Collapse
|
22
|
Hashimoto M, Enomoto M, Morales J, Kurebayashi N, Sakurai T, Hashimoto T, Nara T, Mikoshiba K. Inositol 1,4,5-trisphosphate receptor regulates replication, differentiation, infectivity and virulence of the parasitic protist Trypanosoma cruzi. Mol Microbiol 2013; 87:1133-50. [PMID: 23320762 DOI: 10.1111/mmi.12155] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2013] [Indexed: 11/26/2022]
Abstract
In animals, inositol 1,4,5-trisphosphate receptors (IP3 Rs) are ion channels that play a pivotal role in many biological processes by mediating Ca(2+) release from the endoplasmic reticulum. Here, we report the identification and characterization of a novel IP3 R in the parasitic protist, Trypanosoma cruzi, the pathogen responsible for Chagas disease. DT40 cells lacking endogenous IP3 R genes expressing T. cruzi IP3 R (TcIP3 R) exhibited IP3 -mediated Ca(2+) release from the ER, and demonstrated receptor binding to IP3 . TcIP3 R was expressed throughout the parasite life cycle but the expression level was much lower in bloodstream trypomastigotes than in intracellular amastigotes or epimastigotes. Disruption of two of the three TcIP3 R gene loci led to the death of the parasite, suggesting that IP3 R is essential for T. cruzi. Parasites expressing reduced or increased levels of TcIP3 R displayed defects in growth, transformation and infectivity, indicating that TcIP3 R is an important regulator of the parasite's life cycle. Furthermore, mice infected with T. cruzi expressing reduced levels of TcIP3 R exhibited a reduction of disease symptoms, indicating that TcIP3 R is an important virulence factor. Combined with the fact that the primary structure of TcIP3 R has low similarity to that of mammalian IP3 Rs, TcIP3 R is a promising drug target for Chagas disease.
Collapse
Affiliation(s)
- Muneaki Hashimoto
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Troczka B, Zimmer CT, Elias J, Schorn C, Bass C, Davies TGE, Field LM, Williamson MS, Slater R, Nauen R. Resistance to diamide insecticides in diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) is associated with a mutation in the membrane-spanning domain of the ryanodine receptor. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:873-880. [PMID: 22982600 DOI: 10.1016/j.ibmb.2012.09.001] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 06/01/2023]
Abstract
Diamide insecticides such as chlorantraniliprole and flubendiamide are a new class of insecticide that selectively target insect ryanodine receptors (RyR), a distinct class of homo-tetrameric calcium release channels which play a pivotal role in calcium homeostasis in numerous cell types. Resistance to these insecticides has recently been reported in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), a global lepidopteran pest of cruciferous crops. In the present study a region of the gene encoding the proposed diamide binding site of the RyR from P. xylostella collected from the Philippines and Thailand and found to be over 200-fold resistant to both chlorantraniliprole and flubendiamide compared to susceptible strains, were amplified by RT-PCR and sequenced. Comparison of the sequence with those from several susceptible reference strains revealed non-synonymous mutations in each of the resistant strains that in both cases lead to a glycine to glutamic acid substitution (G4946E) in the protein. The independent evolution of the same amino acid substitution within a highly conserved region of the proposed diamide binding site in two geographically separated resistant strains of P. xylostella strongly suggests a causal association with diamide resistance. Furthermore we designed a pyrosequencing-based diagnostic assay for resistance monitoring purposes that can be used to detect the G4946E mutation in field-collected samples of diamondback moth. The implications of the reported findings for resistance management strategies are discussed.
Collapse
Affiliation(s)
- Bartek Troczka
- Department Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Astorga G, Härtel S, Sanhueza M, Bacigalupo J. TRP, TRPL and cacophony channels mediate Ca2+ influx and exocytosis in photoreceptors axons in Drosophila. PLoS One 2012; 7:e44182. [PMID: 22952921 PMCID: PMC3432082 DOI: 10.1371/journal.pone.0044182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/02/2012] [Indexed: 01/17/2023] Open
Abstract
In Drosophila photoreceptors Ca(2+)-permeable channels TRP and TRPL are the targets of phototransduction, occurring in photosensitive microvilli and mediated by a phospholipase C (PLC) pathway. Using a novel Drosophila brain slice preparation, we studied the distribution and physiological properties of TRP and TRPL in the lamina of the visual system. Immunohistochemical images revealed considerable expression in photoreceptors axons at the lamina. Other phototransduction proteins are also present, mainly PLC and protein kinase C, while rhodopsin is absent. The voltage-dependent Ca(2+) channel cacophony is also present there. Measurements in the lamina with the Ca(2+) fluorescent protein G-CaMP ectopically expressed in photoreceptors, revealed depolarization-induced Ca(2+) increments mediated by cacophony. Additional Ca(2+) influx depends on TRP and TRPL, apparently functioning as store-operated channels. Single synaptic boutons resolved in the lamina by FM4-64 fluorescence revealed that vesicle exocytosis depends on cacophony, TRP and TRPL. In the PLC mutant norpA bouton labeling was also impaired, implicating an additional modulation by this enzyme. Internal Ca(2+) also contributes to exocytosis, since this process was reduced after Ca(2+)-store depletion. Therefore, several Ca(2+) pathways participate in photoreceptor neurotransmitter release: one is activated by depolarization and involves cacophony; this is complemented by internal Ca(2+) release and the activation of TRP and TRPL coupled to Ca(2+) depletion of internal reservoirs. PLC may regulate the last two processes. TRP and TRPL would participate in two different functions in distant cellular regions, where they are opened by different mechanisms. This work sheds new light on the mechanism of neurotransmitter release in tonic synapses of non-spiking neurons.
Collapse
Affiliation(s)
- Guadalupe Astorga
- Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
- Millennium Institute for Cell Dynamics and Biotechnology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Steffen Härtel
- Laboratory for Scientific Image Analysis, (SCIAN-Lab), Biomedical Neuroscience Institute (BNI), ICBM, Program of Anatomy and Developmental Biology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Magdalena Sanhueza
- Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
- Millennium Institute for Cell Dynamics and Biotechnology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Juan Bacigalupo
- Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
- Millennium Institute for Cell Dynamics and Biotechnology, Faculty of Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
25
|
Moffett DF, Jagadeshwaran U, Wang Z, Davis HM, Onken H, Goss GG. Signaling by intracellular Ca2+ and H+ in larval mosquito (Aedes aegypti) midgut epithelium in response to serosal serotonin and lumen pH. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:506-512. [PMID: 22172381 DOI: 10.1016/j.jinsphys.2011.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/21/2011] [Accepted: 11/28/2011] [Indexed: 05/31/2023]
Abstract
The midgut of larval mosquitoes (Aedes aegypti) mediates a cycle of alkali secretion in the anterior segment (AMG) followed by partial reacidification in the posterior segment (PMG); both processes are serotonin-dependent. Here we report that intracellular Ca(2+)(Ca(i)(2+)) as indicated by Fura-2 fluorescence, is elevated in both tissues in response to serotonin, but the time courses differ characteristically in the two gut segments, and Ca(2+)-free solution abolishes the serotonin response in AMG, but not in PMG, whereas Thapsigargin, an inhibitor of endoplasmic Ca(2+) transport, abolished responsiveness to 5-HT in PMG. These results suggest the origins for the Ca(2+) signal differ between the two tissues. Quantitative real-time RT-PCR revealed expression of 5 putative 5-HT receptor types in AMG, including 5-HT(2)-like receptors which would be expected to initiate a Ca(2+) signal. None of these receptors were highly expressed in PMG. Cyclic AMP (cAMP) is a secretagogue for both tissues, but H89, an inhibitor of Protein Kinase A (PKA), is also a secretagogue, suggesting that the stimulatory effect of cAMP involves a non-PKA pathway. Cytochalasins B and D block the effect of 5-HT in AMG, suggesting a vesicle-fusion mechanism of activation of the basal V-ATPase in this tissue. Finally, in PMG, elevation of luminal pH increases (Ca(i)(2+)) and decreases intracellular pH as measured by BCECF fluorescence. These responses suggest that the rate of acid secretion by PMG might be responsive to local demand for luminal reacidification as well as to serosal serotonin.
Collapse
Affiliation(s)
- David F Moffett
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Chorna T, Hasan G. The genetics of calcium signaling in Drosophila melanogaster. Biochim Biophys Acta Gen Subj 2011; 1820:1269-82. [PMID: 22100727 DOI: 10.1016/j.bbagen.2011.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 10/31/2011] [Accepted: 11/02/2011] [Indexed: 01/13/2023]
Abstract
BACKGROUND Genetic screens for behavioral and physiological defects in Drosophila melanogaster, helped identify several components of calcium signaling of which some, like the Trps, were novel. For genes initially identified in vertebrates, reverse genetic methods have allowed functional studies at the cellular and systemic levels. SCOPE OF REVIEW The aim of this review is to explain how various genetic methods available in Drosophila have been used to place different arms of Ca2+ signaling in the context of organismal development, physiology and behavior. MAJOR CONCLUSION Mutants generated in genes encoding a range of Ca2+ transport systems, binding proteins and enzymes affect multiple aspects of neuronal and muscle physiology. Some also affect the maintenance of ionic balance and excretion from malpighian tubules and innate immune responses in macrophages. Aspects of neuronal physiology affected include synaptic growth and plasticity, sensory transduction, flight circuit development and function. Genetic interaction screens have shown that mechanisms of maintaining Ca2+ homeostasis in Drosophila are cell specific and require a synergistic interplay between different intracellular and plasma membrane Ca2+ signaling molecules. GENERAL SIGNIFICANCE Insights gained through genetic studies of conserved Ca2+ signaling pathways have helped understand multiple aspects of fly physiology. The similarities between mutant phenotypes of Ca2+ signaling genes in Drosophila with certain human disease conditions, especially where homologous genes are causative factors, are likely to aid in the discovery of underlying disease mechanisms and help develop novel therapeutic strategies. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signalling.
Collapse
Affiliation(s)
- Tetyana Chorna
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | | |
Collapse
|
27
|
Murmu MS, Stinnakre J, Réal E, Martin JR. Calcium-stores mediate adaptation in axon terminals of olfactory receptor neurons in Drosophila. BMC Neurosci 2011; 12:105. [PMID: 22024464 PMCID: PMC3226658 DOI: 10.1186/1471-2202-12-105] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/24/2011] [Indexed: 11/30/2022] Open
Abstract
Background In vertebrates and invertebrates, sensory neurons adapt to variable ambient conditions, such as the duration or repetition of a stimulus, a physiological mechanism considered as a simple form of non-associative learning and neuronal plasticity. Although various signaling pathways, as cAMP, cGMP, and the inositol 1,4,5-triphosphate receptor (InsP3R) play a role in adaptation, their precise mechanisms of action at the cellular level remain incompletely understood. Recently, in Drosophila, we reported that odor-induced Ca2+-response in axon terminals of olfactory receptor neurons (ORNs) is related to odor duration. In particular, a relatively long odor stimulus (such as 5 s) triggers the induction of a second component involving intracellular Ca2+-stores. Results We used a recently developed in-vivo bioluminescence imaging approach to quantify the odor-induced Ca2+-activity in the axon terminals of ORNs. Using either a genetic approach to target specific RNAs, or a pharmacological approach, we show that the second component, relying on the intracellular Ca2+-stores, is responsible for the adaptation to repetitive stimuli. In the antennal lobes (a region analogous to the vertebrate olfactory bulb) ORNs make synaptic contacts with second-order neurons, the projection neurons (PNs). These synapses are modulated by GABA, through either GABAergic local interneurons (LNs) and/or some GABAergic PNs. Application of GABAergic receptor antagonists, both GABAA or GABAB, abolishes the adaptation, while RNAi targeting the GABABR (a metabotropic receptor) within the ORNs, blocks the Ca2+-store dependent component, and consequently disrupts the adaptation. These results indicate that GABA exerts a feedback control. Finally, at the behavioral level, using an olfactory test, genetically impairing the GABABR or its signaling pathway specifically in the ORNs disrupts olfactory adapted behavior. Conclusion Taken together, our results indicate that a relatively long lasting form of adaptation occurs within the axon terminals of the ORNs in the antennal lobes, which depends on intracellular Ca2+-stores, attributable to a positive feedback through the GABAergic synapses.
Collapse
Affiliation(s)
- Meena S Murmu
- Imagerie Cérébrale Fonctionnelle et Comportements, Neurobiologie et Développement, CNRS, UPR-3294, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex, France
| | | | | | | |
Collapse
|
28
|
Copenhaver PF, Anekonda TS, Musashe D, Robinson KM, Ramaker JM, Swanson TL, Wadsworth TL, Kretzschmar D, Woltjer RL, Quinn JF. A translational continuum of model systems for evaluating treatment strategies in Alzheimer's disease: isradipine as a candidate drug. Dis Model Mech 2011; 4:634-48. [PMID: 21596710 PMCID: PMC3180227 DOI: 10.1242/dmm.006841] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 04/18/2011] [Indexed: 01/16/2023] Open
Abstract
A growing body of evidence supports the 'calcium hypothesis' of Alzheimer's disease (AD), which postulates that a variety of insults might disrupt the homeostatic regulation of neuronal calcium (Ca(2+)) in the brain, resulting in the progressive symptoms that typify the disease. However, despite ongoing efforts to develop new methods for testing therapeutic compounds that might be beneficial in AD, no single bioassay permits both rapid screening and in vivo validation of candidate drugs that target specific components of the Ca(2+) regulatory machinery. To address this issue, we have integrated four distinct model systems that provide complementary information about a trial compound: the human neuroblastoma MC65 line, which provides an in vitro model of amyloid toxicity; a transgenic Drosophila model, which develops age-dependent pathologies associated with AD; the 3×TgAD transgenic mouse, which recapitulates many of the neuropathological features that typify AD; and the embryonic nervous system of Manduca, which provides a novel in vivo assay for the acute effects of amyloid peptides on neuronal motility. To demonstrate the value of this 'translational suite' of bioassays, we focused on a set of clinically approved dihydropyridines (DHPs), a class of well-defined inhibitors of L-type calcium channels that have been suggested to be neuroprotective in AD. Among the DHPs tested in this study, we found that isradipine reduced the neurotoxic consequences of β-amyloid accumulation in all four model systems without inducing deleterious side effects. Our results provide new evidence in support of the Ca(2+) hypothesis of AD, and indicate that isradipine represents a promising drug for translation into clinical trials. In addition, these studies also demonstrate that this continuum of bioassays (representing different levels of complexity) provides an effective means of evaluating other candidate compounds that target specific components of the Ca(2+) regulatory machinery and that therefore might be beneficial in the treatment of AD.
Collapse
Affiliation(s)
- Philip F Copenhaver
- Department of Cell and Developmental Biology, Oregon Health andScience University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Shakiryanova D, Morimoto T, Zhou C, Chouhan AK, Sigrist SJ, Nose A, Macleod GT, Deitcher DL, Levitan ES. Differential control of presynaptic CaMKII activation and translocation to active zones. J Neurosci 2011; 31:9093-100. [PMID: 21697360 PMCID: PMC3123710 DOI: 10.1523/jneurosci.0550-11.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/03/2011] [Accepted: 05/08/2011] [Indexed: 11/21/2022] Open
Abstract
The release of neurotransmitters, neurotrophins, and neuropeptides is modulated by Ca(2+) mobilization from the endoplasmic reticulum (ER) and activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). Furthermore, when neuronal cultures are subjected to prolonged depolarization, presynaptic CaMKII redistributes from the cytoplasm to accumulate near active zones (AZs), a process that is reminiscent of CaMKII translocation to the postsynaptic side of the synapse. However, it is not known how presynaptic CaMKII activation and translocation depend on neuronal activity and ER Ca(2+) release. Here these issues are addressed in Drosophila motoneuron terminals by imaging a fluorescent reporter of CaMKII activity and subcellular distribution. We report that neuronal excitation acts with ER Ca(2+) stores to induce CaMKII activation and translocation to a subset of AZs. Surprisingly, activation is slow, reflecting T286 autophosphorylation and the function of presynaptic ER ryanodine receptors (RyRs) and inositol trisphosphate receptors (IP3Rs). Furthermore, translocation is not simply proportional to CaMKII activity, as T286 autophosphorylation promotes activation, but does not affect translocation. In contrast, RNA interference-induced knockdown of the AZ scaffold protein Bruchpilot disrupts CaMKII translocation without affecting activation. Finally, RyRs comparably stimulate both activation and translocation, but IP3Rs preferentially promote translocation. Thus, Ca(2+) provided by different presynaptic ER Ca(2+) release channels is not equivalent. These results suggest that presynaptic CaMKII activation depends on autophosphorylation and global Ca(2+) in the terminal, while translocation to AZs requires Ca(2+) microdomains generated by IP3Rs.
Collapse
Affiliation(s)
- Dinara Shakiryanova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Takako Morimoto
- Laboratory of Cellular Neurobiology, Tokyo University of Pharmacy and Life Sciences, 192-0392 Tokyo, Japan
| | - Chaoming Zhou
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Amit K. Chouhan
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | | | - Akinao Nose
- Department of Complexity Science and Engineering, University of Tokyo, Chiba 277-8561, Japan, and
| | - Gregory T. Macleod
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - David L. Deitcher
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14850
| | - Edwin S. Levitan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
30
|
Ng FS, Tangredi MM, Jackson FR. Glial cells physiologically modulate clock neurons and circadian behavior in a calcium-dependent manner. Curr Biol 2011; 21:625-34. [PMID: 21497088 PMCID: PMC3081987 DOI: 10.1016/j.cub.2011.03.027] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 02/09/2011] [Accepted: 03/09/2011] [Indexed: 01/12/2023]
Abstract
BACKGROUND An important goal of contemporary neuroscience research is to define the neural circuits and synaptic interactions that mediate behavior. In both mammals and Drosophila, the neuronal circuitry controlling circadian behavior has been the subject of intensive investigation, but roles for glial cells in the networks controlling rhythmic behavior have only begun to be defined in recent studies. RESULTS Here, we show that conditional, glial-specific genetic manipulations affecting membrane (vesicle) trafficking, the membrane ionic gradient, or calcium signaling lead to circadian arrhythmicity in adult behaving Drosophila. Correlated and reversible effects on a clock neuron peptide transmitter (PDF) and behavior demonstrate the capacity for glia-to-neuron signaling in the circadian circuitry. These studies also reveal the importance of a single type of glial cell-the astrocyte-and glial internal calcium stores in the regulation of circadian rhythms. CONCLUSIONS This is the first demonstration in any system that adult glial cells can physiologically modulate circadian neuronal circuitry and behavior. A role for astrocytes and glial calcium signaling in the regulation of Drosophila circadian rhythms emphasizes the conservation of cellular and molecular mechanisms that regulate behavior in mammals and insects.
Collapse
Affiliation(s)
- Fanny S. Ng
- Department of Neuroscience, Center for Neuroscience Research Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111
| | - Michelle M. Tangredi
- Department of Neuroscience, Center for Neuroscience Research Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111
| | - F. Rob Jackson
- Department of Neuroscience, Center for Neuroscience Research Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111
| |
Collapse
|
31
|
Murmu MS, Stinnakre J, Martin JR. Presynaptic Ca2+ stores contribute to odor-induced responses in Drosophila olfactory receptor neurons. ACTA ACUST UNITED AC 2011; 213:4163-73. [PMID: 21112997 DOI: 10.1242/jeb.046474] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In both vertebrates and invertebrates, olfactory receptor neurons (ORNs) respond to several odors. They also adapt to stimulus variations, and this is considered to be a simple form of non-associative learning and neuronal plasticity. Different mechanisms have been described to support neuronal and/or synaptic plasticity. For example in vertebrates, presynaptic Ca(2+) stores relying on either the ryanodine receptor (RyR) or the inositol (1,4,5)-trisphosphate receptor (InsP(3)R) have been reported to participate in synaptic transmission, in hippocampal pyramidal neurons, and in basket cell-Purkinje cell synapses. However, in invertebrates, especially in sensory neurons such as ORNs, similar mechanisms have not yet been detected. In this study, using Drosophila and taking advantage of an in vivo bioluminescence Ca(2+)-imaging technique in combination with genetic and pharmacological tools, first we show that the GFP-aequorin Ca(2+) sensor is sensitive enough to detect odor-induced responses of various durations. Second, we show that for a relatively long (5 s) odor application, odor-induced Ca(2+) responses occurring in the axon terminals of ORNs involve intracellular Ca(2+) stores. This response is decreased by specifically targeting InsP(3)R or RyR by RNAi, or application of the specific blockers thapsigargin or ryanodine, suggesting that Ca(2+) stores serve to amplify the presynaptic signal. Furthermore, we show that disrupting the intracellular Ca(2+) stores in the ORNs has functional consequences since InsP(3)R- or RyR-RNAi expressing flies were defective in olfactory behavior. Altogether, our results indicate that for long odor applications in Drosophila, the olfactory response depends on intracellular Ca(2+) stores within the axon terminals of the ORNs.
Collapse
Affiliation(s)
- Meena Sriti Murmu
- Imagerie Cérébrale Fonctionnelle et Comportements, Neurobiologie et Developpement (N&D), CNRS, UPR-3294, 1 Avenue de la Terrasse, Bâtiment 32, 91198, Gif-sur-Yvette, France
| | | | | |
Collapse
|
32
|
Synaptic neuropeptide release induced by octopamine without Ca2+ entry into the nerve terminal. Proc Natl Acad Sci U S A 2011; 108:4477-81. [PMID: 21368121 DOI: 10.1073/pnas.1017837108] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Synaptic release of neurotransmitters is evoked by activity-dependent Ca(2+) entry into the nerve terminal. However, here it is shown that robust synaptic neuropeptide release from Drosophila motoneurons is evoked in the absence of extracellular Ca(2+) by octopamine, the arthropod homolog to norepinephrine. Genetic and pharmacology experiments demonstrate that this surprising peptidergic transmission requires cAMP-dependent protein kinase, with only a minor contribution of exchange protein activated by cAMP (epac). Octopamine-evoked neuropeptide release also requires endoplasmic reticulum Ca(2+) mobilization by the ryanodine receptor and the inositol trisphosphate receptor. Hence, rather than relying exclusively on activity-dependent Ca(2+) entry into the nerve terminal, a behaviorally important neuromodulator uses synergistic cAMP-dependent protein kinase and endoplasmic reticulum Ca(2+) signaling to induce synaptic neuropeptide release.
Collapse
|
33
|
Lanner JT, Georgiou DK, Joshi AD, Hamilton SL. Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2010; 2:a003996. [PMID: 20961976 DOI: 10.1101/cshperspect.a003996] [Citation(s) in RCA: 574] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ryanodine receptors (RyRs) are located in the sarcoplasmic/endoplasmic reticulum membrane and are responsible for the release of Ca(2+) from intracellular stores during excitation-contraction coupling in both cardiac and skeletal muscle. RyRs are the largest known ion channels (> 2MDa) and exist as three mammalian isoforms (RyR 1-3), all of which are homotetrameric proteins that interact with and are regulated by phosphorylation, redox modifications, and a variety of small proteins and ions. Most RyR channel modulators interact with the large cytoplasmic domain whereas the carboxy-terminal portion of the protein forms the ion-conducting pore. Mutations in RyR2 are associated with human disorders such as catecholaminergic polymorphic ventricular tachycardia whereas mutations in RyR1 underlie diseases such as central core disease and malignant hyperthermia. This chapter examines the current concepts of the structure, function and regulation of RyRs and assesses the current state of understanding of their roles in associated disorders.
Collapse
Affiliation(s)
- Johanna T Lanner
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, Houston, Texas 77030,USA
| | | | | | | |
Collapse
|
34
|
McMullen D, Ramnanan C, Storey K. In Cold‐Hardy Insects, Seasonal, Temperature, and Reversible Phosphorylation Controls Regulate Sarco/Endoplasmic Reticulum Ca2+‐ATPase (SERCA). Physiol Biochem Zool 2010; 83:677-86. [DOI: 10.1086/653489] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Vázquez-Martínez O, Loranca A, Palma-Tirado L, Wischin-Fuentes S, Villalobos-Leal M, Antaramián A, Riesgo-Escovar J, Hernández-Muñoz R, Díaz-Muñoz M. Time course of retinal degeneration associated with the absence of 1, 4, 5-inositol trisphosphate receptor in Drosophila melanogaster. Exp Biol Med (Maywood) 2010; 235:365-72. [DOI: 10.1258/ebm.2009.009300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The absence of the inositol trisphosphate receptor is associated with a gradual retinal degeneration in Drosophila melanogaster. To characterize the time-course profile of this process, mosaic flies expressing a null allele of the itp gene in the eye were studied by electroretinograms and electronic microscopy. Membrane contour alterations, disrupted mitochondria, altered morphology and even loss of photoreceptors were increased progressively starting 5 d after hatching, were more evident during days 10–15 and promoted highly disorganized structures thereafter. The synaptic transmission and membrane potential of retinal cells were also significantly distorted, showing reduced ON and OFF transients as well as membrane potential from day 10 of hatching, and the functional defects became progressively more severe. Unexpectedly, these alterations were detected not only in the non-pigmented mutant ommatidia, but also in the pigmented ommatidia, including heterozygous and twin clones expressing 1, 4, 5-inositol trisphosphate receptor (IP3R). To explore the mechanism underlying this degenerative process, the progression of pro-oxidant and apoptotic reactions was characterized by immunohistochemical techniques. Mutant ommatidia showed intermittent episodes of increased pro-oxidant reactions (detected as adducts of 4-hydroxy-nonenal) throughout the fly's life. Similarly, several episodes of active caspase 3, an apoptotic effector, were evident with the same time pattern. Episodes of enhanced lipid peroxidation and apoptosis were also observed in the pigmented ommatidia of the mosaic eyes. The results indicate that photoreceptors lacking IP3R suffer episodes of increased lipid peroxidation, which eventually perturb the retinal subcellular organization and disrupt the phototransduction process and cell viability. Pigmented ommatidia also showed a similar pattern of damage, indicating that the degenerative process is non-autonomous and is so intense that it propagated to the non-mutant retinal cells in the mosaic eyes. In conclusion, ommatidia with a null mutation of IP3R degenerate by a process associated with intermittent lipid peroxidation and apoptotic activities.
Collapse
Affiliation(s)
- Olivia Vázquez-Martínez
- Instituto de Neurobiología, Km 15 Carretera QRO-SLP, Campus UNAM-Juriquilla, Querétaro 76230
| | - Angélica Loranca
- Instituto de Neurobiología, Km 15 Carretera QRO-SLP, Campus UNAM-Juriquilla, Querétaro 76230
| | - Lourdes Palma-Tirado
- Instituto de Neurobiología, Km 15 Carretera QRO-SLP, Campus UNAM-Juriquilla, Querétaro 76230
| | - Sabina Wischin-Fuentes
- Instituto de Neurobiología, Km 15 Carretera QRO-SLP, Campus UNAM-Juriquilla, Querétaro 76230
| | - Mónica Villalobos-Leal
- Instituto de Neurobiología, Km 15 Carretera QRO-SLP, Campus UNAM-Juriquilla, Querétaro 76230
| | - Anaid Antaramián
- Instituto de Neurobiología, Km 15 Carretera QRO-SLP, Campus UNAM-Juriquilla, Querétaro 76230
| | - Juan Riesgo-Escovar
- Instituto de Neurobiología, Km 15 Carretera QRO-SLP, Campus UNAM-Juriquilla, Querétaro 76230
| | - Rolando Hernández-Muñoz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mauricio Díaz-Muñoz
- Instituto de Neurobiología, Km 15 Carretera QRO-SLP, Campus UNAM-Juriquilla, Querétaro 76230
| |
Collapse
|
36
|
Díaz-Muñoz M, de la Rosa Santander P, Juárez-Espinosa AB, Arellano RO, Morales-Tlalpan V. Granulosa cells express three inositol 1,4,5-trisphosphate receptor isoforms: cytoplasmic and nuclear Ca2+ mobilization. Reprod Biol Endocrinol 2008; 6:60. [PMID: 19068129 PMCID: PMC2631483 DOI: 10.1186/1477-7827-6-60] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 12/09/2008] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Granulosa cells play an important endocrine role in folliculogenesis. They mobilize Ca2+ from intracellular stores by a coordinated action between 1,4,5 inositol trisphosphate and ryanodine receptors (IP3R and RyR). The aim of this study was to explore the isoforms of IP3Rs expressed in mouse C57BL/6 NHsd granulosa cells, characterizing their intranuclear localization and the relation with other Ca2+-handling proteins. METHODS Ovarian tissue and granulosa cells were analyzed by multiphotonic and confocal microscopy to determine the intracellular presence of IP3R types 1, 2 and 3, RyR, thapsigargin-sensitive Ca2+-ATPase, and endomembranes. Cellular fractionation and Western blot assays were also used to further confirm the nuclear occurrence of the three IP3R isoforms. Free nuclear and cytosolic Ca2+ concentrations were measured using Fluo-4 AM by confocal microscopy. RESULTS By using antibodies and specific fluorophores, was shown that granulosa cells endomembranes contain three isoforms of IP3R, the RyR, and the thapsigargin-sensitive Ca2+-ATPase (SERCA). Interestingly, all these proteins were also detected in the nuclear envelope and in well-defined intranuclear structures. Microsomal membranes depicted characteristic bands of the 3 types of IP3R, but also variants of lower molecular weight. Analysis of nuclear membranes and nucleoplasmic fraction confirmed the nuclear localization of the IP3R types 1, 2 and 3. We demonstrated ATP-induced Ca2+ transients in the nuclear and cytoplasmic compartments. Remarkably, the inhibitory effect on ATP-induced Ca2+ mobilization of brefeldin A was more accentuated in the cytoplasm than in the nucleus. CONCLUSION These findings provide evidence that granulosa cells, including nuclei, express the Ca2+-handling proteins that allow Ca2+ mobilization. All three IP3R were also detected in ovarian slices, including the nuclei of granulosa cells, suggesting that these cells use the three IP3R in situ to achieve their physiological responses.
Collapse
Affiliation(s)
- Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus UNAM-Juriquilla, Querétaro 76230, QRO., México
| | - Patricia de la Rosa Santander
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus UNAM-Juriquilla, Querétaro 76230, QRO., México
| | - Anna Berenice Juárez-Espinosa
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus UNAM-Juriquilla, Querétaro 76230, QRO., México
| | - Rogelio O Arellano
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus UNAM-Juriquilla, Querétaro 76230, QRO., México
| | - Verónica Morales-Tlalpan
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus UNAM-Juriquilla, Querétaro 76230, QRO., México
| |
Collapse
|
37
|
Saldaña C, Díaz-Muñoz M, Antaramián A, González-Gallardo A, García-Solís P, Morales-Tlalpan V. MCF-7 breast carcinoma cells express ryanodine receptor type 1: functional characterization and subcellular localization. Mol Cell Biochem 2008; 323:39-47. [DOI: 10.1007/s11010-008-9962-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 11/13/2008] [Indexed: 11/29/2022]
|
38
|
Cai X, Clapham DE. Evolutionary genomics reveals lineage-specific gene loss and rapid evolution of a sperm-specific ion channel complex: CatSpers and CatSperbeta. PLoS One 2008; 3:e3569. [PMID: 18974790 PMCID: PMC2572835 DOI: 10.1371/journal.pone.0003569] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 10/09/2008] [Indexed: 11/18/2022] Open
Abstract
The mammalian CatSper ion channel family consists of four sperm-specific voltage-gated Ca2+ channels that are crucial for sperm hyperactivation and male fertility. All four CatSper subunits are believed to assemble into a heteromultimeric channel complex, together with an auxiliary subunit, CatSperbeta. Here, we report a comprehensive comparative genomics study and evolutionary analysis of CatSpers and CatSperbeta, with important correlation to physiological significance of molecular evolution of the CatSper channel complex. The development of the CatSper channel complex with four CatSpers and CatSperbeta originated as early as primitive metazoans such as the Cnidarian Nematostella vectensis. Comparative genomics revealed extensive lineage-specific gene loss of all four CatSpers and CatSperbeta through metazoan evolution, especially in vertebrates. The CatSper channel complex underwent rapid evolution and functional divergence, while distinct evolutionary constraints appear to have acted on different domains and specific sites of the four CatSper genes. These results reveal unique evolutionary characteristics of sperm-specific Ca2+ channels and their adaptation to sperm biology through metazoan evolution.
Collapse
Affiliation(s)
- Xinjiang Cai
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.
| | | |
Collapse
|
39
|
Sattelle DB, Cordova D, Cheek TR. Insect ryanodine receptors: molecular targets for novel pest control chemicals. INVERTEBRATE NEUROSCIENCE : IN 2008; 8:107-19. [PMID: 18696132 DOI: 10.1007/s10158-008-0076-4] [Citation(s) in RCA: 246] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 07/21/2008] [Indexed: 11/29/2022]
Abstract
Ryanodine receptors (RyRs) are a distinct class of ligand-gated calcium channels controlling the release of calcium from intracellular stores. They are located on the sarcoplasmic reticulum of muscle and the endoplasmic reticulum of neurons and many other cell types. Ryanodine, a plant alkaloid and an important ligand used to characterize and purify the receptor, has served as a natural botanical insecticide, but attempts to generate synthetic commercial analogues of ryanodine have proved unsuccessful. Recently two classes of synthetic chemicals have emerged resulting in commercial insecticides that target insect RyRs. The phthalic acid diamide class has yielded flubendiamide, the first synthetic ryanodine receptor insecticide to be commercialized. Shortly after the discovery of the phthalic diamides, the anthranilic diamides were discovered. This class has produced the insecticides Rynaxypyr and Cyazypyr. Here we review the structure and functions of insect RyRs and address the modes of action of phthalic acid diamides and anthranilic diamides on insect ryanodine receptors. Particularly intersting is the inherent selectivity both chemical classes exhibit for insect RyRs over their mammalian counterparts. The future prospects for RyRs as a commercially-validated target site for insect control chemicals are also considered.
Collapse
Affiliation(s)
- David B Sattelle
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | |
Collapse
|
40
|
Pszczolkowski MA, Olson E, Rhine C, Ramaswamy SB. Role for calcium in the development of ovarial patency in Heliothis virescens. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:358-66. [PMID: 18036609 DOI: 10.1016/j.jinsphys.2007.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 10/03/2007] [Accepted: 10/04/2007] [Indexed: 05/11/2023]
Abstract
Insect oocytes sequester nutritive proteins from the hemolymph under the regulation by juvenile hormone (JH), in a process called patency. Here, a pharmacological approach was used to decipher the role for calcium in ovarial patency in the moth, Heliothis virescens. Follicular epithelial cells were exposed in calcium-free or calcium-containing media to JH I, JH II or JH III alone, or in combination with various inhibitors of signal transduction. Protein kinase inhibitors, Na(+)/K(+) -ATPase inhibitor, ouabain, an inhibitor of voltage-dependent calcium channels in plasma membrane, omega-Conotoxin MVII, endoplasmic reticulum (ER) Ca(2+) -ATPase inhibitor, thapsigargin, ER inositol 1,4,5-triphosphate receptor (IP(3)R) inhibitor, 2-ABP and ER ryanodine receptor (RyR) inhibitor, ryanodine, were used. The results of our study suggest that JH II evokes patency via protein kinase C-dependent signaling pathway, and activation of Na(+)/K(+) -ATPase, similar to JH III. Response to JH II and JH III predominantly relies upon external and internal calcium stores, using voltage-dependent calcium channels, IP(3)Rs and RyRs. In contrast, regulation of patency by JH I appears to be largely calcium independent, and the calcium-dependent component of the signaling pathway likely does not use IP(3)Rs, but RyRs only. The JH II, JH III and calcium-dependent component of JH I signaling pathway probably utilize calcium/calmodulin-dependent kinase II for activation of Na(+)/K(+) -ATPase.
Collapse
|
41
|
Ramnanan CJ, Storey KB. The regulation of thapsigargin-sensitive sarcoendoplasmic reticulum Ca2+-ATPase activity in estivation. J Comp Physiol B 2007; 178:33-45. [PMID: 17690892 DOI: 10.1007/s00360-007-0197-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 07/17/2007] [Accepted: 07/26/2007] [Indexed: 10/23/2022]
Abstract
Estivation (aerobic dormancy) is characterized by sustained metabolic rate depression, which is crucial to survival in the face of unfavorable environmental conditions and enables the preservation of endogenous fuel reserves. Ion pumping is one of the most energetically taxing physiological processes in cells, and ion motive ATPases are likely loci to be differentially regulated in models of metabolic arrest. We proposed that the sarcoendoplasmic reticulum (SER) calcium-ATPase (SERCA) would be deactivated in the estivating desert snail Otala lactea, potentially contributing to the overall suppression of metabolism. SERCA kinetic parameters [decreased maximal velocities, increased substrate K (m) values, increased Arrhenius activation energy (E (a))] were indicative of a less active enzyme in the estivated state. Interestingly, the less active SERCA population in dormant snails featured greater kinetic (K (m) Mg.ATP versus temperature) and conformational (resistance to urea denaturation) stability than that in active snails. Western blotting confirmed that SERCA protein content did not change during estivation. In light of this observation, we proposed that estivation-dependent changes in SERCA activity was due to changes in SERCA phosphorylation state. In vitro studies promoting specific kinase or phosphatase action indicated that decreased SERCA activity in estivation was linked with endogenous kinase activity whereas reactivation of SERCA was facilitated by endogenous protein phosphatases (PP).
Collapse
Affiliation(s)
- Christopher J Ramnanan
- Department of Molecular Physiology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | | |
Collapse
|
42
|
Bagnaresi P, Rodrigues MT, Garcia CRS. Calcium signaling in lizard red blood cells. Comp Biochem Physiol A Mol Integr Physiol 2007; 147:779-787. [PMID: 17095273 DOI: 10.1016/j.cbpa.2006.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 09/21/2006] [Accepted: 09/25/2006] [Indexed: 11/16/2022]
Abstract
The ion calcium is a ubiquitous second messenger, present in all eukaryotic cells. It modulates a vast number of cellular events, such as cell division and differentiation, fertilization, cell volume, decodification of external stimuli. To process this variety of information, the cells display a number of calcium pools, which are capable of mobilization for signaling purposes. Here we review the calcium signaling on lizards red blood cells, an interesting model that has been receiving an increasing notice recently. These cells possess a complex machinery to regulate calcium, and display calcium responses to extracellular agonists. Interestingly, the pattern of calcium handling and response are divergent in different lizard families, which enforces the morphological data to their phylogenetic classification, and suggest the radiation of different calcium signaling models in lizards evolution.
Collapse
Affiliation(s)
- Piero Bagnaresi
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Miguel T Rodrigues
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Célia R S Garcia
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
43
|
Díaz-Muñoz M, Alvarez-Pérez MA, Yáñez L, Vidrio S, Martínez L, Rosas G, Yáñez M, Ramírez S, de Sánchez VC. Correlation between oxidative Stress and Alteration of Intracellular Calcium Handling in Isoproterenol-Induced Myocardial Infarction. Mol Cell Biochem 2006; 289:125-36. [PMID: 16820956 DOI: 10.1007/s11010-006-9155-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Accepted: 02/13/2006] [Indexed: 10/24/2022]
Abstract
Myocardial Ca(2+) overload and oxidative stress are well documented effects associated to isoproterenol (ISO)-induced myocardial necrosis, but information correlating these two issues is scarce. Using an ISO-induced myocardial infarction model, 3 stages of myocardial damage were defined: pre-infarction (0-12 h), infarction (12-24 h) and post-infarction (24-96 h). Alterations in Ca(2+) homeostasis and oxidative stress were studied in mitochondria, sarcoplasmic reticulum and plasmalemma by measuring the Ca(2+) content, the activity of Ca(2+) handling proteins, and by quantifying TBARs, nitric oxide (NO) and oxidative protein damage (changes in carbonyl and thiol groups). Free radicals generated system, antioxidant enzymes and oxidative stress (GSH/GSSG ratio) were also monitored at different times of ISO-induced cardiotoxicity. The Ca(2+) overload induced by ISO was counterbalanced by a diminution in the ryanodine receptor activity and the Na(+)-Ca(+2) exchanger as well as by the increase in both calcium ATPases activities (vanadate- and thapsigargine-sensitive) and mitochondrial Ca(2+) uptake during pre-infarction and infarction stages. Pro-oxidative reactions and antioxidant defences during the 3 stages of cardiotoxicity were observed, with maximal oxidative stress during the infarction. Significant correlations were found among pro-oxidative reactions with plasmalemma and sarcoplasmic reticulum Ca(2+) ATPases, and ryanodine receptor activities at the onset and development of ISO-induced infarction. These findings could be helpful in the design of antioxidant therapies in this pathology.
Collapse
Affiliation(s)
- Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla-Querétaro, México, México
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Masaki T, Yasokawa N, Tohnishi M, Nishimatsu T, Tsubata K, Inoue K, Motoba K, Hirooka T. Flubendiamide, a novel Ca2+ channel modulator, reveals evidence for functional cooperation between Ca2+ pumps and Ca2+ release. Mol Pharmacol 2006; 69:1733-9. [PMID: 16481391 DOI: 10.1124/mol.105.020339] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Flubendiamide, developed by Nihon Nohyaku Co., Ltd. (Tokyo, Japan), is a novel activator of ryanodine-sensitive calcium release channels (ryanodine receptors; RyRs), and is known to stabilize insect RyRs in an open state in a species-specific manner and to desensitize the calcium dependence of channel activity. In this study, using flubendiamide as an experimental tool, we examined an impact of functional modulation of RyR on Ca2+ pump. Strikingly, flubendiamide induced a 4-fold stimulation of the Ca2+ pump activity (EC50=11 nM) of an insect that resequesters Ca2+ to intracellular stores, a greater increase than with the classical RyR modulators ryanodine and caffeine. This prominent stimulation, which implies tight functional coupling of Ca2+ release with Ca2+ pump, resulted in a marginal net increase in the extravesicular calcium concentration despite robust Ca2+ release from the intracellular stores by flubendiamide. Further analysis suggested that luminal Ca2+ is an important mediator for the functional coordination of RyRs and Ca2+ pumps. However, kinetic factors for Ca2+ pumps, including ATP and cytoplasmic Ca2+, failed to affect the Ca2+ pump stimulation by flubendiamide. We therefore conclude that the stimulation of Ca2+ pump by flubendiamide is mediated by the decrease in luminal calcium, which may induce calcium dissociation from the luminal Ca2+ binding site on the Ca2+ pump. This mechanism should play an essential role in precise control of intracellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- Takao Masaki
- Research Division, Nihon Nohyaku Co., Ltd., 345 Oyamada-cho, Kawachi-Nagano, Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Zordan MA, Cisotto P, Benna C, Agostino A, Rizzo G, Piccin A, Pegoraro M, Sandrelli F, Perini G, Tognon G, De Caro R, Peron S, Kronniè TT, Megighian A, Reggiani C, Zeviani M, Costa R. Post-transcriptional silencing and functional characterization of the Drosophila melanogaster homolog of human Surf1. Genetics 2006; 172:229-41. [PMID: 16172499 PMCID: PMC1456150 DOI: 10.1534/genetics.105.049072] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 09/15/2005] [Indexed: 11/18/2022] Open
Abstract
Mutations in Surf1, a human gene involved in the assembly of cytochrome c oxidase (COX), cause Leigh syndrome, the most common infantile mitochondrial encephalopathy, characterized by a specific COX deficiency. We report the generation and characterization of functional knockdown (KD) lines for Surf1 in Drosophila. KD was produced by post-transcriptional silencing employing a transgene encoding a dsRNA fragment of the Drosophila homolog of human Surf1, activated by the UAS transcriptional activator. Two alternative drivers, Actin5C-GAL4 or elav-GAL4, were used to induce silencing ubiquitously or in the CNS, respectively. Actin5C-GAL4 KD produced 100% egg-to-adult lethality. Most individuals died as larvae, which were sluggish and small. The few larvae reaching the pupal stage died as early imagos. Electron microscopy of larval muscles showed severely altered mitochondria. elav-GAL4-driven KD individuals developed to adulthood, although cephalic sections revealed low COX-specific activity. Behavioral and electrophysiological abnormalities were detected, including reduced photoresponsiveness in KD larvae using either driver, reduced locomotor speed in Actin5C-GAL4 KD larvae, and impaired optomotor response as well as abnormal electroretinograms in elav-GAL4 KD flies. These results indicate important functions for SURF1 specifically related to COX activity and suggest a crucial role of mitochondrial energy pathways in organogenesis and CNS development and function.
Collapse
Affiliation(s)
- Mauro A Zordan
- CNR Institute of Biomedical Technology, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mora R, Maldonado A, Valverde B, Gutiérrez JM. Calcium plays a key role in the effects induced by a snake venom Lys49 phospholipase A2 homologue on a lymphoblastoid cell line. Toxicon 2006; 47:75-86. [PMID: 16303159 DOI: 10.1016/j.toxicon.2005.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 10/07/2005] [Accepted: 10/08/2005] [Indexed: 10/25/2022]
Abstract
A catalytically-inactive Lys49 phospholipase A2 homologue from the venom of the snake Bothrops asper induces diverse effects (necrosis, apoptosis and proliferation) in a lymphoblastoid cell line, depending on the toxin concentration. The increments in cytosolic Ca2+ levels induced by this toxin in this cell line were assessed. At high toxin concentration (100 microg/mL) the toxin induces drastic disruption of the plasma membrane, associated with a prominent Ca2+ influx and necrosis. Previous incubation of the cells with the chelating agent EGTA or with ruthenium red, an inhibitor of the uniporter mitochondrial Ca2+ transport, greatly reduced necrosis. At a toxin concentration of 12.5 microg/mL, apoptosis is the predominant response, being associated with lower increments in cytosolic Ca2+. This effect was inhibited by preincubation with ruthenium red and the cytosolic Ca2+ chelator BAPTA-AM. The proliferative response, which occurs at a low toxin concentration (0.5 microg/mL), is associated with a small and oscillatory increment in cytosolic Ca2+. It was inhibited by EGTA, ruthenium red and BAPTA-AM, by inhibitors of the endoplasmic reticulum Ca2+ -ATPase (SERCA) and by blockade of the ryanodine receptor. It is concluded that necrosis and apoptosis induced by this toxin are associated with increments in cytosolic Ca2+ levels following plasma membrane perturbation, together with the involvement of mitochondria. The cellular proliferative response depends on a limited Ca2+ influx through the plasma membrane, being associated with a concerted functional unit constituted by SERCA, the ryanodine receptor and mitochondria, which regulate the observed oscillations in cytosolic Ca2+ concentration.
Collapse
Affiliation(s)
- Rodrigo Mora
- Departamento de Microbiología e Inmunología, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | | | | | |
Collapse
|
47
|
Ebbinghaus-Kintscher U, Luemmen P, Lobitz N, Schulte T, Funke C, Fischer R, Masaki T, Yasokawa N, Tohnishi M. Phthalic acid diamides activate ryanodine-sensitive Ca2+ release channels in insects. Cell Calcium 2005; 39:21-33. [PMID: 16219348 DOI: 10.1016/j.ceca.2005.09.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 09/01/2005] [Accepted: 09/05/2005] [Indexed: 11/20/2022]
Abstract
Flubendiamide represents a novel chemical family of substituted phthalic acid diamides with potent insecticidal activity. So far, the molecular target and the mechanism of action were not known. Here we present for the first time evidence that phthalic acid diamides activate ryanodine-sensitive intracellular calcium release channels (ryanodine receptors, RyR) in insects. With Ca(2+) measurements, we showed that flubendiamide and related compounds induced ryanodine-sensitive cytosolic calcium transients that were independent of the extracellular calcium concentration in isolated neurons from the pest insect Heliothis virescens as well as in transfected CHO cells expressing the ryanodine receptor from Drosophila melanogaster. Binding studies on microsomal membranes from Heliothis flight muscles revealed that flubendiamide and related compounds interacted with a site distinct from the ryanodine binding site and disrupted the calcium regulation of ryanodine binding by an allosteric mechanism. This novel insecticide mode of action seems to be restricted to specific RyR subtypes because the phthalic acid diamides reported here had almost no effect on mammalian type 1 ryanodine receptors.
Collapse
|
48
|
Morales-Tlalpan V, Arellano RO, Díaz-Muñoz M. Interplay between ryanodine and IP3 receptors in ATP-stimulated mouse luteinized-granulosa cells. Cell Calcium 2005; 37:203-13. [PMID: 15670867 DOI: 10.1016/j.ceca.2004.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 10/15/2004] [Accepted: 10/15/2004] [Indexed: 12/01/2022]
Abstract
In mouse luteinized-granulosa cells (MGLC), ATP induces an increase in intracellular Ca2+ concentration by stimulating phospholipase C (PLC) associated with purinergic receptors, leading to production of inositol 1,4,5-trisphosphate (IP3) and subsequent release of Ca2+ from intracellular stores. In this study, we examined the cross-talk between the ryanodine receptors (RyR) and IP3 receptors (IP3R) in response to ATP in MGLC. Specifically, the effect of RyR modulators on ATP response was examined. The results showed that ATP-induced intracellular calcium elevation was abolished by inhibitors of the RyR, such as dantrolene (25 microM) and ryanodine (80 microM). When the MGLC were stimulated with activators of RyR, 2 microM ryanodine and 10 mM caffeine, the ATP-elicited response was decreased. These actions were independent of IP3 production stimulated by ATP. Hence, ATP-induced intracellular Ca2+ mobilization involves the coordinated action of both types of calcium release channels (CRCs). Using fluorescent probes, it was shown that IP3R is uniformly distributed throughout the cell; in contrast, RyR is mainly found around the nuclei. It is concluded that the IP3R and the RyR are functionally associated, and both play a role in the pattern of Ca2+ increase observed during purinergic stimulation of MGLC. This coupling may provide a highly efficient amplification mechanism for ATP stimulation of Ca2+ mobilization.
Collapse
Affiliation(s)
- V Morales-Tlalpan
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus, Juriquilla Querétaro 76230, QRO, Mexico
| | | | | |
Collapse
|
49
|
Abstract
Intracellular calcium release channels are present on sarcoplasmic and endoplasmic reticuli (SR, ER) of all cell types. There are two classes of these channels: ryanodine receptors (RyR) and inositol 1,4,5-trisphosphate receptors (IP3R). RyRs are required for excitation-contraction (EC) coupling in striated (cardiac and skeletal) muscles. RyRs are made up of macromolecular signaling complexes that contain large cytoplasmic domains, which serve as scaffolds for proteins that regulate the function of the channel. These regulatory proteins include calstabin1/calstabin2 (FKBP12/FKBP12.6), a 12/12.6 kDa subunit that stabilizes the closed state of the channel and prevents aberrant calcium leak from the SR. Kinases and phosphatases are targeted to RyR2 channels and modulate RyR2 function in response to extracellular signals. In the classic fight or flight stress response, phosphorylation of RyR channels by protein kinase A reduces the affinity for calstabin and activates the channels leading to increased SR calcium release. In heart failure, a cardiac insult causes a mismatch between blood supply and metabolic demands of organs. The chronically activated fight or flight response leads to leaky channels, altered calcium signaling, and contractile dysfunction and cardiac arrhythmias.
Collapse
Affiliation(s)
- Xander H T Wehrens
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York 10032, USA.
| | | | | |
Collapse
|
50
|
Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Veliçelebi G, Stauderman KA. STIM1, an essential and conserved component of store-operated Ca2+ channel function. ACTA ACUST UNITED AC 2005; 169:435-45. [PMID: 15866891 PMCID: PMC2171946 DOI: 10.1083/jcb.200502019] [Citation(s) in RCA: 1514] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Store-operated Ca2+ (SOC) channels regulate many cellular processes, but the underlying molecular components are not well defined. Using an RNA interference (RNAi)-based screen to identify genes that alter thapsigargin (TG)-dependent Ca2+ entry, we discovered a required and conserved role of Stim in SOC influx. RNAi-mediated knockdown of Stim in Drosophila S2 cells significantly reduced TG-dependent Ca2+ entry. Patch-clamp recording revealed nearly complete suppression of the Drosophila Ca2+ release-activated Ca2+ (CRAC) current that has biophysical characteristics similar to CRAC current in human T cells. Similarly, knockdown of the human homologue STIM1 significantly reduced CRAC channel activity in Jurkat T cells. RNAi-mediated knockdown of STIM1 inhibited TG- or agonist-dependent Ca2+ entry in HEK293 or SH-SY5Y cells. Conversely, overexpression of STIM1 in HEK293 cells modestly enhanced TG-induced Ca2+ entry. We propose that STIM1, a ubiquitously expressed protein that is conserved from Drosophila to mammalian cells, plays an essential role in SOC influx and may be a common component of SOC and CRAC channels.
Collapse
Affiliation(s)
- Jack Roos
- Torrey Pines Therapeutics, Inc., La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|