1
|
Wu P, Vandemeulebroucke L, Cai H, Braeckman BP. The Proprotein Convertase BLI-4 Is Required for Axenic Dietary Restriction Mediated Longevity in Caenorhabditis elegans. Aging Cell 2025:e70058. [PMID: 40200707 DOI: 10.1111/acel.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/10/2025] Open
Abstract
Dietary restriction (DR) is a well-established method for extending lifespan across various species, including C. elegans. Among the different DR regimens, axenic dietary restriction (ADR), in which worms are grown in a nutrient-rich sterile liquid medium, yields the most powerful lifespan extension. However, the molecular mechanisms underlying this longevity phenotype remain largely unexplored. Through a pilot screen of candidate genes, we identified the proprotein convertase BLI-4 as a crucial factor in neurons for modulating lifespan under ADR conditions. BLI-4's role appears to be specific to ADR, as it does not significantly impact longevity under other DR regimens. We further explored the involvement of different bli-4 isoforms and found that isoforms b, f, i and j redundantly contribute to the ADR-mediated lifespan extension, while the bli-4d isoform is mainly involved in development. Proteomics analysis revealed that the loss of BLI-4 function under ADR conditions specifically downregulates GOLG-2, involved in Golgi complex organization. This gene also partially mediates the longevity effects of BLI-4 under ADR conditions. Our findings highlight the importance of neuronal BLI-4 and its downstream targets in regulating lifespan extension induced by ADR in C. elegans.
Collapse
Affiliation(s)
- Ping Wu
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| | - Lieselot Vandemeulebroucke
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| | - Huaihan Cai
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
- Overseas Pharmaceuticals, Ltd., Huangpu District, Guangzhou, China
| | - Bart P Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Dittman JS. Taking a closer look at the synapse. Proc Natl Acad Sci U S A 2024; 121:e2412457121. [PMID: 39102555 PMCID: PMC11331075 DOI: 10.1073/pnas.2412457121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] Open
Affiliation(s)
- Jeremy S. Dittman
- Department of Biochemistry, Weill Cornell Medicine, New York, NY10065
| |
Collapse
|
3
|
Roy P, Martinelli I, Moruzzi M, Maggi F, Amantini C, Micioni Di Bonaventura MV, Cifani C, Amenta F, Tayebati SK, Tomassoni D. Ion channels alterations in the forebrain of high-fat diet fed rats. Eur J Histochem 2021; 65:3305. [PMID: 34814650 PMCID: PMC8636841 DOI: 10.4081/ejh.2021.3305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/27/2021] [Indexed: 12/22/2022] Open
Abstract
Evidence suggests that transient receptor potential (TRP) ion channels dysfunction significantly contributes to the physiopathology of metabolic and neurological disorders. Dysregulation in functions and expression in genes encoding the TRP channels cause several inherited diseases in humans (the so-called 'TRP channelopathies'), which affect the cardiovascular, renal, skeletal, and nervous systems. This study aimed to evaluate the expression of ion channels in the forebrain of rats with diet-induced obesity (DIO). DIO rats were studied after 17 weeks under a hypercaloric diet (high-fat diet, HFD) and were compared to the control rats with a standard diet (CHOW). To determine the systemic effects of HFD exposure, we examined food intake, fat mass content, fasting glycemia, insulin levels, cholesterol, and triglycerides. qRT-PCR, Western blot, and immunochemistry analysis were performed in the frontal cortex (FC) and hippocampus (HIP). After 17 weeks of HFD, DIO rats increased their body weight significantly compared to the CHOW rats. In DIO rats, TRPC1 and TRPC6 were upregulated in the HIP, while they were downregulated in the FC. In the case of TRPM2 expression, instead was increased both in the HIP and in the FC. These could be related to the increase of proteins and nucleic acid oxidation. TRPV1 and TRPV2 gene expression showed no differences both in the FC and HIP. In general, qRT-PCR analyses were confirmed by Western blot analysis. Immunohistochemical procedures highlighted the expression of the channels in the cell body of neurons and axons, particularly for the TRPC1 and TRPC6. The alterations of TRP channel expression could be related to the activation of glial cells or the neurodegenerative process presented in the brain of the DIO rat highlighted with post synaptic protein (PSD 95) alterations. The availability of suitable animal models may be useful for studying possible pharmacological treatments to counter obesity-induced brain injury. The identified changes in DIO rats may represent the first insight to characterize the neuronal alterations occurring in obesity. Further investigations are necessary to characterize the role of TRP channels in the regulation of synaptic plasticity and obesity-related cognitive decline.
Collapse
Affiliation(s)
- Proshanta Roy
- School of Biosciences and Veterinary Medicine, University of Camerino.
| | | | | | - Federica Maggi
- Department of Molecular Medicine, La Sapienza University of Rome.
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino.
| | | | | | | | | | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino.
| |
Collapse
|
4
|
Transcriptome analyses suggest a molecular mechanism for the SIPC response of Amphibalanus amphitrite. Biochem Biophys Res Commun 2020; 525:823-829. [PMID: 32164940 DOI: 10.1016/j.bbrc.2020.02.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Abstract
Barnacles are notorious marine fouling organisms. Their successful attachment to a substrate requires that they search for an appropriate habitat during their cyprid stage. A chemical cue called SIPC (Settlement-Inducing Protein Complex) has been shown to play a key role in the induction of cyprid gregarious settlement; however, the underlying biochemical mechanism remains unclear. Here, RNA-seq was used to examine the gene expression profiles of Amphibalanus amphitrite cyprids in response to SIPC and to identify SIPC-activated intracellular signaling pathways. A total of 389 unigenes were differentially expressed in response to SIPC, and cement protein genes were not among them. KEGG enrichment analysis suggested that SNARE interactions in the vesicular transport pathway were significantly influenced by SIPC treatment, indicating a possible role for SIPC in triggering protein transportation and secretion. Several genes with specific functions in metamorphosis were found among the differentially expressed genes (DEGs). GO (Gene Ontology) enrichment analysis revealed that the DEGs were significantly enriched in enamel mineralization pathways, suggesting that SIPC may also be involved in the activation of mineralization.
Collapse
|
5
|
Chakrabarti R, Wichmann C. Nanomachinery Organizing Release at Neuronal and Ribbon Synapses. Int J Mol Sci 2019; 20:E2147. [PMID: 31052288 PMCID: PMC6539712 DOI: 10.3390/ijms20092147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 11/17/2022] Open
Abstract
A critical aim in neuroscience is to obtain a comprehensive view of how regulated neurotransmission is achieved. Our current understanding of synapses relies mainly on data from electrophysiological recordings, imaging, and molecular biology. Based on these methodologies, proteins involved in a synaptic vesicle (SV) formation, mobility, and fusion at the active zone (AZ) membrane have been identified. In the last decade, electron tomography (ET) combined with a rapid freezing immobilization of neuronal samples opened a window for understanding the structural machinery with the highest spatial resolution in situ. ET provides significant insights into the molecular architecture of the AZ and the organelles within the presynaptic nerve terminal. The specialized sensory ribbon synapses exhibit a distinct architecture from neuronal synapses due to the presence of the electron-dense synaptic ribbon. However, both synapse types share the filamentous structures, also commonly termed as tethers that are proposed to contribute to different steps of SV recruitment and exocytosis. In this review, we discuss the emerging views on the role of filamentous structures in SV exocytosis gained from ultrastructural studies of excitatory, mainly central neuronal compared to ribbon-type synapses with a focus on inner hair cell (IHC) ribbon synapses. Moreover, we will speculate on the molecular entities that may be involved in filament formation and hence play a crucial role in the SV cycle.
Collapse
Affiliation(s)
- Rituparna Chakrabarti
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", 37099 Göttingen, Germany.
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany.
- Collaborative Research Center 889 "Cellular Mechanisms of Sensory Processing", 37099 Göttingen, Germany.
- Collaborative Research Center 1286 "Quantitative Synaptology", 37099 Göttingen, Germany.
- Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.
| |
Collapse
|
6
|
Portero-Tresserra M, Martí-Nicolovius M, Tarrés-Gatius M, Candalija A, Guillazo-Blanch G, Vale-Martínez A. Intra-hippocampal D-cycloserine rescues decreased social memory, spatial learning reversal, and synaptophysin levels in aged rats. Psychopharmacology (Berl) 2018; 235:1463-1477. [PMID: 29492616 DOI: 10.1007/s00213-018-4858-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 02/15/2018] [Indexed: 01/08/2023]
Abstract
RATIONALE Aging is characterized by a decrease in N-methyl-D-aspartate receptors (NMDARs) in the hippocampus, which might be one of the factors involved in the age-dependent cognitive decline. D-Cycloserine (DCS), a partial agonist of the NMDAR glycine recognition site, could improve memory deficits associated to neurodegenerative disorders and cognitive deficits observed in normal aging. OBJECTIVES AND METHODS The aim of the present study was to explore whether DCS would reverse age-dependent memory deficits and decreases in NMDA receptor subunits (GluN1, GluN2A, and GluN2B) and the presynaptic protein synaptophysin in Wistar rats. We investigated the effects of pre-training infusions of DCS (10 μg/hemisphere) in the ventral hippocampus on two hippocampal-dependent learning tasks, the social transmission of food preference (STFP), and the Morris water maze (MWM). RESULTS The results revealed that infusions of DCS administered before the acquisition sessions rescued deficits in the STFP retention and MWM reversal learning in old rats. DCS also significantly increased the hippocampal levels of synaptophysin in old rats, which correlated with STFP and MWM performance in all tests. Moreover, although the levels of the GluN1 subunit correlated with the MWM acquisition and reversal, DCS did not enhance the expression of such synaptic protein. CONCLUSIONS The present behavioral results support the role of DCS as a cognitive enhancer and suggest that enhancing the function of NMDARs and synaptic plasticity in the hippocampus may be related to improvement in social memory and spatial learning reversal in aged animals.
Collapse
Affiliation(s)
- Marta Portero-Tresserra
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Margarita Martí-Nicolovius
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Mireia Tarrés-Gatius
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Candalija
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gemma Guillazo-Blanch
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Vale-Martínez
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Wragg RT, Parisotto DA, Li Z, Terakawa MS, Snead D, Basu I, Weinstein H, Eliezer D, Dittman JS. Evolutionary Divergence of the C-terminal Domain of Complexin Accounts for Functional Disparities between Vertebrate and Invertebrate Complexins. Front Mol Neurosci 2017; 10:146. [PMID: 28603484 PMCID: PMC5445133 DOI: 10.3389/fnmol.2017.00146] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/30/2017] [Indexed: 12/19/2022] Open
Abstract
Complexin is a critical presynaptic protein that regulates both spontaneous and calcium-triggered neurotransmitter release in all synapses. Although the SNARE-binding central helix of complexin is highly conserved and required for all known complexin functions, the remainder of the protein has profoundly diverged across the animal kingdom. Striking disparities in complexin inhibitory activity are observed between vertebrate and invertebrate complexins but little is known about the source of these differences or their relevance to the underlying mechanism of complexin regulation. We found that mouse complexin 1 (mCpx1) failed to inhibit neurotransmitter secretion in Caenorhabditis elegans neuromuscular junctions lacking the worm complexin 1 (CPX-1). This lack of inhibition stemmed from differences in the C-terminal domain (CTD) of mCpx1. Previous studies revealed that the CTD selectively binds to highly curved membranes and directs complexin to synaptic vesicles. Although mouse and worm complexin have similar lipid binding affinity, their last few amino acids differ in both hydrophobicity and in lipid binding conformation, and these differences strongly impacted CPX-1 inhibitory function. Moreover, function was not maintained if a critical amphipathic helix in the worm CPX-1 CTD was replaced with the corresponding mCpx1 amphipathic helix. Invertebrate complexins generally shared more C-terminal similarity with vertebrate complexin 3 and 4 isoforms, and the amphipathic region of mouse complexin 3 significantly restored inhibitory function to worm CPX-1. We hypothesize that the CTD of complexin is essential in conferring an inhibitory function to complexin, and that this inhibitory activity has been attenuated in the vertebrate complexin 1 and 2 isoforms. Thus, evolutionary changes in the complexin CTD differentially shape its synaptic role across phylogeny.
Collapse
Affiliation(s)
- Rachel T Wragg
- Department of Biochemistry, Weill Cornell Medical College, New YorkNY, United States
| | - Daniel A Parisotto
- Department of Biochemistry, Weill Cornell Medical College, New YorkNY, United States
| | - Zhenlong Li
- Department of Physiology and Biophysics, Weill Cornell Medical College, New YorkNY, United States
| | - Mayu S Terakawa
- Department of Biochemistry, Weill Cornell Medical College, New YorkNY, United States
| | - David Snead
- Department of Biochemistry, Weill Cornell Medical College, New YorkNY, United States
| | - Ishani Basu
- Department of Biochemistry, Weill Cornell Medical College, New YorkNY, United States
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medical College, New YorkNY, United States.,Institute for Computational Biomedicine, Weill Cornell Medical College, New YorkNY, United States
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College, New YorkNY, United States
| | - Jeremy S Dittman
- Department of Biochemistry, Weill Cornell Medical College, New YorkNY, United States
| |
Collapse
|
8
|
Endesfelder S, Makki H, von Haefen C, Spies CD, Bührer C, Sifringer M. Neuroprotective effects of dexmedetomidine against hyperoxia-induced injury in the developing rat brain. PLoS One 2017; 12:e0171498. [PMID: 28158247 PMCID: PMC5291450 DOI: 10.1371/journal.pone.0171498] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/20/2017] [Indexed: 12/19/2022] Open
Abstract
Dexmedetomidine (DEX) is a highly selective agonist of α2-receptors with sedative, anxiolytic, and analgesic properties. Neuroprotective effects of dexmedetomidine have been reported in various brain injury models. In the present study, we investigated the effects of dexmedetomidine on hippocampal neurogenesis, specifically the proliferation capacity and maturation of neurons and neuronal plasticity following the induction of hyperoxia in neonatal rats. Six-day old sex-matched Wistar rats were exposed to 80% oxygen or room air for 24 h and treated with 1, 5 or 10 μg/kg of dexmedetomidine or normal saline. A single pretreatment with DEX attenuated the hyperoxia-induced injury in terms of neurogenesis and plasticity. In detail, both the proliferation capacity (PCNA+ cells) as well as the expression of neuronal markers (Nestin+, PSA-NCAM+, NeuN+ cells) and transcription factors (SOX2, Tbr1/2, Prox1) were significantly reduced under hyperoxia compared to control. Furthermore, regulators of neuronal plasticity (Nrp1, Nrg1, Syp, and Sema3a/f) were also drastically decreased. A single administration of dexmedetomidine prior to oxygen exposure resulted in a significant up-regulation of expression-profiles compared to hyperoxia. Our results suggest that dexmedetomidine may have neuroprotective effects in an acute hyperoxic model of the neonatal rat.
Collapse
Affiliation(s)
- Stefanie Endesfelder
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hanan Makki
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Clarissa von Haefen
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia D Spies
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marco Sifringer
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Bello OD, Cappa AI, de Paola M, Zanetti MN, Fukuda M, Fissore RA, Mayorga LS, Michaut MA. Rab3A, a possible marker of cortical granules, participates in cortical granule exocytosis in mouse eggs. Exp Cell Res 2016; 347:42-51. [PMID: 27423421 DOI: 10.1016/j.yexcr.2016.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 07/04/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
Fusion of cortical granules with the oocyte plasma membrane is the most significant event to prevent polyspermy. This particular exocytosis, also known as cortical reaction, is regulated by calcium and its molecular mechanism is still not known. Rab3A, a member of the small GTP-binding protein superfamily, has been implicated in calcium-dependent exocytosis and is not yet clear whether Rab3A participates in cortical granules exocytosis. Here, we examine the involvement of Rab3A in the physiology of cortical granules, particularly, in their distribution during oocyte maturation and activation, and their participation in membrane fusion during cortical granule exocytosis. Immunofluorescence and Western blot analysis showed that Rab3A and cortical granules have a similar migration pattern during oocyte maturation, and that Rab3A is no longer detected after cortical granule exocytosis. These results suggested that Rab3A might be a marker of cortical granules. Overexpression of EGFP-Rab3A colocalized with cortical granules with a Pearson correlation coefficient of +0.967, indicating that Rab3A and cortical granules have almost a perfect colocalization in the egg cortical region. Using a functional assay, we demonstrated that microinjection of recombinant, prenylated and active GST-Rab3A triggered cortical granule exocytosis, indicating that Rab3A has an active role in this secretory pathway. To confirm this active role, we inhibited the function of endogenous Rab3A by microinjecting a polyclonal antibody raised against Rab3A prior to parthenogenetic activation. Our results showed that Rab3A antibody microinjection abolished cortical granule exocytosis in parthenogenetically activated oocytes. Altogether, our findings confirm that Rab3A might function as a marker of cortical granules and participates in cortical granule exocytosis in mouse eggs.
Collapse
Affiliation(s)
- Oscar Daniel Bello
- Instituto de Histología y Embriología, CONICET - Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza, Argentina
| | - Andrea Isabel Cappa
- Instituto de Histología y Embriología, CONICET - Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza, Argentina
| | - Matilde de Paola
- Instituto de Histología y Embriología, CONICET - Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza, Argentina
| | - María Natalia Zanetti
- Instituto de Histología y Embriología, CONICET - Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza, Argentina
| | - Mitsunori Fukuda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, MA 01003, USA
| | - Luis S Mayorga
- Instituto de Histología y Embriología, CONICET - Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza, Argentina
| | - Marcela A Michaut
- Instituto de Histología y Embriología, CONICET - Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Argentina.
| |
Collapse
|
10
|
Two-pore channels at the intersection of endolysosomal membrane traffic. Biochem Soc Trans 2016; 43:434-41. [PMID: 26009187 DOI: 10.1042/bst20140303] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two-pore channels (TPCs) are ancient members of the voltage-gated ion channel superfamily that localize to acidic organelles such as lysosomes. The TPC complex is the proposed target of the Ca2+-mobilizing messenger NAADP, which releases Ca2+ from these acidic Ca2+ stores. Whereas details of TPC activation and native ion permeation remain unclear, a consensus has emerged around their function in regulating endolysosomal trafficking. This role is supported by recent proteomic data showing that TPCs interact with proteins controlling membrane organization and dynamics, including Rab GTPases and components of the fusion apparatus. Regulation of TPCs by PtdIns(3,5)P2 and/or NAADP (nicotinic acid adenine dinucleotide phosphate) together with their functional and physical association with Rab proteins provides a mechanism for coupling phosphoinositide and trafficking protein cues to local ion fluxes. Therefore, TPCs work at the regulatory cross-roads of (patho)physiological cues to co-ordinate and potentially deregulate traffic flow through the endolysosomal network. This review focuses on the native role of TPCs in trafficking and their emerging contributions to endolysosomal trafficking dysfunction.
Collapse
|
11
|
Abeysinghe HCS, Bokhari L, Quigley A, Choolani M, Chan J, Dusting GJ, Crook JM, Kobayashi NR, Roulston CL. Pre-differentiation of human neural stem cells into GABAergic neurons prior to transplant results in greater repopulation of the damaged brain and accelerates functional recovery after transient ischemic stroke. Stem Cell Res Ther 2015; 6:186. [PMID: 26420220 PMCID: PMC4588906 DOI: 10.1186/s13287-015-0175-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Despite attempts to prevent brain injury during the hyperacute phase of stroke, most sufferers end up with significant neuronal loss and functional deficits. The use of cell-based therapies to recover the injured brain offers new hope. In the current study, we employed human neural stem cells (hNSCs) isolated from subventricular zone (SVZ), and directed their differentiation into GABAergic neurons followed by transplantation to ischemic brain. METHODS Pre-differentiated GABAergic neurons, undifferentiated SVZ-hNSCs or media alone were stereotaxically transplanted into the rat brain (n=7/group) 7 days after endothelin-1 induced stroke. Neurological outcome was assessed by neurological deficit scores and the cylinder test. Transplanted cell survival, cellular phenotype and maturation were assessed using immunohistochemistry and confocal microscopy. RESULTS Behavioral assessments revealed accelerated improvements in motor function 7 days post-transplant in rats treated with pre-differentiated GABAergic cells in comparison to media alone and undifferentiated hNSC treated groups. Histopathology 28 days-post transplant indicated that pre-differentiated cells maintained their GABAergic neuronal phenotype, showed evidence of synaptogenesis and up-regulated expression of both GABA and calcium signaling proteins associated with neurotransmission. Rats treated with pre-differentiated cells also showed increased neurogenic activity within the SVZ at 28 days, suggesting an additional trophic role of these GABAergic cells. In contrast, undifferentiated SVZ-hNSCs predominantly differentiated into GFAP-positive astrocytes and appeared to be incorporated into the glial scar. CONCLUSION Our study is the first to show enhanced exogenous repopulation of a neuronal phenotype after stroke using techniques aimed at GABAergic cell induction prior to delivery that resulted in accelerated and improved functional recovery.
Collapse
Affiliation(s)
- Hima C S Abeysinghe
- Neurotrauma Research Team, Department of Medicine, University of Melbourne, Level 4, Clinical Sciences Building, 29 Regent Street, Fitzroy, VIC, 3065, Australia.
- Department of Surgery, University of Melbourne, Melbourne, VIC, Australia.
| | - Laita Bokhari
- Neurotrauma Research Team, Department of Medicine, University of Melbourne, Level 4, Clinical Sciences Building, 29 Regent Street, Fitzroy, VIC, 3065, Australia.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia.
| | - Anita Quigley
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW 2519, Australia.
| | - Mahesh Choolani
- Department of Obstetrics and Gynecology, National University of Singapore, Singapore, Singapore.
| | - Jerry Chan
- Department of Obstetrics and Gynecology, National University of Singapore, Singapore, Singapore.
| | - Gregory J Dusting
- Cytoprotection Pharmacology Program, Centre for Eye Research, The Royal Eye and Ear Hospital Melbourne, Melbourne, VIC, Australia.
- Department of Opthamology, Faculty of Medicine, University of Melbourne, Melbourne, VIC, Australia.
| | - Jeremy M Crook
- Department of Surgery, University of Melbourne, Melbourne, VIC, Australia.
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW 2519, Australia.
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Nao R Kobayashi
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW 2519, Australia
| | - Carli L Roulston
- Neurotrauma Research Team, Department of Medicine, University of Melbourne, Level 4, Clinical Sciences Building, 29 Regent Street, Fitzroy, VIC, 3065, Australia.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
12
|
Regulation of synaptic extracellular matrix composition is critical for proper synapse morphology. J Neurosci 2014; 34:12678-89. [PMID: 25232106 DOI: 10.1523/jneurosci.1183-14.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synapses are surrounded by a layer of extracellular matrix (ECM), which is instrumental for their development and maintenance. ECM composition is dynamically controlled by proteases, but how the precise composition of the ECM affects synaptic morphology is largely unknown. Through an unbiased forward genetic screen, we found that Caenorhabditis elegans gon-1, a conserved extracellular ADAMTS protease, is required for maintaining proper synaptic morphology at the neuromuscular junction. In gon-1 mutants, once synapse formation is complete, motor neuron presynaptic varicosities develop into large bulbous protrusions that contain synaptic vesicles and active zone proteins. A concomitant overgrowth of postsynaptic muscle membrane is found in close apposition to presynaptic axonal protrusions. Mutations in the muscle-specific, actin-severing protein cofilin (unc-60) suppress the axon phenotype, suggesting that muscle outgrowth is necessary for presynaptic protrusions. gon-1 mutants can also be suppressed by loss of the ECM components collagen IV (EMB-9) and fibulin (FBL-1). We propose that GON-1 regulates a developmental switch out of an initial "pro-growth" phase during which muscle arms grow out and form synapses with motor neuron axons. We postulate that this switch involves degradation or reorganization of collagen IV (EMB-9), whereas FBL-1 opposes GON-1 by stabilizing EMB-9. Our results describe a mechanism for regulating synaptic ECM composition and reveal the importance of precise ECM composition for neuronal morphology and synapse integrity.
Collapse
|
13
|
Meriney SD, Umbach JA, Gundersen CB. Fast, Ca2+-dependent exocytosis at nerve terminals: shortcomings of SNARE-based models. Prog Neurobiol 2014; 121:55-90. [PMID: 25042638 DOI: 10.1016/j.pneurobio.2014.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/14/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022]
Abstract
Investigations over the last two decades have made major inroads in clarifying the cellular and molecular events that underlie the fast, synchronous release of neurotransmitter at nerve endings. Thus, appreciable progress has been made in establishing the structural features and biophysical properties of the calcium (Ca2+) channels that mediate the entry into nerve endings of the Ca2+ ions that trigger neurotransmitter release. It is now clear that presynaptic Ca2+ channels are regulated at many levels and the interplay of these regulatory mechanisms is just beginning to be understood. At the same time, many lines of research have converged on the conclusion that members of the synaptotagmin family serve as the primary Ca2+ sensors for the action potential-dependent release of neurotransmitter. This identification of synaptotagmins as the proteins which bind Ca2+ and initiate the exocytotic fusion of synaptic vesicles with the plasma membrane has spurred widespread efforts to reveal molecular details of synaptotagmin's action. Currently, most models propose that synaptotagmin interfaces directly or indirectly with SNARE (soluble, N-ethylmaleimide sensitive factor attachment receptors) proteins to trigger membrane fusion. However, in spite of intensive efforts, the field has not achieved consensus on the mechanism by which synaptotagmins act. Concurrently, the precise sequence of steps underlying SNARE-dependent membrane fusion remains controversial. This review considers the pros and cons of the different models of SNARE-mediated membrane fusion and concludes by discussing a novel proposal in which synaptotagmins might directly elicit membrane fusion without the intervention of SNARE proteins in this final fusion step.
Collapse
Affiliation(s)
- Stephen D Meriney
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joy A Umbach
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Cameron B Gundersen
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
14
|
Bolognin S, Buffelli M, Puoliväli J, Iqbal K. Rescue of cognitive-aging by administration of a neurogenic and/or neurotrophic compound. Neurobiol Aging 2014; 35:2134-46. [PMID: 24702821 DOI: 10.1016/j.neurobiolaging.2014.02.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/18/2014] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
Abstract
Aging is characterized by a progressive decline of cognitive performance, which has been partially attributed to structural and functional alterations of hippocampus. Importantly, aging is the major risk factor for the development of neurodegenerative diseases, especially Alzheimer's disease. An important therapeutic approach to counteract the age-associated memory dysfunctions is to maintain an appropriate microenvironment for successful neurogenesis and synaptic plasticity. In this study, we show that chronic oral administration of peptide 021 (P021), a small peptidergic neurotrophic compound derived from the ciliary neurotrophic factor, significantly reduced the age-dependent decline in learning and memory in 22 to 24-month-old Fisher rats. Treatment with P021 inhibited the deficit in neurogenesis in the aged rats and increased the expression of brain derived neurotrophic factor. Furthermore, P021 restored synaptic deficits both in the cortex and the hippocampus. In vivo magnetic resonance spectroscopy revealed age-dependent alterations in hippocampal content of several metabolites. Remarkably, P021 was effective in significantly reducing myoinositol (INS) concentration, which was increased in aged compared with young rats. These findings suggest that stimulating endogenous neuroprotective mechanisms is a potential therapeutic approach to cognitive aging, Alzheimer's disease, and associated neurodegenerative disorders and P021 is a promising compound for this purpose.
Collapse
Affiliation(s)
- Silvia Bolognin
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Mario Buffelli
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Jukka Puoliväli
- Department of Behavioral Studies, Charles River Finland, Kuopio, Finland
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
| |
Collapse
|
15
|
Golebiewska EM, Poole AW. Secrets of platelet exocytosis - what do we really know about platelet secretion mechanisms? Br J Haematol 2013; 165:204-216. [PMID: 24588354 PMCID: PMC4155865 DOI: 10.1111/bjh.12682] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Upon activation by extracellular matrix components or soluble agonists, platelets release in excess of 300 active molecules from intracellular granules. Those factors can both activate further platelets and mediate a range of responses in other cells. The complex microenvironment of a growing thrombus, as well as platelets' roles in both physiological and pathological processes, require platelet secretion to be highly spatially and temporally regulated to ensure appropriate responses to a range of stimuli. However, how this regulation is achieved remains incompletely understood. In this review we outline the importance of regulated secretion in thrombosis as well as in 'novel' scenarios beyond haemostasis and give a detailed summary of what is known about the molecular mechanisms of platelet exocytosis. We also discuss a number of theories of how different cargoes could be released in a tightly orchestrated manner, allowing complex interactions between platelets and their environment.
Collapse
Affiliation(s)
- Ewelina M Golebiewska
- School of Physiology and Pharmacology, Bristol Heart Institute, University of Bristol, Bristol, UK
| | | |
Collapse
|
16
|
Hajjar T, Goh YM, Rajion MA, Vidyadaran S, Li TA, Ebrahimi M. Alterations in neuronal morphology and synaptophysin expression in the rat brain as a result of changes in dietary n-6: n-3 fatty acid ratios. Lipids Health Dis 2013; 12:113. [PMID: 23886338 PMCID: PMC3734175 DOI: 10.1186/1476-511x-12-113] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/24/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polyunsaturated fatty acids (PUFA) play important roles in brain fatty acid composition and behavior through their effects on neuronal properties and gene expression. The hippocampus plays an important role in the formation of memory, especially spatial memory and navigation. This study was conducted to examine the effects of PUFA and specifically different dietary n-6: n-3 fatty acid ratios (FAR) on the number and size of hippocampal neurons and the expression of synaptophysin protein in the hippocampus of rats. METHODS Forty 3-week old male Sprague-Dawley rats were allotted into 4 groups. The animals received experimental diets with different n-6: n-3 FAR of either 65:1, 26.5:1, 22:1 or 4.5:1 for 14 weeks. RESULTS The results showed that a lowering dietary n-6: n-3 FAR supplementation can increase the number and size of neurons. Moreover, lowering the dietary n-6: n-3 FAR led to an increase in the expression of the pre-synaptic protein synaptophysin in the CA1 hippocampal subregion of the rat brain. CONCLUSIONS These findings support the notion that decreasing the dietary n-6: n-3 FAR will lead to an intensified hippocampal synaptophysin expression and increased neuron size and proliferation in the rat brain.
Collapse
Affiliation(s)
- Toktam Hajjar
- Department of Veterinary Preclinical Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yong Meng Goh
- Department of Veterinary Preclinical Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohamed Ali Rajion
- Department of Veterinary Preclinical Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Sharmili Vidyadaran
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Tan Ai Li
- Department of Veterinary Preclinical Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mahdi Ebrahimi
- Department of Veterinary Preclinical Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
17
|
Torregrosa-Hetland CJ, Villanueva J, Garcia-Martínez V, Expósito-Romero G, Francés MDM, Gutiérrez LM. Cortical F-actin affects the localization and dynamics of SNAP-25 membrane clusters in chromaffin cells. Int J Biochem Cell Biol 2012; 45:583-92. [PMID: 23220175 DOI: 10.1016/j.biocel.2012.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 10/22/2012] [Accepted: 11/28/2012] [Indexed: 10/27/2022]
Abstract
It has been proposed recently that the F-actin cytoskeleton organizes the relative disposition of the SNARE proteins and calcium channels that form part of the secretory machinery in chromaffin cells, a neurosecretory model. To test this idea, we used confocal microscopy do determine if DsRed-SNAP-25 microdomains, which define the final sites of exocytosis along with syntaxin-1, preferentially remain in contact with F-actin cortical structures labelled by lifeact-EGFP. A quantitative analysis showed that in cells over-expressing these constructs there is a preferential colocalization, rather than a random distribution of SNAP-25 patches. To analyze the possible interactions between these proteins, we designed FRET experiments and tested whether treatment with agents that affect F-actin mobility would modify SNAP-25 movement. The significant FRET efficiencies detected suggest that direct molecular interactions occur, whereas dynamic experiments using TIRFM revealed that attenuation of cortical F-actin movement clearly diminishes the mobility of SNAP-25 clusters. Taken together, these data can be explained by a model that associates components of the secretory machinery to the F-actin cortex through flexible links.
Collapse
Affiliation(s)
- Cristina J Torregrosa-Hetland
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Carretera Nacional 332 s/n, 03550 Alicante, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Frooninckx L, Van Rompay L, Temmerman L, Van Sinay E, Beets I, Janssen T, Husson SJ, Schoofs L. Neuropeptide GPCRs in C. elegans. Front Endocrinol (Lausanne) 2012; 3:167. [PMID: 23267347 PMCID: PMC3527849 DOI: 10.3389/fendo.2012.00167] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/04/2012] [Indexed: 12/19/2022] Open
Abstract
Like most organisms, the nematode Caenorhabditis elegans relies heavily on neuropeptidergic signaling. This tiny animal represents a suitable model system to study neuropeptidergic signaling networks with single cell resolution due to the availability of powerful molecular and genetic tools. The availability of the worm's complete genome sequence allows researchers to browse through it, uncovering putative neuropeptides and their cognate G protein-coupled receptors (GPCRs). Many predictions have been made about the number of C. elegans neuropeptide GPCRs. In this review, we report the state of the art of both verified as well as predicted C. elegans neuropeptide GPCRs. The predicted neuropeptide GPCRs are incorporated into the receptor classification system based on their resemblance to orthologous GPCRs in insects and vertebrates. Appointing the natural ligand(s) to each predicted neuropeptide GPCR (receptor deorphanization) is a crucial step during characterization. The development of deorphanization strategies resulted in a significant increase in the knowledge of neuropeptidergic signaling in C. elegans. Complementary localization and functional studies demonstrate that neuropeptides and their GPCRs represent a rich potential source of behavioral variability in C. elegans. Here, we review all neuropeptidergic signaling pathways that so far have been functionally characterized in C. elegans.
Collapse
Affiliation(s)
- Lotte Frooninckx
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Liesbeth Van Rompay
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Liesbet Temmerman
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Elien Van Sinay
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Isabel Beets
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Tom Janssen
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Steven J. Husson
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
| | - Liliane Schoofs
- Laboratory of Functional Genomics and Proteomics, Department of Biology, Katholieke Universiteit LeuvenLeuven, Belgium
- *Correspondence: Liliane Schoofs, Laboratory of Functional Genomics and Proteomics, Zoological Institute, Naamsestraat 59, 3000 Leuven, Belgium. e-mail:
| |
Collapse
|
19
|
Fang XF, Cui ZJ. The anti-botulism triterpenoid toosendanin elicits calcium increase and exocytosis in rat sensory neurons. Cell Mol Neurobiol 2011; 31:1151-1162. [PMID: 21656151 PMCID: PMC11498590 DOI: 10.1007/s10571-011-9716-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/20/2011] [Indexed: 02/07/2023]
Abstract
Toosendanin, a triterpenoid from Melia toosendan Sieb et Zucc, has been found before to be an effective anti-botulism agent, with a bi-phasic effect at both motor nerve endings and central synapse: an initial facilitation followed by prolonged depression. Initial facilitation may be due to activation of voltage-dependent calcium channels plus inhibition of potassium channels, but the depression is not fully understood. Toosendanin has no effect on intracellular calcium or secretion in the non-excitable pancreatic acinar cells, ruling out general toosendanin inhibition of exocytosis. In this study, toosendanin effects on sensory neurons isolated from rat nodose ganglia were investigated. It was found that toosendanin stimulated increases in cytosolic calcium and neuronal exocytosis dose dependently. Experiments with membrane potential indicator bis-(1,3-dibutylbarbituric acid)trimethine oxonol found that toosendanin hyperpolarized capsaicin-insensitive but depolarized capsaicin-sensitive neurons; high potassium-induced calcium increase was much smaller in hyperpolarizing neurons than in depolarizing neurons, whereas no difference was found for potassium-induced depolarization in these two types of neurons. In neurons showing spontaneous calcium oscillations, toosendanin increased the oscillatory amplitude but not frequency. Toosendanin-induced calcium increase was decreased in calcium-free buffer, by nifedipine, and by transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine. Simultaneous measurements of cytosolic and endoplasmic reticulum (ER) calcium showed an increase in cytosolic but a decrease in ER calcium, indicating that toosendanin triggered ER calcium release. These data together indicate that toosendanin modulates sensory neurons, but had opposite effects on membrane potential depending on the presence or absence of capsaicin receptor/TRPV 1 channel.
Collapse
Affiliation(s)
- Xiao Feng Fang
- Institute of Cell Biology, Beijing Normal University, Beijing, 100875 China
| | - Zong Jie Cui
- Institute of Cell Biology, Beijing Normal University, Beijing, 100875 China
| |
Collapse
|
20
|
Schultz ML, Tecedor L, Chang M, Davidson BL. Clarifying lysosomal storage diseases. Trends Neurosci 2011; 34:401-10. [PMID: 21723623 DOI: 10.1016/j.tins.2011.05.006] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 05/17/2011] [Accepted: 05/27/2011] [Indexed: 11/29/2022]
Abstract
Lysosomal storage diseases (LSDs) are a class of metabolic disorders caused by mutations in proteins critical for lysosomal function. Such proteins include lysosomal enzymes, lysosomal integral membrane proteins, and proteins involved in the post-translational modification and trafficking of lysosomal proteins. There are many recognized forms of LSDs and, although individually rare, their combined prevalence is estimated to be 1 in 8000 births. Over two-thirds of LSDs involve central nervous system (CNS) dysfunction (progressive cognitive and motor decline) and these symptoms are often the most debilitating. Although the genetic basis for these disorders is clear and the biochemistry of the proteins well understood, the cellular mechanisms by which deficiencies in these proteins disrupt neuronal viability remain ambiguous. In this review, we provide an overview of the widespread cellular perturbations occurring in LSDs, how they might be linked and interventions that may specifically or globally correct those defects.
Collapse
Affiliation(s)
- Mark L Schultz
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
21
|
Janssen T, Lindemans M, Meelkop E, Temmerman L, Schoofs L. Coevolution of neuropeptidergic signaling systems: from worm to man. Ann N Y Acad Sci 2010; 1200:1-14. [PMID: 20633129 DOI: 10.1111/j.1749-6632.2010.05506.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the general knowledge and repeated predictions of peptide G protein-coupled receptors following the elucidation of the Caenorhabditis elegans genome in 1998, only a few have been deorphanized so far. This was attributed to the apparent lack of coevolution between (neuro)peptides and their cognate receptors. To resolve this issue, we have used an in silico genomic data mining tool to identify the real putative peptide GPCRs in the C. elegans genome and then made a well-considered selection of orphan peptide GPCRs. To maximize our chances of a successful deorphanization, we adopted a combined reverse pharmacology approach. At this moment, we have successfully uncovered four C. elegans neuropeptide signaling systems that support the theory of receptor-ligand coevolution. All four systems are extremely well conserved within nematodes and show a high degree of similarity with their vertebrate and arthropod counterparts. Our data indicate that these four neuropeptide signaling systems have been well conserved during the course of evolution and that they were already well established prior to the divergence of protostomes and deuterostomes.
Collapse
Affiliation(s)
- Tom Janssen
- Functional Genomics and Proteomics Unit, Department of Biology, KULeuven, Leuven, Belgium.
| | | | | | | | | |
Collapse
|
22
|
Phospholipase A2 inhibitors protect against prion and Abeta mediated synapse degeneration. Mol Neurodegener 2010; 5:13. [PMID: 20374666 PMCID: PMC2865460 DOI: 10.1186/1750-1326-5-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 04/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An early event in the neuropathology of prion and Alzheimer's diseases is the loss of synapses and a corresponding reduction in the level of synaptophysin, a pre-synaptic membrane protein essential for neurotransmission. The molecular mechanisms involved in synapse degeneration in these diseases are poorly understood. In this study the process of synapse degeneration was investigated by measuring the synaptophysin content of cultured neurones incubated with the prion derived peptide (PrP82-146) or with Abeta1-42, a peptide thought to trigger pathogenesis in Alzheimer's disease. A pharmacological approach was used to screen cell signalling pathways involved in synapse degeneration. RESULTS Pre-treatment with phospholipase A2 inhibitors (AACOCF3, MAFP and aristolochic acids) protected against synapse degeneration in cultured cortical and hippocampal neurones incubated with PrP82-146 or Abeta1-42. Synapse degeneration was also observed following the addition of a specific phospholipase A2 activating peptide (PLAP) and the addition of PrP82-146 or Abeta1-42 activated cytoplasmic phospholipase A2 within synapses. Activation of phospholipase A2 is the first step in the generation of platelet-activating factor (PAF) and PAF receptor antagonists (ginkgolide B, Hexa-PAF and CV6029) protected against synapse degeneration induced by PrP82-146, Abeta1-42 and PLAP. PAF facilitated the production of prostaglandin E2, which also caused synapse degeneration and pre-treatment with the prostanoid E receptor antagonist AH13205 protected against PrP82-146, Abeta1-42 and PAF induced synapse degeneration. CONCLUSIONS Our results are consistent with the hypothesis that PrP82-146 and Abeta1-42trigger abnormal activation of cytoplasmic phospholipase A2 resident within synapses, resulting in elevated levels of PAF and prostaglandin E2that cause synapse degeneration. Inhibitors of this pathway that can cross the blood brain barrier may protect against the synapse degeneration seen during Alzheimer's or prion diseases.
Collapse
|
23
|
Sobota JA, Bäck N, Eipper BA, Mains RE. Inhibitors of the V0 subunit of the vacuolar H+-ATPase prevent segregation of lysosomal- and secretory-pathway proteins. J Cell Sci 2009; 122:3542-53. [PMID: 19737820 DOI: 10.1242/jcs.034298] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vacuolar H(+)-ATPase (V-ATPase) establishes pH gradients along secretory and endocytic pathways. Progressive acidification is essential for proteolytic processing of prohormones and aggregation of soluble content proteins. The V-ATPase V(0) subunit is thought to have a separate role in budding and fusion events. Prolonged treatment of professional secretory cells with selective V-ATPase inhibitors (bafilomycin A1, concanamycin A) was used to investigate its role in secretory-granule biogenesis. As expected, these inhibitors eliminated regulated secretion and blocked prohormone processing. Drug treatment caused the formation of large, mixed organelles, with components of immature granules and lysosomes and some markers of autophagy. Markers of the trans-Golgi network and earlier secretory pathway were unaffected. Ammonium chloride and methylamine treatment blocked acidification to a similar extent as the V-ATPase inhibitors without producing mixed organelles. Newly synthesized granule content proteins appeared in mixed organelles, whereas mature secretory granules were spared. Following concanamycin treatment, selected membrane proteins enter tubulovesicular structures budding into the interior of mixed organelles. shRNA-mediated knockdown of the proteolipid subunit of V(0) also caused vesiculation of immature granules. Thus, V-ATPase has a role in protein sorting in immature granules that is distinct from its role in acidification.
Collapse
Affiliation(s)
- Jacqueline A Sobota
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
24
|
Bate C, Tayebi M, Salmona M, Diomede L, Williams A. Polyunsaturated fatty acids protect against prion-mediated synapse damage in vitro. Neurotox Res 2009; 17:203-14. [PMID: 19644728 DOI: 10.1007/s12640-009-9093-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 06/11/2009] [Accepted: 07/14/2009] [Indexed: 02/05/2023]
Abstract
A loss of synapses is characteristic of the early stages of the prion diseases. Here we modelled the synapse damage that occurs in prion diseases by measuring the amount of synaptophysin, a pre-synaptic membrane protein essential for neurotransmission, in cortical or hippocampal neurones incubated with the disease associated isoform of the prion protein (PrP(Sc)), or with the prion-derived peptide PrP82-146. The addition of PrP(Sc) or PrP82-146 caused a dose-dependent reduction in the synaptophysin content of PrP wildtype neurones indicative of synapse damage. They did not affect the synaptophysin content of PrP null neurones. The loss of synaptophysin in PrP wildtype neurones was preceded by the accumulation of PrP82-146 within synapses. Since supplements containing polyunsaturated fatty acids (PUFA) are frequently taken for their perceived health benefits including reported amelioration of neurodegenerative conditions, the effects of some common PUFA on prion-mediated synapse damage were examined. Pre-treatment of cortical or hippocampal neurones with docosahexaenoic (DHA) or eicosapentaenoic acids (EPA) protected neurones against the loss of synaptophysin induced by PrP82-146 or PrP(Sc). This effect of DHA and EPA was selective as they did not alter the loss of synaptophysin induced by a snakevenom neurotoxin. The effects of DHA and EPA were associated with a significant reduction in the amount of FITC-PrP82-146 that accumulated within synapses. Such observations raise the possibility that supplements containing PUFA may protect against the synapse damage and cognitive loss seen during the early stages of prion diseases.
Collapse
Affiliation(s)
- Clive Bate
- Department of Pathology and Infectious Diseases, Royal Veterinary College, North Mymms, Herts, AL9 7TA, UK.
| | | | | | | | | |
Collapse
|
25
|
Brunger AT, Weninger K, Bowen M, Chu S. Single-molecule studies of the neuronal SNARE fusion machinery. Annu Rev Biochem 2009; 78:903-28. [PMID: 19489736 DOI: 10.1146/annurev.biochem.77.070306.103621] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SNAREs are essential components of the machinery for Ca(2+)-triggered fusion of synaptic vesicles with the plasma membrane, resulting in neurotransmitter release into the synaptic cleft. Although much is known about their biophysical and structural properties and their interactions with accessory proteins such as the Ca(2+) sensor synaptotagmin, their precise role in membrane fusion remains an enigma. Ensemble studies of liposomes with reconstituted SNAREs have demonstrated that SNAREs and accessory proteins can trigger lipid mixing/fusion, but the inability to study individual fusion events has precluded molecular insights into the fusion process. Thus, this field is ripe for studies with single-molecule methodology. In this review, we discuss applications of single-molecule approaches to observe reconstituted SNAREs, their complexes, associated proteins, and their effect on biological membranes. Some of the findings are provocative, such as the possibility of parallel and antiparallel SNARE complexes or of vesicle docking with only syntaxin and synaptobrevin, but have been confirmed by other experiments.
Collapse
Affiliation(s)
- Axel T Brunger
- The Howard Hughes Medical Institute and Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Structural Biology, and Photon Science, Stanford University, CA 94305, USA.
| | | | | | | |
Collapse
|
26
|
Scheenen WJJM, Jansen EJR, Roubos EW, Martens GJM. Using transgenic animal models in neuroendocrine research: lessons from Xenopus laevis. Ann N Y Acad Sci 2009; 1163:296-307. [PMID: 19456351 DOI: 10.1111/j.1749-6632.2008.03644.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transgenic animals are commonly employed to explore the function of individual proteins. Transgenic animal models include the mouse, the zebrafish, and the South African clawed toad Xenopus laevis. In contrast to mice and zebrafish, with Xenopus transgenesis DNA integration is mostly achieved in the one-cell stage. Moreover, Xenopus (as well as zebrafish) eggs are relatively large, the embryos are transparent, a large offspring is generated, and maintenance of the offspring is easy. In our transgenic studies in Xenopus, we focus on the well-characterized neuroendocrine melanotrope cells of the pituitary pars intermedia that are regulated during the process of adaptation of Xenopus to a changing environment. When the animal is placed on a black background, the melanotrope cells produce and process large amounts of the prohormone proopiomelanocortin (POMC). We apply stable melanotrope-specific transgenesis that is achieved by mixing a Xenopus POMC-promoter/transgene construct with sperm nuclei and injecting this mixture into unfertilized eggs. Since in the melanotrope cells the POMC promoter is much more active in black-adapted animals, the level of transgene expression can be manipulated by placing the animal on either a black or a white background. In this paper we review the possibilities of the Xenopus melanotrope-specific transgenic approach. Following a brief overview of the functioning of Xenopus melanotrope cells, stable melanotrope-specific transgenesis is discussed and our transgenic studies on brain-derived neurotrophic factor and secretory pathway components are described as examples of the transgenic approach in a physiological context and close to the in vivo situation.
Collapse
Affiliation(s)
- W J J M Scheenen
- Department of Cellular Animal Physiology, European Graduate School of Neuroscience, Faculty of Science, Radbound University Nijmegen, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
27
|
Liu L, Tucker SC, Satir BH. Toxoplasma PRP1 is an ortholog of parafusin (PFUS) in vesicle scaffold assembly in Ca2+-regulated exocytosis. Eur J Cell Biol 2009; 88:301-13. [DOI: 10.1016/j.ejcb.2008.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 10/06/2008] [Accepted: 10/08/2008] [Indexed: 11/25/2022] Open
|
28
|
|
29
|
Dittman J. Chapter 2 Worm Watching: Imaging Nervous System Structure and Function in Caenorhabditis elegans. ADVANCES IN GENETICS 2009; 65:39-78. [DOI: 10.1016/s0065-2660(09)65002-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
30
|
A kinetic model unifying presynaptic short-term facilitation and depression. J Comput Neurosci 2008; 26:459-73. [PMID: 19093195 DOI: 10.1007/s10827-008-0122-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 10/23/2008] [Accepted: 10/28/2008] [Indexed: 10/21/2022]
Abstract
Short-term facilitation and depression refer to the increase and decrease of synaptic strength under repetitive stimuli within a timescale of milliseconds to seconds. This phenomenon has been attributed to primarily presynaptic mechanisms such as calcium-dependent transmitter release and presynaptic vesicle depletion. Previous modeling studies that aimed to integrate the complex short-term facilitation and short-term depression data derived from varying synapses have relied on computer simulation or abstract mathematical approaches. Here, we propose a unified theory of synaptic short-term plasticity based on realistic yet tractable and testable model descriptions of the underlying intracellular biochemical processes. Analysis of the model equations leads to a closed-form solution of the resonance frequency, a function of several critical biophysical parameters, as the single key indicator of the propensity for synaptic facilitation or depression under repetitive stimuli. This integrative model is supported by a broad range of transient and frequency response experimental data including those from facilitating, depressing or mixed-mode synapses. Specifically, the theory predicts that high calcium initial concentration and large gain of calcium action result in low resonance frequency and hence depressing behavior. In contrast, for synapses that are less sensitive to calcium or have higher recovery rate, resonance frequency becomes higher and thus facilitation prevails. The notion of resonance frequency therefore allows valuable quantitative parametric assessment of the contributions of various presynaptic mechanisms to the directionality of synaptic short-term plasticity. Thus, the model provides the reasons behind the switching behavior between facilitation and depression observed in experiments. New experiments are also suggested to control the short-term synaptic signal processing through adjusting the resonance frequency and bandwidth.
Collapse
|
31
|
Jansen EJR, Scheenen WJJM, Hafmans TGM, Martens GJM. Accessory subunit Ac45 controls the V-ATPase in the regulated secretory pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2301-10. [PMID: 18657579 DOI: 10.1016/j.bbamcr.2008.06.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 06/26/2008] [Accepted: 06/26/2008] [Indexed: 10/21/2022]
Abstract
The vacuolar (H(+))-ATPase (V-ATPase) is crucial for multiple processes within the eukaryotic cell, including membrane transport and neurotransmitter secretion. How the V-ATPase is regulated, e.g. by an accessory subunit, remains elusive. Here we explored the role of the neuroendocrine V-ATPase accessory subunit Ac45 via its transgenic expression specifically in the Xenopus intermediate pituitary melanotrope cell model. The Ac45-transgene product did not affect the levels of the prohormone proopiomelanocortin nor of V-ATPase subunits, but rather caused an accumulation of the V-ATPase at the plasma membrane. Furthermore, a higher abundance of secretory granules, protrusions of the plasma membrane and an increased Ca(2+)-dependent secretion efficiency were observed in the Ac45-transgenic cells. We conclude that in neuroendocrine cells Ac45 guides the V-ATPase through the secretory pathway, thereby regulating the V-ATPase-mediated process of Ca(2+)-dependent peptide secretion.
Collapse
Affiliation(s)
- Eric J R Jansen
- Department of Molecular Animal Physiology, Donders Centre for Neuroscience, Faculty of Science, Radboud University, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
32
|
Ng EL, Tang BL. Rab GTPases and their roles in brain neurons and glia. ACTA ACUST UNITED AC 2008; 58:236-46. [PMID: 18485483 DOI: 10.1016/j.brainresrev.2008.04.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/29/2008] [Accepted: 04/06/2008] [Indexed: 12/19/2022]
Affiliation(s)
- Ee Ling Ng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | | |
Collapse
|
33
|
Cohen R, Schmitt BM, Atlas D. Reconstitution of depolarization and Ca2+-evoked secretion in Xenopus oocytes monitored by membrane capacitance. Methods Mol Biol 2008; 440:269-82. [PMID: 18369953 DOI: 10.1007/978-1-59745-178-9_21] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The identity of the proteins that constitute the "minimal molecular machinery" required for depolarization-evoked neurotransmitter release at synapses is still not fully disclosed. Using capacitance monitoring combined with heterologous protein expression in Xenopus oocytes, we were able to reconstitute a fast (<.5 s) secretion that was triggered directly by membrane depolarization. The functional assembly of voltage-gated Ca2+ channel (Cav1.2 or Cav2.2) coexpressed with syntaxin 1A, synaptosome-associated protein of 25 kDa (SNAP-25), and synaptotagmin led to the reconstitution of depolarization-evoked secretion. Botulinum C1, botulinum A, and tetanus toxin were used to establish that this minimal set of proteins, named the excitosome complex, was necessary and sufficient for reconstituting depolarization-induced exocytosis. Similar to synaptic transmission, the capacitance changes were sensitive to neurotoxins, modulated by divalent cations (Ca2+, Ba2+, and Sr2+) or channels (Lc or N type; ionotropic glutamate GLUR3), and depended nonlinearly on extracellular divalent cation concentration. Expression of a recombinant intracellular domain of the calcium channel (Lc753-893) abolished evoked release in the reconstituted assay. Also, mutations at the synaptotagmin C2A polylysine motif, a channel interaction site, abolished depolarization-evoked capacitance transients, consistent with release studies in PC12 cells. Because of its improved speed, native trigger, and great experimental versatility, this reconstitution assay provides a novel, promising tool to study synaptic and nonsynaptic exocytosis and examine the role of other proteins implicated in these processes.
Collapse
Affiliation(s)
- Roy Cohen
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | |
Collapse
|
34
|
Kawase O, Nishikawa Y, Bannai H, Zhang H, Zhang G, Jin S, Lee EG, Xuan X. Proteomic analysis of calcium-dependent secretion in Toxoplasma gondii. Proteomics 2007; 7:3718-25. [PMID: 17880006 DOI: 10.1002/pmic.200700362] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Toxoplasma gondii is an intracellular protozoan parasite that invades a wide range of nucleated cells. In the course of intracellular parasitism, the parasite releases a large variety of proteins from three secretory organelles, namely, micronemes, rhoptries and dense granules. Elevation of intracellular Ca(2+) in the parasite causes microneme discharge, and microneme secretion is essential for the invasion. In this study, we performed a proteomic analysis of the Ca(2+)-dependent secretion to evaluate the protein repertoire. We found that Ca(2+)-mobilising agents, such as thapsigargin, NH(4)Cl, ethanol and a Ca(2+) ionophore, A23187, promoted the secretion of the parasite proteins. The proteins, artificially secreted by A23187, were used in a comparative proteomic analysis by 2-DE followed by PMF analysis and/or N-terminal sequencing. Major known microneme proteins (MICs), such as MIC2, MIC4, MIC6 and MIC10 and apical membrane antigen 1 (AMA1), were identified, indicating that the proteomic analysis worked accurately. Interestingly, new members of secretory proteins, namely rhoptry protein 9 (ROP9) and Toxoplasma SPATR (TgSPATR), which was a homologue of a Plasmodium secreted protein with an altered thrombospondin repeat (SPATR), were detected in Ca(2+)-dependent secretion. Thus, we succeeded in detecting Ca(2+)-dependent secretory proteins in T. gondii, which contained novel secretory proteins.
Collapse
Affiliation(s)
- Osamu Kawase
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhdanov AV, Ward MW, Prehn JHM, Papkovsky DB. Dynamics of intracellular oxygen in PC12 Cells upon stimulation of neurotransmission. J Biol Chem 2007; 283:5650-61. [PMID: 18086678 DOI: 10.1074/jbc.m706439200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurotransmission, synaptic plasticity, and maintenance of membrane excitability require high mitochondrial activity in neurosecretory cells. Using a fluorescence-based intracellular O2 sensing technique, we investigated the respiration of differentiated PC12 cells upon depolarization with 100 mm K+. Single cell confocal analysis identified a significant depolarization of the plasma membrane potential and a relatively minor depolarization of the mitochondrial membrane potential following K+ exposure. We observed a two-phase respiratory response: a first intense spike lasting approximately 10 min, during which average intracellular O2 was reduced from 85-90% of air saturation to 55-65%, followed by a second wave of smaller amplitude and longer duration. The fast rise in O2 consumption coincided with a transient increase in cellular ATP by approximately 60%, which was provided largely by oxidative phosphorylation and by glycolysis. The increase of respiration was orchestrated mainly by Ca2+ release from the endoplasmic reticulum, whereas the influx of extracellular Ca2+ contributed approximately 20%. Depletion of Ca2+ stores by ryanodine, thapsigargin, and 4-chloro-m-cresol reduced the amplitude of respiratory spike by 45, 63, and 71%, respectively, whereas chelation of intracellular Ca2+ abolished the response. Uncoupling of the mitochondria with the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone amplified the responses to K+; elevated respiration induced a profound deoxygenation without increasing the cellular ATP levels reduced by carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Cleavage of synaptobrevin 2 by tetanus toxin, known to reduce neurotransmission, did not affect the respiratory response to K+, whereas the general excitability of d PC12 cells increased.
Collapse
Affiliation(s)
- Alexander V Zhdanov
- Biochemistry Department, University College Cork, Cavanagh Pharmacy Building, Cork, Ireland
| | | | | | | |
Collapse
|
36
|
Husson SJ, Mertens I, Janssen T, Lindemans M, Schoofs L. Neuropeptidergic signaling in the nematode Caenorhabditis elegans. Prog Neurobiol 2007; 82:33-55. [PMID: 17383075 DOI: 10.1016/j.pneurobio.2007.01.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 12/14/2006] [Accepted: 01/29/2007] [Indexed: 11/25/2022]
Abstract
The nematode Caenorhabditis elegans joins the menagerie of behavioral model systems next to the fruit fly Drosophila melanogaster, the marine snail Aplysia californica and the mouse. In contrast to Aplysia, which contains 20,000 neurons having cell bodies of hundreds of microns in diameter, C. elegans harbors only 302 tiny neurons from which the cell lineage is completely described, as is the case for all the other somatic cells. As such, this nervous system appears at first sight incommensurable with those of higher organisms, although genome-wide comparison of predicted C. elegans genes with their counterparts in vertebrates revealed many parallels. Together with its short lifespan and ease of cultivation, suitability for high-throughput genetic screenings and genome-wide RNA interference approaches, access to an advanced genetic toolkit and cell-ablation techniques, it seems that this tiny transparent organism of only 1mm in length has nothing to hide. Recently, highly exciting developments have occurred within the field of neuropeptidergic signaling in C. elegans, not only because of the availability of a sequenced genome since 1998, but especially because of state of the art post genomic technologies, that allow for molecular characterization of the signaling molecules. Here, we will focus on endogenous, bioactive (neuro)peptides and mainly discuss biosynthesis, peptide sequence information, localization and G-protein coupled receptors of the three major peptide families in C. elegans.
Collapse
Affiliation(s)
- Steven J Husson
- Functional Genomics and Proteomics Unit, Department of Biology, Katholieke Universiteit Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
37
|
Tsutsuki H, Kohda T, Hara M, Kozaki S, Ihara H. Nitric oxide inhibits depolarization-evoked glutamate release from rat cerebellar granule cells. Nitric Oxide 2007; 16:217-27. [PMID: 17126044 DOI: 10.1016/j.niox.2006.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 10/01/2006] [Accepted: 10/06/2006] [Indexed: 10/24/2022]
Abstract
Nitric oxide (NO) modulates the release of various neurotransmitters, some of these are considered to be involved in neuronal plasticity that includes long-term depression in the cerebellum. To date, there have been no reports on the modulation of the exocytotic release of neurotransmitters in the cerebellar granule cells (CGCs) by NO. The aim of this study was to investigate the effects of NO on the exocytotic release of glutamate from rat CGCs. Treatment with NO-related reagents revealed that NO inhibited high-K(+)-evoked glutamate release. Clostridium botulinum type B neurotoxin (BoNT/B) attenuated the enhancement of glutamate release caused by NO synthase (NOS) inhibition; this indicates that NO acts on the high-K(+)-evoked exocytotic pathway. cGMP-related reagents did not affect the high-K(+)-evoked glutamate release. NO-related reagents did not affect Ca(2+) ionophore-induced glutamate release, suggesting that NO inhibits Ca(2+) entry through voltage-dependent Ca(2+) channels (VDCC). Monitoring of intracellular Ca(2+) revealed that NO inhibited high-K(+)-evoked Ca(2+) entry. L-type VDCC blockers inhibited glutamate release and NO did not have an additive effect on the inhibition produced by the L-type VDCC blocker. The inhibition of the high-K(+)-evoked glutamate release by NO was abolished by a reducing reagent; this suggested that NO regulates the high-K(+)-evoked glutamate release from CGCs by redox modulation.
Collapse
Affiliation(s)
- Hiroyasu Tsutsuki
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Gakuen-cho, Sakai, Osaka, Japan
| | | | | | | | | |
Collapse
|
38
|
Chapin A, Correa P, Maguire M, Kohn R. Synaptic neurotransmission protein UNC-13 affects RNA interference in neurons. Biochem Biophys Res Commun 2007; 354:1040-4. [PMID: 17276405 DOI: 10.1016/j.bbrc.2007.01.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 01/17/2007] [Indexed: 11/15/2022]
Abstract
Caenorhabditis elegans UNC-13 is an integral component of the synaptic vesicle cycle, functioning in the priming step. A recent yeast two-hybrid screen against UNC-13 identified three interacting proteins that are thought to function in pathways other than neurotransmitter release. One such protein, ERI-1, negatively regulates exogenous RNA interference in the nervous system and other tissues. This study investigates a role for UNC-13 in RNAi through analysis of RNAi penetrance in unc-13 and eri-1 mutant strains. Feeding these strains double stranded RNA corresponding to a neuronally expressed GFP reporter resulted in a significant reduction of GFP in double mutants compared to GFP expression in eri-1 mutants, indicating that UNC-13 functions in conjunction with ERI-1 in RNAi. There is no evidence for altered neurotransmission in eri-1 mutants.
Collapse
Affiliation(s)
- Alexander Chapin
- Department of Biology, Ursinus College, Collegeville, PA 19426, USA
| | | | | | | |
Collapse
|
39
|
Miyauchi N, Saito A, Karasawa T, Harita Y, Suzuki K, Koike H, Han GD, Shimizu F, Kawachi H. Synaptic vesicle protein 2B is expressed in podocyte, and its expression is altered in proteinuric glomeruli. J Am Soc Nephrol 2006; 17:2748-59. [PMID: 16943307 DOI: 10.1681/asn.2005121293] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Synaptic vesicle protein 2B (SV2B) was identified by the subtraction hybridization technique as a molecule of which mRNA expression was decreased in puromycin aminonucleoside (PAN) nephropathy by glomerular cDNA subtraction assay. The expression of SV2B was detected in glomerular lysate with Western blot analysis. Dual-labeling immunofluorescence studies with glomerular cell markers demonstrated that SV2B is expressed in glomerular visceral epithelial cells (podocytes). The expression of SV2B is detected also in cultured podocyte and in human kidney section as podocytic pattern. The decrease of SV2B mRNA was already detected before the onset of proteinuria in PAN nephropathy. The mRNA expression of SV2B clearly is altered not only in PAN nephropathy but also in another proteinuric state that is caused by an antibody against nephrin, a functional molecule of the slit diaphragm. The decreased intensity in SV2B staining was already detected before the peak of proteinuria in both models with immunofluorescence study. A reduced amount of SV2B was detected in both models also with Western blot analysis. CD2AP, another functional molecule of the slit diaphragm, was observed in cytoplasm, including the processes area of the cultured podocyte, and when the podocyte was treated with small interfering RNA for SV2B, CD2AP staining at the process area was not detected. These results suggest that SV2B is a functional molecule of podocyte, and SV2B may play a role in the expression and proper localization of CD2AP.
Collapse
Affiliation(s)
- Naoko Miyauchi
- Department of Cell Biology, Institute of Nephrology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Niigata 951-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Schindelman G, Whittaker AJ, Thum JY, Gharib S, Sternberg PW. Initiation of male sperm-transfer behavior in Caenorhabditis elegans requires input from the ventral nerve cord. BMC Biol 2006; 4:26. [PMID: 16911797 PMCID: PMC1564418 DOI: 10.1186/1741-7007-4-26] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 08/15/2006] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The Caenorhabditis elegans male exhibits a stereotypic behavioral pattern when attempting to mate. This behavior has been divided into the following steps: response, backing, turning, vulva location, spicule insertion, and sperm transfer. We and others have begun in-depth analyses of all these steps in order to understand how complex behaviors are generated. Here we extend our understanding of the sperm-transfer step of male mating behavior. RESULTS Based on observation of wild-type males and on genetic analysis, we have divided the sperm-transfer step of mating behavior into four sub-steps: initiation, release, continued transfer, and cessation. To begin to understand how these sub-steps of sperm transfer are regulated, we screened for ethylmethanesulfonate (EMS)-induced mutations that cause males to transfer sperm aberrantly. We isolated an allele of unc-18, a previously reported member of the Sec1/Munc-18 (SM) family of proteins that is necessary for regulated exocytosis in C. elegans motor neurons. Our allele, sy671, is defective in two distinct sub-steps of sperm transfer: initiation and continued transfer. By a series of transgenic site-of-action experiments, we found that motor neurons in the ventral nerve cord require UNC-18 for the initiation of sperm transfer, and that UNC-18 acts downstream or in parallel to the SPV sensory neurons in this process. In addition to this neuronal requirement, we found that non-neuronal expression of UNC-18, in the male gonad, is necessary for the continuation of sperm transfer. CONCLUSION Our division of sperm-transfer behavior into sub-steps has provided a framework for the further detailed analysis of sperm transfer and its integration with other aspects of mating behavior. By determining the site of action of UNC-18 in sperm-transfer behavior, and its relation to the SPV sensory neurons, we have further defined the cells and tissues involved in the generation of this behavior. We have shown both a neuronal and non-neuronal requirement for UNC-18 in distinct sub-steps of sperm-transfer behavior. The definition of circuit components is a crucial first step toward understanding how genes specify the neural circuit and hence the behavior.
Collapse
Affiliation(s)
- Gary Schindelman
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Allyson J Whittaker
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jian Yuan Thum
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shahla Gharib
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul W Sternberg
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
41
|
Shillcock JC, Lipowsky R. The computational route from bilayer membranes to vesicle fusion. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2006; 18:S1191-S1219. [PMID: 21690837 DOI: 10.1088/0953-8984/18/28/s06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Biological membranes are examples of 'smart' materials whose properties and behaviour emerge from the propagation across many scales of the molecular characteristics of their constituents. Artificial smart materials, such as drug delivery vehicles and biosensors, often rely on modifying naturally occurring soft matter, such as polymers and lipid vesicles, so that they possess useful behaviour. However, the complexity of natural membranes, both in their static properties, exemplified in their phase behaviour, and in their dynamic properties, as in the kinetics of their formation and interactions, hinders their rational modification. Mesoscopic simulations, such as dissipative particle dynamics (DPD), allow in silico experiments to be easily and cheaply performed on complex, soft materials requiring as input only the molecular structure of the constituents at a coarse-grained level. They can therefore act as a guide to experimenters prior to performing costly assays. Additionally, mesoscopic simulations provide the only currently feasible window on the length- and timescales relevant to important biophysical processes such as vesicle fusion. We review here the development of computational models of bilayer membranes, and in particular the use of mesoscopic simulations to follow the molecular rearrangements that occur during membrane fusion.
Collapse
Affiliation(s)
- Julian C Shillcock
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germanyhttp://www.mpikg.mpg.de/th
| | | |
Collapse
|
42
|
Kaletta T, Hengartner MO. Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov 2006; 5:387-98. [PMID: 16672925 DOI: 10.1038/nrd2031] [Citation(s) in RCA: 711] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite its apparent simplicity, the nematode worm Caenorhabditis elegans has developed into an important model for biomedical research, particularly in the functional characterization of novel drug targets that have been identified using genomics technologies. The cellular complexity and the conservation of disease pathways between C. elegans and higher organisms, together with the simplicity and cost-effectiveness of cultivation, make for an effective in vivo model that is amenable to whole-organism high-throughput compound screens and large-scale target validation. This review describes how C. elegans models can be used to advance our understanding of the molecular mechanisms of drug action and disease pathogenesis.
Collapse
|
43
|
Kubista H, Boehm S. Molecular mechanisms underlying the modulation of exocytotic noradrenaline release via presynaptic receptors. Pharmacol Ther 2006; 112:213-42. [PMID: 16730801 DOI: 10.1016/j.pharmthera.2006.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
The release of noradrenaline from nerve terminals is modulated by a variety of presynaptic receptors. These receptors belong to one of the following three receptor superfamilies: transmitter-gated ion channels, G protein-coupled receptors (GPCR), and membrane receptors with intracellular enzymatic activities. For representatives of each of these three superfamilies, receptor activation has been reported to cause either an enhancement or a reduction of noradrenaline release. As these receptor classes display greatly diverging structures and functions, a multitude of different molecular mechanisms are involved in the regulation of noradrenaline release via presynaptic receptors. This review gives a short overview of the presynaptic receptors on noradrenergic nerve terminals and summarizes the events involved in vesicle exocytosis in order to finally delineate the most important signaling cascades that mediate the modulation via presynaptic receptors. In addition, the interactions between the various presynaptic receptors are described and the underlying molecular mechanisms are elucidated. Together, these presynaptic signaling mechanisms form a sophisticated network that precisely adapts the amount of noradrenaline being released to a given situation.
Collapse
Affiliation(s)
- Helmut Kubista
- Institute of Pharmacology, Centre of Biomolecular Medicine and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090 Vienna, Austria
| | | |
Collapse
|
44
|
Mahoney TR, Liu Q, Itoh T, Luo S, Hadwiger G, Vincent R, Wang ZW, Fukuda M, Nonet ML. Regulation of synaptic transmission by RAB-3 and RAB-27 in Caenorhabditis elegans. Mol Biol Cell 2006; 17:2617-25. [PMID: 16571673 PMCID: PMC1474797 DOI: 10.1091/mbc.e05-12-1170] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rab small GTPases are involved in the transport of vesicles between different membranous organelles. RAB-3 is an exocytic Rab that plays a modulatory role in synaptic transmission. Unexpectedly, mutations in the Caenorhabditis elegans RAB-3 exchange factor homologue, aex-3, cause a more severe synaptic transmission defect as well as a defecation defect not seen in rab-3 mutants. We hypothesized that AEX-3 may regulate a second Rab that regulates these processes with RAB-3. We found that AEX-3 regulates another exocytic Rab, RAB-27. Here, we show that C. elegans RAB-27 is localized to synapse-rich regions pan-neuronally and is also expressed in intestinal cells. We identify aex-6 alleles as containing mutations in rab-27. Interestingly, aex-6 mutants exhibit the same defecation defect as aex-3 mutants. aex-6; rab-3 double mutants have behavioral and pharmacological defects similar to aex-3 mutants. In addition, we demonstrate that RBF-1 (rabphilin) is an effector of RAB-27. Therefore, our work demonstrates that AEX-3 regulates both RAB-3 and RAB-27, that both RAB-3 and RAB-27 regulate synaptic transmission, and that RAB-27 potentially acts through its effector RBF-1 to promote soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) function.
Collapse
Affiliation(s)
- Timothy R. Mahoney
- *Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Qiang Liu
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030; and
| | - Takashi Itoh
- Fukuda Initiative Research Unit, RIKEN, Wako, Saitama 351-0198, Japan
| | - Shuo Luo
- *Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gayla Hadwiger
- *Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Rose Vincent
- *Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030; and
| | - Mitsunori Fukuda
- Fukuda Initiative Research Unit, RIKEN, Wako, Saitama 351-0198, Japan
| | - Michael L. Nonet
- *Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
45
|
Cohen R, Schmitt BM, Atlas D. Molecular identification and reconstitution of depolarization-induced exocytosis monitored by membrane capacitance. Biophys J 2005; 89:4364-73. [PMID: 16150968 PMCID: PMC1367000 DOI: 10.1529/biophysj.105.064642] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulated exocytosis of neurotransmitters at synapses is fast and tightly regulated. It is unclear which proteins constitute the "minimal molecular machinery" for this process. Here, we show that a novel technique of capacitance monitoring combined with heterologous protein expression can be used to reconstitute exocytosis that is fast (<0.5 s) and triggered directly by membrane depolarization in Xenopus oocytes. Testing synaptic proteins, voltage-gated Ca2+ channels, and using botulinum and tetanus neurotoxins established that the expression of a Ca2+ channel together with syntaxin 1A, SNAP-25, and synaptotagmin was sufficient and necessary for the reconstitution of depolarization-induced exocytosis. Similar to synaptic exocytosis, the reconstituted release was sensitive to neurotoxins, modulated by divalent cations (Ca2+, Ba2+, and Sr2+) or channel (Lc-, N-type), and depended nonlinearly on divalent cation concentration. Because of its improved speed, native trigger, and great experimental versatility, this reconstitution assay provides a novel, promising tool to study synaptic exocytosis.
Collapse
Affiliation(s)
- Roy Cohen
- Department of Biological Chemistry, The Institute of Life Sciences and the Otto Loewi Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | |
Collapse
|
46
|
Lam PPL, Leung YM, Sheu L, Ellis J, Tsushima RG, Osborne LR, Gaisano HY. Transgenic mouse overexpressing syntaxin-1A as a diabetes model. Diabetes 2005; 54:2744-54. [PMID: 16123365 DOI: 10.2337/diabetes.54.9.2744] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) protein syntaxin-1A (STX-1A) plays a role not only in exocytosis, but also binds and regulates Ca(2+) and K(+) (voltage-gated K(+) and ATP-sensitive K(+) channels) to influence the sequence of events leading to secretion. Islet levels of STX-1A and cognate SNARE proteins are reduced in type 2 diabetic rodents, suggesting their role in dysregulated insulin secretion contributing to the abnormal glucose homeostasis. We investigated the specific role of STX-1A in pancreatic beta-cells by generating transgenic mice, which express a moderately increased level ( approximately 30% higher) of STX-1A in pancreatic islets (hereafter called STX-1A mice). The STX-1A mice displayed fasting hyperglycemia and a more sustained elevation of plasma glucose levels after an intraperitoneal glucose tolerance test, with correspondingly reduced plasma insulin levels. Surprisingly, beta-cells from the STX-1A male mice also exhibited abnormal insulin tolerance. To unequivocally determine the beta-cell secretory defects, we used single-cell analyses of exocytosis by patch clamp membrane capacitance measurements and ion channel recordings. Depolarization-evoked membrane capacitance increases were reduced in the STX-1A mouse islet beta-cells. The STX-1A mouse also exhibited reduced currents through the Ca(2+) channels but little change in the voltage-gated K(+) channel or ATP-sensitive K(+) channel. These results suggest that fluctuation of islet STX-1A levels in diabetes could influence the pathological and differential regulation of beta-cell ion channels and the exocytotic machinery, collectively contributing to the impaired insulin secretion.
Collapse
Affiliation(s)
- Patrick P L Lam
- University of Toronto, Room 7226, Medical Science Building, 1 King's College Circle, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Hiesinger PR, Fayyazuddin A, Mehta SQ, Rosenmund T, Schulze KL, Zhai RG, Verstreken P, Cao Y, Zhou Y, Kunz J, Bellen HJ. The v-ATPase V0 subunit a1 is required for a late step in synaptic vesicle exocytosis in Drosophila. Cell 2005; 121:607-620. [PMID: 15907473 PMCID: PMC3351201 DOI: 10.1016/j.cell.2005.03.012] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 02/14/2005] [Accepted: 03/16/2005] [Indexed: 02/04/2023]
Abstract
The V(0) complex forms the proteolipid pore of an ATPase that acidifies vesicles. In addition, an independent function in membrane fusion has been proposed largely based on yeast vacuolar fusion experiments. We have isolated mutations in the largest V(0) component vha100-1 in flies in an unbiased genetic screen for synaptic malfunction. The protein is only required in neurons, colocalizes with markers for synaptic vesicles as well as active zones, and interacts with t-SNAREs. Loss of vha100-1 leads to vesicle accumulation in synaptic terminals, suggesting a deficit in release. The amplitude of spontaneous release events and release with hypertonic stimulation indicate normal levels of neurotransmitter loading, yet mutant embryos display severe defects in evoked synaptic transmission and FM1-43 uptake. Our data suggest that Vha100-1 functions downstream of SNAREs in synaptic vesicle fusion.
Collapse
Affiliation(s)
- P Robin Hiesinger
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030
| | - Amir Fayyazuddin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Sunil Q Mehta
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Tanja Rosenmund
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Karen L Schulze
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030
| | - R Grace Zhai
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030
| | - Patrik Verstreken
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Yu Cao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Yi Zhou
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Jeannette Kunz
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030
| | - Hugo J Bellen
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030; Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030; Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030.
| |
Collapse
|
48
|
Bowen ME, Weninger K, Ernst J, Chu S, Brunger AT. Single-molecule studies of synaptotagmin and complexin binding to the SNARE complex. Biophys J 2005; 89:690-702. [PMID: 15821166 PMCID: PMC1366567 DOI: 10.1529/biophysj.104.054064] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The assembly of multiprotein complexes at the membrane interface governs many signaling processes in cells. However, very few methods exist for obtaining biophysical information about protein complex formation at the membrane. We used single molecule fluorescence resonance energy transfer to study complexin and synaptotagmin interactions with the SNARE complex in deposited lipid bilayers. Using total internal reflectance microscopy, individual binding events at the membrane could be resolved despite an excess of unbound protein in solution. Fluorescence resonance energy transfer (FRET)-efficiency derived distances for the complexin-SNARE interaction were consistent with the crystal structure of the complexin-SNARE complex. The unstructured N-terminal region of complexin showed broad distributions of FRET efficiencies to the SNARE complex, suggesting that information on conformational variability can be obtained from FRET efficiency distributions. The low-affinity interaction of synaptotagmin with the SNARE complex changed dramatically upon addition of Ca2+ with high FRET efficiency interactions appearing between the C2B domain and linker domains of synaptotagmin and the membrane proximal portion of the SNARE complex. These results demonstrate that single molecule FRET can be used as a "spectroscopic ruler" to simultaneously gain structural and kinetic information about transient multiprotein complexes at the membrane interface.
Collapse
Affiliation(s)
- Mark E Bowen
- The Howard Hughes Medical Institute and Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA
| | | | | | | | | |
Collapse
|
49
|
Fox RM, Von Stetina SE, Barlow SJ, Shaffer C, Olszewski KL, Moore JH, Dupuy D, Vidal M, Miller DM. A gene expression fingerprint of C. elegans embryonic motor neurons. BMC Genomics 2005; 6:42. [PMID: 15780142 PMCID: PMC1079822 DOI: 10.1186/1471-2164-6-42] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 03/21/2005] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Differential gene expression specifies the highly diverse cell types that constitute the nervous system. With its sequenced genome and simple, well-defined neuroanatomy, the nematode C. elegans is a useful model system in which to correlate gene expression with neuron identity. The UNC-4 transcription factor is expressed in thirteen embryonic motor neurons where it specifies axonal morphology and synaptic function. These cells can be marked with an unc-4::GFP reporter transgene. Here we describe a powerful strategy, Micro-Array Profiling of C. elegans cells (MAPCeL), and confirm that this approach provides a comprehensive gene expression profile of unc-4::GFP motor neurons in vivo. RESULTS Fluorescence Activated Cell Sorting (FACS) was used to isolate unc-4::GFP neurons from primary cultures of C. elegans embryonic cells. Microarray experiments detected 6,217 unique transcripts of which approximately 1,000 are enriched in unc-4::GFP neurons relative to the average nematode embryonic cell. The reliability of these data was validated by the detection of known cell-specific transcripts and by expression in UNC-4 motor neurons of GFP reporters derived from the enriched data set. In addition to genes involved in neurotransmitter packaging and release, the microarray data include transcripts for receptors to a remarkably wide variety of signaling molecules. The added presence of a robust array of G-protein pathway components is indicative of complex and highly integrated mechanisms for modulating motor neuron activity. Over half of the enriched genes (537) have human homologs, a finding that could reflect substantial overlap with the gene expression repertoire of mammalian motor neurons. CONCLUSION We have described a microarray-based method, MAPCeL, for profiling gene expression in specific C. elegans motor neurons and provide evidence that this approach can reveal candidate genes for key roles in the differentiation and function of these cells. These methods can now be applied to generate a gene expression map of the C. elegans nervous system.
Collapse
Affiliation(s)
- Rebecca M Fox
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
| | - Stephen E Von Stetina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
| | - Susan J Barlow
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
| | - Christian Shaffer
- CHGR, Bioinformatics Core, Vanderbilt University, Nashville, TN 37232-0700, USA
| | - Kellen L Olszewski
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
| | - Jason H Moore
- Dartmouth Medical School, Computational Genetics Laboratory, 706 Rubin Building, HB7937, One Medical Center Drive, Lebanon, NH 03756, USA
| | - Denis Dupuy
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Marc Vidal
- Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232-8240, USA
| |
Collapse
|
50
|
Shimoda C. Forespore membrane assembly in yeast: coordinating SPBs and membrane trafficking. J Cell Sci 2004; 117:389-96. [PMID: 14702385 DOI: 10.1242/jcs.00980] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae, sporulation involves de novo synthesis of forespore membrane (FSM) within the cytoplasm of mother cells. The FSM ultimately becomes the plasma membrane of the developing ascospores. Several protein components of the FSM have been identified. Visualization of these proteins has demonstrated the dynamic nature of the genesis and development of the FSM. It begins to develop at the differentiated outer plaque of the spindle pole bodies (SPBs) and extends outwards, encapsulating each of the haploid nuclei produced by meiosis. Several coiled-coil proteins are specifically recruited to the SPBs and play indispensable roles in FSM assembly. Temporal and spatial coordination of meiotic nuclear divisions and membrane assembly is of special importance. Comparison of the processes of FSM assembly in these yeasts shows that the basic mechanism has been conserved, even though the individual proteins involved are often different. Understanding these dynamic aspects of yeast sporulation will help to elucidate a general mechanism for the cellularization of cytoplasm containing multiple nuclei.
Collapse
Affiliation(s)
- Chikashi Shimoda
- Department of Biology, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
| |
Collapse
|