1
|
Chimplee S, Sama-ae I, Sangkanu S, Mitsuwan W, Chuprom J, Boonhok R, Khan DA, Biswas P, Nazmul Hasan M, Tabo HA, Salibay CC, Wilairatana P, Pereira ML, Nawaz M, Bodade R, Sundar SS, Paul AK, Nissapatorn V. Anti-adherent effects of Rhizophora apiculata bark and leaf extracts and computational prediction of the effects of its compound on β-tubulin interaction in Acanthamoeba triangularis genotype 4. Vet World 2024; 17:2829-2845. [PMID: 39897349 PMCID: PMC11784052 DOI: 10.14202/vetworld.2024.2829-2845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025] Open
Abstract
Background and Aim Acanthamoeba, an opportunistic protozoan, exists widely in natural sources and can cause infections in humans and animals. The absence of effective monotherapy after the initial infection leads to chronic disease and recurrence. Tubulin protein is a vital target for design-targeted drug discovery. Anti-tubulin drugs are also used to treat Acanthamoeba infections, although resistance to these drugs has been observed. Therefore, it is necessary to identify a new targeted drug for Acanthamoeba infections. Therefore, this study aimed to assess the in vitro activity of ethanol extracts of Rhizophora apiculata extracts (RAE) against Acanthamoeba spp. and to predict its chemical compound on β-tubulin interaction. Materials and Methods In this study, anti-Acanthamoeba activity with minimal inhibitory concentration (MIC) and minimal parasiticidal concentration (MPC) determination of ethanolic RAE from leaves, blossoms, buds, branches, and barks was tested on four Acanthamoeba trophozoites and cysts: Acanthamoeba triangularis WU 19001, Acanthamoeba polyphaga American Type Culture Collection (ATCC) 30461, Acanthamoeba castellanii ATCC 50739, and A. castellanii ATCC 30010. The inhibitory effect on adherence was determined by the ability of Acanthamoeba adherence on 96-well plates, and its adhesive acanthopodia structure was evaluated using scanning electron microscopy analysis. In addition, the minimum cytotoxic concentrations (MCC) of R. apiculata leaf extract (RALE) and bark extract (RABE) were evaluated on Vero and HaCaT cell lines using the MTT assay. Phytochemical compounds from RALE and RABE were also analyzed by gas chromatography-mass spectrometry (GC-MS). Molecular docking and molecular dynamic analysis predicted the binding sites of chemicals in extracts and β-tubulin protein. Results The results revealed that A. triangularis and A. polyphaga trophozoites had the highest inhibition at 90% at a MIC of 8 mg/mL after treatment with RALE and RABE, respectively, at 24 h. Those MPC values were exhibited at 16 mg/mL against A. triangularis trophozoites. In addition, both extracts inhibited the adhesive properties of all Acanthamoeba approximately 80%-90% at 4 mg/mL, as well as adherent structural acanthopodia loss. MCC was 0.25 mg/mL, provided to be harmless to mammalian cells. GC-MS analysis supported that 8 and 11 major phytochemicals were from RABE and RALE, respectively. Molecular docking and molecular dynamics demonstrated that Acanthamoeba-β-tubulin exhibited potent root-mean-square deviation, root mean square fluctuation, and binding free energy values with clionasterol (from RABE and RALE) and stigmasterol (from RALE). Based on our results, ethanolic RABE and RALE exhibited anti-Acanthamoeba activity in reducing adhesion. In silico showed that promising clionasterol and stigmasterol interacted with a targeting β-tubulin. Conclusion The RABE and RALE exhibited a potential anti-adherent effect on A. triangularis, low toxicity, and the clionasterol and stigmasterol in RABE and RALE predicted to interact the targeted β-tubulin. These agents may be used as alternative therapeutic agents in the management of disease using a sustainable one-heath approach.
Collapse
Affiliation(s)
- Siriphorn Chimplee
- General Education Department, School of Languages and General Education, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Imran Sama-ae
- Department of Medical Technology, School of Allied Health Sciences and Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Julalak Chuprom
- General Education Department, School of Languages and General Education, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Rachasak Boonhok
- Department of Medical Technology, School of Allied Health Sciences and Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Dhrubo Ahmed Khan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore-7408, Bangladesh
- ABEx Bio-Research Center, East Azampur, Dhaka-1230, Bangladesh
| | - Md Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | - Hazel Anne Tabo
- Department of Biological Sciences, College of Science, De La Salle University-Dasmarinas, Cavite, Philippines
| | - Cristina C. Salibay
- Department of Biological Sciences, College of Science, De La Salle University-Dasmarinas, Cavite, Philippines
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Maria L. Pereira
- Department of Medical Sciences and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ragini Bodade
- Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam, India
| | - Shanmuga S. Sundar
- Department of Biotechnology, Aarupadai Veedu Institute of Technology, Vinayaka Mission’s Research Foundation, Paiyanoor, Chennai, Tamil Nadu, India
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, 80160, Thailand
| |
Collapse
|
2
|
Homology Modeling, Molecular Docking, Molecular Dynamic Simulation, and Drug-Likeness of the Modified Alpha-Mangostin against the β-Tubulin Protein of Acanthamoeba Keratitis. Molecules 2022; 27:molecules27196338. [PMID: 36234875 PMCID: PMC9572066 DOI: 10.3390/molecules27196338] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Acanthamoeba species are capable of causing amoebic keratitis (AK). As a monotherapy, alpha-mangostin is effective for the treatment of AK; however, its bioavailability is quite poor. Moreover, the efficacy of therapy is contingent on the parasite and virulent strains. To improve readiness against AK, it is necessary to find other derivatives with accurate target identification. Beta-tubulin (BT) has been used as a target for anti-Acanthamoeba (A. keratitis). In this work, therefore, a model of the BT protein of A. keratitis was constructed by homology modeling utilizing the amino acid sequence from NCBI (GenBank: JQ417907.1). Ramachandran Plot was responsible for validating the protein PDB. The verified BT PDB was used for docking with the specified ligand. Based on an improved docking score compared to alpha-mangostin (AM), two modified compounds were identified: 1,6-dihydroxy-7-methoxy-2,8-bis(3-methylbut-2-en-1-yl)-9H-xanthen-9-one (C1) and 1,6-dihydroxy-2,8-bis(3-methylbut-2-en-1-yl)-9H-xanthen-9-one (C2). In addition, molecular dynamics simulations were conducted to analyze the interaction characteristics of the two bound BT–new compound complexes. During simulations, the TRP9, ARG50, VAL52, and GLN122 residues of BT-C1 that align to the identical residues in BT-AM generate consistent hydrogen bond interactions with 0–3 and 0–2. However, the BT-C2 complex has a different binding site, TYR 258, ILE 281, and SER 302, and can form more hydrogen bonds in the range 0–4. Therefore, this study reveals that C1 and C2 inhibit BT as an additive or synergistic effect; however, further in vitro and in vivo studies are needed.
Collapse
|
3
|
Pallotto LM, Dilks CM, Park YJ, Smit RB, Lu B, Gopalakrishnan C, Gilleard JS, Andersen EC, Mains PE. Interactions of C. elegans β-tubulins with the microtubule inhibitor and anthelmintic drug albendazole. Genetics 2022; 221:6613138. [PMID: 35731216 DOI: 10.1093/genetics/iyac093] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/08/2022] [Indexed: 11/14/2022] Open
Abstract
Parasitic nematodes are major human and agricultural pests, and benzimidazoles are amongst the most important broad spectrum anthelmintic drug class used for their control. Benzimidazole resistance is now widespread in many species of parasitic nematodes in livestock globally and an emerging concern for the sustainable control of human soil transmitted helminths. β-tubulin is the major benzimidazole target, although other genes may influence resistance. Among the six C. elegans β-tubulin genes, loss of ben-1 causes resistance without other apparent defects. Here, we explored the genetics of C. elegans β-tubulin genes in relation to the response to the benzimidazole derivative albendazole. The most highly expressed β-tubulin isotypes, encoded by tbb-1 and tbb-2, were known to be redundant with each other for viability, and their products are predicted not to bind benzimidazoles. We found that tbb-2 mutants, and to a lesser extent tbb-1 mutants, were hypersensitive to albendazole. The double mutant tbb-2 ben-1 is uncoordinated and short, resembling the wild type exposed to albendazole, but the tbb-1 ben-1 double mutant did not show the same phenotypes. These results suggest that tbb-2 is a modifier of ABZ sensitivity. To better understand how BEN-1 mutates to cause benzimidazole resistance, we isolated mutants resistant to albendazole and found that 15 of 16 mutations occurred in the ben-1 coding region. Mutations ranged from likely nulls to hypomorphs, and several corresponded to residues that cause resistance in other organisms. Null alleles of ben-1 are albendazole-resistant and BEN-1 shows high sequence identity with tubulins from other organisms, suggesting that many amino acid changes could cause resistance. However, our results suggest that missense mutations conferring resistance are not evenly distributed across all possible conserved sites. Independent of their roles in benzimidazole resistance, tbb-1 and tbb-2 may have specialized functions as null mutants of tbb-1 or tbb-2 were cold or heat sensitive, respectively.
Collapse
Affiliation(s)
- Linda M Pallotto
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Clayton M Dilks
- Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA
| | - Ye-Jean Park
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ryan B Smit
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Brian Lu
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions (HPI) Program, Faculty of Veterinary Medicine, University of Calgary, Alberta, T2N 4N1 Canada
| | - Erik C Andersen
- Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Paul E Mains
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
4
|
Jones BP, van Vliet AHM, LaCourse EJ, Betson M. In Silico Docking of Nematode β-Tubulins With Benzimidazoles Points to Gene Expression and Orthologue Variation as Factors in Anthelmintic Resistance. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.898814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The efficacy of benzimidazole anthelmintics can vary depending on the target parasite, with Ascaris nematodes being highly responsive, and whipworms being less responsive. Anthelmintic resistance has become widespread, particularly in strongyle nematodes such as Haemonchus contortus in ruminants, and resistance has recently been detected in hookworms of humans and dogs. Past work has shown that there are multiple β-tubulin isotypes in helminths, yet only a few of these contribute to benzimidazole interactions and resistance. The β-tubulin isotypes of ascarids and soil-transmitted helminths were identified by mining available genome data, and phylogenetic analysis showed that the ascarids share a similar repertoire of seven β-tubulin isotypes. Strongyles also have a consistent pattern of four β-tubulin isotypes. In contrast, the whipworms only have two isotypes, with one of these clustering more basally and distinct from any other group. Key β-tubulin isotypes selected based on previous studies were the focus of in silico molecular docking simulations to look at the interactions with benzimidazoles. These showed that all β-tubulins had similar interactions with benzimidazoles and maintained the key bond with residue E198 in all species, indicating similar mechanisms of action. However, the interaction was stronger and more consistent in the strongyles and whipworms than it was in the ascarids. Alteration of β-tubulin isotypes with the common resistance-associated mutations originally identified in H. contortus resulted in similar interaction modeling for all species. In conclusion, ascarids, strongyles, and whipworms all have their own unique repertoire of β-tubulins, which could explain why benzimidazole resistance and susceptibility varies between these groups of parasites. These data complement recent work that has highlighted the roles of essential residues in benzimidazole drug binding and shows that there is a separation between strongyle parasites that frequently develop resistance and ascarid parasites, which have been much less prone to developing resistance.
Collapse
|
5
|
Abstract
The microtubule cytoskeleton is assembled from the α- and β-tubulin subunits of the canonical tubulin heterodimer, which polymerizes into microtubules, and a small number of other family members, such as γ-tubulin, with specialized functions. Overall, microtubule function involves the collective action of multiple α- and β-tubulin isotypes. However, despite 40 years of awareness that most eukaryotes harbor multiple tubulin isotypes, their role in the microtubule cytoskeleton has remained relatively unclear. Various model organisms offer specific advantages for gaining insight into the role of tubulin isotypes. Whereas simple unicellular organisms such as yeast provide experimental tractability that can facilitate deeper access to mechanistic details, more complex organisms, such as the fruit fly, nematode and mouse, can be used to discern potential specialized functions of tissue- and structure-specific isotypes. Here, we review the role of α- and β-tubulin isotypes in microtubule function and in associated tubulinopathies with an emphasis on the advances gained using model organisms. Overall, we argue that studying tubulin isotypes in a range of organisms can reveal the fundamental mechanisms by which they mediate microtubule function. It will also provide valuable perspectives on how these mechanisms underlie the functional and biological diversity of the cytoskeleton.
Collapse
Affiliation(s)
- Emmanuel T Nsamba
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Mohan L Gupta
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
6
|
Lu YM, Zheng C. The Expression and Function of Tubulin Isotypes in Caenorhabditis elegans. Front Cell Dev Biol 2022; 10:860065. [PMID: 35399537 PMCID: PMC8987236 DOI: 10.3389/fcell.2022.860065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubules, made from the polymerization of the highly conserved α/β-tubulin heterodimers, serve as important components of the cytoskeleton in all eukaryotic cells. The existence of multiple tubulin isotypes in metazoan genomes and a dazzling variety of tubulin posttranslational modifications (PTMs) prompted the “tubulin code” hypothesis, which proposed that microtubule structure and functions are determined by the tubulin composition and PTMs. Evidence for the tubulin code has emerged from studies in several organisms with the characterization of specific tubulins for their expression and functions. The studies of tubulin PTMs are accelerated by the discovery of the enzymes that add or remove the PTMs. In tubulin research, the use of simple organisms, such as Caenorhabditis elegans, has been instrumental for understanding the expression and functional specialization of tubulin isotypes and the effects of their PTMs. In this review, we summarize the current understanding of the expression patterns and cellular functions of the nine α-tubulin and six β-tubulin isotypes. Expression studies are greatly facilitated by the CRISPR/Cas9-mediated endogenous GFP knock-in reporters and the organism-wide single cell transcriptomic studies. Meanwhile, functional studies benefit from the ease of genetic manipulation and precise gene replacement in C. elegans. These studies identified both ubiquitously expressed tubulin isotypes and tissue-specific isotypes. The isotypes showed functional redundancy, as well as functional specificity, which is likely caused by the subtle differences in their amino acid sequences. Many of these differences concentrate at the C-terminal tails that are subjected to several PTMs. Indeed, tubulin PTM, such as polyglutamylation, is shown to modulate microtubule organization and properties in both ciliated and non-ciliated neurons. Overall, studies from C. elegans support the distinct expression and function patterns of tubulin isotypes and the importance of their PTMs and offer the promise of cracking the tubulin code at the whole-genome and the whole-organism level.
Collapse
|
7
|
Nishida K, Tsuchiya K, Obinata H, Onodera S, Honda Y, Lai YC, Haruta N, Sugimoto A. Expression Patterns and Levels of All Tubulin Isotypes Analyzed in GFP Knock-In C. elegans Strains. Cell Struct Funct 2021; 46:51-64. [PMID: 33967119 PMCID: PMC10511039 DOI: 10.1247/csf.21022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/28/2021] [Indexed: 11/11/2022] Open
Abstract
Most organisms have multiple α- and β-tubulin isotypes that likely contribute to the diversity of microtubule (MT) functions. To understand the functional differences of tubulin isotypes in Caenorhabditis elegans, which has nine α-tubulin isotypes and six β-tubulin isotypes, we systematically constructed null mutants and GFP-fusion strains for all tubulin isotypes with the CRISPR/Cas9 system and analyzed their expression patterns and levels in adult hermaphrodites. Four isotypes-α-tubulins TBA-1 and TBA-2 and β-tubulins TBB-1 and TBB-2-were expressed in virtually all tissues, with a distinct tissue-specific spectrum. Other isotypes were expressed in specific tissues or cell types at significantly lower levels than the broadly expressed isotypes. Four isotypes (TBA-5, TBA-6, TBA-9, and TBB-4) were expressed in different subsets of ciliated sensory neurons, and TBB-4 was inefficiently incorporated into mitotic spindle MTs. Taken together, we propose that MTs in C. elegans are mainly composed of four broadly expressed tubulin isotypes and that incorporation of a small amount of tissue-specific isotypes may contribute to tissue-specific MT properties. These newly constructed strains will be useful for further elucidating the distinct roles of tubulin isotypes.Key words: tubulin isotypes, microtubules, C. elegans.
Collapse
Affiliation(s)
- Kei Nishida
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Kenta Tsuchiya
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Hiroyuki Obinata
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Shizuka Onodera
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Yu Honda
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Yen-Cheng Lai
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Nami Haruta
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Asako Sugimoto
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
8
|
Dilks CM, Hahnel SR, Sheng Q, Long L, McGrath PT, Andersen EC. Quantitative benzimidazole resistance and fitness effects of parasitic nematode beta-tubulin alleles. Int J Parasitol Drugs Drug Resist 2020; 14:28-36. [PMID: 32858477 PMCID: PMC7473882 DOI: 10.1016/j.ijpddr.2020.08.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 11/17/2022]
Abstract
Infections by parasitic nematodes inflict a huge burden on the health of humans and livestock throughout the world. Anthelmintic drugs are the first line of defense against these infections. Unfortunately, resistance to these drugs is rampant and continues to spread. To improve treatment strategies, we must understand the genetics and molecular mechanisms that underlie resistance. Studies of the fungus Aspergillus nidulans and the free-living nematode Caenorhabditis elegans discovered that a beta-tubulin gene is mutated in benzimidazole (BZ) resistant strains. In parasitic nematode populations, three beta-tubulin alleles, F167Y, E198A, and F200Y, have long been correlated with resistance. Additionally, improvements in sequencing technologies have identified new alleles - E198V, E198L, E198K, E198I, and E198Stop - also correlated with BZ resistance. However, none of these alleles have been proven to cause resistance. To empirically demonstrate this point, we independently introduced the F167Y, E198A, and F200Y alleles as well as two of the newly identified alleles, E198V and E198L, into the BZ susceptible C. elegans N2 genetic background using the CRISPR-Cas9 system. These genome-edited strains were exposed to both albendazole and fenbendazole to quantitatively measure animal responses to BZs. We used a range of concentrations for each BZ compound to define response curves and found that all five of the alleles conferred resistance to BZ compounds equal to a loss of the entire beta-tubulin gene. These results prove that the parasite beta-tubulin alleles cause resistance. The E198V allele is found at low frequencies along with the E198L allele in natural parasite populations, suggesting that it could affect fitness. We performed competitive fitness assays and demonstrated that the E198V allele reduces animal health, supporting the hypothesis that this allele might be less fit in field populations. Overall, we present a powerful platform to quantitatively assess anthelmintic resistance and effects of specific resistance alleles on organismal fitness in the presence or absence of the drug.
Collapse
Affiliation(s)
- Clayton M Dilks
- Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA
| | - Steffen R Hahnel
- Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Qicong Sheng
- Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Lijiang Long
- Center for Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Patrick T McGrath
- Center for Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Erik C Andersen
- Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA; Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
9
|
Hahnel SR, Zdraljevic S, Rodriguez BC, Zhao Y, McGrath PT, Andersen EC. Extreme allelic heterogeneity at a Caenorhabditis elegans beta-tubulin locus explains natural resistance to benzimidazoles. PLoS Pathog 2018; 14:e1007226. [PMID: 30372484 PMCID: PMC6224181 DOI: 10.1371/journal.ppat.1007226] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/08/2018] [Accepted: 10/01/2018] [Indexed: 12/22/2022] Open
Abstract
Benzimidazoles (BZ) are essential components of the limited chemotherapeutic arsenal available to control the global burden of parasitic nematodes. The emerging threat of BZ resistance among multiple nematode species necessitates the development of novel strategies to identify genetic and molecular mechanisms underlying this resistance. All detection of parasitic helminth resistance to BZ is focused on the genotyping of three variant sites in the orthologs of the β-tubulin gene found to confer resistance in the free-living nematode Caenorhabditis elegans. Because of the limitations of laboratory and field experiments in parasitic nematodes, it is difficult to look beyond these three sites to identify additional mechanisms that might contribute to BZ resistance in the field. Here, we took an unbiased genome-wide mapping approach in the free-living nematode species C. elegans to identify the genetic underpinnings of natural resistance to the commonly used BZ, albendazole (ABZ). We found a wide range of natural variation in ABZ resistance in natural C. elegans populations. In agreement with known mechanisms of BZ resistance in parasites, we found that a majority of the variation in ABZ resistance among wild C. elegans strains is caused by variation in the β-tubulin gene ben-1. This result shows empirically that resistance to ABZ naturally exists and segregates within the C. elegans population, suggesting that selection in natural niches could enrich for resistant alleles. We identified 25 distinct ben-1 alleles that are segregating at low frequencies within the C. elegans population, including many novel molecular variants. Population genetic analyses indicate that ben-1 variation arose multiple times during the evolutionary history of C. elegans and provide evidence that these alleles likely occurred recently because of local selective pressures. Additionally, we find purifying selection at all five β-tubulin genes, despite predicted loss-of-function variants in ben-1, indicating that BZ resistance in natural niches is a stronger selective pressure than loss of one β-tubulin gene. Furthermore, we used genome-editing to show that the most common parasitic nematode β-tubulin allele that confers BZ resistance, F200Y, confers resistance in C. elegans. Importantly, we identified a novel genomic region that is correlated with ABZ resistance in the C. elegans population but independent of ben-1 and the other β-tubulin loci, suggesting that there are multiple mechanisms underlying BZ resistance. Taken together, our results establish a population-level resource of nematode natural diversity as an important model for the study of mechanisms that give rise to BZ resistance.
Collapse
Affiliation(s)
- Steffen R. Hahnel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Stefan Zdraljevic
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States of America
| | - Briana C. Rodriguez
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
| | - Yuehui Zhao
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Patrick T. McGrath
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Erik C. Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States of America
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
10
|
Gerhold AR, Poupart V, Labbé JC, Maddox PS. Spindle assembly checkpoint strength is linked to cell fate in the Caenorhabditis elegans embryo. Mol Biol Cell 2018; 29:1435-1448. [PMID: 29688794 PMCID: PMC6014101 DOI: 10.1091/mbc.e18-04-0215] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The spindle assembly checkpoint (SAC) is a conserved mitotic regulator that preserves genome stability by monitoring kinetochore-microtubule attachments and blocking anaphase onset until chromosome biorientation is achieved. Despite its central role in maintaining mitotic fidelity, the ability of the SAC to delay mitotic exit in the presence of kinetochore-microtubule attachment defects (SAC "strength") appears to vary widely. How different cellular aspects drive this variation remains largely unknown. Here we show that SAC strength is correlated with cell fate during development of Caenorhabditis elegans embryos, with germline-fated cells experiencing longer mitotic delays upon spindle perturbation than somatic cells. These differences are entirely dependent on an intact checkpoint and only partially attributable to differences in cell size. In two-cell embryos, cell size accounts for half of the difference in SAC strength between the larger somatic AB and the smaller germline P1 blastomeres. The remaining difference requires asymmetric cytoplasmic partitioning downstream of PAR polarity proteins, suggesting that checkpoint-regulating factors are distributed asymmetrically during early germ cell divisions. Our results indicate that SAC activity is linked to cell fate and reveal a hitherto unknown interaction between asymmetric cell division and the SAC.
Collapse
Affiliation(s)
- Abigail R Gerhold
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Vincent Poupart
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Jean-Claude Labbé
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada.,Department of Pathology and Cell Biology, Université de Montréal, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Paul S Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
11
|
MIP-MAP: High-Throughput Mapping of Caenorhabditis elegans Temperature-Sensitive Mutants via Molecular Inversion Probes. Genetics 2017; 207:447-463. [PMID: 28827289 PMCID: PMC5629315 DOI: 10.1534/genetics.117.300179] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/30/2017] [Indexed: 11/18/2022] Open
Abstract
Mutants remain a powerful means for dissecting gene function in model organisms such as Caenorhabditis elegans. Massively parallel sequencing has simplified the detection of variants after mutagenesis but determining precisely which change is responsible for phenotypic perturbation remains a key step. Genetic mapping paradigms in C. elegans rely on bulk segregant populations produced by crosses with the problematic Hawaiian wild isolate and an excess of redundant information from whole-genome sequencing (WGS). To increase the repertoire of available mutants and to simplify identification of the causal change, we performed WGS on 173 temperature-sensitive (TS) lethal mutants and devised a novel mapping method. The mapping method uses molecular inversion probes (MIP-MAP) in a targeted sequencing approach to genetic mapping, and replaces the Hawaiian strain with a Million Mutation Project strain with high genomic and phenotypic similarity to the laboratory wild-type strain N2. We validated MIP-MAP on a subset of the TS mutants using a competitive selection approach to produce TS candidate mapping intervals with a mean size < 3 Mb. MIP-MAP successfully uses a non-Hawaiian mapping strain and multiplexed libraries are sequenced at a fraction of the cost of WGS mapping approaches. Our mapping results suggest that the collection of TS mutants contains a diverse library of TS alleles for genes essential to development and reproduction. MIP-MAP is a robust method to genetically map mutations in both viable and essential genes and should be adaptable to other organisms. It may also simplify tracking of individual genotypes within population mixtures.
Collapse
|
12
|
Honda Y, Tsuchiya K, Sumiyoshi E, Haruta N, Sugimoto A. Tubulin isotype substitution revealed that isotype combination modulates microtubule dynamics in C. elegans embryos. J Cell Sci 2017; 130:1652-1661. [PMID: 28302908 DOI: 10.1242/jcs.200923] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/13/2017] [Indexed: 12/14/2022] Open
Abstract
Microtubules (MTs) are polymers composed of α- and β-tubulin heterodimers that are generally encoded by genes at multiple loci. Despite implications of distinct properties depending on the isotype, how these heterodimers contribute to the diverse MT dynamics in vivo remains unclear. Here, by using genome editing and depletion of tubulin isotypes following RNAi, we demonstrate that four tubulin isotypes (hereafter referred to as α1, α2, β1 and β2) cooperatively confer distinct MT properties in Caenorhabditis elegans early embryos. GFP insertion into each isotype locus reveals their distinct expression levels and MT incorporation rates. Substitution of isotype coding regions demonstrates that, under the same isotype concentration, MTs composed of β1 have higher switching frequency between growth and shrinkage compared with MTs composed of β2. Lower concentration of β-tubulins results in slower growth rates, and the two α-tubulins distinctively affect growth rates of MTs composed of β1. Alteration of ratio and concentration of isotypes distinctively modulates both growth rate and switching frequency, and affects the amplitude of mitotic spindle oscillation. Collectively, our findings demonstrate that MT dynamics are modulated by the combination (ratio and concentration) of tubulin isotypes with distinct properties, which contributes to create diverse MT behaviors in vivo.
Collapse
Affiliation(s)
- Yu Honda
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Kenta Tsuchiya
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Eisuke Sumiyoshi
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Nami Haruta
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Asako Sugimoto
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
13
|
Quintin S, Gally C, Labouesse M. Noncentrosomal microtubules in C. elegans epithelia. Genesis 2016; 54:229-42. [PMID: 26789944 DOI: 10.1002/dvg.22921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 11/12/2022]
Abstract
The microtubule cytoskeleton has a dual contribution to cell organization. First, microtubules help displace chromosomes and provide tracks for organelle transport. Second, microtubule rigidity confers specific mechanical properties to cells, which are crucial in cilia or mechanosensory structures. Here we review the recently uncovered organization and functions of noncentrosomal microtubules in C. elegans epithelia, focusing on how they contribute to nuclear positioning and protein transport. In addition, we describe recent data illustrating how the microtubule and actin cytoskeletons interact to achieve those functions.
Collapse
Affiliation(s)
- Sophie Quintin
- Development and Stem Cells Department, IGBMC - CNRS UMR 7104/INSERM U964/Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67400, France
| | - Christelle Gally
- Development and Stem Cells Department, IGBMC - CNRS UMR 7104/INSERM U964/Université de Strasbourg, 1 Rue Laurent Fries, Illkirch, 67400, France
| | - Michel Labouesse
- Université Pierre Et Marie Curie, IBPS, CNRS UMR7622, 7 Quai St-Bernard, Paris, 75005, France
| |
Collapse
|
14
|
Tydén E, Skarin M, Andersson-Franko M, Sjöblom M, Höglund J. Differential expression of β-tubulin isotypes in different life stages of Parascaris spp after exposure to thiabendazole. Mol Biochem Parasitol 2016; 205:22-8. [DOI: 10.1016/j.molbiopara.2016.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 11/25/2022]
|
15
|
Shaye DD, Greenwald I. The disease-associated formin INF2/EXC-6 organizes lumen and cell outgrowth during tubulogenesis by regulating F-actin and microtubule cytoskeletons. Dev Cell 2015; 32:743-55. [PMID: 25771894 DOI: 10.1016/j.devcel.2015.01.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/02/2014] [Accepted: 01/13/2015] [Indexed: 10/23/2022]
Abstract
We investigate how outgrowth at the basolateral cell membrane is coordinated with apical lumen formation in the development of a biological tube by characterizing exc-6, a gene required for C. elegans excretory cell (EC) tubulogenesis. We show that EXC-6 is orthologous to the human formin INF2, which polymerizes filamentous actin (F-actin) and binds microtubules (MTs) in vitro. Dominant INF2 mutations cause focal segmental glomerulosclerosis (FSGS), a kidney disease, and FSGS+Charcot-Marie-Tooth neuropathy. We show that activated INF2 can substitute for EXC-6 in C. elegans and that disease-associated mutations cause constitutive activity. Using genetic analysis and live imaging, we show that exc-6 regulates MT and F-actin accumulation at EC tips and dynamics of basolateral-localized MTs, indicating that EXC-6 organizes F-actin and MT cytoskeletons during tubulogenesis. The pathology associated with INF2 mutations is believed to reflect misregulation of F-actin, but our results suggest alternative or additional mechanisms via effects on MT dynamics.
Collapse
Affiliation(s)
- Daniel D Shaye
- Howard Hughes Medical Institute, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.
| | - Iva Greenwald
- Howard Hughes Medical Institute, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA; Department of Genetics and Development, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
16
|
Frédéric MY, Lundin VF, Whiteside MD, Cueva JG, Tu DK, Kang SYC, Singh H, Baillie DL, Hutter H, Goodman MB, Brinkman FSL, Leroux MR. Identification of 526 conserved metazoan genetic innovations exposes a new role for cofactor E-like in neuronal microtubule homeostasis. PLoS Genet 2013; 9:e1003804. [PMID: 24098140 PMCID: PMC3789837 DOI: 10.1371/journal.pgen.1003804] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 08/03/2013] [Indexed: 11/30/2022] Open
Abstract
The evolution of metazoans from their choanoflagellate-like unicellular ancestor coincided with the acquisition of novel biological functions to support a multicellular lifestyle, and eventually, the unique cellular and physiological demands of differentiated cell types such as those forming the nervous, muscle and immune systems. In an effort to understand the molecular underpinnings of such metazoan innovations, we carried out a comparative genomics analysis for genes found exclusively in, and widely conserved across, metazoans. Using this approach, we identified a set of 526 core metazoan-specific genes (the ‘metazoanome’), approximately 10% of which are largely uncharacterized, 16% of which are associated with known human disease, and 66% of which are conserved in Trichoplax adhaerens, a basal metazoan lacking neurons and other specialized cell types. Global analyses of previously-characterized core metazoan genes suggest a prevalent property, namely that they act as partially redundant modifiers of ancient eukaryotic pathways. Our data also highlights the importance of exaptation of pre-existing genetic tools during metazoan evolution. Expression studies in C. elegans revealed that many metazoan-specific genes, including tubulin folding cofactor E-like (TBCEL/coel-1), are expressed in neurons. We used C. elegans COEL-1 as a representative to experimentally validate the metazoan-specific character of our dataset. We show that coel-1 disruption results in developmental hypersensitivity to the microtubule drug paclitaxel/taxol, and that overexpression of coel-1 has broad effects during embryonic development and perturbs specialized microtubules in the touch receptor neurons (TRNs). In addition, coel-1 influences the migration, neurite outgrowth and mechanosensory function of the TRNs, and functionally interacts with components of the tubulin acetylation/deacetylation pathway. Together, our findings unveil a conserved molecular toolbox fundamental to metazoan biology that contains a number of neuronally expressed and disease-related genes, and reveal a key role for TBCEL/coel-1 in regulating microtubule function during metazoan development and neuronal differentiation. The evolution of multicellular animals (metazoans) from their single-celled ancestor required new molecular tools to create and coordinate the various biological functions involved in a communal, or multicellular, lifestyle. This would eventually include the unique cellular and physiological demands of specialized tissues like the nervous system. To identify and understand the genetic bases of such unique metazoan traits, we used a comparative genomics approach to identify 526 metazoan-specific genes which have been evolutionarily conserved throughout the diversification of the animal kingdom. Interestingly, we found that some of those genes are still completely uncharacterized or poorly studied. We used the metazoan model organism C. elegans to examine the expression of some poorly characterized metazoan-specific genes and found that many, including one encoding tubulin folding cofactor E-like (TBCEL; C. elegans COEL-1), are expressed in cells of the nervous system. Using COEL-1 as an example to understand the metazoan-specific character of our dataset, our studies reveal a new role for this protein in regulating the stability of the microtubule cytoskeleton during development, and function of the touch receptor neurons. In summary, our findings help define a conserved molecular toolbox important for metazoan biology, and uncover an important role for COEL-1/TBCEL during development and in the nervous system of the metazoan C. elegans.
Collapse
Affiliation(s)
- Melissa Y. Frédéric
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Victor F. Lundin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Matthew D. Whiteside
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Juan G. Cueva
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Domena K. Tu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - S. Y. Catherine Kang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Cancer Control Research, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Hansmeet Singh
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - David L. Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Harald Hutter
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Miriam B. Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Fiona S. L. Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Michel R. Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
17
|
Modeling, docking, simulation, and inhibitory activity of the benzimidazole analogue against β-tubulin protein from Brugia malayi for treating lymphatic filariasis. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9763-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
O'Rourke SM, Carter C, Carter L, Christensen SN, Jones MP, Nash B, Price MH, Turnbull DW, Garner AR, Hamill DR, Osterberg VR, Lyczak R, Madison EE, Nguyen MH, Sandberg NA, Sedghi N, Willis JH, Yochem J, Johnson EA, Bowerman B. A survey of new temperature-sensitive, embryonic-lethal mutations in C. elegans: 24 alleles of thirteen genes. PLoS One 2011; 6:e16644. [PMID: 21390299 PMCID: PMC3046959 DOI: 10.1371/journal.pone.0016644] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 01/04/2011] [Indexed: 11/18/2022] Open
Abstract
To study essential maternal gene requirements in the early C. elegans embryo, we have screened for temperature-sensitive, embryonic lethal mutations in an effort to bypass essential zygotic requirements for such genes during larval and adult germline development. With conditional alleles, multiple essential requirements can be examined by shifting at different times from the permissive temperature of 15°C to the restrictive temperature of 26°C. Here we describe 24 conditional mutations that affect 13 different loci and report the identity of the gene mutations responsible for the conditional lethality in 22 of the mutants. All but four are mis-sense mutations, with two mutations affecting splice sites, another creating an in-frame deletion, and one creating a premature stop codon. Almost all of the mis-sense mutations affect residues conserved in orthologs, and thus may be useful for engineering conditional mutations in other organisms. We find that 62% of the mutants display additional phenotypes when shifted to the restrictive temperature as L1 larvae, in addition to causing embryonic lethality after L4 upshifts. Remarkably, we also found that 13 out of the 24 mutations appear to be fast-acting, making them particularly useful for careful dissection of multiple essential requirements. Our findings highlight the value of C. elegans for identifying useful temperature-sensitive mutations in essential genes, and provide new insights into the requirements for some of the affected loci.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Bruce Bowerman
- The Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
- * E-mail:
| |
Collapse
|
19
|
Hurd DD, Miller RM, Núñez L, Portman DS. Specific alpha- and beta-tubulin isotypes optimize the functions of sensory Cilia in Caenorhabditis elegans. Genetics 2010; 185:883-96. [PMID: 20421600 PMCID: PMC2907207 DOI: 10.1534/genetics.110.116996] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 04/21/2010] [Indexed: 01/06/2023] Open
Abstract
Primary cilia have essential roles in transducing signals in eukaryotes. At their core is the ciliary axoneme, a microtubule-based structure that defines cilium morphology and provides a substrate for intraflagellar transport. However, the extent to which axonemal microtubules are specialized for sensory cilium function is unknown. In the nematode Caenorhabditis elegans, primary cilia are present at the dendritic ends of most sensory neurons, where they provide a specialized environment for the transduction of particular stimuli. Here, we find that three tubulin isotypes--the alpha-tubulins TBA-6 and TBA-9 and the beta-tubulin TBB-4--are specifically expressed in overlapping sets of C. elegans sensory neurons and localize to the sensory cilia of these cells. Although cilia still form in mutants lacking tba-6, tba-9, and tbb-4, ciliary function is often compromised: these mutants exhibit a variety of sensory deficits as well as the mislocalization of signaling components. In at least one case, that of the CEM cephalic sensory neurons, cilium architecture is disrupted in mutants lacking specific ciliary tubulins. While there is likely to be some functional redundancy among C. elegans tubulin genes, our results indicate that specific tubulins optimize the functional properties of C. elegans sensory cilia.
Collapse
Affiliation(s)
- Daryl D. Hurd
- Biology Department, St. John Fisher College, Rochester, New York 14618, Center for Neural Development and Disease and Department of Biomedical Genetics, University of Rochester, Rochester, New York 14642 and Department of Biology, Queens College, The City University of New York, Flushing, New York 11367
| | - Renee M. Miller
- Biology Department, St. John Fisher College, Rochester, New York 14618, Center for Neural Development and Disease and Department of Biomedical Genetics, University of Rochester, Rochester, New York 14642 and Department of Biology, Queens College, The City University of New York, Flushing, New York 11367
| | - Lizbeth Núñez
- Biology Department, St. John Fisher College, Rochester, New York 14618, Center for Neural Development and Disease and Department of Biomedical Genetics, University of Rochester, Rochester, New York 14642 and Department of Biology, Queens College, The City University of New York, Flushing, New York 11367
| | - Douglas S. Portman
- Biology Department, St. John Fisher College, Rochester, New York 14618, Center for Neural Development and Disease and Department of Biomedical Genetics, University of Rochester, Rochester, New York 14642 and Department of Biology, Queens College, The City University of New York, Flushing, New York 11367
| |
Collapse
|
20
|
Baran R, Castelblanco L, Tang G, Shapiro I, Goncharov A, Jin Y. Motor neuron synapse and axon defects in a C. elegans alpha-tubulin mutant. PLoS One 2010; 5:e9655. [PMID: 20300184 PMCID: PMC2836382 DOI: 10.1371/journal.pone.0009655] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 02/02/2010] [Indexed: 12/03/2022] Open
Abstract
Regulation of microtubule dynamics underlies many fundamental cellular mechanisms including cell division, cell motility, and transport. In neurons, microtubules play key roles in cell migration, axon outgrowth, control of axon and synapse growth, and the regulated transport of vesicles and structural components of synapses. Loss of synapse and axon integrity and disruption of axon transport characterize many neurodegenerative diseases. Recently, mutations that specifically alter the assembly or stability of microtubules have been found to directly cause neurodevelopmental defects or neurodegeneration in vertebrates. We report here the characterization of a missense mutation in the C-terminal domain of C. elegans alpha-tubulin, tba-1(ju89), that disrupts motor neuron synapse and axon development. Mutant ju89 animals exhibit reduction in the number and size of neuromuscular synapses, altered locomotion, and defects in axon extension. Although null mutations of tba-1 show a nearly wild-type pattern, similar axon outgrowth defects were observed in animals lacking the beta-tubulin TBB-2. Genetic analysis reveals that tba-1(ju89) affects synapse development independent of its role in axon outgrowth. tba-1(ju89) is an altered function allele that most likely perturbs interactions between TBA-1 and specific microtubule-associated proteins that control microtubule dynamics and transport of components needed for synapse and axon growth.
Collapse
Affiliation(s)
- Renee Baran
- Biology Department, Occidental College, Los Angeles, California, United States of America
| | - Liliana Castelblanco
- Biology Department, Occidental College, Los Angeles, California, United States of America
| | - Garland Tang
- Biology Department, Occidental College, Los Angeles, California, United States of America
| | - Ian Shapiro
- Biology Department, Occidental College, Los Angeles, California, United States of America
| | - Alexandr Goncharov
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, San Diego, California, United States of America
- Howard Hughes Medical Institute, University of California San Diego, San Diego, California, United States of America
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, San Diego, California, United States of America
- Howard Hughes Medical Institute, University of California San Diego, San Diego, California, United States of America
| |
Collapse
|
21
|
Tsai MC, Ahringer J. Microtubules are involved in anterior-posterior axis formation in C. elegans embryos. J Cell Biol 2007; 179:397-402. [PMID: 17967950 PMCID: PMC2064787 DOI: 10.1083/jcb.200708101] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 10/01/2007] [Indexed: 11/22/2022] Open
Abstract
Microtubules deliver positional signals and are required for establishing polarity in many different organisms and cell types. In Caenorhabditis elegans embryos, posterior polarity is induced by an unknown centrosome-dependent signal. Whether microtubules are involved in this signaling process has been the subject of controversy. Although early studies supported such an involvement (O'Connell, K.F., K.N. Maxwell, and J.G. White. 2000. Dev. Biol. 222:55-70; Wallenfang, M.R., and G. Seydoux. 2000. Nature. 408:89-92; Hamill, D.R., A.F. Severson, J.C. Carter, and B. Bowerman. 2002. Dev. Cell. 3:673-684), recent work involving RNA interference knockdown of tubulin led to the conclusion that centrosomes induce polarity independently of microtubules (Cowan, C.R., and A.A. Hyman. 2004. Nature. 431:92-96; Sonneville, R., and P. Gonczy. 2004. Development. 131: 3527-3543). In this study, we investigate the consequences of tubulin knockdown on polarity signaling. We find that tubulin depletion delays polarity induction relative to wild type and that polarity only occurs when a small, late-growing microtubule aster is visible at the centrosome. We also show that the process of a normal meiosis produces a microtubule-dependent polarity signal and that the relative levels of anterior and posterior PAR (partitioning defective) polarity proteins influence the response to polarity signaling. Our results support a role for microtubules in the induction of embryonic polarity in C. elegans.
Collapse
Affiliation(s)
- Miao-Chih Tsai
- Gurdon Institute and 2Department of Genetics, University of Cambridge, Cambridge CB2 1QN, England, UK
| | | |
Collapse
|
22
|
Lundin VF, Srayko M, Hyman AA, Leroux MR. Efficient chaperone-mediated tubulin biogenesis is essential for cell division and cell migration in C. elegans. Dev Biol 2007; 313:320-34. [PMID: 18062952 DOI: 10.1016/j.ydbio.2007.10.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 10/17/2007] [Accepted: 10/18/2007] [Indexed: 11/29/2022]
Abstract
The efficient folding of actin and tubulin in vitro and in Saccharomyces cerevisiae is known to require the molecular chaperones prefoldin and CCT, yet little is known about the functions of these chaperones in multicellular organisms. Whereas none of the six prefoldin genes are essential in yeast, where prefoldin-independent folding of actin and tubulin is sufficient for viability, we demonstrate that reducing prefoldin function by RNAi in Caenorhabditis elegans causes defects in cell division that result in embryonic lethality. Our analyses suggest that these defects result mainly from a decrease in alpha-tubulin levels and a subsequent reduction in the microtubule growth rate. Prefoldin subunit 1 (pfd-1) mutant animals with maternally contributed PFD-1 develop to the L4 larval stage with gonadogenesis defects that include aberrant distal tip cell migration. Importantly, RNAi knockdown of prefoldin, CCT or tubulin in developing animals phenocopy the pfd-1 cell migration phenotype. Furthermore, reducing CCT function causes more severe phenotypes (compared with prefoldin knockdown) in the embryo and developing gonad, consistent with a broader role for CCT in protein folding. Overall, our results suggest that efficient chaperone-mediated tubulin biogenesis is essential in C. elegans, owing to the critical role of the microtubule cytoskeleton in metazoan development.
Collapse
Affiliation(s)
- Victor F Lundin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | | | | | | |
Collapse
|
23
|
Abstract
When a spindle is positioned asymmetrically in a dividing cell, the resulting daughter cells are unequal in size. Asymmetric spindle positioning is driven by regulated forces that can pull or push a spindle. The physical and molecular mechanisms that can position spindles asymmetrically have been studied in several systems, and some themes have begun to emerge from recent research. Recent work in budding yeast has presented a model for how cytoskeletal motors and cortical capture molecules can function in orienting and positioning a spindle. The temporal regulation of microtubule-based pulling forces that move a spindle has been examined in one animal system. Although the spindle positioning force generators have not been identified in most animal systems, the forces have been found to be regulated by both PAR polarity proteins and G-protein signaling pathways in more than one animal system.
Collapse
Affiliation(s)
- Erin K McCarthy
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA
| | | |
Collapse
|
24
|
Criel GRJ, Van Oostveldt P, MacRae TH. Spatial organization and isotubulin composition of microtubules in epidermal tendon cells of Artemia franciscana. J Morphol 2005; 263:203-15. [PMID: 15593343 DOI: 10.1002/jmor.10298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Epidermally derived tendon cells attach the exoskeleton (cuticle) of the Branchiopod crustacean, Artemia franciscana, to underlying muscle in the hindgut, while the structurally similar transalar tendon (epithelial) cells, which also arise from the epidermis and are polarized, connect dorsal and ventral exopodite surfaces. To establish these latter attachments the transalar tendon cells interact with cuticles on opposite sides of the exopodite by way of their apical surfaces and with one another via basal regions, or the cuticle attachments may be mediated through linkages with phagocytic storage cells found in the hemolymph. In some cases, phyllopod tendon cells attach directly to muscle cells. Tendon cells in the hindgut of Artemia possess microtubule bundles, as do the transalar cells, and they extend from the basal myotendinal junction to the apical domain located near the cuticle. The bundled microtubules intermingle with thin filaments reminiscent of microfilaments, but intermediate filament-like structures are absent. Microtubule bundles converging at apical cell surfaces contact structures termed apical invaginations, composed of cytoplasmic membrane infoldings associated with electron-dense material. Intracuticular rods protrude from apical invaginations, either into the cuticle during intermolt or the molting fluid in premolt. Confocal microscopy of immunofluorescently stained samples revealed tyrosinated, detyrosinated, and acetylated tubulins, the first time posttranslationally modified isoforms of this protein have been demonstrated in crustacean tendon cells. Microfilaments, as shown by staining with phalloidin, coincided spatially with microtubule bundles. Artemia tendon cells clearly represent an interesting system for study of cytoskeleton organization within the context of cytoplasmic polarity and the results in this article indicate functional cooperation of microtubules and microfilaments. These cytoskeletal elements, either acting independently or in concert, may transmit tension from muscle to cuticle in the hindgut and resist compression when connecting exopodite cuticular surfaces.
Collapse
Affiliation(s)
- Godelieve R J Criel
- Department of Anatomy, Embryology and Histology, University of Gent, Gent, Belgium
| | | | | |
Collapse
|
25
|
Lu C, Mains PE. Mutations of a redundant alpha-tubulin gene affect Caenorhabditis elegans early embryonic cleavage via MEI-1/katanin-dependent and -independent pathways. Genetics 2005; 170:115-26. [PMID: 15781712 PMCID: PMC1449697 DOI: 10.1534/genetics.104.030106] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The C. elegans zygote supports both meiosis and mitosis within a common cytoplasm. The meiotic spindle is small and is located anteriorly, whereas the first mitotic spindle fills the zygote. The C. elegans microtubule-severing complex, katanin, is encoded by the mei-1 and mei-2 genes and is solely required for oocyte meiotic spindle formation; ectopic mitotic katanin activity disrupts mitotic spindles. Here we characterize two mutations that rescue the lethality caused by ectopic MEI-1/MEI-2. Both mutations are gain-of-function alleles of tba-2 alpha-tubulin. These tba-2 alleles do not prevent MEI-1/MEI-2 microtubule localization but do interfere with its activity. TBA-1 and TBA-2 are redundant for viability, but when katanin activity is limiting, TBA-2 is preferred over TBA-1 by katanin. This is similar to what we previously reported for the beta-tubulins. Removing both preferred alpha- and beta-isoforms results in normal development, suggesting that the katanin isoform preferences are not absolute. We conclude that while the C. elegans embryo expresses redundant alpha- and beta-tubulin isoforms, they nevertheless have subtle functional specializations. Finally, we identified a dominant tba-2 allele that disrupts both meiotic and mitotic spindle formation independently of MEI-1/MEI-2 activity. Genetic studies suggest that this tba-2 mutation has a "poisonous" effect on microtubule function.
Collapse
Affiliation(s)
- Chenggang Lu
- Genes and Development Research Group, Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada
| | | |
Collapse
|
26
|
Phillips JB, Lyczak R, Ellis GC, Bowerman B. Roles for two partially redundant alpha-tubulins during mitosis in early Caenorhabditis elegans embryos. ACTA ACUST UNITED AC 2005; 58:112-26. [PMID: 15083533 DOI: 10.1002/cm.20003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The Caenorhabditis elegans genome encodes multiple isotypes of alpha-tubulin and beta-tubulin. Roles for a number of these tubulins in neuronal development have been described, but less is known about the isoforms that function during early embryonic development. Microtubules are required for multiple events after fertilization produces a one-cell zygote in C. elegans, including pronuclear migration, mitotic spindle assembly and function, and proper spindle positioning. Here we describe a conditional and dominant mis-sense mutation in the C. elegans alpha-tubulin gene tba-1 that disrupts pronuclear migration and positioning of the first mitotic spindle, and results in a highly penetrant embryonic lethality, at the restrictive temperature of 26 degrees C. Our analysis of the dominant tba-1 (or346ts) allele suggests that TBA-1 assembles into microtubules in early embryonic cells. However, we also show that reduction of tba-1 function using RNA interference results in defects much less severe than those caused by the dominant or346ts mutation, due to partial redundancy of TBA-1 and another alpha-tubulin called TBA-2. Reducing the function of both TBA-1 and TBA-2 results in severe defects in microtubule-dependent processes. We conclude that microtubules in the early C. elegans embryo are composed of both TBA-1 and TBA-2, and that the dominant tba-1(or346ts) mutation disrupts MT assembly or stability. Cell Motil.
Collapse
|
27
|
Lu C, Srayko M, Mains PE. The Caenorhabditis elegans microtubule-severing complex MEI-1/MEI-2 katanin interacts differently with two superficially redundant beta-tubulin isotypes. Mol Biol Cell 2003; 15:142-50. [PMID: 14565976 PMCID: PMC307535 DOI: 10.1091/mbc.e03-06-0418] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The microtubule-severing protein complex katanin is required for a variety of important microtubule-base morphological changes in both animals and plants. Caenorhabditis elegans katanin is encoded by the mei-1 and mei-2 genes and is required for oocyte meiotic spindle formation and must be inactivated before the first mitotic cleavage. We identified a mutation, sb26, in the tbb-2 beta-tubulin gene that partially inhibits MEI-1/MEI-2 activity: sb26 rescues lethality caused by ectopic MEI-1/MEI-2 expression during mitosis, and sb26 increases meiotic defects in a genetic background where MEI-1/MEI-2 activity is lower than normal. sb26 does not interfere with MEI-1/MEI-2 microtubule localization, suggesting that this mutation likely interferes with severing. Tubulin deletion alleles and RNA-mediated interference revealed that TBB-2 and the other germline enriched beta-tubulin isotype, TBB-1, are redundant for embryonic viability. However, limiting MEI-1/MEI-2 activity in these experiments revealed that MEI-1/MEI-2 preferentially interacts with TBB-2-containing microtubules. Our results demonstrate that these two superficially redundant beta-tubulin isotypes have functionally distinct roles in vivo.
Collapse
Affiliation(s)
- Chenggang Lu
- Genes and Development Research Group, University of Calgary, Calgary, Alberta, T2N 4N1 Canada
| | | | | |
Collapse
|