1
|
Hu J, Xu H, Ma X, Bai M, Zhou Y, Miao R, Wang F, Li X, Cheng B. Modulating PCGF4/BMI1 Stability Is an Efficient Metastasis-Regulatory Strategy Used by Distinct Subtypes of Cancer-Associated Fibroblasts in Intrahepatic Cholangiocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1388-1404. [PMID: 38670529 DOI: 10.1016/j.ajpath.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/17/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a highly malignant neoplasm prone to metastasis. Whether cancer-associated fibroblasts (CAFs) affect the metastasis of ICC is unclear. Herein, ICC patient-derived CAF lines and related cancerous cell lines were established and the effects of CAFs on the tumor progressive properties of the ICC cancerous cells were analyzed. CAFs could be classified into cancer-restraining or cancer-promoting categories based on distinct tumorigenic effects. The RNA-sequencing analyses of ICC cancerous cell lines identified polycomb group ring finger 4 (PCGF4; alias BMI1) as a potential metastasis regulator. The changes of PCGF4 levels in ICC cells mirrored the restraining or promoting effects of CAFs on ICC migration. Immunohistochemical analyses on the ICC tissue microarrays indicated that PCGF4 was negatively correlated with overall survival of ICC. The promoting effects of PCGF4 on cell migration, drug resistance activity, and stemness properties were confirmed. Mechanistically, cancer-restraining CAFs triggered the proteasome-dependent degradation of PCGF4, whereas cancer-promoting CAFs enhanced the stability of PCGF4 via activating the IL-6/phosphorylated STAT3 pathway. In summary, the current data identified the role of CAFs in ICC metastasis and revealed a new mechanism of the CAFs on ICC progression in which PCGF4 acted as the key effector by both categories of CAFs. These findings shed light on developing comprehensive therapeutic strategies for ICC.
Collapse
Affiliation(s)
- Jinjing Hu
- School of Life Sciences, Lanzhou University, Lanzhou, China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Hao Xu
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xiaojun Ma
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mingzhen Bai
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yongqiang Zhou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Ruidong Miao
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Fanghong Wang
- The Fourth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.
| | - Bo Cheng
- School of Life Sciences, Lanzhou University, Lanzhou, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Brescia C, Dattilo V, D’Antona L, Chiarella E, Tallerico R, Audia S, Rocca V, Iuliano R, Trapasso F, Perrotti N, Amato R. RANBP1, a member of the nuclear-cytoplasmic trafficking-regulator complex, is the terminal-striking point of the SGK1-dependent Th17 + pathological differentiation. Front Immunol 2023; 14:1213805. [PMID: 37441077 PMCID: PMC10333757 DOI: 10.3389/fimmu.2023.1213805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The Th17+ arrangement is critical for orchestrating both innate and acquired immune responses. In this context, the serum and glucocorticoid regulated kinase 1 (SGK1) exerts a key role in the governance of IL-23R-dependent Th17+ maturation, through the phosphorylation-dependent control of FOXO1 localization. Our previous work has shown that some of the SGK1-key functions are dependent on RAN-binding protein 1 (RANBP1), a terminal gene in the nuclear transport regulation. Here, we show that RANBP1, similarly to SGK1, is modulated during Th17+ differentiation and that RANBP1 fluctuations mediate the SGK1-dependent effects on Th17+ maturation. RANBP1, as the final effector of the SGK1 pathway, affects FOXO1 transport from the nucleus to the cytoplasm, thus enabling RORγt activation. In this light, RANBP1 represents the missing piece, in an essential and rate-limiting manner, underlying the Th17+ immune asset.
Collapse
Affiliation(s)
- Carolina Brescia
- Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Vincenzo Dattilo
- Department of Experimental and Clinical Medicine, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Lucia D’Antona
- Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Medical Genetics Unit, University Hospital, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Emanuela Chiarella
- Department of Experimental and Clinical Medicine, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rossana Tallerico
- Microbiology and Virology Unit, “Pugliese-Ciaccio” Hospital, Catanzaro, Italy
| | - Salvatore Audia
- Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Valentina Rocca
- Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Medical Genetics Unit, University Hospital, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rodolfo Iuliano
- Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Medical Genetics Unit, University Hospital, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Francesco Trapasso
- Department of Experimental and Clinical Medicine, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Medical Genetics Unit, University Hospital, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Nicola Perrotti
- Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Medical Genetics Unit, University Hospital, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rosario Amato
- Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Immuno-Genetics Lab, Department of Health Science, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Medical Genetics Unit, University Hospital, Medical School, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
3
|
Audia S, Brescia C, Dattilo V, D’Antona L, Calvano P, Iuliano R, Trapasso F, Perrotti N, Amato R. RANBP1 (RAN Binding Protein 1): The Missing Genetic Piece in Cancer Pathophysiology and Other Complex Diseases. Cancers (Basel) 2023; 15:cancers15020486. [PMID: 36672435 PMCID: PMC9857238 DOI: 10.3390/cancers15020486] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
RANBP1 encoded by RANBP1 or HTF9A (Hpall Tiny Fragments Locus 9A), plays regulatory functions of the RAN-network, belonging to the RAS superfamily of small GTPases. Through this function, RANBP1 regulates the RANGAP1 activity and, thus, the fluctuations between GTP-RAN and GDP-RAN. In the light of this, RANBP1 take actions in maintaining the nucleus-cytoplasmic gradient, thus making nuclear import-export functional. RANBP1 has been implicated in the inter-nuclear transport of proteins, nucleic acids and microRNAs, fully contributing to cellular epigenomic signature. Recently, a RANBP1 diriment role in spindle checkpoint formation and nucleation has emerged, thus constituting an essential element in the control of mitotic stability. Over time, RANBP1 has been demonstrated to be variously involved in human cancers both for the role in controlling nuclear transport and RAN activity and for its ability to determine the efficiency of the mitotic process. RANBP1 also appears to be implicated in chemo-hormone and radio-resistance. A key role of this small-GTPases related protein has also been demonstrated in alterations of axonal flow and neuronal plasticity, as well as in viral and bacterial metabolism and in embryological maturation. In conclusion, RANBP1 appears not only to be an interesting factor in several pathological conditions but also a putative target of clinical interest.
Collapse
Affiliation(s)
- Salvatore Audia
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Carolina Brescia
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Vincenzo Dattilo
- Dipartimento di Medicina Sperimentale e Clinica, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Lucia D’Antona
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Pierluigi Calvano
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Rodolfo Iuliano
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Francesco Trapasso
- Dipartimento di Medicina Sperimentale e Clinica, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Nicola Perrotti
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Rosario Amato
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-0961-3694084
| |
Collapse
|
4
|
Attenuated Viral Replication of Avian Infectious Bronchitis Virus with a Novel 82-Nucleotide Deletion in the 5a Gene Indicates a Critical Role for 5a in Virus-Host Interactions. Microbiol Spectr 2022; 10:e0140522. [PMID: 35766501 PMCID: PMC9430126 DOI: 10.1128/spectrum.01405-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously found that a deletion in γ-coronavirus Infectious bronchitis virus (IBV) accessory gene 5a is critical for decreased viral pathogenicity in chickens. Here, we systematically analyzed IBV virus infection: invasion, genome replication, subgenomic mRNA (sgmRNA) synthesis, protein synthesis, and virion release. The ability of the mutant IBV strain rYN-Δ5a to invade susceptible cells was not significantly different from that of parental rYN. However, compared with rYN, the level of sgmRNA synthesis and genome replication after cell entry by rYN-Δ5a was significantly lower in the early stage, resulting in a significantly lower level of nucleoprotein (N) synthesis and a consequent significantly lower number of offspring viruses released into the supernatant. The detected 5a protein was diffusely distributed in the cytoplasm and perinuclear area. We identified 16 differentially expressed host proteins, 8 of which were found to be host nuclear and cytoplasmic transport-related proteins. Coimmunoprecipitation revealed an interaction between hemagglutinin (HA)-tagged TNPO1, TNPO3, XPO1, XPOT, RanBP1, and EIF2B4 proteins and Flag-tagged 5a protein, and laser confocal microscopy confirmed 5a protein colocalization with these proteins, indicating that 5a protein can cause changes in the host protein localization. These host proteins promote the nuclear localization of N proteins, so we believe that 5a protein can hijack host nucleoplasmic transport-related proteins to help N enter the nucleus. This may involve regulating the cell cycle to promote the optimal intracellular conditions for virus assembly or by participating in the regulation of nucleolar function as a strategy to optimize virus replication. IMPORTANCE Coronaviruses (CoVs) have a huge impact on humans and animals. It is important for the prevention and control of the viruses to assess the molecular mechanisms related to virulence attenuation. Here, we systematically analyzed a single cycle of virus infection by γ-CoV IBV lacking accessory protein 5a. We observed that a 5a deletion in the IBV genome affected virus replication and sgmRNA synthesis early in the virus life cycle, leading to decreases in protein synthesis, offspring virus assembly, and virion release in chicken embryonic kidney cells. IBV 5a protein was found to interact with multiple host nuclear and cytoplasmic transport- and translation-related proteins, which can also interact with IBV N and relocate it into the cell nucleus. These findings provide a comprehensive view regarding the importance of IBV accessory protein 5a and an important theoretical basis for studying the interaction between coronavirus and host cell proteins.
Collapse
|
5
|
Yunes SA, Willoughby JLS, Kwan JH, Biagi JM, Pokharel N, Chin HG, York EA, Su KC, George K, Shah JV, Emili A, Schaus SE, Hansen U. Factor quinolinone inhibitors disrupt spindles and multiple LSF (TFCP2)-protein interactions in mitosis, including with microtubule-associated proteins. PLoS One 2022; 17:e0268857. [PMID: 35704642 PMCID: PMC9200292 DOI: 10.1371/journal.pone.0268857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
Abstract
Factor quinolinone inhibitors (FQIs), a first-in-class set of small molecule inhibitors targeted to the transcription factor LSF (TFCP2), exhibit promising cancer chemotherapeutic properties. FQI1, the initial lead compound identified, unexpectedly induced a concentration-dependent delay in mitotic progression. Here, we show that FQI1 can rapidly and reversibly lead to mitotic arrest, even when added directly to mitotic cells, implying that FQI1-mediated mitotic defects are not transcriptionally based. Furthermore, treatment with FQIs resulted in a striking, concentration-dependent diminishment of spindle microtubules, accompanied by a concentration-dependent increase in multi-aster formation. Aberrant γ-tubulin localization was also observed. These phenotypes suggest that perturbation of spindle microtubules is the primary event leading to the mitotic delays upon FQI1 treatment. Previously, FQIs were shown to specifically inhibit not only LSF DNA-binding activity, which requires LSF oligomerization to tetramers, but also other specific LSF-protein interactions. Other transcription factors participate in mitosis through non-transcriptional means, and we recently reported that LSF directly binds α-tubulin and is present in purified cellular tubulin preparations. Consistent with a microtubule role for LSF, here we show that LSF enhanced the rate of tubulin polymerization in vitro, and FQI1 inhibited such polymerization. To probe whether the FQI1-mediated spindle abnormalities could result from inhibition of mitotic LSF-protein interactions, mass spectrometry was performed using as bait an inducible, tagged form of LSF that is biotinylated by endogenous enzymes. The global proteomics analysis yielded expected associations for a transcription factor, notably with RNA processing machinery, but also to nontranscriptional components. In particular, and consistent with spindle disruption due to FQI treatment, mitotic, FQI1-sensitive interactions were identified between the biotinylated LSF and microtubule-associated proteins that regulate spindle assembly, positioning, and dynamics, as well as centrosome-associated proteins. Probing the mitotic LSF interactome using small molecule inhibitors therefore supported a non-transcriptional role for LSF in mediating progression through mitosis.
Collapse
Affiliation(s)
- Sarah A. Yunes
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, Massachusetts, United States of America
| | - Jennifer L. S. Willoughby
- Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, Massachusetts, United States of America
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Julian H. Kwan
- Department of Biochemistry and Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jessica M. Biagi
- Department of Chemistry and Center for Molecular Discovery, Boston University, Boston, Massachusetts, United States of America
| | - Niranjana Pokharel
- Department of Chemistry and Center for Molecular Discovery, Boston University, Boston, Massachusetts, United States of America
| | - Hang Gyeong Chin
- Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, Massachusetts, United States of America
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Emily A. York
- Department of Chemistry and Center for Molecular Discovery, Boston University, Boston, Massachusetts, United States of America
| | - Kuan-Chung Su
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Kelly George
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jagesh V. Shah
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew Emili
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Department of Biochemistry and Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Scott E. Schaus
- Department of Chemistry and Center for Molecular Discovery, Boston University, Boston, Massachusetts, United States of America
| | - Ulla Hansen
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Zheng D, Cao M, Zuo S, Xia X, Zhi C, Lin Y, Deng S, Yuan X. RANBP1 promotes colorectal cancer progression by regulating pre-miRNA nuclear export via a positive feedback loop with YAP. Oncogene 2022; 41:930-942. [PMID: 34615998 DOI: 10.1038/s41388-021-02036-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/05/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022]
Abstract
Colorectal cancer (CRC) is among the top five most common malignant tumors worldwide and has a high mortality rate. Identification of the mechanism of CRC and potential therapeutic targets is critical for improving survival. In the present study, we observed high expression of RAN binding protein 1 (RANBP1) in CRC tissues. Upregulated RANBP1 expression was strongly associated with TNM stages and was an independent risk factor for poor prognosis. In vitro and in vivo functional experiments demonstrated that RANBP1 promoted the proliferation and invasion of CRC cells and inhibited the apoptosis of CRC cells. Low RANBP1 expression reduced the expression levels of hsa-miR-18a, hsa-miR-183, and hsa-miR-106 microRNAs (miRNAs) by inhibiting the nucleoplasmic transport of precursor miRNAs (pre-miRNAs), thereby promoting the accumulation of the latter in the nucleus and reducing the expression of mature miRNAs. Further experiments and bioinformatic analyses demonstrated that RANBP1 promoted the expression of YAP by regulating miRNAs and the Hippo pathway. We also found that YAP acted as a transcriptional cofactor to activate RANBP1 transcription in combination with TEAD4 transcription factor. Thus, RANBP1 further promoted the progression of CRC by forming a positive feedback loop with YAP. Our results revealed the biological role and mechanism of RANBP1 in CRC for the first time, suggesting that RANBP1 can be used as a diagnostic molecule and a potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Dandan Zheng
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Meng Cao
- Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Siyu Zuo
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, China
| | - Xin Xia
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Chunchun Zhi
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Yanbing Lin
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Sitong Deng
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoqin Yuan
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, 211166, China.
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
7
|
The Mitotic Apparatus and Kinetochores in Microcephaly and Neurodevelopmental Diseases. Cells 2019; 9:cells9010049. [PMID: 31878213 PMCID: PMC7016623 DOI: 10.3390/cells9010049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 12/15/2022] Open
Abstract
Regulators of mitotic division, when dysfunctional or expressed in a deregulated manner (over- or underexpressed) in somatic cells, cause chromosome instability, which is a predisposing condition to cancer that is associated with unrestricted proliferation. Genes encoding mitotic regulators are growingly implicated in neurodevelopmental diseases. Here, we briefly summarize existing knowledge on how microcephaly-related mitotic genes operate in the control of chromosome segregation during mitosis in somatic cells, with a special focus on the role of kinetochore factors. Then, we review evidence implicating mitotic apparatus- and kinetochore-resident factors in the origin of congenital microcephaly. We discuss data emerging from these works, which suggest a critical role of correct mitotic division in controlling neuronal cell proliferation and shaping the architecture of the central nervous system.
Collapse
|
8
|
Dattilo V, D’Antona L, Talarico C, Capula M, Catalogna G, Iuliano R, Schenone S, Roperto S, Bianco C, Perrotti N, Amato R. SGK1 affects RAN/RANBP1/RANGAP1 via SP1 to play a critical role in pre-miRNA nuclear export: a new route of epigenomic regulation. Sci Rep 2017; 7:45361. [PMID: 28358001 PMCID: PMC5371792 DOI: 10.1038/srep45361] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/27/2017] [Indexed: 12/15/2022] Open
Abstract
The serum- and glucocorticoid-regulated kinase (SGK1) controls cell transformation and tumor progression. SGK1 affects mitotic stability by regulating the expression of RANBP1/RAN. Here, we demonstrate that SGK1 fluctuations indirectly modify the maturation of pre-miRNAs, by modulating the equilibrium of the RAN/RANBP1/RANGAP1 axis, the main regulator of nucleo-cytoplasmic transport. The levels of pre-miRNAs and mature miRNAs were assessed by qRT-PCR, in total extracts and after differential nuclear/cytoplasmic extraction. RANBP1 expression is the limiting step in the regulation of SGK1-SP1 dependent nuclear export. These results were validated in unrelated tumor models and primary human fibroblasts and corroborated in tumor-engrafted nude mice. The levels of pri-miRNAs, DROSHA, DICER and the compartmental distribution of XPO5 were documented. Experiments using RANGTP conformational antibodies confirmed that SGK1, through RANBP1, decreases the level of the GTP-bound state of RAN. This novel mechanism may play a role in the epigenomic regulation of cell physiology and fate.
Collapse
Affiliation(s)
- Vincenzo Dattilo
- University “Magna Graecia” of Catanzaro, Dept. of “Scienze della Salute”, Viale Europa Catanzaro, Italy
| | - Lucia D’Antona
- University “Magna Graecia” of Catanzaro, Dept. of “Scienze della Salute”, Viale Europa Catanzaro, Italy
| | - Cristina Talarico
- University “Magna Graecia” of Catanzaro, Dept. of “Scienze della Salute”, Viale Europa Catanzaro, Italy
| | - Mjriam Capula
- University “Magna Graecia” of Catanzaro, Dept. of “Scienze della Salute”, Viale Europa Catanzaro, Italy
| | - Giada Catalogna
- University “Magna Graecia” of Catanzaro, Dept. of “Scienze della Salute”, Viale Europa Catanzaro, Italy
| | - Rodolfo Iuliano
- University “Magna Graecia” of Catanzaro, Dept. of “Medicina Sperimentale e Clinica”, Viale Europa Catanzaro, Italy
| | - Silvia Schenone
- University of Genova, Dept of Farmacia, Viale Benedetto XV 3, Genova, Italy
| | - Sante Roperto
- University “Federico II” of Naple, Dept of Medicina Veterinaria e Produzioni Animali, Via Federico Delpino 1, Napoli, Italy.
| | - Cataldo Bianco
- University “Magna Graecia” of Catanzaro, Dept. of “Medicina Sperimentale e Clinica”, Viale Europa Catanzaro, Italy
| | - Nicola Perrotti
- University “Magna Graecia” of Catanzaro, Dept. of “Scienze della Salute”, Viale Europa Catanzaro, Italy
| | - Rosario Amato
- University “Magna Graecia” of Catanzaro, Dept. of “Scienze della Salute”, Viale Europa Catanzaro, Italy
| |
Collapse
|
9
|
Kapoor TM. Metaphase Spindle Assembly. BIOLOGY 2017; 6:biology6010008. [PMID: 28165376 PMCID: PMC5372001 DOI: 10.3390/biology6010008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 01/31/2023]
Abstract
A microtubule-based bipolar spindle is required for error-free chromosome segregation during cell division. In this review I discuss the molecular mechanisms required for the assembly of this dynamic micrometer-scale structure in animal cells.
Collapse
Affiliation(s)
- Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, the Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
10
|
Talarico C, D'Antona L, Scumaci D, Barone A, Gigliotti F, Fiumara CV, Dattilo V, Gallo E, Visca P, Ortuso F, Abbruzzese C, Botta L, Schenone S, Cuda G, Alcaro S, Bianco C, Lavia P, Paggi MG, Perrotti N, Amato R. Preclinical model in HCC: the SGK1 kinase inhibitor SI113 blocks tumor progression in vitro and in vivo and synergizes with radiotherapy. Oncotarget 2016; 6:37511-25. [PMID: 26462020 PMCID: PMC4741945 DOI: 10.18632/oncotarget.5527] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/28/2015] [Indexed: 12/20/2022] Open
Abstract
The SGK1 kinase is pivotal in signal transduction pathways operating in cell transformation and tumor progression. Here, we characterize in depth a novel potent and selective pyrazolo[3,4-d]pyrimidine-based SGK1 inhibitor. This compound, named SI113, active in vitro in the sub-micromolar range, inhibits SGK1-dependent signaling in cell lines in a dose- and time-dependent manner. We recently showed that SI113 slows down tumor growth and induces cell death in colon carcinoma cells, when used in monotherapy or in combination with paclitaxel. We now demonstrate for the first time that SI113 inhibits tumour growth in hepatocarcinoma models in vitro and in vivo. SI113-dependent tumor inhibition is dose- and time-dependent. In vitro and in vivo SI113-dependent SGK1 inhibition determined a dramatic increase in apoptosis/necrosis, inhibited cell proliferation and altered the cell cycle profile of treated cells. Proteome-wide biochemical studies confirmed that SI113 down-regulates the abundance of proteins downstream of SGK1 with established roles in neoplastic transformation, e.g. MDM2, NDRG1 and RAN network members. Consistent with knock-down and over-expressing cellular models for SGK1, SI113 potentiated and synergized with radiotherapy in tumor killing. No short-term toxicity was observed in treated animals during in vivo SI113 administration. These data show that direct SGK1 inhibition can be effective in hepatic cancer therapy, either alone or in combination with radiotherapy.
Collapse
Affiliation(s)
- Cristina Talarico
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Lucia D'Antona
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Domenica Scumaci
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Agnese Barone
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Francesco Gigliotti
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Claudia Vincenza Fiumara
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Vincenzo Dattilo
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Enzo Gallo
- Section of Pathology, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Paolo Visca
- Section of Pathology, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Francesco Ortuso
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Claudia Abbruzzese
- Experimental Oncology, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Lorenzo Botta
- Department of Biotecnologie, Chimica e Farmacia, University of Siena, Siena, Italy
| | | | - Giovanni Cuda
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Stefano Alcaro
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Cataldo Bianco
- Department of "Medicina Sperimentale e Clinica", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Patrizia Lavia
- Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR), c/o University "La Sapienza", Rome, Italy
| | - Marco G Paggi
- Experimental Oncology, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Nicola Perrotti
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| | - Rosario Amato
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Viale Europa, Catanzaro, Italy
| |
Collapse
|
11
|
Increased cathepsin D protein expression is a biomarker for osteosarcomas, pulmonary metastases and other bone malignancies. Oncotarget 2016. [PMID: 26203049 PMCID: PMC4599286 DOI: 10.18632/oncotarget.4140] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer proteomics provide a powerful approach to identify biomarkers for personalized medicine. Particularly, biomarkers for early detection, prognosis and therapeutic intervention of bone cancers, especially osteosarcomas, are missing. Initially, we compared two-dimensional gel electrophoresis (2-DE)-based protein expression pattern between cell lines of fetal osteoblasts, osteosarcoma and pulmonary metastasis derived from osteosarcoma. Two independent statistical analyses by means of PDQuest® and SameSpot® software revealed a common set of 34 differentially expressed protein spots (p < 0.05). 17 Proteins were identified by mass spectrometry and subjected to Ingenuity Pathway Analysis resulting in one high-ranked network associated with Gene Expression, Cell Death and Cell-To-Cell Signaling and Interaction. Ran/TC4-binding protein (RANBP1) and Cathepsin D (CTSD) were further validated by Western Blot in cell lines while the latter one showed higher expression differences also in cytospins and in clinical samples using tissue microarrays comprising osteosarcomas, metastases, other bone malignancies, and control tissues. The results show that protein expression patterns distinguish fetal osteoblasts from osteosarcomas, pulmonary metastases, and other bone diseases with relevant sensitivities between 55.56% and 100% at ≥87.50% specificity. Particularly, CTSD was validated in clinical material and could thus serve as a new biomarker for bone malignancies and potentially guide individualized treatment regimes.
Collapse
|
12
|
Garrido G, Vernos I. Non-centrosomal TPX2-Dependent Regulation of the Aurora A Kinase: Functional Implications for Healthy and Pathological Cell Division. Front Oncol 2016; 6:88. [PMID: 27148480 PMCID: PMC4831974 DOI: 10.3389/fonc.2016.00088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/29/2016] [Indexed: 01/09/2023] Open
Abstract
Aurora A has been extensively characterized as a centrosomal kinase with essential functions during cell division including centrosome maturation and separation and spindle assembly. However, Aurora A localization is not restricted to the centrosomes and compelling evidence support the existence of specific mechanisms of activation and functions for non-centrosomal Aurora A in the dividing cell. It has been now well established that spindle assembly involves an acentrosomal RanGTP-dependent pathway that triggers microtubule assembly and organization in the proximity of the chromosomes whether centrosomes are present or not. The mechanism involves the regulation of a number of NLS-containing proteins, generically called SAFS (Spindle Assembly Factors) that exert their functions upon release from karyopherins by RanGTP. One of them, the nuclear protein TPX2 interacts with and activates Aurora A upon release from importins by RanGTP. This basic mechanism triggers the activation of Aurora A in the proximity of the chromosomes potentially translating the RanGTP signaling gradient centered on the chromosome into an Aurora A phosphorylation network. Here, we will review our current knowledge on the RanGTP-dependent TPX2 activation of Aurora A away from centrosomes: from the mechanism of activation and its functional consequences on the kinase stability and regulation to its roles in spindle assembly and cell division. We will then focus on the substrates of the TPX2-activated Aurora A having a role in microtubule nucleation, stabilization, and organization. Finally, we will briefly discuss the implications of the use of Aurora A inhibitors in anti-tumor therapies in the light of its functional interaction with TPX2.
Collapse
Affiliation(s)
- Georgina Garrido
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
13
|
Abstract
Growing lines of evidence implicate the small GTPase RAN, its regulators and effectors--predominantly, nuclear transport receptors--in practically all aspects of centrosome biology in mammalian cells. These include duplication licensing, cohesion, positioning, and microtubule-nucleation capacity. RAN cooperates with the protein nuclear export vector exportin 1/CRM1 to recruit scaffolding proteins containing nuclear export sequences that play roles in the structural organization of centrosomes. Together, they also limit centrosome reduplication by regulating the localization of key "licensing" proteins during the centrosome duplication cycle. In parallel, RAN also regulates the capacity of centrosomes to nucleate and organize functional microtubules, and this predominanlty involves importin vectors: many factors regulating microtubule nucleation or function harbor nuclear localization sequences that interact with importin molecules and such interaction inhibits their activity. Active RANGTP binding to importin molecules removes the inhibition and releases microtubule regulatory factors in the free productive form. A dynamic scenario emerges, in which RAN is pivotal in linking spatiotemporal control of centrosome regulators to the cell cycle machinery.
Collapse
Affiliation(s)
- Patrizia Lavia
- Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, c/o Sapienza University of Rome, via degli Apuli 4, Rome, 00185, Italy.
| |
Collapse
|
14
|
Chen Y, Li Y, Zhong J, Zhang J, Chen Z, Yang L, Cao X, He QY, Zhang G, Wang T. Identification of Missing Proteins Defined by Chromosome-Centric Proteome Project in the Cytoplasmic Detergent-Insoluble Proteins. J Proteome Res 2015; 14:3693-709. [DOI: 10.1021/pr501103r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yang Chen
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yaxing Li
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiayong Zhong
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jing Zhang
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhipeng Chen
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lijuan Yang
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xin Cao
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Gong Zhang
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tong Wang
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
15
|
Paronett EM, Meechan DW, Karpinski BA, LaMantia AS, Maynard TM. Ranbp1, Deleted in DiGeorge/22q11.2 Deletion Syndrome, is a Microcephaly Gene That Selectively Disrupts Layer 2/3 Cortical Projection Neuron Generation. Cereb Cortex 2014; 25:3977-93. [PMID: 25452572 DOI: 10.1093/cercor/bhu285] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ranbp1, a Ran GTPase-binding protein implicated in nuclear/cytoplasmic trafficking, is included within the DiGeorge/22q11.2 Deletion Syndrome (22q11.2 DS) critical region associated with behavioral impairments including autism and schizophrenia. Ranbp1 is highly expressed in the developing forebrain ventricular/subventricular zone but has no known obligate function during brain development. We assessed the role of Ranbp1 in a targeted mouse mutant. Ranbp1(-/-) mice are not recovered live at birth, and over 60% of Ranbp1(-/-) embryos are exencephalic. Non-exencephalic Ranbp1(-/-) embryos are microcephalic, and proliferation of cortical progenitors is altered. At E10.5, radial progenitors divide more slowly in the Ranpb1(-/-) dorsal pallium. At E14.5, basal, but not apical/radial glial progenitors, are compromised in the cortex. In both E10.5 apical and E14.5 basal progenitors, M phase of the cell cycle appears selectively retarded by loss of Ranpb1 function. Ranbp1(-/-)-dependent proliferative deficits substantially diminish the frequency of layer 2/3, but not layer 5/6 cortical projection neurons. Ranbp1(-/-) cortical phenotypes parallel less severe alterations in LgDel mice that carry a deletion parallel to many (but not all) 22q11.2 DS patients. Thus, Ranbp1 emerges as a microcephaly gene within the 22q11.2 deleted region that may contribute to altered cortical precursor proliferation and neurogenesis associated with broader 22q11.2 deletion.
Collapse
Affiliation(s)
| | - Daniel W Meechan
- GW Institute for Neuroscience Department of Pharmacology and Physiology
| | - Beverly A Karpinski
- GW Institute for Neuroscience Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | | | - Thomas M Maynard
- GW Institute for Neuroscience Department of Pharmacology and Physiology
| |
Collapse
|
16
|
Maiato H, Logarinho E. Mitotic spindle multipolarity without centrosome amplification. Nat Cell Biol 2014; 16:386-94. [DOI: 10.1038/ncb2958] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Immunofluorescence methods in studies of the GTPase RAN and its effectors in interphase and in mitotic cells. Methods Mol Biol 2014; 1120:241-52. [PMID: 24470030 DOI: 10.1007/978-1-62703-791-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The GTPase RAN, the regulators of its nucleotide-bound state, and its effectors represent a specialized network in the RAS GTPase superfamily and regulate the localization of macromolecules (RNAs and proteins) in subcellular compartments in interphase cells and at the mitotic apparatus when cells divide. Essential cell cycle processes, e.g., replication, repair, transcription, export of transcribed RNAs out of the nucleus, assembly of the mitotic apparatus, kinetochore function, chromosome segregation, nuclear reorganization, and rebuilding of the nuclear envelope and nuclear pores at mitotic exit, ultimately depend on RAN's ability to orchestrate localization of key target factors in space and time. To achieve this, RAN network members acquire themselves dynamic localization patterns. Biochemical fractionation protocols describe where the bulk of RAN network members localize. Immunofluorescence methods have revealed more subtle and complex patterns, with specific populations of RAN network components associating with cellular structures, or organelles, where they play crucial roles as spatial regulators for a large set of macromolecules. These localization studies are important to understand RAN modes of action and to identify new targets of RAN control. Here we describe methods for the visualization of RAN network members and effectors in mammalian cells.
Collapse
|
18
|
Amato R, Scumaci D, D'Antona L, Iuliano R, Menniti M, Di Sanzo M, Faniello MC, Colao E, Malatesta P, Zingone A, Agosti V, Costanzo FS, Mileo AM, Paggi MG, Lang F, Cuda G, Lavia P, Perrotti N. Sgk1 enhances RANBP1 transcript levels and decreases taxol sensitivity in RKO colon carcinoma cells. Oncogene 2012; 32:4572-8. [PMID: 23108393 DOI: 10.1038/onc.2012.470] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 08/01/2012] [Accepted: 08/21/2012] [Indexed: 12/16/2022]
Abstract
The serum- and glucocorticoid-regulated kinase (Sgk1) is essential for hormonal regulation of epithelial sodium channel-mediated sodium transport and is involved in the transduction of growth factor-dependent cell survival and proliferation signals. Growing evidence now points to Sgk1 as a key element in the development and/or progression of human cancer. To gain insight into the mechanisms through which Sgk1 regulates cell proliferation, we adopted a proteomic approach to identify up- or downregulated proteins after Sgk1-specific RNA silencing. Among several proteins, the abundance of which was found to be up- or downregulated upon Sgk1 silencing, we focused our attention of RAN-binding protein 1 (RANBP1), a major effector of the GTPase RAN. We report that Sgk1-dependent regulation of RANBP1 has functional consequences on both mitotic microtubule activity and taxol sensitivity of cancer cells.
Collapse
Affiliation(s)
- R Amato
- Department of Human Health, University Magna Graecia at Catanzaro, Campus S Venuta, Località Germaneto Viale Europa, Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Balasubramanian S, Kanade S, Han B, Eckert RL. A proteasome inhibitor-stimulated Nrf1 protein-dependent compensatory increase in proteasome subunit gene expression reduces polycomb group protein level. J Biol Chem 2012; 287:36179-89. [PMID: 22932898 DOI: 10.1074/jbc.m112.359281] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The polycomb group (PcG) proteins, Bmi-1 and Ezh2, are important epigenetic regulators that enhance skin cancer cell survival. We recently showed that Bmi-1 and Ezh2 protein level is reduced by treatment with the dietary chemopreventive agents, sulforaphane and green tea polyphenol, and that this reduction involves ubiquitination of Bmi-1 and Ezh2, suggesting a key role of the proteasome. In the present study, we observe a surprising outcome that Bmi-1 and Ezh2 levels are reduced by treatment with the proteasome inhibitor, MG132. We show that this is associated with a compensatory increase in the level of mRNA encoding proteasome protein subunits in response to MG132 treatment and an increase in proteasome activity. The increase in proteasome subunit level is associated with increased Nrf1 and Nrf2 level. Moreover, knockdown of Nrf1 attenuates the MG132-dependent increase in proteasome subunit expression and restores Bmi-1 and Ezh2 expression. The MG132-dependent loss of Bmi-1 and Ezh2 is associated with reduced cell proliferation, accumulation of cells in G(2), and increased apoptosis. These effects are attenuated by forced expression of Bmi-1, suggesting that PcG proteins, consistent with a prosurvival action, may antagonize the action of MG132. These studies describe a compensatory Nrf1-dependent, and to a lesser extent Nrf2-dependent, increase in proteasome subunit level in proteasome inhibitor-treated cells and confirm that PcG protein levels are regulated by proteasome activity.
Collapse
Affiliation(s)
- Sivaprakasam Balasubramanian
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
20
|
Whiley PAF, Miyamoto Y, McLachlan RI, Jans DA, Loveland KL. Changing subcellular localization of nuclear transport factors during human spermatogenesis. INTERNATIONAL JOURNAL OF ANDROLOGY 2012; 35:158-69. [PMID: 21812786 DOI: 10.1111/j.1365-2605.2011.01202.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Spermatogenesis requires progressive changes in gene expression mediated by hormonal and local factors. Regulated macromolecular movement between nuclear and cytoplasmic compartments enables these essential responses to changing extracellular cues, and dynamic production of the nucleocytoplasmic transporters and importin proteins, throughout gametogenesis in rodents implicates them as key mediators of germline differentiation. We examined normal adult human testis expression profiles of six importins plus five additional proteins involved in nucleocytoplasmic transport. Although most were detected in the nucleus during germline differentiation, importin α4 was exclusively observed in Sertoli and germ cell cytoplasm. Many proteins were present in round spermatid nuclei (importins α1, α3, β1, β3; exportin-1, Nup62, Ran, RanBP1, RCC1), and remarkable intense nuclear and/or nuclear-associated signals were detected for importin α1, importin α3 and Nup62 in spermatocytes. This study identifies conserved aspects of nucleocytoplasmic transport during spermatogenesis and extends our knowledge of the dynamic presence of these proteins, which indicates that they contribute to germ cell-specific cargo trafficking and potentially to other functions during human spermatogenesis. We also demonstrate for the first time that importin α3 is nuclear in spermatocytes, when exportin-1 is cytoplasmic, suggesting that nuclear transport is altered during meiosis.
Collapse
Affiliation(s)
- P A F Whiley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
21
|
P21-activated kinase 4 (PAK4) is required for metaphase spindle positioning and anchoring. Oncogene 2012; 32:910-9. [PMID: 22450748 DOI: 10.1038/onc.2012.98] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The oncogenic kinase PAK4 was recently found to be involved in the regulation of the G1 phase and the G2/M transition of the cell cycle. We have also identified that PAK4 regulates Ran GTPase activity during mitosis. Here, we show that after entering mitosis, PAK4-depleted cells maintain a prolonged metaphase-like state. In these cells, chromosome congression to the metaphase plate occurs with normal kinetics but is followed by an extended period during which membrane blebbing and spindle rotation are observed. These bipolar PAK4-depleted metaphase-like spindles have a defective astral microtubule (MT) network and are not centered in the cell but are in close contact with the cell cortex. As the metaphase-like state persists, centrosome fragmentation occurs, chromosomes scatter from the metaphase plate and move toward the spindle poles with an active spindle assembly checkpoint, a phenotype that is reminiscent of cohesion fatigue. PAK4 also regulates the acto-myosin cytoskeleton and we report that PAK4 depletion results in the induction of cortical membrane blebbing during prometaphase arrest. However, we show that membrane blebs, which are strongly enriched in phospho-cofilin, are not responsible for the poor anchoring of the spindle. As PAK4 depletion interferes with the localization of components of the dynein/dynactin complexes at the kinetochores and on the astral MTs, we propose that loss of PAK4 could induce a change in the activities of motor proteins.
Collapse
|
22
|
Fan S, Whiteman EL, Hurd TW, McIntyre JC, Dishinger JF, Liu CJ, Martens JR, Verhey KJ, Sajjan U, Margolis B. Induction of Ran GTP drives ciliogenesis. Mol Biol Cell 2011; 22:4539-48. [PMID: 21998203 PMCID: PMC3226473 DOI: 10.1091/mbc.e11-03-0267] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent work suggests an important role for the Ran importin system in cilia trafficking. At the onset of ciliogenesis, Ran GTP levels rise markedly at the centrosome. Altering Ran GTP levels by varying RanBP1 expression modulates cilia formation and trafficking. The small GTPase Ran and the importin proteins regulate nucleocytoplasmic transport. New evidence suggests that Ran GTP and the importins are also involved in conveying proteins into cilia. In this study, we find that Ran GTP accumulation at the basal bodies is coordinated with the initiation of ciliogenesis. The Ran-binding protein 1 (RanBP1), which indirectly accelerates Ran GTP → Ran GDP hydrolysis and promotes the dissociation of the Ran/importin complex, also localizes to basal bodies and cilia. To confirm the crucial link between Ran GTP and ciliogenesis, we manipulated the levels of RanBP1 and determined the effects on Ran GTP and primary cilia formation. We discovered that RanBP1 knockdown results in an increased concentration of Ran GTP at basal bodies, leading to ciliogenesis. In contrast, overexpression of RanBP1 antagonizes primary cilia formation. Furthermore, we demonstrate that RanBP1 knockdown disrupts the proper localization of KIF17, a kinesin-2 motor, at the distal tips of primary cilia in Madin–Darby canine kidney cells. Our studies illuminate a new function for Ran GTP in stimulating cilia formation and reinforce the notion that Ran GTP and the importins play key roles in ciliogenesis and ciliary protein transport.
Collapse
Affiliation(s)
- Shuling Fan
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hwang HI, Ji JH, Jang YJ. Phosphorylation of Ran-binding protein-1 by Polo-like kinase-1 is required for interaction with Ran and early mitotic progression. J Biol Chem 2011; 286:33012-20. [PMID: 21813642 PMCID: PMC3190894 DOI: 10.1074/jbc.m111.255620] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/23/2011] [Indexed: 11/06/2022] Open
Abstract
Polo-like kinase-1 (Plk1) is essential for progression of mitosis and localizes to centrosomes, central spindles, midbody, and kinetochore. Ran, a small GTPase of the Ras superfamily, plays a role in microtubule dynamics and chromosome segregation during mitosis. Although Ran-binding protein-1 (RanBP1) has been reported as a regulator of RanGTPase for its mitotic functions, the action mechanism between Ran and RanBP1 during mitosis is still unknown. Here, we demonstrated in vitro and in vivo phosphorylation of RanBP1 by Plk1 as well as the importance of phosphorylation of RanBP1 in the interaction between Plk1 and Ran during early mitosis. Both phosphorylation-defective and N-terminal deletion mutant constructs of RanBP1 disrupted the interaction with Ran, and depletion of Plk1 also disrupted the formation of a complex between Ran and RanBP1. In addition, the results from both ectopic expression of phosphorylation-defective mutant construct and a functional complementation on RanBP1 deficiency with this mutant indicated that phosphorylation of RanBP1 by Plk1 might be crucial to microtubule nucleation and spindle assembly during mitosis.
Collapse
Affiliation(s)
- Hyo-In Hwang
- From the Laboratory of Cell Cycle and Signal Transduction, World Class University Research Department of Nanobiomedical Science and the Institute of Tissue Regeneration Engineering, Dankook University, 29 Anseo-Dong, Cheonan 330-714, Korea
| | - Jae-Hoon Ji
- From the Laboratory of Cell Cycle and Signal Transduction, World Class University Research Department of Nanobiomedical Science and the Institute of Tissue Regeneration Engineering, Dankook University, 29 Anseo-Dong, Cheonan 330-714, Korea
| | - Young-Joo Jang
- From the Laboratory of Cell Cycle and Signal Transduction, World Class University Research Department of Nanobiomedical Science and the Institute of Tissue Regeneration Engineering, Dankook University, 29 Anseo-Dong, Cheonan 330-714, Korea
| |
Collapse
|
24
|
Abstract
Roles of the GTPase Ran in cell life and division rely on a largely conserved mechanism, i.e. Ran's ability to interact with transport vectors. Modes of control of downstream factors, however, are diversified at particular times of the cell cycle. Specificity and fine-tuning emerge most clearly during mitosis. In the present article, we focus on the distinction between global mitotic control by the chromosomal Ran gradient and specific spatial and temporal control operated by localized Ran network members at sites of the mitotic apparatus in human cells.
Collapse
|
25
|
Kaláb P, Solc P, Motlík J. The role of RanGTP gradient in vertebrate oocyte maturation. Results Probl Cell Differ 2011; 53:235-67. [PMID: 21630149 DOI: 10.1007/978-3-642-19065-0_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The maturation of vertebrate oocyte into haploid gamete, the egg, consists of two specialized asymmetric cell divisions with no intervening S-phase. Ran GTPase has an essential role in relaying the active role of chromosomes in their own segregation by the meiotic process. In addition to its conserved role as a key regulator of macromolecular transport between nucleus and cytoplasm, Ran has important functions during cell division, including in mitotic spindle assembly and in the assembly of nuclear envelope at the exit from mitosis. The cellular functions of Ran are mediated by RanGTP interactions with nuclear transport receptors (NTRs) related to importin β and depend on the existence of chromosome-centered RanGTP gradient. Live imaging with FRET biosensors indeed revealed the existence of RanGTP gradient throughout mouse oocyte maturation. NTR-dependent transport of cell cycle regulators including cyclin B1, Wee2, and Cdc25B between the oocyte cytoplasm and germinal vesicle (GV) is required for normal resumption of meiosis. After GVBD in mouse oocytes, RanGTP gradient is required for timely meiosis I (MI) spindle assembly and provides long-range signal directing egg cortex differentiation. However, RanGTP gradient is not required for MI spindle migration and may be dispensable for MI spindle function in chromosome segregation. In contrast, MII spindle assembly and function in maturing mouse and Xenopus laevis eggs depend on RanGTP gradient, similar to X. laevis MII-derived egg extracts.
Collapse
Affiliation(s)
- Petr Kaláb
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892-4256, USA.
| | | | | |
Collapse
|
26
|
Bompard G, Rabeharivelo G, Frank M, Cau J, Delsert C, Morin N. Subgroup II PAK-mediated phosphorylation regulates Ran activity during mitosis. ACTA ACUST UNITED AC 2010; 190:807-22. [PMID: 20805321 PMCID: PMC2935564 DOI: 10.1083/jcb.200912056] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ran is an essential GTPase that controls nucleocytoplasmic transport, mitosis, and nuclear envelope formation. These functions are regulated by interaction of Ran with different partners, and by formation of a Ran-GTP gradient emanating from chromatin. Here, we identify a novel level of Ran regulation. We show that Ran is a substrate for p21-activated kinase 4 (PAK4) and that its phosphorylation on serine-135 increases during mitosis. The endogenous phosphorylated Ran and active PAK4 dynamically associate with different components of the microtubule spindle during mitotic progression. A GDP-bound Ran phosphomimetic mutant cannot undergo RCC1-mediated GDP/GTP exchange and cannot induce microtubule asters in mitotic Xenopus egg extracts. Conversely, phosphorylation of GTP-bound Ran facilitates aster nucleation. Finally, phosphorylation of Ran on serine-135 impedes its binding to RCC1 and RanGAP1. Our study suggests that PAK4-mediated phosphorylation of GDP- or GTP-bound Ran regulates the assembly of Ran-dependent complexes on the mitotic spindle.
Collapse
|
27
|
Ciciarello M, Roscioli E, Di Fiore B, Di Francesco L, Sobrero F, Bernard D, Mangiacasale R, Harel A, Schininà ME, Lavia P. Nuclear reformation after mitosis requires downregulation of the Ran GTPase effector RanBP1 in mammalian cells. Chromosoma 2010; 119:651-68. [PMID: 20658144 DOI: 10.1007/s00412-010-0286-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 06/28/2010] [Accepted: 06/30/2010] [Indexed: 11/26/2022]
Abstract
The GTPase Ran regulates nucleocytoplasmic transport in interphase and spindle organisation in mitosis via effectors of the importin beta superfamily. Ran-binding protein 1 (RanBP1) regulates guanine nucleotide turnover on Ran, as well as its interactions with effectors. Unlike other Ran network members that are steadily expressed, RanBP1 abundance is modulated during the mammalian cell cycle, peaking in mitosis and declining at mitotic exit. Here, we show that RanBP1 downregulation takes place in mid to late telophase, concomitant with the reformation of nuclei. Mild RanBP1 overexpression in murine cells causes RanBP1 to persist in late mitosis and hinders a set of events underlying the telophase to interphase transition, including chromatin decondensation, nuclear expansion and nuclear lamina reorganisation. Moreover, the reorganisation of nuclear pores fails associated with defective nuclear relocalisation of NLS cargoes. Co-expression of importin beta, together with RanBP1, however mitigates these defects. Thus, RanBP1 downregulation is required for nuclear reorganisation pathways operated by importin beta after mitosis.
Collapse
Affiliation(s)
- Marilena Ciciarello
- CNR National Research Council, Institute of Molecular Biology and Pathology, c/o Sapienza University of Rome, Rome, 00185, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
AbstractThe centrosome functions as the microtubule-organizing center and plays a vital role in organizing spindle poles during mitosis. Recently, we identified a centrosomal protein called CLERC (Centrosomal leucine-rich repeat and coiled-coil containing protein) which is a human ortholog of Chlamydomonas Vfl1 protein. The bibliography as well as database searches provided evidence that the human proteome contains at least seven centrosomal leucine-rich repeat proteins including CLERC. CLERC and four other centrosomal leucine-rich repeat proteins contain the SDS22-like leucine-rich repeat motifs, whereas the remaining two proteins contain the RI-like and the cysteine-containing leucine-rich repeat motifs. Individual leucine-rich repeat motifs are highly conserved and present in evolutionarily diverse organisms. Here, we provide an overview of CLERC and other centrosomal leucine-rich repeat proteins, their structures, their evolutionary relationships, and their functional properties.
Collapse
|
29
|
Zhao L, Jin C, Chu Y, Varghese C, Hua S, Yan F, Miao Y, Liu J, Mann D, Ding X, Zhang J, Wang Z, Dou Z, Yao X. Dimerization of CPAP orchestrates centrosome cohesion plasticity. J Biol Chem 2009; 285:2488-97. [PMID: 19889632 DOI: 10.1074/jbc.m109.042614] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Centrosome cohesion and segregation are accurately regulated to prevent an aberrant separation of duplicated centrosomes and to ensure the correct formation of bipolar spindles by a tight coupling with cell cycle machinery. CPAP is a centrosome protein with five coiled-coil domains and plays an important role in the control of brain size in autosomal recessive primary microcephaly. Previous studies showed that CPAP interacts with tubulin and controls centriole length. Here, we reported that CPAP forms a homodimer during interphase, and the fifth coiled-coil domain of CPAP is required for its dimerization. Moreover, this self-interaction is required for maintaining centrosome cohesion and preventing the centrosome from splitting before the G(2)/M phase. Our biochemical studies show that CPAP forms homodimers in vivo. In addition, both monomeric and dimeric CPAP are required for accurate cell division, suggesting that the temporal dynamics of CPAP homodimerization is tightly regulated during the cell cycle. Significantly, our results provide evidence that CPAP is phosphorylated during mitosis, and this phosphorylation releases its intermolecular interaction. Taken together, these results suggest that cell cycle-regulated phosphorylation orchestrates the dynamics of CPAP molecular interaction and centrosome splitting to ensure genomic stability in cell division.
Collapse
Affiliation(s)
- Lingli Zhao
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology and Hefei National Laboratory for Physical Sciences at Nanoscale, Hefei 230027, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Rousselet A. Inhibiting Crm1 causes the formation of excess acentriolar spindle poles containing NuMA and B23, but does not affect centrosome numbers. Biol Cell 2009; 101:679-93. [PMID: 19522705 DOI: 10.1042/bc20080218] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND B23/nucleophosmin is present on spindle poles at metaphase. Migration of B23 to the poles is under the control of exportin Crm1. B23 at the centrosome plays a role in the control centrosome duplication. RESULTS h-Tert-RPE1 cells blocked in prometaphase with low doses of Nocodazol showed a progression to mitosis if Crm1 exportin was inhibited. Under these conditions, the formation of accessory poles containing gamma-tubulin, NuMA (nuclear-mitotic-apparatus) and B23 was induced at metaphase. No effect on centrosome number was observed. In quiescent h-Tert-RPE1 cells, when Crm1 was active, B23 was not detected at the centrosome as well as B23-mutants reported to block centrosome duplication. In addition, the modification of B23 nucleo-cytoplasmic shuttling showed no effect on centrosome duplication. CONCLUSION Inhibition of Crm1 in early metaphase favours the formation of supplementary acentriolar spindle poles. B23 and NuMA are present at these poles that ultimately focus around the centrosome. Inhibition of Crm1 at metaphase has no effect on the control of centrosome numbers.
Collapse
|
31
|
RanBP1 downregulation sensitizes cancer cells to taxol in a caspase-3-dependent manner. Oncogene 2009; 28:1748-58. [PMID: 19270727 DOI: 10.1038/onc.2009.24] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitotic microtubule (MT)-targeting drugs are widely used to treat cancer. The GTPase Ran regulates multiple processes, including mitotic spindle assembly, spindle pole formation and MT dynamics; Ran activity is therefore essential to formation of a functional mitotic apparatus. The RanBP1 protein, which binds Ran and regulates its interaction with effectors, is overexpressed in many cancer types. Several observations indicate that RanBP1 contributes to regulate the function of the mitotic apparatus: RanBP1 inactivation yields hyperstable MTs and induces apoptosis during mitosis, reminiscent of the effects of the MT-stabilizing drug taxol. Here we have investigated the influence of RanBP1 on spontaneous and taxol-induced apoptosis in transformed cells. We report that RanBP1 downregulation by RNA interference activates apoptosis in several transformed cell lines regardless of their p53 status, but not in the caspase-3-defective MCF-7 breast cancer cell line. Furthermore, RanBP1-interfered cells show an increased apoptotic response to taxol compared to their counterpart with normal or high RanBP1 levels, and this response is caspase-3 dependent. These results indicate that RanBP1 can modulate the outcome of MT-targeting therapeutic protocols.
Collapse
|
32
|
Neuber A, Franke J, Wittstruck A, Schlenstedt G, Sommer T, Stade K. Nuclear export receptor Xpo1/Crm1 is physically and functionally linked to the spindle pole body in budding yeast. Mol Cell Biol 2008; 28:5348-58. [PMID: 18573877 PMCID: PMC2519715 DOI: 10.1128/mcb.02043-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 12/28/2007] [Accepted: 06/16/2008] [Indexed: 01/13/2023] Open
Abstract
The spindle pole body (SPB) represents the microtubule organizing center in the budding yeast Saccharomyces cerevisiae. It is a highly structured organelle embedded in the nuclear membrane, which is required to anchor microtubules on both sides of the nuclear envelope. The protein Spc72, a component of the SPB, is located at the cytoplasmic face of this organelle and serves as a receptor for the gamma-tubulin complex. In this paper we show that it is also a binding partner of the nuclear export receptor Xpo1/Crm1. Xpo1 binds its cargoes in a Ran-dependent fashion via a short leucine-rich nuclear export signal (NES). We show that binding of Spc72 to Xpo1 depends on Ran-GTP and a functional NES in Spc72. Mutations in this NES have severe consequences for mitotic spindle morphology in vivo. This is also the case for xpo1 mutants, which show a reduction in cytoplasmic microtubules. In addition, we find a subpopulation of Xpo1 localized at the SPB. Based on these data, we propose a functional link between Xpo1 and the SPB and discuss a role for this exportin in spindle biogenesis in budding yeast.
Collapse
Affiliation(s)
- Anja Neuber
- Max Delbrück Centrum für Molekulare Medizin, Robert Rössle Str. 10, 13092 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Boxus M, Twizere JC, Legros S, Dewulf JF, Kettmann R, Willems L. The HTLV-1 Tax interactome. Retrovirology 2008; 5:76. [PMID: 18702816 PMCID: PMC2533353 DOI: 10.1186/1742-4690-5-76] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 08/14/2008] [Indexed: 12/22/2022] Open
Abstract
The Tax1 oncoprotein encoded by Human T-lymphotropic virus type I is a major determinant of viral persistence and pathogenesis. Tax1 affects a wide variety of cellular signalling pathways leading to transcriptional activation, proliferation and ultimately transformation. To carry out these functions, Tax1 interacts with and modulates activity of a number of cellular proteins. In this review, we summarize the present knowledge of the Tax1 interactome and propose a rationale for the broad range of cellular proteins identified so far.
Collapse
Affiliation(s)
- Mathieu Boxus
- University Academia Wallonie-Europe, Molecular and Cellular Biology at FUSAGx, Gembloux, Belgium.
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The small nuclear GTPase Ran controls the directionality of macromolecular transport between the nucleus and the cytoplasm. Ran also has important roles during mitosis, when the nucleus is dramatically reorganized to allow chromosome segregation. Ran directs the assembly of the mitotic spindle, nuclear-envelope dynamics and the timing of cell-cycle transitions. The mechanisms that underlie these functions provide insights into the spatial and temporal coordination of the changes that occur in intracellular organization during the cell-division cycle.
Collapse
Affiliation(s)
- Paul R Clarke
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK.
| | | |
Collapse
|
35
|
Yang S, Liu X, Yin Y, Fukuda MN, Zhou J. Tastin is required for bipolar spindle assembly and centrosome integrity during mitosis. FASEB J 2008; 22:1960-72. [PMID: 18218922 DOI: 10.1096/fj.07-081463] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tastin was previously characterized as an accessory protein for cell adhesion that participates in early embryo implantation. Here, we report that tastin is also required for spindle assembly during mitosis. Tastin protein levels peaked in the G(2)/M phase and abruptly declined after cell division. Microscopy showed that tastin is primarily localized on the microtubules, centrosomes, and the mitotic spindle during the cell cycle. Tastin interacted with the dynein intermediate chain, p150(Glued), and gamma-tubulin in addition to Tctex-1 (the light chain of dynein). Overexpression of tastin led to monopolar spindle formation, whereas loss of tastin expression caused profound mitotic block and preferentially induced multipolar spindles. These multipolar spindles were generated through a loss of cohesion in mitotic centrosomes; specifically, tastin depletion caused the fragmentation of pericentrosomal material and the splitting of the centrioles at the spindle poles. Tastin depletion induced centrosome abnormalities exclusively during mitosis and required both microtubule integrity and Eg5 activity. However, tastin depletion did not disrupt the organization of spindle poles, as revealed by localization of nuclear mitotic apparatus protein (NuMA) and the p150(Glued) component of dynactin. These data indicate that the major function of tastin during mitosis is to maintain the structural and dynamic features of centrosomes, thereby contributing to spindle bipolarity.
Collapse
Affiliation(s)
- Shuo Yang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | |
Collapse
|
36
|
Abstract
Chromosome instability, which is equated to mitotic defects and consequential chromosome segregation errors, provides a formidable basis for the acquisition of further malignant phenotypes during tumour progression. Centrosomes have a crucial role in the formation of bipolar mitotic spindles, which are essential for accurate chromosome segregation. Mutations of certain oncogenic and tumour-suppressor proteins directly induce chromosome instability by disrupting the normal function and numeral integrity of centrosomes. How these proteins control centrosome duplication and function, and how their mutational activation and/or inactivation results in numeral and functional centrosome abnormalities, is discussed in this Review.
Collapse
Affiliation(s)
- Kenji Fukasawa
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA.
| |
Collapse
|
37
|
Tedeschi A, Ciciarello M, Mangiacasale R, Roscioli E, Rensen WM, Lavia P. RANBP1 localizes a subset of mitotic regulatory factors on spindle microtubules and regulates chromosome segregation in human cells. J Cell Sci 2007; 120:3748-61. [PMID: 17940066 DOI: 10.1242/jcs.009308] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The GTPase RAN has an established role in spindle assembly and in mitotic progression, although not all mechanisms are fully understood in somatic cells. Here, we have downregulated RAN-binding protein 1 (RANBP1), a RAN partner that has highest abundance in G2 and mitosis, in human cells. RANBP1-depleted cells underwent prolonged prometaphase delay often followed by apoptosis. Cells that remained viable assembled morphologically normal spindles; these spindles, however, were hyperstable and failed to recruit cyclin B1 or to restrict the localization of HURP (DLG7), a microtubule-stabilizing factor, to plus-ends. RANBP1 depletion did not increase the frequency of unattached chromosomes; however, RANBP1-depleted cells frequently showed lagging chromosomes in anaphase, suggesting that merotelic attachments form and are not efficiently resolved. These data indicate that RANBP1 activity is required for the proper localization of specific factors that regulate microtubule function; loss of this activity contributes to the generation of aneuploidy in a microtubule-dependent manner.
Collapse
Affiliation(s)
- Antonio Tedeschi
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council, Via degli Apuli 4, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Fan S, Fogg V, Wang Q, Chen XW, Liu CJ, Margolis B. A novel Crumbs3 isoform regulates cell division and ciliogenesis via importin beta interactions. ACTA ACUST UNITED AC 2007; 178:387-98. [PMID: 17646395 PMCID: PMC2064851 DOI: 10.1083/jcb.200609096] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Crumbs family of apical transmembrane proteins regulates apicobasal polarity via protein interactions with a conserved C-terminal sequence, ERLI. However, one of the mammalian Crumbs proteins, Crumbs3 (CRB3) has an alternate splice form with a novel C-terminal sequence ending in CLPI (CRB3-CLPI). We report that CRB3-CLPI localizes to the cilia membrane and a membrane compartment at the mitotic spindle poles. Knockdown of CRB3-CLPI leads to both a loss of cilia and a multinuclear phenotype associated with centrosomal and spindle abnormalities. Using protein purification, we find that CRB3-CLPI interacts with importin beta-1 in a Ran-regulated fashion. Importin beta-1 colocalizes with CRB3-CLPI during mitosis, and a dominant-negative form of importin beta-1 closely phenocopies CRB3-CLPI knockdown. Knockdown of importin beta-1 blocks targeting of CRB3-CLPI to the spindle poles. Our data suggest an expanded role for Crumbs proteins in polarized membrane targeting and cell division via unique interactions with importin proteins.
Collapse
Affiliation(s)
- Shuling Fan
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Jomon Joseph
- Lab No. 9, National Centre for Cell Science, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
40
|
Amati F, Biancolella M, Farcomeni A, Giallonardi S, Bueno S, Minella D, Vecchione L, Chillemi G, Desideri A, Novelli G. Dynamic changes in gene expression profiles of 22q11 and related orthologous genes during mouse development. Gene 2007; 391:91-102. [PMID: 17321697 DOI: 10.1016/j.gene.2006.12.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 11/30/2006] [Accepted: 12/07/2006] [Indexed: 02/06/2023]
Abstract
22q11 deletion syndrome (22q11DS) is a developmental anomaly caused by a microdeletion on human chromosome 22q11. Although mouse models indicate that Tbx1 is the gene responsible for the syndrome, the phenotypic spectrum of del22q11 patients is complex suggesting that gene-gene and gene-environment interactions are operative in delineating the pathogenesis of 22q11DS. In order to study the regulatory effects of 22q11 haploinsufficiency during development, the expression pattern of the orthologous MM16 genes was analysed in total embryos at different stages (from 4.5 dpc to 14.5 dpc; corresponding to pharyngeal development) by using a low-density oligonucleotide microarray (the "22q11DS-chip"). This microarray consists of 39 mouse genes orthologous to the 22q11 human ones and 29 mouse target genes selected on the basis of their potential involvement in biological pathways regarding 22q11 gene products. Expression level filtering and statistical analysis identified a set of genes that was consistently differentially expressed (FC>+/-2) during specific developmental stages. These genes show a similar profile in expression (overexpression or underexpression). Quantitative real-time PCR analyses showed an identical expression pattern to that found by microarrays. A bioinformatic screening of regulative sequence elements in the promoter region of these genes, revealed the existence of conserved transcription factor binding sites (TFBSs) in co-regulated genes which are functionally active at 4.5, 8.5 and 14.5 dpc. These data are likely to be helpful in studying developmental anomalies detected in del22q11 patients.
Collapse
Affiliation(s)
- Francesca Amati
- Department of Biopathology and Diagnostic Imaging, Tor Vergata University, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Meechan DW, Maynard TM, Gopalakrishna D, Wu Y, LaMantia AS. When half is not enough: gene expression and dosage in the 22q11 deletion syndrome. Gene Expr 2007; 13:299-310. [PMID: 17708416 PMCID: PMC6032457 DOI: 10.3727/000000006781510697] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The 22q11 Deletion Syndrome (22q11DS, also known as DiGeorge or Velo-Cardio-Facial Syndrome) has a variable constellation of phenotypes including life-threatening cardiac malformations, craniofacial, limb, and digit anomalies, a high incidence of learning, language, and behavioral disorders, and increased vulnerability for psychiatric diseases, including schizophrenia. There is still little clear understanding of how heterozygous microdeletion of approximately 30-50 genes on chromosome 22 leads to this diverse spectrum of phenotypes, especially in the brain. Three possibilities exist: 1) 22q11DS may reflect haploinsufficiency, homozygous loss of function, or heterozygous gain of function of a single gene within the deleted region; 2) 22q11DS may result from haploinsufficiency, homozygous loss of function, or heterozygous gain of function of a few genes in the deleted region acting at distinct phenotypically compromised sites; 3) 22q11DS may reflect combinatorial effects of reduced dosage of multiple genes acting in concert at all phenotypically compromised sites. Here, we consider evidence for each of these possibilities. Our review of the literature, as well as interpretation of work from our laboratory, favors the third possibility: 22q11DS reflects diminished expression of multiple 22q11 genes acting on common cellular processes during brain as well as heart, face, and limb development, and subsequently in the adolescent and adult brain.
Collapse
Affiliation(s)
- D W Meechan
- Department of Cell & Molecular Physiology, UNC Neuroscience Center, & Silvio M. Conte Center for Research in Mental Diseases, University of North Carolina-Chapel Hill, Chapel Hill, NC 27516-3005, USA
| | | | | | | | | |
Collapse
|
42
|
Vyetrogon K, Tebbji F, Olson DJH, Ross ARS, Matton DP. A comparative proteome and phosphoproteome analysis of differentially regulated proteins during fertilization in the self-incompatible speciesSolanum chacoense Bitt. Proteomics 2007; 7:232-47. [PMID: 17205606 DOI: 10.1002/pmic.200600399] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have used 2-DE for a time-course study of the changes in protein and phosphoprotein expression that occur immediately after fertilization in Solanum chacoense. The phosphorylation status of the detected proteins was determined with three methods: in vivo labeling, immunodetection, and phosphoprotein-specific staining. Using a pI range of 4-7, 262 phosphorylated proteins could be mapped to the 619 proteins detected by Sypro Ruby staining, representing 42% of the total proteins. Among these phosphoproteins, antibodies detected 184 proteins from which 78 were also detected with either of the other two methods (42%). Pro-Q Diamond phosphoprotein stain detected 111 proteins, of which 76 were also detected with either of the other two methods (68%). The 32P in vivo labeling method detected 90 spots from which 78 were also detected with either of other two methods (87%). On comparing before and after fertilization profiles, 38 proteins and phosphoproteins presented a reproducible change in their accumulation profiles. Among these, 24 spots were selected and analyzed by LC-MS/MS using a hybrid quadrupole-TOF (Q-TOF) instrument. Peptide data were searched against publicly available protein and EST databases, and the putative roles of the identified proteins in early fertilization events are discussed.
Collapse
Affiliation(s)
- Kateryna Vyetrogon
- Institut de Recherche en Biologie Végétale (IRBV), Département de sciences biologiques, Université de Montréal, Montréal, QC, Canada
| | | | | | | | | |
Collapse
|
43
|
Ward NE, Pellis NR, Risin SA, Risin D. Gene expression alterations in activated human T-cells induced by modeled microgravity. J Cell Biochem 2006; 99:1187-202. [PMID: 16795038 DOI: 10.1002/jcb.20988] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies conducted in real Space and in ground-based microgravity analog systems (MAS) have demonstrated changes in numerous lymphocyte functions. In this investigation we explored whether the observed functional changes in lymphocytes in MAS are associated with changes in gene expression. NASA-developed Rotating Wall Vessel (RWV) bioreactor was utilized as a MAS. Activated T lymphocytes were obtained by adding 100 ng/ml of anti-CD3 and 100 U/ml of IL-2 in RPMI medium to blood donor mononuclear cells for 4 days. After that the cells were washed and additionally cultured for up to 2 weeks with media (RPMI, 10% FBS and 100 U/ml IL-2) replacement every 3-4 days. Flow cytometry analysis had proven that activated T lymphocytes were the only cells remaining in culture by that time. They were split into two portions, cultured for additional 24 h in either static or simulated microgravity conditions, and used for RNA extraction. The gene expression was assessed by Affymetrix GeneChip Human U133A array allowing screening for expression of 18,400 genes. About 4-8% of tested genes responded to MG by more than a 1.5-fold change in expression; however, reproducible changes were observed only in 89 genes. Ten of these genes were upregulated and 79 were downregulated. These genes were categorized by associated pathways and viewed graphically through histogram analysis. Separate histograms of each pathway were then constructed representing individual gene expression fold changes. Possible functional consequences of the identified reproducible gene expression changes are discussed.
Collapse
|
44
|
Waddell N, Jonnalagadda J, Marsh A, Grist S, Jenkins M, Hobson K, Taylor M, Lindeman GJ, Tavtigian SV, Suthers G, Goldgar D, Oefner PJ, Taylor D, Grimmond S, Khanna KK, Chenevix-Trench G. Characterization of the breast cancer associated ATM 7271T>G (V2424G) mutation by gene expression profiling. Genes Chromosomes Cancer 2006; 45:1169-81. [PMID: 17001622 DOI: 10.1002/gcc.20381] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mutations in ATM are responsible for the autosomal recessive disorder ataxia telangiectasia. Heterozygous mutations in ATM have been associated with an elevated risk of breast cancer. We previously reported one breast cancer family in which ATM 7271T>G (V2424G) segregated with disease, and apparently acted in a dominant negative manner. We now report the screening of 782 multiple-case breast cancer families that identified two additional index cases with ATM 7271T>G. Phylogenetic sequence analysis showed that V2424 is a highly conserved residue, and that the 2424G variant is likely to interfere with function. To elucidate the consequences of this mutation, we expression profiled wild-type, heterozygous, and homozygous lymphoblastoid cell lines (LCLs) from Scottish and Australian families using an oligonucleotide microarray. Cluster analysis revealed 77 genes that were differentially expressed in homozygous and heterozygous V2424G cells (compared to wild-type) and 11 genes differentially expressed in the homozygous cells. We also evaluated the profiles of LCLs after exposure to ionizing radiation (IR) and identified 77 genes that were differentially expressed in wild-type cells, but not in homozygous or heterozygous V2424G cells. We validated the expression differences by RT-PCR in additional heterozygous V2424G LCLs from another breast cancer family. We found no consistent cytotoxicity or abrogation of ATM kinase activity after IR in seven heterozygous V2424G LCLs, compared to wild-type LCLs, but did find an increase in the number of chromosomal aberrations. These data suggest that the V2424G missense mutation acts largely as a dominant negative in terms of the associated expression profiles.
Collapse
Affiliation(s)
- Nic Waddell
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Albee AJ, Tao W, Wiese C. Phosphorylation of maskin by Aurora-A is regulated by RanGTP and importin beta. J Biol Chem 2006; 281:38293-301. [PMID: 17057251 DOI: 10.1074/jbc.m607203200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitotic spindle assembly in Xenopus egg extracts is regulated at least in part by importin beta and its regulator, the small GTPase, Ran. RanGTP stabilizes microtubules near the chromosomes during spindle assembly by selectively releasing spindle assembly factors from inhibition by importin alpha/beta in the vicinity of the chromosomes. Several spindle assembly factors are regulated in this manner. We identified maskin, the Xenopus member of the transforming acidic coiled coil family of proteins, as a potential candidate in a two-step affinity chromatography approach designed to uncover additional downstream targets of importin alpha/beta in mitosis. Here, we show that although maskin lacks a canonical nuclear localization sequence, it binds importin beta in a RanGTP-regulated manner. We further show that importin beta inhibits the regulatory phosphorylation of maskin by Aurora-A. This suggests a novel mechanism by which importin beta regulates the activity of a spindle assembly factor.
Collapse
Affiliation(s)
- Alison J Albee
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
46
|
Arachchige Don AS, Dallapiazza RF, Bennin DA, Brake T, Cowan CE, Horne MC. Cyclin G2 is a centrosome-associated nucleocytoplasmic shuttling protein that influences microtubule stability and induces a p53-dependent cell cycle arrest. Exp Cell Res 2006; 312:4181-204. [PMID: 17123511 PMCID: PMC1862360 DOI: 10.1016/j.yexcr.2006.09.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 09/21/2006] [Accepted: 09/26/2006] [Indexed: 01/14/2023]
Abstract
Cyclin G2 is an atypical cyclin that associates with active protein phosphatase 2A. Cyclin G2 gene expression correlates with cell cycle inhibition; it is significantly upregulated in response to DNA damage and diverse growth inhibitory stimuli, but repressed by mitogenic signals. Ectopic expression of cyclin G2 promotes cell cycle arrest, cyclin dependent kinase 2 inhibition and the formation of aberrant nuclei [Bennin, D. A., Don, A. S., Brake, T., McKenzie, J. L., Rosenbaum, H., Ortiz, L., DePaoli-Roach, A. A., and Horne, M. C. (2002). Cyclin G2 associates with protein phosphatase 2A catalytic and regulatory B' subunits in active complexes and induces nuclear aberrations and a G(1)/S-phase cell cycle arrest. J Biol Chem 277, 27449-67]. Here we report that endogenous cyclin G2 copurifies with centrosomes and microtubules (MT) and that ectopic G2 expression alters microtubule stability. We find exogenous and endogenous cyclin G2 present at microtubule organizing centers (MTOCs) where it colocalizes with centrosomal markers in a variety of cell lines. We previously reported that cyclin G2 forms complexes with active protein phosphatase 2A (PP2A) and colocalizes with PP2A in a detergent-resistant compartment. We now show that cyclin G2 and PP2A colocalize at MTOCs in transfected cells and that the endogenous proteins copurify with isolated centrosomes. Displacement of the endogenous centrosomal scaffolding protein AKAP450 that anchors PP2A at the centrosome resulted in the depletion of centrosomal cyclin G2. We find that ectopic expression of cyclin G2 induces microtubule bundling and resistance to depolymerization, inhibition of polymer regrowth from MTOCs and a p53-dependent cell cycle arrest. Furthermore, we determined that a 100 amino acid carboxy-terminal region of cyclin G2 is sufficient to both direct GFP localization to centrosomes and induce cell cycle inhibition. Colocalization of endogenous cyclin G2 with only one of two GFP-centrin-tagged centrioles, the mature centriole present at microtubule foci, indicates that cyclin G2 resides primarily on the mother centriole. Copurification of cyclin G2 and PP2A subunits with microtubules and centrosomes, together with the effects of ectopic cyclin G2 on cell cycle progression, nuclear morphology and microtubule growth and stability, suggests that cyclin G2 may modulate the cell cycle and cellular division processes through modulation of PP2A and centrosomal associated activities.
Collapse
Affiliation(s)
| | | | - David A. Bennin
- The Department of Pharmacology, University of Wisconsin, Madison, Wisconsin 53706-1532
| | - Tiffany Brake
- The Department of Pharmacology, University of Wisconsin, Madison, Wisconsin 53706-1532
| | - Colleen E. Cowan
- The Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242-1109
| | - Mary C. Horne
- The Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242-1109
- The Department of Pharmacology, University of Wisconsin, Madison, Wisconsin 53706-1532
- *Correspondence to: Mary C. Horne, 2-530 BSB, 51 Newton Rd, Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, Phone: (319) 335-8267, FAX: (319) 335-8930, E-mail:
| |
Collapse
|
47
|
Orjalo AV, Arnaoutov A, Shen Z, Boyarchuk Y, Zeitlin SG, Fontoura B, Briggs S, Dasso M, Forbes DJ. The Nup107-160 nucleoporin complex is required for correct bipolar spindle assembly. Mol Biol Cell 2006; 17:3806-18. [PMID: 16807356 PMCID: PMC1593160 DOI: 10.1091/mbc.e05-11-1061] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 06/09/2006] [Accepted: 06/19/2006] [Indexed: 11/11/2022] Open
Abstract
The Nup107-160 complex is a critical subunit of the nuclear pore. This complex localizes to kinetochores in mitotic mammalian cells, where its function is unknown. To examine Nup107-160 complex recruitment to kinetochores, we stained human cells with antisera to four complex components. Each antibody stained not only kinetochores but also prometaphase spindle poles and proximal spindle fibers, mirroring the dual prometaphase localization of the spindle checkpoint proteins Mad1, Mad2, Bub3, and Cdc20. Indeed, expanded crescents of the Nup107-160 complex encircled unattached kinetochores, similar to the hyperaccumulation observed of dynamic outer kinetochore checkpoint proteins and motors at unattached kinetochores. In mitotic Xenopus egg extracts, the Nup107-160 complex localized throughout reconstituted spindles. When the Nup107-160 complex was depleted from extracts, the spindle checkpoint remained intact, but spindle assembly was rendered strikingly defective. Microtubule nucleation around sperm centrosomes seemed normal, but the microtubules quickly disassembled, leaving largely unattached sperm chromatin. Notably, Ran-GTP caused normal assembly of microtubule asters in depleted extracts, indicating that this defect was upstream of Ran or independent of it. We conclude that the Nup107-160 complex is dynamic in mitosis and that it promotes spindle assembly in a manner that is distinct from its functions at interphase nuclear pores.
Collapse
Affiliation(s)
- Arturo V Orjalo
- Sections of Cell and Developmental Biology, Division of Biological Sciences, University of California-San Diego Medical School, La Jolla, CA 92093-0347, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Pumfery A, de la Fuente C, Kashanchi F. HTLV-1 Tax: centrosome amplification and cancer. Retrovirology 2006; 3:50. [PMID: 16899128 PMCID: PMC1555608 DOI: 10.1186/1742-4690-3-50] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 08/09/2006] [Indexed: 11/16/2022] Open
Abstract
During interphase, each cell contains a single centrosome that acts as a microtubule organizing center for cellular functions in interphase and in mitosis. Centrosome amplification during the S phase of the cell cycle is a tightly regulated process to ensure that each daughter cell receives the proper complement of the genome. The controls that ensure that centrosomes are duplicated exactly once in the cell cycle are not well understood. In solid tumors and hematological malignancies, centrosome abnormalities resulting in aneuploidy is observed in the majority of cancers. These phenotypes are also observed in cancers induced by viruses, including adult T cell lymphoma which is caused by the human T cell lymphotrophic virus Type 1 (HTLV-1). Several reports have indicated that the HTLV-1 transactivator, Tax, is directly responsible for the centrosomal abnormalities observed in ATL cells. A recent paper in Nature Cell Biology by Ching et al. has shed some new light into how Tax may be inducing centrosome abnormalities. The authors demonstrated that 30% of ATL cells contained more than two centrosomes and expression of Tax alone induced supernumerary centrosomes. A cellular coiled-coil protein, Tax1BP2, was shown to interact with Tax and disruption of this interaction led to failure of Tax to induce centrosome amplification. Additionally, down-regulation of Tax1BP2 led to centrosome amplification. These results suggest that Tax1BP2 may be an important block to centrosome re-duplication that is observed in normal cells. Presently, a specific cellular protein that prevents centrosome re-duplication has not been identified. This paper has provided further insight into how Tax induces centrosome abnormalities that lead to ATL. Lastly, additional work on Tax1BP2 will also provide insight into how the cell suppresses centrosome re-duplication during the cell cycle and the role that Tax1BP2 plays in this important cellular pathway.
Collapse
Affiliation(s)
- Anne Pumfery
- Seton Hall University, Department of Biology, South Orange, NJ 07079, USA
| | - Cynthia de la Fuente
- The Rockefeller University, Laboratory of Virology and Infectious Disease, New York, NY 10021, USA
| | - Fatah Kashanchi
- The George Washington University Medical Center, Department of Biochemistry and Molecular Biology, Washington, DC 20037, USA
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| |
Collapse
|
49
|
Christodoulou A, Lederer CW, Surrey T, Vernos I, Santama N. Motor protein KIFC5A interacts with Nubp1 and Nubp2, and is implicated in the regulation of centrosome duplication. J Cell Sci 2006; 119:2035-47. [PMID: 16638812 DOI: 10.1242/jcs.02922] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inhibition of motor protein activity has been linked with defects in the formation of poles in the spindle of dividing cells. However, the molecular mechanisms underlying the functional relationship between motor activity and centrosome dynamics have remained uncharacterised. Here, we characterise KIFC5A, a mouse kinesin-like protein that is highly expressed in dividing cells and tissues, and is subject to developmental and cell-type-specific regulation. KIFC5A is a minus-end-directed, microtubule-dependent motor that produces velocities of up to 1.26 μm minute-1 in gliding assays and possesses microtubule bundling activity. It is nuclear in interphase, localises to the centre of the two microtubule asters at the beginning of mitosis, and to spindle microtubules in later mitotic phases. Overexpression of KIFC5A in mouse cells causes the formation of aberrant, non-separated microtubule asters and mitotic arrest in a prometaphase-like state. KIFC5A knockdown partly rescues the phenotype caused by inhibition of plus-end-directed motor Eg5 by monastrol on the mitotic spindle, indicating that it is involved in the balance of forces determining bipolar spindle assembly and integrity. Silencing of KIFC5A also results in centrosome amplification detectable throughout the cell cycle. Supernumerary centrosomes arise primarily as a result of reduplication and partly as a result of cytokinesis defects. They contain duplicated centrioles and have the ability to organise microtubule asters, resulting in the formation of multipolar spindles. We show that KIFC5A interacts with nucleotide-binding proteins 1 and 2 (Nubp1 and Nubp2), which have extensive sequence similarity to prokaryotic division-site-determining protein MinD. Nubp1 and Nubp2 also interact with each other. Knockdown of Nubp1 or double knockdown of Nubp1 and Nubp2 (Nubp1&Nubp2) both phenocopy the KIFC5A silencing effect. These results implicate KIFC5A and the Nubp proteins in a common regulatory pathway involved in the control of centrosome duplication in mammalian cells.
Collapse
Affiliation(s)
- Andri Christodoulou
- Department of Biological Sciences, University of Cyprus and Cyprus Institute of Neurology and Genetics, PO Box 20537, 1678 Nicosia, Cyprus
| | | | | | | | | |
Collapse
|
50
|
Silverman-Gavrila RV, Wilde A. Ran is required before metaphase for spindle assembly and chromosome alignment and after metaphase for chromosome segregation and spindle midbody organization. Mol Biol Cell 2006; 17:2069-80. [PMID: 16481399 PMCID: PMC1415283 DOI: 10.1091/mbc.e05-10-0991] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Ran pathway has been shown to have a role in spindle assembly. However, the extent of the role of the Ran pathway in mitosis in vivo is unclear. We report that perturbation of the Ran pathway disrupted multiple steps of mitosis in syncytial Drosophila embryos and uncovered new mitotic processes that are regulated by Ran. During the onset of mitosis, the Ran pathway is required for the production, organization, and targeting of centrosomally nucleated microtubules to chromosomes. However, the role of Ran is not restricted to microtubule organization, because Ran is also required for the alignment of chromosomes at the metaphase plate. In addition, the Ran pathway is required for postmetaphase events, including chromosome segregation and the assembly of the microtubule midbody. The Ran pathway mediates these mitotic events, in part, by facilitating the correct targeting of the kinase Aurora A and the kinesins KLP61F and KLP3A to spindles.
Collapse
|