1
|
Basu A, Krug T, du Pont B, Huang Q, Sun S, Adam SA, Goldman RD, Weitz DA. Vimentin undergoes liquid-liquid phase separation to form droplets which wet and stabilize actin fibers. Proc Natl Acad Sci U S A 2025; 122:e2418624122. [PMID: 40030010 PMCID: PMC11912372 DOI: 10.1073/pnas.2418624122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/22/2025] [Indexed: 03/19/2025] Open
Abstract
The cytoskeleton is composed of F-actin, microtubules, and intermediate filaments (IFs). Vimentin is one of the most ubiquitous and well-studied IFs. It is involved in many activities including wound healing, tissue fibrosis, and cancer metastasis, all of which require rapid vimentin IF assembly. In this paper, we report that vimentin forms liquid condensates which appear to enable rapid filament growth. Given the transient nature of these droplets, we focus on properties of vimentin-Y117L, which has a point mutation that leads to formation of condensates but not IFs, enabling us to study these droplets in detail. The droplets dissolve under 1,6-Hexanediol treatment and under decreasing concentration, confirming that they are liquid, and phase separated. These condensates extensively wet actin stress fibers, rendering them resistant to actin-binding drugs and protecting them from depolymerization. We show similar behavior occurs in wild-type vimentin during its assembly into filaments.
Collapse
Affiliation(s)
- Arkaprabha Basu
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Tommy Krug
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Benjamin du Pont
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Qiaoling Huang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen361005, China
| | - Sijie Sun
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Stephen A. Adam
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Robert D. Goldman
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - David A. Weitz
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
- Department of Physics, Harvard University, Cambridge, MA02138
| |
Collapse
|
2
|
Dallon JC, Evans E, Grant CP, Portet S. Steady state distributions of moving particles in one dimension: with an eye towards axonal transport. J Math Biol 2024; 89:56. [PMID: 39476169 DOI: 10.1007/s00285-024-02157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/03/2024] [Accepted: 10/20/2024] [Indexed: 11/10/2024]
Abstract
Axonal transport, propelled by motor proteins, plays a crucial role in maintaining the homeostasis of functional and structural components over time. To establish a steady-state distribution of moving particles, what conditions are necessary for axonal transport? This question is pertinent, for instance, to both neurofilaments and mitochondria, which are structural and functional cargoes of axonal transport. In this paper we prove four theorems regarding steady state distributions of moving particles in one dimension on a finite domain. Three of the theorems consider cases where particles approach a uniform distribution at large time. Two consider periodic boundary conditions and one considers reflecting boundary conditions. The other theorem considers reflecting boundary conditions where the velocity is space dependent. If the theoretical results hold in the complex setting of the cell, they would imply that the uniform distribution of neurofilaments observed under healthy conditions appears to require a continuous distribution of neurofilament velocities. Similarly, the spatial distribution of axonal mitochondria may be linked to spatially dependent transport velocities that remain invariant over time.
Collapse
Affiliation(s)
- J C Dallon
- Department of Mathematics, Brigham Young University, Provo, UT, 84602-6539, USA.
| | - Emily Evans
- Department of Mathematics, Brigham Young University, Provo, UT, 84602-6539, USA
| | - Christopher P Grant
- Department of Mathematics, Brigham Young University, Provo, UT, 84602-6539, USA
| | - Stephanie Portet
- Department of Mathematics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Chao CC, Shen PW, Tzeng TY, Kung HJ, Tsai TF, Wong YH. Human iPSC-Derived Neurons as A Platform for Deciphering the Mechanisms behind Brain Aging. Biomedicines 2021; 9:1635. [PMID: 34829864 PMCID: PMC8615703 DOI: 10.3390/biomedicines9111635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
With an increased life expectancy among humans, aging has recently emerged as a major focus in biomedical research. The lack of in vitro aging models-especially for neurological disorders, where access to human brain tissues is limited-has hampered the progress in studies on human brain aging and various age-associated neurodegenerative diseases at the cellular and molecular level. In this review, we provide an overview of age-related changes in the transcriptome, in signaling pathways, and in relation to epigenetic factors that occur in senescent neurons. Moreover, we explore the current cell models used to study neuronal aging in vitro, including immortalized cell lines, primary neuronal culture, neurons directly converted from fibroblasts (Fib-iNs), and iPSC-derived neurons (iPSC-iNs); we also discuss the advantages and limitations of these models. In addition, the key phenotypes associated with cellular senescence that have been observed by these models are compared. Finally, we focus on the potential of combining human iPSC-iNs with genome editing technology in order to further our understanding of brain aging and neurodegenerative diseases, and discuss the future directions and challenges in the field.
Collapse
Affiliation(s)
- Chuan-Chuan Chao
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-C.C.); (T.-F.T.)
- Department of Neurology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Po-Wen Shen
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112, Taiwan;
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Tsai-Yu Tzeng
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan;
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA 95817, USA
| | - Ting-Fen Tsai
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-C.C.); (T.-F.T.)
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan;
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Hui Wong
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
4
|
Rodemer W, Gallo G, Selzer ME. Mechanisms of Axon Elongation Following CNS Injury: What Is Happening at the Axon Tip? Front Cell Neurosci 2020; 14:177. [PMID: 32719586 PMCID: PMC7347967 DOI: 10.3389/fncel.2020.00177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
After an injury to the central nervous system (CNS), functional recovery is limited by the inability of severed axons to regenerate and form functional connections with appropriate target neurons beyond the injury. Despite tremendous advances in our understanding of the mechanisms of axon growth, and of the inhibitory factors in the injured CNS that prevent it, disappointingly little progress has been made in restoring function to human patients with CNS injuries, such as spinal cord injury (SCI), through regenerative therapies. Clearly, the large number of overlapping neuron-intrinsic and -extrinsic growth-inhibitory factors attenuates the benefit of neutralizing any one target. More daunting is the distances human axons would have to regenerate to reach some threshold number of target neurons, e.g., those that occupy one complete spinal segment, compared to the distances required in most experimental models, such as mice and rats. However, the difficulties inherent in studying mechanisms of axon regeneration in the mature CNS in vivo have caused researchers to rely heavily on extrapolation from studies of axon regeneration in peripheral nerve, or of growth cone-mediated axon development in vitro and in vivo. Unfortunately, evidence from several animal models, including the transected lamprey spinal cord, has suggested important differences between regeneration of mature CNS axons and growth of axons in peripheral nerve, or during embryonic development. Specifically, long-distance regeneration of severed axons may not involve the actin-myosin molecular motors that guide embryonic growth cones in developing axons. Rather, non-growth cone-mediated axon elongation may be required to propel injured axons in the mature CNS. If so, it may be necessary to use other experimental models to promote regeneration that is sufficient to contact a critical number of target neurons distal to a CNS lesion. This review examines the cytoskeletal underpinnings of axon growth, focusing on the elongating axon tip, to gain insights into how CNS axons respond to injury, and how this might affect the development of regenerative therapies for SCI and other CNS injuries.
Collapse
Affiliation(s)
- William Rodemer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Gianluca Gallo
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Michael E Selzer
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.,Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
5
|
Bott CJ, Winckler B. Intermediate filaments in developing neurons: Beyond structure. Cytoskeleton (Hoboken) 2020; 77:110-128. [PMID: 31970897 DOI: 10.1002/cm.21597] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
Abstract
Neuronal development relies on a highly choreographed progression of dynamic cellular processes by which newborn neurons migrate, extend axons and dendrites, innervate their targets, and make functional synapses. Many of these dynamic processes require coordinated changes in morphology, powered by the cell's cytoskeleton. Intermediate filaments (IFs) are the third major cytoskeletal elements in vertebrate cells, but are rarely considered when it comes to understanding axon and dendrite growth, pathfinding and synapse formation. In this review, we first introduce the many new and exciting concepts of IF function, discovered mostly in non-neuronal cells. These roles include dynamic rearrangements, crosstalk with microtubules and actin filaments, mechano-sensing and -transduction, and regulation of signaling cascades. We then discuss the understudied roles of neuronally expressed IFs, with a particular focus on IFs expressed during development, such as nestin, vimentin and α-internexin. Lastly, we illustrate how signaling modulation by the unconventional IF nestin shapes neuronal morphogenesis in unexpected and novel ways. Even though the first IF knockout mice were made over 20 years ago, the study of the cell biological functions of IFs in the brain still has much room for exciting new discoveries.
Collapse
Affiliation(s)
- Christopher J Bott
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
6
|
Fenn JD, Monsma PC, Brown A. Axonal neurofilaments exhibit frequent and complex folding behaviors. Cytoskeleton (Hoboken) 2019; 75:258-280. [PMID: 29683261 DOI: 10.1002/cm.21448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 01/19/2023]
Abstract
Neurofilaments are flexible cytoskeletal polymers that are capable of folding and unfolding between their bouts of bidirectional movement along axons. Here we present a detailed characterization of this behavior in cultured neurons using kymograph analysis with approximately 30 ms temporal resolution. We analyzed 781 filaments ranging from 0.6-42 µm in length. We observed complex behaviors including pinch folds, hairpin folds, orientation changes (flips), and occasional severing and annealing events. On average, the filaments spent approximately 40% of their time in some sort of folded configuration. A small proportion of filaments (4%) moved while folded, but most (96%) moved in an outstretched configuration. Collectively, our observations suggest that motors may interact with neurofilaments at multiple points along their length, but preferentially at their ends. In addition, the prevalence of neurofilament folding and the tendency of neurofilaments to straighten out when they move, suggest that an important function of the movement of these polymers in axons may be to maintain them in an outstretched and longitudinally co-aligned configuration. Thus, neurofilament movement may function as much to organize these polymers as to move them, and this could explain why they spend so much time engaged in apparently unproductive bidirectional movement.
Collapse
Affiliation(s)
- J Daniel Fenn
- Department of Neuroscience, Ohio State University, Columbus, Ohio, 43210.,Medical Scientist Training Program, Ohio State University, Columbus, Ohio, 43210
| | - Paula C Monsma
- Department of Neuroscience, Ohio State University, Columbus, Ohio, 43210
| | - Anthony Brown
- Department of Neuroscience, Ohio State University, Columbus, Ohio, 43210
| |
Collapse
|
7
|
NISHIMURA Y, KASAHARA K, INAGAKI M. Intermediate filaments and IF-associated proteins: from cell architecture to cell proliferation. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:479-493. [PMID: 31611503 PMCID: PMC6819152 DOI: 10.2183/pjab.95.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/08/2019] [Indexed: 05/05/2023]
Abstract
Intermediate filaments (IFs), in coordination with microfilaments and microtubules, form the structural framework of the cytoskeleton and nucleus, thereby providing mechanical support against cellular stresses and anchoring intracellular organelles in place. The assembly and disassembly of IFs are mainly regulated by the phosphorylation of IF proteins. These phosphorylation states can be tracked using antibodies raised against phosphopeptides in the target proteins. IFs exert their functions through interactions with not only structural proteins, but also non-structural proteins involved in cell signaling, such as stress responses, apoptosis, and cell proliferation. This review highlights findings related to how IFs regulate cell division through phosphorylation cascades and how trichoplein, a centriolar protein originally identified as a keratin-associated protein, regulates the cell cycle through primary cilium formation.
Collapse
Affiliation(s)
- Yuhei NISHIMURA
- Departments of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kousuke KASAHARA
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masaki INAGAKI
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
8
|
Fenn JD, Johnson CM, Peng J, Jung P, Brown A. Kymograph analysis with high temporal resolution reveals new features of neurofilament transport kinetics. Cytoskeleton (Hoboken) 2017; 75:22-41. [PMID: 28926211 DOI: 10.1002/cm.21411] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/08/2017] [Indexed: 12/30/2022]
Abstract
We have used kymograph analysis combined with edge detection and an automated computational algorithm to analyze the axonal transport kinetics of neurofilament polymers in cultured neurons at 30 ms temporal resolution. We generated 301 kymographs from 136 movies and analyzed 726 filaments ranging from 0.6 to 42 µm in length, representing ∼37,000 distinct moving and pausing events. We found that the movement is even more intermittent than previously reported and that the filaments undergo frequent, often transient, reversals which suggest that they can engage simultaneously with both anterograde and retrograde motors. Average anterograde and retrograde bout velocities (0.9 and 1.2 µm s-1 , respectively) were faster than previously reported, with maximum sustained bout velocities of up to 6.6 and 7.8 µm s-1 , respectively. Average run lengths (∼1.1 µm) and run times (∼1.4 s) were in the range reported for molecular motor processivity in vitro, suggesting that the runs could represent the individual processive bouts of the neurofilament motors. Notably, we found no decrease in run velocity, run length or run time with increasing filament length, which suggests that either the drag on the moving filaments is negligible or that longer filaments recruit more motors.
Collapse
Affiliation(s)
- J Daniel Fenn
- Department of Neuroscience and Medical Scientist Training Program, Ohio State University, Columbus, Ohio 43210
| | - Christopher M Johnson
- Quantitative Biology Institute and Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701
| | - Juan Peng
- Center for Biostatistics and Department of Biomedical Informatics, Ohio State University, Columbus, Ohio 43210
| | - Peter Jung
- Quantitative Biology Institute and Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701
| | - Anthony Brown
- Department of Neuroscience and Medical Scientist Training Program, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
9
|
Leube RE, Moch M, Windoffer R. Intracellular Motility of Intermediate Filaments. Cold Spring Harb Perspect Biol 2017; 9:9/6/a021980. [PMID: 28572456 DOI: 10.1101/cshperspect.a021980] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SUMMARYThe establishment and continuous cell type-specific adaptation of cytoplasmic intermediate filament (IF) networks are linked to various types of IF motility. Motor protein-driven active transport, linkage to other cellular structures, diffusion of small soluble subunits, and intrinsic network elasticity all contribute to the motile behavior of IFs. These processes are subject to regulation by multiple signaling pathways. IF motility is thereby connected to and involved in many basic cellular processes guarding the maintenance of cell and tissue integrity. Disturbances of IF motility are linked to diseases that are characterized by cytoplasmic aggregates containing IF proteins together with other cellular components.
Collapse
Affiliation(s)
- Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Marcin Moch
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
10
|
Robert A, Hookway C, Gelfand VI. Intermediate filament dynamics: What we can see now and why it matters. Bioessays 2016; 38:232-43. [PMID: 26763143 DOI: 10.1002/bies.201500142] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mechanical properties of vertebrate cells are largely defined by the system of intermediate filaments (IF). As part of a dense network, IF polymers are constantly rearranged and relocalized in the cell to fulfill their duty as cells change shape, migrate, or divide. With the development of new imaging technologies, such as photoconvertible proteins and super-resolution microscopy, a new appreciation for the complexity of IF dynamics has emerged. This review highlights new findings about the transport of IF, the remodeling of filaments by a process of severing and re-annealing, and the subunit exchange that occurs between filament precursors and a soluble pool of IF. We will also discuss the unique dynamic features of the keratin IF network. Finally, we will speculate about how the dynamic properties of IF are related to their functions.
Collapse
Affiliation(s)
- Amélie Robert
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Caroline Hookway
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
11
|
Coiling and maturation of a high-performance fibre in hagfish slime gland thread cells. Nat Commun 2014; 5:3534. [PMID: 24698953 DOI: 10.1038/ncomms4534] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/04/2014] [Indexed: 01/07/2023] Open
Abstract
The defensive slime of hagfishes contains thousands of intermediate filament protein threads that are manufactured within specialized gland thread cells. The material properties of these threads rival those of spider dragline silks, which makes them an ideal model for biomimetic efforts to produce sustainable protein materials, yet how the thread is produced and organized within the cell is not well understood. Here we show how changes in nuclear morphology, size and position can explain the three-dimensional pattern of thread coiling in gland thread cells, and how the ultrastructure of the thread changes as very young thread cells develop into large cells with fully mature coiled threads. Our model provides an explanation for the complex process of thread assembly and organization that has fascinated and perplexed biologists for over a century, and provides valuable insights for the quest to manufacture high-performance biomimetic protein materials.
Collapse
|
12
|
Jarmalavičiūtė A, Tunaitis V, Strainienė E, Aldonytė R, Ramanavičius A, Venalis A, Magnusson KE, Pivoriūnas A. A New Experimental Model for Neuronal and Glial Differentiation Using Stem Cells Derived from Human Exfoliated Deciduous Teeth. J Mol Neurosci 2013; 51:307-317. [PMID: 23797732 DOI: 10.1007/s12031-013-0046-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/06/2013] [Indexed: 02/06/2023]
Abstract
Stem cells isolated from human adult tissues represent a promising source for neural differentiation studies in vitro. We have isolated and characterized stem cells from human exfoliated deciduous teeth (SHEDs). These originate from the neural crest and therefore particularly suitable for induction of neural differentiation. We here established a novel three-stage protocol for neural differentiation of SHEDs cells. After adaptation to a serum-free and neurogenic environment, SHEDs were induced to differentiate. This resulted in the formation of stellate or bipolar round-shaped neuron-like cells with subpopulations expressing markers of sensory neurons (Brn3a, peripherin) and glia (myelin basic protein). Commercial PCR array analyses addressed the expression profiles of genes related to neurogenesis and cAMP/calcium signalling. We found distinct evidence for the upregulation of genes regulating the specification of sensory (MAF), sympathetic (midkine, pleitrophin) and dopaminergic (tyrosine hydroxylase, Nurr1) neurons and the differentiation and support of myelinating and non-myelinating Schwann cells (Krox24, Krox20, apolipoprotein E). Moreover, for genes controlling major developmental signalling pathways, there was upregulation of BMP (TGF β-3, BMP2) and Notch (Notch 2, DLL1, HES1, HEY1, HEY2) in the differentiating SHEDs. SHEDs treated according to our new differentiation protocol gave rise to mixed neuronal/glial cell cultures, which opens new possibilities for in vitro studies of neuronal and glial specification and broadens the potential for the employment of such cells in experimental models and future treatment strategies.
Collapse
Affiliation(s)
- Akvilė Jarmalavičiūtė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Žygimantų 9, 01102, Vilnius, Lithuania
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Lépinoux-Chambaud C, Eyer J. Review on intermediate filaments of the nervous system and their pathological alterations. Histochem Cell Biol 2013; 140:13-22. [PMID: 23749407 DOI: 10.1007/s00418-013-1101-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2013] [Indexed: 11/28/2022]
Abstract
Intermediate filaments (IFs) of the nervous system, including neurofilaments, α-internexin, glial fibrillary acidic protein, synemin, nestin, peripherin and vimentin, are finely expressed following elaborated cell, tissue and developmental specific patterns. A common characteristic of several neurodegenerative diseases is the abnormal accumulation of neuronal IFs in cell bodies or along the axon, often associated with impairment of the axonal transport and degeneration of neurons. In this review, we also present several perturbations of IF metabolism and organization associated with neurodegenerative disorders. Such modifications could represent strong markers of neuronal damages. Moreover, recent data suggest that IFs represent potential biomarkers to determine the disease progression or the differential stages of a neuronal disorder. Finally, recent investigations on IF expression and function in cancer provide evidence that they may be useful as markers, or targets of brain tumours, especially high-grade glioma. A better knowledge of the molecular mechanisms of IF alterations, combined to neuroimaging, is essential to improve diagnosis and therapeutic strategies of such neurodegenerative diseases and glioma.
Collapse
Affiliation(s)
- Claire Lépinoux-Chambaud
- Laboratoire Neurobiologie and Transgenese, LUNAM, UPRES EA-3143, Centre Hospitalier Universitaire, Bâtiment IBS-IRIS, Université d'Angers, 49033, Angers, France
| | | |
Collapse
|
14
|
Sakamoto Y, Boëda B, Etienne-Manneville S. APC binds intermediate filaments and is required for their reorganization during cell migration. ACTA ACUST UNITED AC 2013; 200:249-58. [PMID: 23382461 PMCID: PMC3563686 DOI: 10.1083/jcb.201206010] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The tumor suppressor APC binds to the intermediate filament vimentin and is required for its microtubule-dependent rearrangements during astrocyte migration. Intermediate filaments (IFs) are components of the cytoskeleton involved in most cellular functions, including cell migration. Primary astrocytes mainly express glial fibrillary acidic protein, vimentin, and nestin, which are essential for migration. In a wound-induced migration assay, IFs reorganized to form a polarized network that was coextensive with microtubules in cell protrusions. We found that the tumor suppressor adenomatous polyposis coli (APC) was required for microtubule interaction with IFs and for microtubule-dependent rearrangements of IFs during astrocyte migration. We also show that loss or truncation of APC correlated with the disorganization of the IF network in glioma and carcinoma cells. In migrating astrocytes, vimentin-associated APC colocalized with microtubules. APC directly bound polymerized vimentin via its armadillo repeats. This binding domain promoted vimentin polymerization in vitro and contributed to the elongation of IFs along microtubules. These results point to APC as a crucial regulator of IF organization and confirm its fundamental role in the coordinated regulation of cytoskeletons.
Collapse
Affiliation(s)
- Yasuhisa Sakamoto
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, 75724 Paris, Cedex 15, France
| | | | | |
Collapse
|
15
|
Lee WC, Kan D, Chen YY, Han SK, Lu KS, Chien CL. Suppression of extensive neurofilament phosphorylation rescues α-Internexin/peripherin-overexpressing PC12 cells from neuronal cell death. PLoS One 2012; 7:e43883. [PMID: 22952800 PMCID: PMC3428284 DOI: 10.1371/journal.pone.0043883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/26/2012] [Indexed: 11/23/2022] Open
Abstract
Intermediate filament (IF) overproduction induces abnormal accumulation of neuronal IF, which is a pathological indicator of some neurodegenerative disorders. In our study, α-Internexin- and peripherin-overexpressing PC12 cells (pINT-EGFP and pEGFP-peripherin) were used as models to study neuropathological pathways responsible for neurodegenerative diseases. Microarray data revealed that Cdk5-related genes were downregulated and Cdk5 regulatory subunit-associated protein 3 (GSK-3α and GSK-3β) were upregulated in pINT-EGFP cells. Increased expression of phosphorylated neurofilament and aberrant activation of Cdk5 and GSK-3β were detected in both pEGFP-peripherin and pINT-EGFP cells by Western blotting. In addition, pharmacological approaches to retaining viability of pINT-EGFP and pEGFP-peripherin cells were examined. Treatment with Cdk5 inhibitor and GSK-3β inhibitor significantly suppressed neuronal death. Dynamic changes of disaggregation of EGFP-peripherin and decrease in green fluorescence intensity were observed in pEGFP-peripherin and pINT-EGFP cells by confocal microscopy after GSK-3β inhibitor treatment. We conclude that inhibition of Cdk5 and GSK-3β suppresses neurofilament phosphorylation, slows down the accumulation of neuronal IF in the cytoplasm, and subsequently avoids damages to cell organelles. The results suggest that suppression of extensive neurofilament phosphorylation may be a potential strategy for ameliorating neuron death. The suppression of hyperphosphorylation of neuronal cytoskeletons with kinase inhibitors could be one of potential therapeutic treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Wen-Ching Lee
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Daphne Kan
- Center of Genomic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yun-Yu Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Shan-Kuo Han
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Kuo-Shyan Lu
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chung-Liang Chien
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
- Center of Genomic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
16
|
Taylor NJ, Wang L, Brown A. Neurofilaments are flexible polymers that often fold and unfold, but they move in a fully extended configuration. Cytoskeleton (Hoboken) 2012; 69:535-44. [PMID: 22693112 DOI: 10.1002/cm.21039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 01/29/2023]
Abstract
Time-lapse imaging of neurofilaments in axons of cultured nerve cells has demonstrated that these cytoskeletal polymers move along microtubule tracks in both anterograde and retrograde directions, powered by microtubule motors. The filaments exhibit short bouts of rapid intermittent movement interrupted by prolonged pauses, and the average velocity is slow because they spend most of their time pausing. Here, we show that axonal neurofilaments are also very flexible and frequently exhibit complex and dynamic folding and unfolding behaviors while they are pausing. Remarkably, however, when the filaments move in a sustained manner, we find that they always adopt an unfolded, that is, fully extended configuration, and this applies to movement in both anterograde and retrograde directions. Given the flexibility of neurofilament polymers and the apparent ease with which they can fold back on themselves, the fact that they move in a fully extended configuration suggests that moving neurofilaments may be pulled from their leading end. Thus, we speculate that motors may bind to the leading ends of neurofilaments polymers during both anterograde and retrograde motion.
Collapse
Affiliation(s)
- Nicholas J Taylor
- Department of Neuroscience, Wexner Medical Center, Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
17
|
Lee WC, Chen YY, Kan D, Chien CL. A neuronal death model: overexpression of neuronal intermediate filament protein peripherin in PC12 cells. J Biomed Sci 2012; 19:8. [PMID: 22252275 PMCID: PMC3282651 DOI: 10.1186/1423-0127-19-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/17/2012] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Abnormal accumulation of neuronal intermediate filament (IF) is a pathological indicator of some neurodegenerative disorders. However, the underlying neuropathological mechanisms of neuronal IF accumulation remain unclear. A stable clone established from PC12 cells overexpressing a GFP-Peripherin fusion protein (pEGFP-Peripherin) was constructed for determining the pathway involved in neurodegeneration by biochemical, cell biology, and electronic microscopy approaches. In addition, pharmacological approaches to preventing neuronal death were also examined. RESULTS Results of this study showed that TUNEL positive reaction could be detected in pEGFP-Peripherin cells. Swollen mitochondria and endoplasmic reticulum (ER) were seen by electron microscopy in pEGFP-Peripherin cells on day 8 of nerve growth factor (NGF) treatment. Peripherin overexpression not only led to the formation of neuronal IF aggregate but also causes aberrant neuronal IF phosphorylation and mislocation. Western blots showed that calpain, caspase-12, caspase-9, and caspase-3 activity was upregulated. Furthermore, treatment with calpain inhibitor significantly inhibited cell death. CONCLUSIONS These results suggested that the cytoplasmic neuronal IF aggregate caused by peripherin overexpression may induce aberrant neuronal IF phosphorylation and mislocation subsequently trapped and indirectly damaged mitochondria and ER. We suggested that the activation of calpain, caspase-12, caspase-9, and caspase-3 were correlated to the dysfunction of the ER and mitochondria in our pEGFP-Peripherin cell model. The present study suggested that pEGFP-Peripherin cell clones could be a neuronal death model for future studies in neuronal IFs aggregate associated neurodegeneration.
Collapse
Affiliation(s)
- Wen-Ching Lee
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Jen-Ai Road, Taipei, 100, Taiwan
| | - Yun-Yu Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Jen-Ai Road, Taipei, 100, Taiwan
| | - Daphne Kan
- Center of Genomic Medicine, National Taiwan University, Jen-Ai Road, Taipei, 100, Taiwan
| | - Chung-Liang Chien
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Jen-Ai Road, Taipei, 100, Taiwan
- Center of Genomic Medicine, National Taiwan University, Jen-Ai Road, Taipei, 100, Taiwan
| |
Collapse
|
18
|
Herpesviruses and intermediate filaments: close encounters with the third type. Viruses 2011; 3:1015-40. [PMID: 21994768 PMCID: PMC3185793 DOI: 10.3390/v3071015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 06/07/2011] [Accepted: 06/24/2011] [Indexed: 01/29/2023] Open
Abstract
Intermediate filaments (IF) are essential to maintain cellular and nuclear integrity and shape, to manage organelle distribution and motility, to control the trafficking and pH of intracellular vesicles, to prevent stress-induced cell death, and to support the correct distribution of specific proteins. Because of this, IF are likely to be targeted by a variety of pathogens, and may act in favor or against infection progress. As many IF functions remain to be identified, however, little is currently known about these interactions. Herpesviruses can infect a wide variety of cell types, and are thus bound to encounter the different types of IF expressed in each tissue. The analysis of these interrelationships can yield precious insights into how IF proteins work, and into how viruses have evolved to exploit these functions. These interactions, either known or potential, will be the focus of this review.
Collapse
|
19
|
Wang L, Brown A. A hereditary spastic paraplegia mutation in kinesin-1A/KIF5A disrupts neurofilament transport. Mol Neurodegener 2010; 5:52. [PMID: 21087519 PMCID: PMC3000839 DOI: 10.1186/1750-1326-5-52] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 11/18/2010] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Hereditary spastic paraplegias are a group of neurological disorders characterized by progressive distal degeneration of the longest ascending and descending axons in the spinal cord, leading to lower limb spasticity and weakness. One of the dominantly inherited forms of this disease (spastic gait type 10, or SPG10) is caused by point mutations in kinesin-1A (also known as KIF5A), which is thought to be an anterograde motor for neurofilaments. RESULTS We investigated the effect of an SPG10 mutation in kinesin-1A (N256S-kinesin-1A) on neurofilament transport in cultured mouse cortical neurons using live-cell fluorescent imaging. N256S-kinesin-1A decreased both anterograde and retrograde neurofilament transport flux by decreasing the frequency of anterograde and retrograde movements. Anterograde velocity was not affected, whereas retrograde velocity actually increased. CONCLUSIONS These data reveal subtle complexities to the functional interdependence of the anterograde and retrograde neurofilament motors and they also raise the possibility that anterograde and retrograde neurofilament transport may be disrupted in patients with SPG10.
Collapse
Affiliation(s)
- Lina Wang
- Center for Molecular Neurobiology and Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
20
|
Kennedy KAM, Ostrakhovitch EA, Sandiford SDE, Dayarathna T, Xie X, Waese EYL, Chang WY, Feng Q, Skerjanc IS, Stanford WL, Li SSC. Mammalian numb-interacting protein 1/dual oxidase maturation factor 1 directs neuronal fate in stem cells. J Biol Chem 2010; 285:17974-85. [PMID: 20233719 PMCID: PMC2878559 DOI: 10.1074/jbc.m109.084616] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 03/08/2010] [Indexed: 01/11/2023] Open
Abstract
In this study, we describe a role for the mammalian Numb-interacting protein 1 (Nip1) in regulation of neuronal differentiation in stem cells. The expression of Nip1 was detected in the developing mouse brain, embryonic stem cells, primary neuronal stem cells, and retinoic acid-treated P19 embryonal carcinoma cells. The highest expression of Nip1 was observed in undifferentiated neuronal stem cells and was associated with Duox1-mediated reactive oxygen species ROS production. Ectopic nip1 expression in P19 embryonal carcinoma cells induced neuronal differentiation, and this phenotype was also linked to elevated ROS production. The neuronal differentiation in nip1-overexpressing P19 cells was achieved in a retinoic acid-independent manner and was corroborated by an increase in the expression of the neuronal basic helix-loop-helix transcription factors and neural-lineage cell markers. Furthermore, depletion of nip1 by short hairpin RNA led to a decrease in the expression of neuronal basic helix-loop-helix transcription factors and ROS. However, inhibition of ROS production in nip1-overexpressing P19 cells restricted but did not extinguish neuronal differentiation. Microarray and mass spectrometry analysis identified intermediate filaments as the principal cytoskeletal elements affected by up-regulation of nip1. We show here the first evidence for a functional interaction between Nip1 and a component of the nuclear lamina, lamin A/C. associated with a neuronal-specific phenotype. Taken together, our data reveal an important role for Nip1 in the guidance of neuronal differentiation through ROS generation and modulation of intermediate filaments and implicate Nip1 as a novel intrinsic regulator of neuronal cell fate.
Collapse
Affiliation(s)
- Karen A. M. Kennedy
- From the Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry and
| | - Elena A. Ostrakhovitch
- From the Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry and
| | - Shelley D. E. Sandiford
- From the Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry and
| | - Thamara Dayarathna
- From the Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry and
| | - Xiaojun Xie
- From the Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry and
| | - Elaine Y. L. Waese
- the Department of Chemical Engineering and Applied Chemistry and
- the Departments of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Wing Y. Chang
- the Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario M5S 3G9, Canada, and
| | - Qingping Feng
- the Department of Physiology and Pharmacology, the University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ilona S. Skerjanc
- From the Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry and
- the Departments of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - William L. Stanford
- the Department of Chemical Engineering and Applied Chemistry and
- the Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario M5S 3G9, Canada, and
| | - Shawn S. C. Li
- From the Department of Biochemistry, Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry and
| |
Collapse
|
21
|
Lomakin AY, Nadezhdina ES. Dynamics of nonmembranous cell components: Role of active transport along microtubules. BIOCHEMISTRY (MOSCOW) 2010; 75:7-18. [DOI: 10.1134/s0006297910010025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Kölsch A, Windoffer R, Leube RE. Actin-dependent dynamics of keratin filament precursors. ACTA ACUST UNITED AC 2009; 66:976-85. [DOI: 10.1002/cm.20395] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
Uchida A, Alami NH, Brown A. Tight functional coupling of kinesin-1A and dynein motors in the bidirectional transport of neurofilaments. Mol Biol Cell 2009; 20:4997-5006. [PMID: 19812246 DOI: 10.1091/mbc.e09-04-0304] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We have tested the hypothesis that kinesin-1A (formerly KIF5A) is an anterograde motor for axonal neurofilaments. In cultured sympathetic neurons from kinesin-1A knockout mice, we observed a 75% reduction in the frequency of both anterograde and retrograde neurofilament movement. This transport defect could be rescued by kinesin-1A, and with successively decreasing efficacy by kinesin-1B and kinesin-1C. In wild-type neurons, headless mutants of kinesin-1A and kinesin-1C inhibited both anterograde and retrograde movement in a dominant-negative manner. Because dynein is thought to be the retrograde motor for axonal neurofilaments, we investigated the effect of dynein inhibition on anterograde and retrograde neurofilament transport. Disruption of dynein function by using RNA interference, dominant-negative approaches, or a function-blocking antibody also inhibited both anterograde and retrograde neurofilament movement. These data suggest that kinesin-1A is the principal but not exclusive anterograde motor for neurofilaments in these neurons, that there may be some functional redundancy among the kinesin-1 isoforms with respect to neurofilament transport, and that the activities of the anterograde and retrograde neurofilament motors are tightly coordinated.
Collapse
Affiliation(s)
- Atsuko Uchida
- Center for Molecular Neurobiology and Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
24
|
Jung P, Brown A. Modeling the slowing of neurofilament transport along the mouse sciatic nerve. Phys Biol 2009; 6:046002. [DOI: 10.1088/1478-3975/6/4/046002] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Myosin Va increases the efficiency of neurofilament transport by decreasing the duration of long-term pauses. J Neurosci 2009; 29:6625-34. [PMID: 19458233 DOI: 10.1523/jneurosci.3829-08.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We investigated the axonal transport of neurofilaments in cultured neurons from two different strains of dilute lethal mice, which lack myosin Va. To analyze the motile behavior, we tracked the movement of green fluorescent protein (GFP)-tagged neurofilaments through naturally occurring gaps in the axonal neurofilament array of cultured superior cervical ganglion neurons from DLS/LeJ dilute lethal mice. Compared with wild-type controls, we observed no statistically significant difference in velocity or frequency of movement. To analyze the pausing behavior, we used a fluorescence photoactivation pulse-escape technique to measure the rate of departure of PAGFP (photoactivatable GFP)-tagged neurofilaments from photoactivated axonal segments in cultured dorsal root ganglion neurons from DLS/LeJ and dl20J dilute lethal mice. Compared with wild-type controls, we observed a 48% increase in the mean time for neurofilaments to depart the activated regions in neurons from DLS/LeJ mice (p < 0.001) and a 169% increase in neurons from dl20J mice (p < 0.0001). These data indicate that neurofilaments pause for more prolonged periods in the absence of myosin Va. We hypothesize that myosin Va is a short-range motor for neurofilaments and that it can function to enhance the efficiency of neurofilament transport in axons by delivering neurofilaments to their microtubule tracks, thereby reducing the duration of prolonged off-track pauses.
Collapse
|
26
|
Flitney EW, Kuczmarski ER, Adam SA, Goldman RD. Insights into the mechanical properties of epithelial cells: the effects of shear stress on the assembly and remodeling of keratin intermediate filaments. FASEB J 2009; 23:2110-9. [PMID: 19246484 DOI: 10.1096/fj.08-124453] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The effects of shear stress on the keratin intermediate filament (KIF) cytoskeleton of cultured human alveolar epithelial (A549) cells have been investigated. Under normal culture conditions, immunofluorescence revealed a delicate network of fine tonofibrils containing KIFs, together with many nonfilamentous, keratin-containing "particles," mostly containing either keratin 8 (K8) or 18 (K18), but not both. Triton X-100 extracted approximately 10% of the cellular keratin, and this was accompanied by a loss of the particles but not the KIFs. Shear stress dramatically reduced the soluble keratin component and transformed the fine bundles of KIFs into thicker, "wavy" tonofibrils. Both effects were accompanied by the disappearance of most keratin particles and by increased phosphorylation of K8 and K18 on serine residues 73 and 33, respectively. The particles that remained after shearing were phosphorylated and were closely associated with KIFs. We suggest that keratin particles constitute a reservoir of protein that can be recruited into KIFs under flow, creating a more robust cytoskeleton able to withstand shear forces more effectively.
Collapse
Affiliation(s)
- Eric W Flitney
- Department of Cell and Molecular Biology, Feinberg School of Medicine of Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
27
|
Intermediate filament assembly: dynamics to disease. Trends Cell Biol 2008; 18:28-37. [PMID: 18083519 DOI: 10.1016/j.tcb.2007.11.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 10/31/2007] [Accepted: 11/01/2007] [Indexed: 11/21/2022]
Abstract
Intermediate filament (IF) proteins belong to a large and diverse gene family with broad representation in vertebrate tissues. Although considered the 'toughest' cytoskeletal fibers, studies in cultured cells have revealed that IF can be surprisingly dynamic and highly regulated. This review examines the diversity of IF assembly behaviors, and considers the ideas that IF proteins are co- or post-translationally assembled into oligomeric precursors, which can be delivered to different subcellular compartments by microtubules or actomyosin and associated motor proteins. Their interaction with other cellular elements via IF associated proteins (IFAPs) affects IF dynamics and also results in cellular networks with properties that transcend those of individual components. We end by discussing how mutations leading to defects in IF assembly, network formation or IF-IFAP association compromise in vivo functions of IF as protectors against environmental stress.
Collapse
|
28
|
Micromechanical properties of keratin intermediate filament networks. Proc Natl Acad Sci U S A 2008; 105:889-94. [PMID: 18199836 DOI: 10.1073/pnas.0710728105] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Keratin intermediate filaments (KIFs) form cytoskeletal KIF networks that are essential for the structural integrity of epithelial cells. However, the mechanical properties of the in situ network have not been defined. Particle-tracking microrheology (PTM) was used to obtain the micromechanical properties of the KIF network in alveolar epithelial cells (AECs), independent of other cytoskeletal components, such as microtubules and microfilaments. The storage modulus (G') at 1 Hz of the KIF network decreases from the perinuclear region (335 dyn/cm(2)) to the cell periphery (95 dyn/cm(2)), yielding a mean value of 210 dyn/cm(2). These changes in G' are inversely proportional to the mesh size of the network, which increases approximately 10-fold from the perinuclear region (0.02 microm(2)) to the cell periphery (0.3 microm(2)). Shear stress (15 dyn/cm(2) for 4 h) applied across the surface of AECs induces a more uniform distribution of KIF, with the mesh size of the network ranging from 0.02 microm(2) near the nucleus to only 0.04 microm(2) at the cell periphery. This amounts to a 40% increase in the mean G'. The storage modulus of the KIF network in the perinuclear region accurately predicts the shear-induced deflection of the cell nucleus to be 0.87 +/- 0.03 microm. The high storage modulus of the KIF network, coupled with its solid-like rheological behavior, supports the role of KIF as an intracellular structural scaffold that helps epithelial cells to withstand external mechanical forces.
Collapse
|
29
|
Message in a bottle: long-range retrograde signaling in the nervous system. Trends Cell Biol 2007; 17:519-28. [PMID: 18029183 DOI: 10.1016/j.tcb.2007.09.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 09/07/2007] [Accepted: 09/07/2007] [Indexed: 01/08/2023]
Abstract
In many regions of the nervous system, signals produced by target cells and surrounding glia or in response to in jury are received at axon terminals and then retrogradely propagated to cell bodies where they regulate gene transcription and other cellular processes required for development and adult function. The cellular and molecular mechanisms of axonal retrograde signaling in neurons have traditionally been studied in the context of survival signals provided by target-derived neurotrophic factors, in which signaling endosomes containing endocytosed ligand-receptor complexes and downstream effectors are retrogradely tra nsported by dynein motors. In recent years, this notion has been refined and additional mechanisms for long-range retrograde signaling in axons have been described. This article discusses some outstanding issues in the signaling endosome hypothesis as well as recent findings suggesting the existence of a variety of mechanisms for the retrograde propagation of signals in the nervous system.
Collapse
|
30
|
Ahmad FJ, He Y, Myers KA, Hasaka TP, Francis F, Black MM, Baas PW. Effects of dynactin disruption and dynein depletion on axonal microtubules. Traffic 2007; 7:524-37. [PMID: 16643276 DOI: 10.1111/j.1600-0854.2006.00403.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We investigated potential roles of cytoplasmic dynein in organizing axonal microtubules either by depleting dynein heavy chain from cultured neurons or by experimentally disrupting dynactin. The former was accomplished by siRNA while the latter was accomplished by overexpressing P50-dynamitin. Both methods resulted in a persistent reduction in the frequency of transport of short microtubules. To determine if the long microtubules in the axon also undergo dynein-dependent transport, we ascertained the rates of EGFP-EB3 "comets" observed at the tips of microtubules during assembly. The rates of the comets, in theory, should reflect a combination of the assembly rate and any potential transport of the microtubule. Comets were initially slowed during P50-dynamitin overexpression, but this effect did not persist beyond the first day and was never observed in dynein-depleted axons. In fact, the rates of the comets were slightly faster in dynein-depleted axons. We conclude that the transient effect of P50-dynamitin overexpression reflects a reduction in microtubule polymerization rates. Interestingly, after prolonged dynein depletion, the long microtubules were noticeably misaligned in the distal regions of axons and failed to enter the filopodia of growth cones. These results suggest that the forces generated by cytoplasmic dynein do not transport long microtubules, but may serve to align them with one another and also permit them to invade filopodia.
Collapse
Affiliation(s)
- Fridoon J Ahmad
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
New insights into peripherin expression in cochlear neurons. Neuroscience 2007; 150:212-22. [PMID: 17964735 DOI: 10.1016/j.neuroscience.2007.08.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 08/06/2007] [Accepted: 08/31/2007] [Indexed: 12/26/2022]
Abstract
Peripherin is an intermediate filament protein that is expressed in peripheral and enteric neurons. In the cochlear nervous system, peripherin expression has been extensively used as a differentiation marker by preferentially labeling the type II neuronal population at adulthood, but yet without knowing its function. Since the expression of peripherin has been associated in time with the process of axonal extension and during regeneration of nerve fibers in other systems, it was of interest to determine whether peripherin expression in cochlear neurons was a static phenotypic trait or rather prone to modifications following nerve injury. In the present study, we first compared the expression pattern of peripherin and beta III-tubulin from late embryonic stages to the adult in rat cochlea. The staining for both proteins was seen before birth within all cochlear neurons. By birth, and for 2 or 3 days, peripherin expression was gradually restricted to the type II neuronal population and their projections. In contrast, from postnatal day (P) 10 onwards, while the expression of beta III-tubulin was still found in projections of all cochlear neurons, only the type I population had beta III-tubulin immunoreactivity in their cell bodies. We next investigated the expression of peripherin in axotomized cochlear neurons using an organotypic explant model. Peripherin expression was surprisingly re-expressed in a vast majority of neurons after axotomy. In parallel, the expression and localization of beta III-tubulin and peripherin in dissociated cultures of cochlear neurons were studied. Both proteins were distributed along the entire neuronal length but exhibited complementary distribution, especially within the projections. Moreover, peripherin immunoreactivity was still abundant in the growth cone, whereas that of beta III-tubulin was decreasing at this compartment. Our findings are consistent with a model in which peripherin plays an important structural role in cochlear neurons and their projections during both development and regenerative processes and which is compatible with the assumption that frequently developmentally regulated factors are reactivated during neuronal regeneration.
Collapse
|
32
|
Ivaska J, Pallari HM, Nevo J, Eriksson JE. Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res 2007; 313:2050-62. [PMID: 17512929 DOI: 10.1016/j.yexcr.2007.03.040] [Citation(s) in RCA: 571] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/20/2007] [Accepted: 03/26/2007] [Indexed: 02/07/2023]
Abstract
Vimentin is the major intermediate filament (IF) protein of mesenchymal cells. It shows dynamically altered expression patterns during different developmental stages and high sequence homology throughout all vertebrates, suggesting that the protein is physiologically important. Still, until recently, the real tasks of vimentin have been elusive, primarily because the vimentin-deficient mice were originally characterized as having a very mild phenotype. Recent studies have revealed several key functions for vimentin that were not obvious at first sight. Vimentin emerges as an organizer of a number of critical proteins involved in attachment, migration, and cell signaling. The highly dynamic and complex phosphorylation of vimentin seems to be a likely regulator mechanism for these functions. The implicated novel vimentin functions have broad ramifications into many different aspects of cell physiology, cellular interactions, and organ homeostasis.
Collapse
Affiliation(s)
- Johanna Ivaska
- VTT Medical Biotechnology, Itäinen Pitkäkatu 4C, FI-20520 Turku, Finland
| | | | | | | |
Collapse
|
33
|
Chou YH, Flitney FW, Chang L, Mendez M, Grin B, Goldman RD. The motility and dynamic properties of intermediate filaments and their constituent proteins. Exp Cell Res 2007; 313:2236-43. [PMID: 17498691 DOI: 10.1016/j.yexcr.2007.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 04/01/2007] [Accepted: 04/05/2007] [Indexed: 12/13/2022]
Abstract
Intermediate filament (IF) proteins exist in multiple structural forms within cells including mature IF, short filaments or 'squiggles', and non-filamentous precursors called particles. These forms are interconvertible and their relative abundance is IF type, cell type- and cell cycle stage-dependent. These structures are often associated with molecular motors, such as kinesin and dynein, and are therefore capable of translocating through the cytoplasm along microtubules. The assembly of mature IF from their precursor particles is also coupled to translation. These dynamic properties of IF provide mechanisms for regulating their reorganization and assembly in response to the functional requirements of cells. The recent findings that IF and their precursors are frequently associated with signaling molecules have revealed new functions for IF beyond their more traditional roles as mechanical integrators of cells and tissues.
Collapse
Affiliation(s)
- Ying-Hao Chou
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
34
|
Kirmse R, Portet S, Mücke N, Aebi U, Herrmann H, Langowski J. A quantitative kinetic model for the in vitro assembly of intermediate filaments from tetrameric vimentin. J Biol Chem 2007; 282:18563-18572. [PMID: 17403663 DOI: 10.1074/jbc.m701063200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In vitro assembly of intermediate filament proteins is a very rapid process. It starts without significant delay by lateral association of tetramer complexes into unit-length filaments (ULFs) after raising the ionic strength from low salt to physiological conditions (100 mM KCl). We employed electron and scanning force microscopy complemented by mathematical modeling to investigate the kinetics of in vitro assembly of human recombinant vimentin. From the average length distributions of the resulting filaments measured at increasing assembly times we simulated filament assembly and estimated specific reaction rate parameters. We modeled eight different potential pathways for vimentin filament elongation. Comparing the numerical with the experimental data we conclude that a two-step mechanism involving rapid formation of ULFs followed by ULF and filament annealing is the most robust scenario for vimentin assembly. These findings agree with the first two steps of the previously proposed three-step assembly model (Herrmann, H., and Aebi, U. (1998) Curr. Opin. Struct. Biol. 8, 177-185). In particular, our modeling clearly demonstrates that end-to-end annealing of ULFs and filaments is obligatory for forming long filaments, whereas tetramer addition to filament ends does not contribute significantly to filament elongation.
Collapse
Affiliation(s)
- Robert Kirmse
- Division of Biophysics of Macromolecules, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg D-69120, Germany
| | - Stephanie Portet
- Department of Mathematics, University of Manitoba, Winnipeg MB, Canada R3T 2N2
| | - Norbert Mücke
- Division of Biophysics of Macromolecules, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg D-69120, Germany
| | - Ueli Aebi
- M. E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, Basel 4056, Switzerland
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg D-69120, Germany
| | - Jörg Langowski
- Division of Biophysics of Macromolecules, German Cancer Research Center, Im Neuenheimer Feld 580, Heidelberg D-69120, Germany.
| |
Collapse
|
35
|
Chang L, Shav-Tal Y, Trcek T, Singer RH, Goldman RD. Assembling an intermediate filament network by dynamic cotranslation. ACTA ACUST UNITED AC 2006; 172:747-58. [PMID: 16505169 PMCID: PMC2063706 DOI: 10.1083/jcb.200511033] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have been able to observe the dynamic interactions between a specific messenger RNA (mRNA) and its protein product in vivo by studying the synthesis and assembly of peripherin intermediate filaments (IFs). The results show that peripherin mRNA-containing particles (messenger ribonucleoproteins [mRNPs]) move mainly along microtubules (MT). These mRNPs are translationally silent, initiating translation when they cease moving. Many peripherin mRNPs contain multiple mRNAs, possibly amplifying the total amount of protein synthesized within these "translation factories." This mRNA clustering is dependent on MT, regulatory sequences within the RNA and the nascent protein. Peripherin is cotranslationally assembled into insoluble, nonfilamentous particles that are precursors to the long IF that form extensive cytoskeletal networks. The results show that the motility and targeting of peripherin mRNPs, their translational control, and the assembly of an IF cytoskeletal system are linked together in a process we have termed dynamic cotranslation.
Collapse
Affiliation(s)
- Lynne Chang
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | |
Collapse
|
36
|
Abstract
Neurofilament proteins are known to be transported along axons by slow axonal transport, but the form in which they move is controversial. In previous studies on cultured rat sympathetic neurons, we found that green fluorescent protein-tagged neurofilament proteins move predominantly in the form of filamentous structures, and we proposed that these structures are single-neurofilament polymers. In the present study, we have tested this hypothesis by using a rapid perfusion technique to capture these structures as they move through naturally occurring gaps in the axonal neurofilament array. Because the gaps lack neurofilaments, they permit unambiguous identification of the captured structure. Using quantitative immunofluorescence microscopy and correlative light and electron microscopy, we show that the captured structures are single continuous neurofilament polymers. Thus, neurofilament polymers are one of the cargo structures of slow axonal transport.
Collapse
Affiliation(s)
- Yanping Yan
- Center for Molecular Neurobiology, Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
37
|
Utton MA, Noble WJ, Hill JE, Anderton BH, Hanger DP. Molecular motors implicated in the axonal transport of tau and alpha-synuclein. J Cell Sci 2005; 118:4645-54. [PMID: 16176937 DOI: 10.1242/jcs.02558] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Tau and alpha-synuclein are both proteins implicated in the pathology of neurodegenerative disease. Here we have investigated the mechanisms of axonal transport of tau and alpha-synuclein, because failure of axonal transport has been implicated in the development of several neurodegenerative disorders. We found that the transport of both of these proteins depend on an intact microtubule- but not actin-cytoskeleton, and that tau and alpha-synuclein both move at overall slow rates of transport. We used time-lapse video microscopy to obtain images of live neurons that had been transfected with plasmids expressing proteins tagged with enhanced green fluorescent protein. We found that particulate structures containing tau or alpha-synuclein travel rapidly when moving along axons but spend the majority of the time paused, and these structures have similar characteristics to those previously observed for neurofilaments. The motile particles containing tau or alpha-synuclein colocalise with the fast-transporting molecular motor kinesin-1 in neurons. Co-immunoprecipitation experiments demonstrate that tau and alpha-synuclein are each associated with complexes containing kinesin-1, whereas only alpha-synuclein appears to interact with dynein-containing complexes. In vitro glutathione S-transferase-binding assays using rat brain homogenate or recombinant protein as bait reveals a direct interaction of kinesin-1 light chains 1 and 2 with tau, but not with alpha-synuclein. Our findings suggest that the axonal transport of tau occurs via a mechanism utilising fast transport motors, including the kinesin family of proteins, and that alpha-synuclein transport in neurons may involve both kinesin and dynein motor proteins.
Collapse
Affiliation(s)
- Michelle A Utton
- Department of Neuroscience, King's College London, Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, UK
| | | | | | | | | |
Collapse
|
38
|
Chien CL, Liu TC, Ho CL, Lu KS. Overexpression of neuronal intermediate filament protein alpha-internexin in PC12 cells. J Neurosci Res 2005; 80:693-706. [PMID: 15880430 DOI: 10.1002/jnr.20506] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neuronal intermediate filaments include not only the neurofilament triplet proteins but also peripherin and alpha-internexin. To determine whether neurite outgrowth is enhanced by alpha-internexin, the cDNA of rat alpha-internexin tagged with enhanced green fluorescent protein (EGFP) was transfected into a rat adrenal pheochromocytoma cell line PC12 that responds to nerve growth factor (NGF) by induction of the neuronal phenotype. Selected stable clones were induced by NGF and examined for expression patterns of neuronal intermediate filaments by Western blot and immunocytochemistry. Differentiating neurons were also collected after NGF induction for RT-PCR analysis. Overexpressed alpha-internexin-EGFPs were found mainly in cell bodies and the proximal part of neurites. It was also found that overexpression of alpha-internexin-EGFPs enhanced the neurite outgrowth of PC12 cells at the early stages of NGF induction. Meantime, NF-L and NF-M were upregulated by the overexpression of alpha-internexin-EGFPs. Interestingly, alpha-internexin-EGFP-transfected cells obviously detached from culture plates at the later stages of NGF induction. Massive IF accumulations, swelling mitochondria, and degenerating neurites with numerous electron-dense granules were observed ultrastructurally in the alpha-internexin-EGFP-transfected cells. In addition, neuronal death was also characterized positively by the TUNEL assay. These observations may imply that cell death was occurring in alpha-internexin-EGFP-transfected cells. From this study, it could be suggested that alpha-internexin plays an important role in neurite outgrowth and regulates the expression of other neurofilaments during neuronal development. Apoptosis-like cell death could also be induced by the overexpression of alpha-internexin-EGFP in PC12 cells after NGF induction.
Collapse
Affiliation(s)
- Chung-Liang Chien
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
39
|
Brown A, Wang L, Jung P. Stochastic simulation of neurofilament transport in axons: the "stop-and-go" hypothesis. Mol Biol Cell 2005; 16:4243-55. [PMID: 16000374 PMCID: PMC1196334 DOI: 10.1091/mbc.e05-02-0141] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
According to the "stop-and-go" hypothesis of slow axonal transport, cytoskeletal and cytosolic proteins are transported along axons at fast rates but the average velocity is slow because the movements are infrequent and bidirectional. To test whether this hypothesis can explain the kinetics of slow axonal transport in vivo, we have developed a stochastic model of neurofilament transport in axons. We propose that neurofilaments move in both anterograde and retrograde directions along cytoskeletal tracks, alternating between short bouts of rapid movement and short "on-track" pauses, and that they can also temporarily disengage from these tracks, resulting in more prolonged "off-track" pauses. We derive the kinetic parameters of the model from a detailed analysis of the moving and pausing behavior of single neurofilaments in axons of cultured neurons. We show that the model can match the shape, velocity, and spreading of the neurofilament transport waves obtained by radioisotopic pulse labeling in vivo. The model predicts that axonal neurofilaments spend approximately 8% of their time on track and approximately 97% of their time pausing during their journey along the axon.
Collapse
Affiliation(s)
- Anthony Brown
- Center for Molecular Neurobiology and Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
40
|
|
41
|
Craciun G, Brown A, Friedman A. A dynamical system model of neurofilament transport in axons. J Theor Biol 2005; 237:316-22. [PMID: 15975597 PMCID: PMC1995014 DOI: 10.1016/j.jtbi.2005.04.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Revised: 04/11/2005] [Accepted: 04/25/2005] [Indexed: 11/21/2022]
Abstract
We develop a dynamical system model for the transport of neurofilaments in axons, inspired by Brown's "stop-and-go" model for slow axonal transport. We use fast/slow time-scale arguments to lower the number of relevant parameters in our model. Then, we use experimental data of Wang and Brown to estimate all but one parameter. We show that we can choose this last remaining parameter such that the results of our model agree with pulse-labeling experiments from three different nerve cell types, and also agree with stochastic simulation results.
Collapse
Affiliation(s)
- Gheorghe Craciun
- Mathematical Biosciences Institute, Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
42
|
Jung C, Chylinski TM, Pimenta A, Ortiz D, Shea TB. Neurofilament transport is dependent on actin and myosin. J Neurosci 2005; 24:9486-96. [PMID: 15509735 PMCID: PMC6730143 DOI: 10.1523/jneurosci.1665-04.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Real-time analyses have revealed that some newly synthesized neurofilament (NF) subunits translocate into and along axonal neurites by moving along the inner plasma membrane surface, suggesting that they may translocate against the submembrane actin cortex. We therefore examined whether or not NF axonal transport was dependent on actin and myosin. Perturbation of filamentous actin in NB2a/d1 cells with cytochalasin B inhibited translocation of subunits into axonal neurites and inhibited bidirectional translocation of NF subunits within neurites. Intravitreal injection of cytochalasin B inhibited NF axonal transport in optic axons in a dose-response manner. NF subunits were coprecipitated from NB2a/d1 cells by an anti-myosin antibody, and myosin colocalized with NFs in immunofluorescent analyses. The myosin light chain kinase inhibitor ML-7 and the myosin ATPase inhibitor 2,3-butanedione-2-monoxime perturbed NF translocation within NB2a/d1 axonal neurites. These findings suggest that some NF subunits may undergo axonal transport via myosin-mediated interactions with the actin cortex.
Collapse
Affiliation(s)
- Cheolwha Jung
- Center for Cellular Neurobiology and Neurodegeneration Research, Departments of Biological Sciences and Biochemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA
| | | | | | | | | |
Collapse
|
43
|
Francis F, Roy S, Brady ST, Black MM. Transport of neurofilaments in growing axons requires microtubules but not actin filaments. J Neurosci Res 2005; 79:442-50. [PMID: 15635594 DOI: 10.1002/jnr.20399] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neurofilament (NF) polymers are conveyed from cell body to axon tip by slow axonal transport, and disruption of this process is implicated in several neuronal pathologies. This movement occurs in both anterograde and retrograde directions and is characterized by relatively rapid but brief movements of neurofilaments, interrupted by prolonged pauses. The present studies combine pharmacologic treatments that target actin filaments or microtubules with imaging of NF polymer transport in living axons to examine the dependence of neurofilament transport on these cytoskeletal systems. The heavy NF subunit tagged with green fluorescent protein was expressed in cultured sympathetic neurons to visualize NF transport. Depletion of axonal actin filaments by treatment with 5 microM latrunculin for 6 hr had no detectable effect on directionality or transport rate of NFs, but frequency of movement events was reduced from 1/3.1 min of imaging time to 1/4.9 min. Depolymerization of axonal microtubules using either 5 microM vinblastine for 3 hr or 5 microg/ml nocodazole for 4-6 hr profoundly suppressed neurofilament transport. In 92% of treated neurons, NF transport was undetected. These observations indicate that actin filaments are not required for neurofilament transport, although they may have subtle effects on neurofilament movements. In contrast, axonal transport of NFs requires microtubules, suggesting that anterograde and retrograde NF transport is powered by microtubule-based motors.
Collapse
Affiliation(s)
- Franto Francis
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
44
|
Wöll S, Windoffer R, Leube RE. Dissection of keratin dynamics: different contributions of the actin and microtubule systems. Eur J Cell Biol 2005; 84:311-28. [PMID: 15819410 DOI: 10.1016/j.ejcb.2004.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It has only recently been recognized that intermediate filaments (IFs) and their assembly intermediates are highly motile cytoskeletal components with cell-type- and isotype-specific characteristics. To elucidate the cell-type-independent contribution of actin filaments and microtubules to these motile properties, fluorescent epithelial IF keratin polypeptides were introduced into non-epithelial, adrenal cortex-derived SW13 cells. Time-lapse fluorescence microscopy of stably transfected SW13 cell lines synthesizing fluorescent human keratin 8 and 18 chimeras HK8-CFP and HK18-YFP revealed extended filament networks that are entirely composed of transgene products and exhibit the same dynamic features as keratin systems in epithelial cells. Detailed analyses identified two distinct types of keratin motility: (I) Slow (approximately 0.23 microm/min), inward-directed, continuous transport of keratin filament precursor particles from the plasma membrane towards the cell interior, which is most pronounced in lamellipodia. (II) Fast (approximately 17 microm/min), bidirectional and intermittent transport of keratin particles in axonal-type cell processes. Disruption of actin filaments inhibited type I motility while type II motility remained. Conversely, microtubule disruption inhibited transport mode II while mode I continued. Combining the two treatments resulted in a complete block of keratin motility. We therefore conclude that keratin motility relies both on intact actin filaments and microtubules and is not dependent on epithelium-specific cellular factors.
Collapse
Affiliation(s)
- Stefan Wöll
- Department of Anatomy, Johannes Gutenberg University Mainz, Becherweg 13, D-55128 Mainz, Germany
| | | | | |
Collapse
|
45
|
Abstract
Dynactin is a multisubunit protein complex that is required for most, if not all, types of cytoplasmic dynein activity in eukaryotes. Dynactin binds dynein directly and allows the motor to traverse the microtubule lattice over long distances. A single dynactin subunit, p150Glued, is sufficient for both activities, yet dynactin contains several other subunits that are organized into an elaborate structure. It is currently believed that the bulk of the dynactin structure participates in interactions with a wide range of cellular structures, many of which are cargoes of the dynein motor. Genetic studies verify the importance of all elements of dynactin structure to its function. Although dynein can bind some membranous cargoes independently of dynactin, establishment of a fully functional dynein-cargo link appears to depend on dynactin. In this review, I summarize what is presently known about dynactin structure, the cellular structures with which it associates, and the intermolecular interactions that underlie and regulate binding. Although the molecular details of dynactin's interactions with membranous organelles and other molecules are complex, the framework provided here is intended to distill what is presently known and to be of use to dynactin specialists and beginners alike.
Collapse
Affiliation(s)
- Trina A Schroer
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
46
|
Green KJ, Böhringer M, Gocken T, Jones JCR. Intermediate filament associated proteins. ADVANCES IN PROTEIN CHEMISTRY 2005; 70:143-202. [PMID: 15837516 DOI: 10.1016/s0065-3233(05)70006-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intermediate filament associated proteins (IFAPs) coordinate interactions between intermediate filaments (IFs) and other cytoskeletal elements and organelles, including membrane-associated junctions such as desmosomes and hemidesmosomes in epithelial cells, costameres in striated muscle, and intercalated discs in cardiac muscle. IFAPs thus serve as critical connecting links in the IF scaffolding that organizes the cytoplasm and confers mechanical stability to cells and tissues. However, in recent years it has become apparent that IFAPs are not limited to structural crosslinkers and bundlers but also include chaperones, enzymes, adapters, and receptors. IF networks can therefore be considered scaffolding upon which associated proteins are organized and regulated to control metabolic activities and maintain cell homeostasis.
Collapse
Affiliation(s)
- Kathleen J Green
- Departments of Pathology and Dermatology and R.H. Lurie Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
47
|
Jones KL, King SS, Iqbal MJ. Endophyte-infected tall fescue diet alters gene expression in heifer luteal tissue as revealed by interspecies microarray analysis. Mol Reprod Dev 2004; 67:154-61. [PMID: 14694430 DOI: 10.1002/mrd.10395] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cattle consuming endophyte-infected tall fescue grass have an associated reduction in circulating progesterone and reduced reproductive rates. In this study, commercially available rat microarrays were used to analyze the gene expression in luteal tissues from heifers fed endophyte-free fescue, endophyte-infected fescue, or endophyte-infected fescue supplemented with the dopamine (DA) antagonist, domperidone. The number of hybridized spots represented approximately 40% of the total 10,000 rat genes/ESTs evaluated. Each luteal sample was analyzed in triplicate, resulting in within treatment correlation coefficients of >/=0.98. Median values of mRNA abundance from luteal tissue taken from the endophyte-infected fed heifers revealed 598 genes and ESTs that were down regulated and 56 genes and ESTs that were upregulated compared with luteal mRNA values from the endophyte-free treatment. There were fewer comparative differences between median values from luteal mRNA from the endophyte-free versus feeding endophyte-infected plus domperidone treated heifers. Only 19 genes and ESTs were upregulated and two were down-regulated.
Collapse
Affiliation(s)
- K L Jones
- Department of Animal Science, Food and Nutrition, Southern Illinois University Carbondale, Carbondale, Illinois 62901, USA.
| | | | | |
Collapse
|
48
|
Abstract
Intermediate filaments, actin-containing microfilaments and microtubules are the three main cytoskeletal systems of vertebrate and many invertebrate cells. Although these systems are composed of distinctly different proteins, they are in constant and intimate communication with one another. Understanding the molecular basis of this cytoskeletal crosstalk is essential for determining the mechanisms that underlie many cell-biological phenomena. Recent studies have revealed that intermediate filaments and their associated proteins are important components in mediating this crosstalk.
Collapse
Affiliation(s)
- Lynne Chang
- Feinberg School of Medicine, Northwestern University, Department of Cell and Molecular Biology, 303 East Chicago Avenue, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
49
|
Abstract
Mutations in HSPB1 and HSPB8, members of the small heat shock protein family, have recently been shown to cause some distal motor neuropathies. Their function in motor neurones is now under scrutiny.
Collapse
Affiliation(s)
- Ming Der Perng
- School of Biological and Biomedical Science, South Road Science Site, The University, Durham DH1 3LE, UK
| | | |
Collapse
|
50
|
Abstract
Active transport is critical for cellular organization and function, and impaired transport has been linked to diseases such as neuronal degeneration. Much long distance transport in cells uses opposite polarity molecular motors of the kinesin and dynein families to move cargos along microtubules. It is increasingly clear that many cargos are moved by both sets of motors, and frequently reverse course. This review compares this bi-directional transport to the more well studied uni-directional transport. It discusses some bi-directionally moving cargos, and critically evaluates three different physical models for how such transport might occur. It then considers the evidence for the number of active motors per cargo, and how the net or average direction of transport might be controlled. The likelihood of a complex linking the activities of kinesin and dynein is also discussed. The paper concludes by reviewing elements of apparent universality between different bi-directionally moving cargos and by briefly considering possible reasons for the existence of bi-directional transport.
Collapse
Affiliation(s)
- Steven P Gross
- Department of Developmental and Cell Biology, 2222 Nat. Sci. I, University of California Irvine, Irvine, CA 926976, USA.
| |
Collapse
|