1
|
Wang J, Kunze M, Villoria-González A, Weinhofer I, Berger J. Peroxisomal Localization of a Truncated HMG-CoA Reductase under Low Cholesterol Conditions. Biomolecules 2024; 14:244. [PMID: 38397481 PMCID: PMC10886633 DOI: 10.3390/biom14020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase, HMGCR) is one of the rate-limiting enzymes in the mevalonate pathway required for cholesterol biosynthesis. It is an integral membrane protein of the endoplasmic reticulum (ER) but has occasionally been described in peroxisomes. By co-immunofluorescence microscopy using different HMGCR antibodies, we present evidence for a dual localization of HMGCR in the ER and peroxisomes in differentiated human monocytic THP-1 cells, primary human monocyte-derived macrophages and human primary skin fibroblasts under conditions of low cholesterol and statin treatment. Using density gradient centrifugation and Western blot analysis, we observed a truncated HMGCR variant of 76 kDa in the peroxisomal fractions, while a full-length HMGCR of 96 kDa was contained in fractions of the ER. In contrast to primary human control fibroblasts, peroxisomal HMGCR was not found in fibroblasts from patients suffering from type-1 rhizomelic chondrodysplasia punctata, who lack functional PEX7 and, thus, cannot import peroxisomal matrix proteins harboring a type-2 peroxisomal targeting signal (PTS2). Moreover, in the N-terminal region of the soluble 76 kDa C-terminal catalytic domain, we identified a PTS2-like motif, which was functional in a reporter context. We propose that under sterol-depleted conditions, part of the soluble HMGCR domain, which is released from the ER by proteolytic processing for further turnover, remains sufficiently long in the cytosol for peroxisomal import via a PTS2/PEX7-dependent mechanism. Altogether, our findings describe a dual localization of HMGCR under combined lipid depletion and statin treatment, adding another puzzle piece to the complex regulation of HMGCR.
Collapse
Affiliation(s)
| | | | | | | | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Raas Q, Tawbeh A, Tahri-Joutey M, Gondcaille C, Keime C, Kaiser R, Trompier D, Nasser B, Leoni V, Bellanger E, Boussand M, Hamon Y, Benani A, Di Cara F, Truntzer C, Cherkaoui-Malki M, Andreoletti P, Savary S. Peroxisomal defects in microglial cells induce a disease-associated microglial signature. Front Mol Neurosci 2023; 16:1170313. [PMID: 37138705 PMCID: PMC10149961 DOI: 10.3389/fnmol.2023.1170313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Microglial cells ensure essential roles in brain homeostasis. In pathological condition, microglia adopt a common signature, called disease-associated microglial (DAM) signature, characterized by the loss of homeostatic genes and the induction of disease-associated genes. In X-linked adrenoleukodystrophy (X-ALD), the most common peroxisomal disease, microglial defect has been shown to precede myelin degradation and may actively contribute to the neurodegenerative process. We previously established BV-2 microglial cell models bearing mutations in peroxisomal genes that recapitulate some of the hallmarks of the peroxisomal β-oxidation defects such as very long-chain fatty acid (VLCFA) accumulation. In these cell lines, we used RNA-sequencing and identified large-scale reprogramming for genes involved in lipid metabolism, immune response, cell signaling, lysosome and autophagy, as well as a DAM-like signature. We highlighted cholesterol accumulation in plasma membranes and observed autophagy patterns in the cell mutants. We confirmed the upregulation or downregulation at the protein level for a few selected genes that mostly corroborated our observations and clearly demonstrated increased expression and secretion of DAM proteins in the BV-2 mutant cells. In conclusion, the peroxisomal defects in microglial cells not only impact on VLCFA metabolism but also force microglial cells to adopt a pathological phenotype likely representing a key contributor to the pathogenesis of peroxisomal disorders.
Collapse
Affiliation(s)
- Quentin Raas
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Ali Tawbeh
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Mounia Tahri-Joutey
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, University Hassan I, Settat, Morocco
| | | | - Céline Keime
- Plateforme GenomEast, IGBMC, CNRS UMR 7104, Inserm U1258, University of Strasbourg, Illkirch, France
| | - Romain Kaiser
- Plateforme GenomEast, IGBMC, CNRS UMR 7104, Inserm U1258, University of Strasbourg, Illkirch, France
| | - Doriane Trompier
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Boubker Nasser
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, University Hassan I, Settat, Morocco
| | - Valerio Leoni
- Laboratory of Clinical Biochemistry, Hospital of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Emma Bellanger
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Maud Boussand
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Yannick Hamon
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Alexandre Benani
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro Dijon, University of Bourgogne Franche-Comté, Dijon, France
| | - Francesca Di Cara
- Department of Microbiology and Immunology, IWK Health Centre, Dalhousie University, Halifax, NS, Canada
| | - Caroline Truntzer
- Platform of Transfer in Biological Oncology, Georges François Leclerc Cancer Center–Unicancer, Dijon, France
| | | | | | - Stéphane Savary
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
- *Correspondence: Stéphane Savary,
| |
Collapse
|
3
|
The Key Role of Peroxisomes in Follicular Growth, Oocyte Maturation, Ovulation, and Steroid Biosynthesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7982344. [PMID: 35154572 PMCID: PMC8831076 DOI: 10.1155/2022/7982344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023]
Abstract
The absence of peroxisomes can cause disease in the human reproductive system, including the ovaries. The available peroxisomal gene-knockout female mouse models, which exhibit pathological changes in the ovary and reduced fertility, are listed in this review. Our review article provides the first systematic presentation of peroxisomal regulation and its possible functions in the ovary. Our immunofluorescence results reveal that peroxisomes are present in all cell types in the ovary; however, peroxisomes exhibit different numerical abundances and strong heterogeneity in their protein composition among distinct ovarian cell types. The peroxisomal compartment is strongly altered during follicular development and during oocyte maturation, which suggests that peroxisomes play protective roles in oocytes against oxidative stress and lipotoxicity during ovulation and in the survival of oocytes before conception. In addition, the peroxisomal compartment is involved in steroid synthesis, and peroxisomal dysfunction leads to disorder in the sexual hormone production process. However, an understanding of the cellular and molecular mechanisms underlying these physiological and pathological processes is lacking. To date, no effective treatment for peroxisome-related disease has been developed, and only supportive methods are available. Thus, further investigation is needed to resolve peroxisome deficiency in the ovary and eventually promote female fertility.
Collapse
|
4
|
Kim J, Bai H. Peroxisomal Stress Response and Inter-Organelle Communication in Cellular Homeostasis and Aging. Antioxidants (Basel) 2022; 11:192. [PMID: 35204075 PMCID: PMC8868334 DOI: 10.3390/antiox11020192] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 12/20/2022] Open
Abstract
Peroxisomes are key regulators of cellular and metabolic homeostasis. These organelles play important roles in redox metabolism, the oxidation of very-long-chain fatty acids (VLCFAs), and the biosynthesis of ether phospholipids. Given the essential role of peroxisomes in cellular homeostasis, peroxisomal dysfunction has been linked to various pathological conditions, tissue functional decline, and aging. In the past few decades, a variety of cellular signaling and metabolic changes have been reported to be associated with defective peroxisomes, suggesting that many cellular processes and functions depend on peroxisomes. Peroxisomes communicate with other subcellular organelles, such as the nucleus, mitochondria, endoplasmic reticulum (ER), and lysosomes. These inter-organelle communications are highly linked to the key mechanisms by which cells surveil defective peroxisomes and mount adaptive responses to protect them from damages. In this review, we highlight the major cellular changes that accompany peroxisomal dysfunction and peroxisomal inter-organelle communication through membrane contact sites, metabolic signaling, and retrograde signaling. We also discuss the age-related decline of peroxisomal protein import and its role in animal aging and age-related diseases. Unlike other organelle stress response pathways, such as the unfolded protein response (UPR) in the ER and mitochondria, the cellular signaling pathways that mediate stress responses to malfunctioning peroxisomes have not been systematically studied and investigated. Here, we coin these signaling pathways as "peroxisomal stress response pathways". Understanding peroxisomal stress response pathways and how peroxisomes communicate with other organelles are important and emerging areas of peroxisome research.
Collapse
Affiliation(s)
- Jinoh Kim
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Hua Bai
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
5
|
Ranea-Robles P, Chen H, Stauffer B, Yu C, Bhattacharya D, Friedman SL, Puchowicz M, Houten SM. The peroxisomal transporter ABCD3 plays a major role in hepatic dicarboxylic fatty acid metabolism and lipid homeostasis. J Inherit Metab Dis 2021; 44:1419-1433. [PMID: 34564857 PMCID: PMC8578467 DOI: 10.1002/jimd.12440] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 09/24/2021] [Indexed: 01/02/2023]
Abstract
Peroxisomes metabolize a specific subset of fatty acids, which include dicarboxylic fatty acids (DCAs) generated by ω-oxidation. Data obtained in vitro suggest that the peroxisomal transporter ABCD3 (also known as PMP70) mediates the transport of DCAs into the peroxisome, but in vivo evidence to support this role is lacking. In this work, we studied an Abcd3 KO mouse model generated by CRISPR-Cas9 technology using targeted and untargeted metabolomics, histology, immunoblotting, and stable isotope tracing technology. We show that ABCD3 functions in hepatic DCA metabolism and uncover a novel role for this peroxisomal transporter in lipid homeostasis. The Abcd3 KO mouse presents with increased hepatic long-chain DCAs, increased urine medium-chain DCAs, lipodystrophy, enhanced hepatic cholesterol synthesis and decreased hepatic de novo lipogenesis. Moreover, our study suggests that DCAs are metabolized by mitochondrial fatty acid β-oxidation when ABCD3 is not functional, reflecting the importance of the metabolic compartmentalization and communication between peroxisomes and mitochondria. In summary, this study provides data on the role of the peroxisomal transporter ABCD3 in hepatic lipid homeostasis and DCA metabolism, and the consequences of peroxisomal dysfunction for the liver.
Collapse
Affiliation(s)
- Pablo Ranea-Robles
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hongjie Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Genomics, Inc, Stamford, Connecticut, USA
| | - Brandon Stauffer
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Genomics, Inc, Stamford, Connecticut, USA
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Genomics, Inc, Stamford, Connecticut, USA
| | - Dipankar Bhattacharya
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michelle Puchowicz
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
6
|
Brennenstuhl H, Nashawi M, Schröter J, Baronio F, Beedgen L, Gleich F, Jeltsch K, von Landenberg C, Martini S, Simon A, Thiel C, Tsiakas K, Opladen T, Kölker S, Hoffmann GF, Haas D. Phenotypic diversity, disease progression, and pathogenicity of MVK missense variants in mevalonic aciduria. J Inherit Metab Dis 2021; 44:1272-1287. [PMID: 34145613 DOI: 10.1002/jimd.12412] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 01/05/2023]
Abstract
Mevalonic aciduria (MVA) and hyperimmunoglobulinemia D syndrome (MKD/HIDS) are disorders of cholesterol biosynthesis caused by variants in the MVK gene and characterized by increased urinary excretion of mevalonic acid. So far, 30 MVA patients have been reported, suffering from recurrent febrile crises and neurologic impairment. Here, we present an in-depth analysis of the phenotypic spectrum of MVA and provide an in-silico pathogenicity model analysis of MVK missense variants. The phenotypic spectrum of 11 MVA patients (age range 0-51 years) registered in the Unified European Registry for Inherited Metabolic Disorders database was systematically analyzed using terms of the Human Phenotype Ontology. Biochemical, radiological as well as genetic characteristics were investigated. Six of eleven patients have reached adulthood and four have reached adolescence. One of the adolescent patients died at the age of 16 years and one patient died shortly after birth. Symptoms started within the first year of life, including episodic fever, developmental delay, ataxia, and ocular involvement. We also describe a case with absence of symptoms despite massive excretion of mevalonic acid. Pathogenic variants causing MVA cluster within highly conserved regions, which are involved in mevalonate and ATP binding. The phenotype of adult and adolescent MVA patients is more heterogeneous than previously assumed. Outcome varies from an asymptomatic course to early death. MVK variants cluster in functionally important and highly conserved protein domains and show high concordance regarding their expected pathogenicity.
Collapse
Affiliation(s)
- Heiko Brennenstuhl
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Mohammed Nashawi
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
- Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Julian Schröter
- Division of Pediatric Epileptology, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Federico Baronio
- Paediatric Unit, Department of Medical and Surgical Sciences, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Lars Beedgen
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Florian Gleich
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Kathrin Jeltsch
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Silvia Martini
- Neonatal Intensive Care Unit, Department of Medical and Surgical Sciences, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Anna Simon
- Department of Internal Medicine, Radboudumc Expertise Centre for Immunodeficiency and Autoinflammation (REIA), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Thiel
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Konstantinos Tsiakas
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Opladen
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Dorothea Haas
- Division of Neuropaediatrics and Paediatric Metabolic Medicine, Center for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Clathrin: the molecular shape shifter. Biochem J 2021; 478:3099-3123. [PMID: 34436540 DOI: 10.1042/bcj20200740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022]
Abstract
Clathrin is best known for its contribution to clathrin-mediated endocytosis yet it also participates to a diverse range of cellular functions. Key to this is clathrin's ability to assemble into polyhedral lattices that include curved football or basket shapes, flat lattices or even tubular structures. In this review, we discuss clathrin structure and coated vesicle formation, how clathrin is utilised within different cellular processes including synaptic vesicle recycling, hormone desensitisation, spermiogenesis, cell migration and mitosis, and how clathrin's remarkable 'shapeshifting' ability to form diverse lattice structures might contribute to its multiple cellular functions.
Collapse
|
8
|
Ranea-Robles P, Violante S, Argmann C, Dodatko T, Bhattacharya D, Chen H, Yu C, Friedman SL, Puchowicz M, Houten SM. Murine deficiency of peroxisomal L-bifunctional protein (EHHADH) causes medium-chain 3-hydroxydicarboxylic aciduria and perturbs hepatic cholesterol homeostasis. Cell Mol Life Sci 2021; 78:5631-5646. [PMID: 34110423 PMCID: PMC8263512 DOI: 10.1007/s00018-021-03869-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/29/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023]
Abstract
Peroxisomes play an essential role in the β-oxidation of dicarboxylic acids (DCAs), which are metabolites formed upon ω-oxidation of fatty acids. Genetic evidence linking transporters and enzymes to specific DCA β-oxidation steps is generally lacking. Moreover, the physiological functions of DCA metabolism remain largely unknown. In this study, we aimed to characterize the DCA β-oxidation pathway in human cells, and to evaluate the biological role of DCA metabolism using mice deficient in the peroxisomal L-bifunctional protein (Ehhadh KO mice). In vitro experiments using HEK-293 KO cell lines demonstrate that ABCD3 and ACOX1 are essential in DCA β-oxidation, whereas both the bifunctional proteins (EHHADH and HSD17B4) and the thiolases (ACAA1 and SCPx) have overlapping functions and their contribution may depend on expression level. We also show that medium-chain 3-hydroxydicarboxylic aciduria is a prominent feature of EHHADH deficiency in mice most notably upon inhibition of mitochondrial fatty acid oxidation. Using stable isotope tracing methodology, we confirmed that products of peroxisomal DCA β-oxidation can be transported to mitochondria for further metabolism. Finally, we show that, in liver, Ehhadh KO mice have increased mRNA and protein expression of cholesterol biosynthesis enzymes with decreased (in females) or similar (in males) rate of cholesterol synthesis. We conclude that EHHADH plays an essential role in the metabolism of medium-chain DCAs and postulate that peroxisomal DCA β-oxidation is a regulator of hepatic cholesterol biosynthesis.
Collapse
Affiliation(s)
- Pablo Ranea-Robles
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY, 10029, USA
| | - Sara Violante
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY, 10029, USA
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY, 10029, USA
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY, 10029, USA
| | - Dipankar Bhattacharya
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hongjie Chen
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY, 10029, USA
- Mount Sinai Genomics, Inc, Stamford, CT, 06902, USA
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY, 10029, USA
- Mount Sinai Genomics, Inc, Stamford, CT, 06902, USA
| | - Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michelle Puchowicz
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY, 10029, USA.
| |
Collapse
|
9
|
Chornyi S, IJlst L, van Roermund CWT, Wanders RJA, Waterham HR. Peroxisomal Metabolite and Cofactor Transport in Humans. Front Cell Dev Biol 2021; 8:613892. [PMID: 33505966 PMCID: PMC7829553 DOI: 10.3389/fcell.2020.613892] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Peroxisomes are membrane-bound organelles involved in many metabolic pathways and essential for human health. They harbor a large number of enzymes involved in the different pathways, thus requiring transport of substrates, products and cofactors involved across the peroxisomal membrane. Although much progress has been made in understanding the permeability properties of peroxisomes, there are still important gaps in our knowledge about the peroxisomal transport of metabolites and cofactors. In this review, we discuss the different modes of transport of metabolites and essential cofactors, including CoA, NAD+, NADP+, FAD, FMN, ATP, heme, pyridoxal phosphate, and thiamine pyrophosphate across the peroxisomal membrane. This transport can be mediated by non-selective pore-forming proteins, selective transport proteins, membrane contact sites between organelles, and co-import of cofactors with proteins. We also discuss modes of transport mediated by shuttle systems described for NAD+/NADH and NADP+/NADPH. We mainly focus on current knowledge on human peroxisomal metabolite and cofactor transport, but also include knowledge from studies in plants, yeast, fruit fly, zebrafish, and mice, which has been exemplary in understanding peroxisomal transport mechanisms in general.
Collapse
Affiliation(s)
- Serhii Chornyi
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Lodewijk IJlst
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Carlo W T van Roermund
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
10
|
Van Veldhoven PP, de Schryver E, Young SG, Zwijsen A, Fransen M, Espeel M, Baes M, Van Ael E. Slc25a17 Gene Trapped Mice: PMP34 Plays a Role in the Peroxisomal Degradation of Phytanic and Pristanic Acid. Front Cell Dev Biol 2020; 8:144. [PMID: 32266253 PMCID: PMC7106852 DOI: 10.3389/fcell.2020.00144] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/20/2020] [Indexed: 12/04/2022] Open
Abstract
Mice lacking PMP34, a peroxisomal membrane transporter encoded by Slc25a17, did not manifest any obvious phenotype on a Swiss Webster genetic background, even with various treatments designed to unmask impaired peroxisomal functioning. Peroxisomal α- and β-oxidation rates in PMP34 deficient fibroblasts or liver slices were not or only modestly affected and in bile, no abnormal bile acid intermediates were detected. Peroxisomal content of cofactors like CoA, ATP, NAD+, thiamine-pyrophosphate and pyridoxal-phosphate, based on direct or indirect data, appeared normal as were tissue plasmalogen and very long chain fatty acid levels. However, upon dietary phytol administration, the knockout mice displayed hepatomegaly, liver inflammation, and an induction of peroxisomal enzymes. This phenotype was partially mediated by PPARα. Hepatic triacylglycerols and cholesterylesters were elevated and both phytanic acid and pristanic acid accumulated in the liver lipids, in females to higher extent than in males. In addition, pristanic acid degradation products were detected, as wells as the CoA-esters of all these branched fatty acids. Hence, PMP34 is important for the degradation of phytanic/pristanic acid and/or export of their metabolites. Whether this is caused by a shortage of peroxisomal CoA affecting the intraperoxisomal formation of pristanoyl-CoA (and perhaps of phytanoyl-CoA), or the SCPx-catalyzed thiolytic cleavage during pristanic acid β-oxidation, could not be proven in this model, but the phytol-derived acyl-CoA profile is compatible with the latter possibility. On the other hand, the normal functioning of other peroxisomal pathways, and especially bile acid formation, seems to exclude severe transport problems or a shortage of CoA, and other cofactors like FAD, NAD(P)+, TPP. Based on our findings, PMP34 deficiency in humans is unlikely to be a life threatening condition but could cause elevated phytanic/pristanic acid levels in older adults.
Collapse
Affiliation(s)
| | - Evelyn de Schryver
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stephen G. Young
- Departments of Medicine and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - An Zwijsen
- Laboratory of Developmental Signaling, Department Human Genetics, VIB-KU Leuven, Leuven, Belgium
| | - Marc Fransen
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Marc Espeel
- Department of Anatomy, Embryology, Histology and Medical Physics, Ghent University, Ghent, Belgium
| | - Myriam Baes
- Laboratory of Cell Metabolism, Faculty of Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| | - Elke Van Ael
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Kuang H, Yang F, Zhang Y, Wang T, Chen G. The Impact of Egg Nutrient Composition and Its Consumption on Cholesterol Homeostasis. CHOLESTEROL 2018; 2018:6303810. [PMID: 30210871 PMCID: PMC6126094 DOI: 10.1155/2018/6303810] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023]
Abstract
Nutrient deficiencies and excess are involved in many aspects of human health. As a source of essential nutrients, eggs have been used worldwide to support the nutritional needs of human societies. On the other hand, eggs also contain a significant amount of cholesterol, a lipid molecule that has been associated with the development of cardiovascular diseases. Whether the increase of egg consumption will lead to elevated cholesterol absorption and disruption of cholesterol homeostasis has been a concern of debate for a while. Cholesterol homeostasis is regulated through its dietary intake, endogenous biosynthesis, utilization, and excretion. Recently, some research interests have been paid to the effects of egg consumption on cholesterol homeostasis through the intestinal cholesterol absorption. Nutrient components in eggs such as phospholipids may contribute to this process. The goals of this review are to summarize the recent progress in this area and to discuss some potential benefits of egg consumption.
Collapse
Affiliation(s)
- Heqian Kuang
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Yan Zhang
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Tiannan Wang
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
12
|
Chen H, Liu C, Li M, Zhang H, Xian M, Liu H. Directed evolution of mevalonate kinase in Escherichia coli by random mutagenesis for improved lycopene. RSC Adv 2018; 8:15021-15028. [PMID: 35541305 PMCID: PMC9080002 DOI: 10.1039/c8ra01783b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/18/2019] [Accepted: 04/12/2018] [Indexed: 11/21/2022] Open
Abstract
Lycopene is a terpenoid pigment that has diverse applications in the fields of food and medicine.
Collapse
Affiliation(s)
- Hailin Chen
- CAS Key Laboratory of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- People's Republic of China
| | - Changqing Liu
- CAS Key Laboratory of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- People's Republic of China
| | - Meijie Li
- CAS Key Laboratory of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- People's Republic of China
| | - Haibo Zhang
- CAS Key Laboratory of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- People's Republic of China
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- People's Republic of China
| | - Huizhou Liu
- CAS Key Laboratory of Bio-based Materials
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao 266101
- People's Republic of China
| |
Collapse
|
13
|
Natarajan SK, Muthukrishnan E, Khalimonchuk O, Mott JL, Becker DF. Evidence for Pipecolate Oxidase in Mediating Protection Against Hydrogen Peroxide Stress. J Cell Biochem 2016; 118:1678-1688. [PMID: 27922192 DOI: 10.1002/jcb.25825] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 12/02/2016] [Indexed: 01/16/2023]
Abstract
Pipecolate, an intermediate of the lysine catabolic pathway, is oxidized to Δ1 -piperideine-6-carboxylate (P6C) by the flavoenzyme l-pipecolate oxidase (PIPOX). P6C spontaneously hydrolyzes to generate α-aminoadipate semialdehyde, which is then converted into α-aminoadipate acid by α-aminoadipatesemialdehyde dehydrogenase. l-pipecolate was previously reported to protect mammalian cells against oxidative stress. Here, we examined whether PIPOX is involved in the mechanism of pipecolate stress protection. Knockdown of PIPOX by small interference RNA abolished pipecolate protection against hydrogen peroxide-induced cell death in HEK293 cells suggesting a critical role for PIPOX. Subcellular fractionation analysis showed that PIPOX is localized in the mitochondria of HEK293 cells consistent with its role in lysine catabolism. Signaling pathways potentially involved in pipecolate protection were explored by treating cells with small molecule inhibitors. Inhibition of both mTORC1 and mTORC2 kinase complexes or inhibition of Akt kinase alone blocked pipecolate protection suggesting the involvement of these signaling pathways. Phosphorylation of the Akt downstream target, forkhead transcription factor O3 (FoxO3), was also significantly increased in cells treated with pipecolate, further implicating Akt in the protective mechanism and revealing FoxO3 inhibition as a potentially key step. The results presented here demonstrate that pipecolate metabolism can influence cell signaling during oxidative stress to promote cell survival and suggest that the mechanism of pipecolate protection parallels that of proline, which is also metabolized in the mitochondria. J. Cell. Biochem. 118: 1678-1688, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sathish Kumar Natarajan
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588.,Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, 68583
| | - Ezhumalai Muthukrishnan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, 68583
| | - Oleh Khalimonchuk
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588
| | - Justin L Mott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| | - Donald F Becker
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588
| |
Collapse
|
14
|
Cerqueira NMFSA, Oliveira EF, Gesto DS, Santos-Martins D, Moreira C, Moorthy HN, Ramos MJ, Fernandes PA. Cholesterol Biosynthesis: A Mechanistic Overview. Biochemistry 2016; 55:5483-5506. [PMID: 27604037 DOI: 10.1021/acs.biochem.6b00342] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cholesterol is an essential component of cell membranes and the precursor for the synthesis of steroid hormones and bile acids. The synthesis of this molecule occurs partially in a membranous world (especially the last steps), where the enzymes, substrates, and products involved tend to be extremely hydrophobic. The importance of cholesterol has increased in the past half-century because of its association with cardiovascular diseases, which are considered one of the leading causes of death worldwide. In light of the current need for new drugs capable of controlling the levels of cholesterol in the bloodstream, it is important to understand how cholesterol is synthesized in the organism and identify the main enzymes involved in this process. Taking this into account, this review presents a detailed description of several enzymes involved in the biosynthesis of cholesterol. In this regard, the structure and catalytic mechanism of the enzymes involved in cholesterol biosynthesis, from the initial two-carbon acetyl-CoA building block, will be reviewed and their current pharmacological importance discussed. We believe that this review may contribute to a deeper level of understanding of cholesterol metabolism and that it will serve as a useful resource for future studies of the cholesterol biosynthesis pathway.
Collapse
Affiliation(s)
- Nuno M F S A Cerqueira
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Eduardo F Oliveira
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Diana S Gesto
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Diogo Santos-Martins
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Cátia Moreira
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Hari N Moorthy
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Maria J Ramos
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - P A Fernandes
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| |
Collapse
|
15
|
Cholesterol biosynthesis and ER stress in peroxisome deficiency. Biochimie 2014; 98:75-85. [DOI: 10.1016/j.biochi.2013.10.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/22/2013] [Indexed: 12/27/2022]
|
16
|
A comprehensive machine-readable view of the mammalian cholesterol biosynthesis pathway. Biochem Pharmacol 2013; 86:56-66. [PMID: 23583456 PMCID: PMC3912678 DOI: 10.1016/j.bcp.2013.03.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 01/17/2023]
Abstract
Cholesterol biosynthesis serves as a central metabolic hub for numerous biological processes in health and disease. A detailed, integrative single-view description of how the cholesterol pathway is structured and how it interacts with other pathway systems is lacking in the existing literature. Here we provide a systematic review of the existing literature and present a detailed pathway diagram that describes the cholesterol biosynthesis pathway (the mevalonate, the Kandutch-Russell and the Bloch pathway) and shunt pathway that leads to 24(S),25-epoxycholesterol synthesis. The diagram has been produced using the Systems Biology Graphical Notation (SBGN) and is available in the SBGN-ML format, a human readable and machine semantically parsable open community file format.
Collapse
|
17
|
Mutowo-Meullenet P, Huntley RP, Dimmer EC, Alam-Faruque Y, Sawford T, Jesus Martin M, O'Donovan C, Apweiler R. Use of Gene Ontology Annotation to understand the peroxisome proteome in humans. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bas062. [PMID: 23327938 PMCID: PMC3548334 DOI: 10.1093/database/bas062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Gene Ontology (GO) is the de facto standard for the functional description of gene products, providing a consistent, information-rich terminology applicable across species and information repositories. The UniProt Consortium uses both manual and automatic GO annotation approaches to curate UniProt Knowledgebase (UniProtKB) entries. The selection of a protein set prioritized for manual annotation has implications for the characteristics of the information provided to users working in a specific field or interested in particular pathways or processes. In this article, we describe an organelle-focused, manual curation initiative targeting proteins from the human peroxisome. We discuss the steps taken to define the peroxisome proteome and the challenges encountered in defining the boundaries of this protein set. We illustrate with the use of examples how GO annotations now capture cell and tissue type information and the advantages that such an annotation approach provides to users. Database URL:http://www.ebi.ac.uk/GOA/ and http://www.uniprot.org
Collapse
|
18
|
Weinhofer I, Kunze M, Forss-Petter S, Berger J. Involvement of human peroxisomes in biosynthesis and signaling of steroid and peptide hormones. Subcell Biochem 2013; 69:101-110. [PMID: 23821145 DOI: 10.1007/978-94-007-6889-5_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Although peroxisomes exert essential biological functions, cell type-specific features of this important organelle are still only superficially characterized. An intriguing new aspect of peroxisomal function was recently uncovered by the observation that the peptide hormones β-lipotropin (β-LPH) and β-endorphin are localized to peroxisomes in various human tissues. This suggests a functional link between peptide hormone metabolism and peroxisomes. In addition, because endocrine manifestations that affect steroid hormones are often found in patients suffering from inherited peroxisomal disorders, the question has been raised whether peroxisomes are also involved in steroidogenesis. With this chapter, we will review several crucial aspects concerning peroxisomes and hormone metabolism.
Collapse
Affiliation(s)
- Isabelle Weinhofer
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria,
| | | | | | | |
Collapse
|
19
|
Islinger M, Grille S, Fahimi HD, Schrader M. The peroxisome: an update on mysteries. Histochem Cell Biol 2012; 137:547-74. [DOI: 10.1007/s00418-012-0941-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2012] [Indexed: 12/31/2022]
|
20
|
Simkin AJ, Guirimand G, Papon N, Courdavault V, Thabet I, Ginis O, Bouzid S, Giglioli-Guivarc'h N, Clastre M. Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta. PLANTA 2011; 234:903-14. [PMID: 21655959 DOI: 10.1007/s00425-011-1444-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 05/17/2011] [Indexed: 05/19/2023]
Abstract
In plants, the mevalonic acid (MVA) pathway provides precursors for the formation of triterpenes, sesquiterpenes, phytosterols and primary metabolites important for cell integrity. Here, we have cloned the cDNA encoding enzymes catalysing the final three steps of the MVA pathway from Madagascar periwinkle (Catharanthus roseus), mevalonate kinase (MVK), 5-phosphomevalonate kinase (PMK) and mevalonate 5-diphosphate decarboxylase (MVD). These cDNA were shown to functionally complement MVA pathway deletion mutants in the yeast Saccharomyces cerevisiae. Transient transformations of C. roseus cells with yellow fluorescent protein (YFP)-fused constructs reveal that PMK and MVD are localised to the peroxisomes, while MVK was cytosolic. These compartmentalisation results were confirmed using the Arabidopsis thaliana MVK, PMK and MVD sequences fused to YFP. Based on these observations and the arguments raised here we conclude that the final steps of the plant MVA pathway are localised to the peroxisome.
Collapse
Affiliation(s)
- Andrew J Simkin
- EA 2106, Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, 31 Avenue Monge, 37200, Tours, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Spanova M, Daum G. Squalene - biochemistry, molecular biology, process biotechnology, and applications. EUR J LIPID SCI TECH 2011. [DOI: 10.1002/ejlt.201100203] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Ginger ML, McFadden GI, Michels PAM. Rewiring and regulation of cross-compartmentalized metabolism in protists. Philos Trans R Soc Lond B Biol Sci 2010; 365:831-45. [PMID: 20124348 DOI: 10.1098/rstb.2009.0259] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plastid acquisition, endosymbiotic associations, lateral gene transfer, organelle degeneracy or even organelle loss influence metabolic capabilities in many different protists. Thus, metabolic diversity is sculpted through the gain of new metabolic functions and moderation or loss of pathways that are often essential in the majority of eukaryotes. What is perhaps less apparent to the casual observer is that the sub-compartmentalization of ubiquitous pathways has been repeatedly remodelled during eukaryotic evolution, and the textbook pictures of intermediary metabolism established for animals, yeast and plants are not conserved in many protists. Moreover, metabolic remodelling can strongly influence the regulatory mechanisms that control carbon flux through the major metabolic pathways. Here, we provide an overview of how core metabolism has been reorganized in various unicellular eukaryotes, focusing in particular on one near universal catabolic pathway (glycolysis) and one ancient anabolic pathway (isoprenoid biosynthesis). For the example of isoprenoid biosynthesis, the compartmentalization of this process in protists often appears to have been influenced by plastid acquisition and loss, whereas for glycolysis several unexpected modes of compartmentalization have emerged. Significantly, the example of trypanosomatid glycolysis illustrates nicely how mathematical modelling and systems biology can be used to uncover or understand novel modes of pathway regulation.
Collapse
Affiliation(s)
- Michael L Ginger
- Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK.
| | | | | |
Collapse
|
23
|
Intracellular location of the early steps of the isoprenoid biosynthetic pathway in the trypanosomatids Leishmania major and Trypanosoma brucei. Int J Parasitol 2009; 39:307-14. [DOI: 10.1016/j.ijpara.2008.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 07/31/2008] [Accepted: 08/08/2008] [Indexed: 11/17/2022]
|
24
|
Mizuno Y, Kurochkin IV, Herberth M, Okazaki Y, Schönbach C. Predicted mouse peroxisome-targeted proteins and their actual subcellular locations. BMC Bioinformatics 2008; 9 Suppl 12:S16. [PMID: 19091015 PMCID: PMC2638156 DOI: 10.1186/1471-2105-9-s12-s16] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The import of most intraperoxisomal proteins is mediated by peroxisome targeting signals at their C-termini (PTS1) or N-terminal regions (PTS2). Both signals have been integrated in subcellular location prediction programs. However their present performance, particularly of PTS2-targeting did not seem fitting for large-scale screening of sequences. RESULTS We modified an earlier reported PTS1 screening method to identify PTS2-containing mouse candidates using a combination of computational and manual annotation. For rapid confirmation of five new PTS2- and two previously identified PTS1-containing candidates we developed the new cell line CHO-perRed which stably expresses the peroxisomal marker dsRed-PTS1. Using CHO-perRed we confirmed the peroxisomal localization of PTS1-targeted candidate Zadh2. Preliminary characterization of Zadh2 expression suggested non-PPARalpha mediated activation. Notably, none of the PTS2 candidates located to peroxisomes. CONCLUSION In a few cases the PTS may oscillate from "silent" to "functional" depending on its surface accessibility indicating the potential for context-dependent conditional subcellular sorting. Overall, PTS2-targeting predictions are unlikely to improve without generation and integration of new experimental data from location proteomics, protein structures and quantitative Pex7 PTS2 peptide binding assays.
Collapse
Affiliation(s)
- Yumi Mizuno
- Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama 350-1241, Japan.
| | | | | | | | | |
Collapse
|
25
|
Al-Dirbashi OY, Santa T, Rashed MS, Al-Hassnan Z, Shimozawa N, Chedrawi A, Jacob M, Al-Mokhadab M. Rapid UPLC-MS/MS method for routine analysis of plasma pristanic, phytanic, and very long chain fatty acid markers of peroxisomal disorders. J Lipid Res 2008; 49:1855-62. [PMID: 18441019 DOI: 10.1194/jlr.d800019-jlr200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quantification of pristanic acid, phytanic acid, and very long chain fatty acids (i.e., hexacosanoic, tetracosanoic, and docosanoic acids) in plasma is the primary method for investigateing a multitude of peroxisomal disorders (PDs). Typically based on GC-MS, existing methods are time-consuming and laborious. In this paper, we present a rapid and specific liquid chromatography tandem mass spectrometric method based on derivatization with 4-[2-(N,N-dimethylamino)ethylaminosulfonyl]-7-(2-aminoethylamino)-2,1,3-benzoxadiazole (DAABD-AE). Derivatization was undertaken to improve the poor mass spectrometric properties of these fatty acids. Analytes in plasma (20 mul) were hydrolyzed, extracted, and derivatized with DAABD-AE in approximately 2 h. Derivatives were separated on a reverse-phase column and detected by positive-ion electrospray ionization tandem mass spectrometry with a 5 min injection-to-injection time. Calibration plots were linear over ranges that cover physiological and pathological concentrations. Intraday (n = 12) and interday (n = 10) variations at low and high concentrations were less than 9.2%. Reference intervals in normal plasma (n = 250) were established for each compound and were in agreement with the literature. Using specimens from patients with established diagnosis (n = 20), various PDs were reliably detected. In conclusion, this method allows for the detection of at least nine PDs in a 5 min analytical run. Furthermore, this derivatization approach is potentially applicable to other disease markers carrying the carboxylic group.
Collapse
Affiliation(s)
- Osama Y Al-Dirbashi
- National Laboratory for Newborn Screening, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
More than half a century of research on peroxisomes has revealed unique features of this ubiquitous subcellular organelle, which have often been in disagreement with existing dogmas in cell biology. About 50 peroxisomal enzymes have so far been identified, which contribute to several crucial metabolic processes such as β-oxidation of fatty acids, biosynthesis of ether phospholipids and metabolism of reactive oxygen species, and render peroxisomes indispensable for human health and development. It became obvious that peroxisomes are highly dynamic organelles that rapidly assemble, multiply and degrade in response to metabolic needs. However, many aspects of peroxisome biology are still mysterious. This review addresses recent exciting discoveries on the biogenesis, formation and degradation of peroxisomes, on peroxisomal dynamics and division, as well as on the interaction and cross talk of peroxisomes with other subcellular compartments. Furthermore, recent advances on the role of peroxisomes in medicine and in the identification of novel peroxisomal proteins are discussed.
Collapse
Affiliation(s)
- Michael Schrader
- Centre for Cell Biology and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | |
Collapse
|
27
|
Mi J, Garcia-Arcos I, Alvarez R, Cristobal S. Age-related subproteomic analysis of mouse liver and kidney peroxisomes. Proteome Sci 2007; 5:19. [PMID: 18042274 PMCID: PMC2231346 DOI: 10.1186/1477-5956-5-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 11/27/2007] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Despite major recent advances in the understanding of peroxisomal functions and how peroxisomes arise, only scant information is available regarding this organelle in cellular aging. The aim of this study was to characterize the changes in the protein expression profile of aged versus young liver and kidney peroxisome-enriched fractions from mouse and to suggest possible mechanisms underlying peroxisomal aging. Peroxisome-enriched fractions from 10 weeks, 18 months and 24 months C57bl/6J mice were analyzed by quantitative proteomics. RESULTS Peroxisomal proteins were enriched by differential and density gradient centrifugation and proteins were separated by two-dimensional electrophoresis (2-DE), quantified and identified by mass spectrometry (MS). In total, sixty-five proteins were identified in both tissues. Among them, 14 proteins were differentially expressed in liver and 21 proteins in kidney. The eight proteins differentially expressed in both tissues were involved in beta-oxidation, alpha-oxidation, isoprenoid biosynthesis, amino acid metabolism, and stress response. Quantitative proteomics, clustering methods, and prediction of transcription factors, all indicated that there is a decline in protein expression at 18 months and a recovery at 24 months. CONCLUSION These results indicate that some peroxisomal proteins show a tissue-specific functional response to aging. This response is probably dependent on their differential regeneration capacity. The differentially expressed proteins could lead several cellular effects: such as alteration of fatty acid metabolism that could alert membrane protein functions, increase of the oxidative stress and contribute to decline in bile salt synthesis. The ability to detect age-related variations in the peroxisomal proteome can help in the search for reliable and valid aging biomarkers.
Collapse
Affiliation(s)
- Jia Mi
- Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Itsaso Garcia-Arcos
- Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Ruben Alvarez
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Susana Cristobal
- Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, SE-751 24 Uppsala, Sweden
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
28
|
Mi J, Kirchner E, Cristobal S. Quantitative proteomic comparison of mouse peroxisomes from liver and kidney. Proteomics 2007; 7:1916-28. [PMID: 17474143 DOI: 10.1002/pmic.200600638] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The peroxisome plays a central role in the catabolic and anabolic pathways that contribute to the lipid homeostasis. Besides this main function, this organelle has gained functional diversity. Although several approaches have been used for peroxisomal proteome analysis, a quantitative protein expression analysis of peroxisomes from different tissues has not been elucidated yet. Here, we applied a 2-DE-based method on mouse liver and kidney peroxisomal enriched fractions to study the tissue-dependent protein expression. Ninety-one spots were identified from the 2-DE maps from pH 3.0-10.0 and 51 spots from the basic range corresponding to 31 peroxisomal proteins, 10 putative peroxisomal, 6 cytosolic, 17 mitochondrial and 1 protein from endoplasmic reticulum. Based on the identification and on the equivalent quality of both tissue preparations, the differences emerging from the comparison could be quantified. In liver, proteins involved in pathways such as alpha- and beta-oxidation, isoprenoid biosynthesis, amino acid metabolism and purine and pyrimidine metabolism were more abundant whereas in kidney, proteins from the straight-chain fatty acid beta-oxidation were highly expressed. These results indicate that tissue-specific functional classes of peroxisomal proteins could be relevant to study peroxisomal cellular responses or pathologies. Finally, a web-based peroxisomal proteomic database was built.
Collapse
Affiliation(s)
- Jia Mi
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
29
|
Martín D, Piulachs MD, Cunillera N, Ferrer A, Bellés X. Mitochondrial targeting of farnesyl diphosphate synthase is a widespread phenomenon in eukaryotes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:419-26. [PMID: 17198737 DOI: 10.1016/j.bbamcr.2006.11.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 11/09/2006] [Accepted: 11/10/2006] [Indexed: 10/23/2022]
Abstract
The isoprenoid pathway is responsible for the generation of a wide range of products that are crucial for cellular processes; namely, cholesterol synthesis, protein glycosylation, growth control and synthesis of several hormones. Farnesyl diphosphate synthase (FPS), a key enzyme in this pathway, is usually considered to be cytosolic/peroxisomal. However, significant enzymatic activity has also been detected in rat liver mitochondria, although none of the mammalian FPS genes characterized to date contain sequences coding for mitochondrial transit peptides. Here, we describe the genomic organization of the human FPS gene and demonstrate that one of the two mRNAs expressed from this gene encodes an isoform with a 66 amino acid N-terminal extension containing a peptide that targets it to mitochondria. Previous studies suggested that the N-terminal extension of FPS in the plant Arabidopsis thaliana contains a mitochondrial targeting sequence. In this study, database analysis reveals that this is also the case in a number of mammals and insects. Finally, we provide functional proofs that the N-terminal sequence of Drosophila melanogaster FPS targets the protein to mitochondria. Taken together, these data suggest that mitochondrial targeting of FPS may be widespread among eukaryotes.
Collapse
Affiliation(s)
- David Martín
- Departament de Fisiologia i Biodiversitat Molecular, Institut de Biologia Molecular de Barcelona, CSIC, J. Girona 18, 08034 Barcelona, Spain
| | | | | | | | | |
Collapse
|
30
|
Abstract
In this review, we describe the current state of knowledge about the biochemistry of mammalian peroxisomes, especially human peroxisomes. The identification and characterization of yeast mutants defective either in the biogenesis of peroxisomes or in one of its metabolic functions, notably fatty acid beta-oxidation, combined with the recognition of a group of genetic diseases in man, wherein these processes are also defective, have provided new insights in all aspects of peroxisomes. As a result of these and other studies, the indispensable role of peroxisomes in multiple metabolic pathways has been clarified, and many of the enzymes involved in these pathways have been characterized, purified, and cloned. One aspect of peroxisomes, which has remained ill defined, is the transport of metabolites across the peroxisomal membrane. Although it is clear that mammalian peroxisomes under in vivo conditions are closed structures, which require the active presence of metabolite transporter proteins, much remains to be learned about the permeability properties of mammalian peroxisomes and the role of the four half ATP-binding cassette (ABC) transporters therein.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Disease, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | | |
Collapse
|
31
|
Visser WF, van Roermund CWT, Ijlst L, Waterham HR, Wanders RJA. Metabolite transport across the peroxisomal membrane. Biochem J 2007; 401:365-75. [PMID: 17173541 PMCID: PMC1820816 DOI: 10.1042/bj20061352] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 09/28/2006] [Indexed: 10/23/2022]
Abstract
In recent years, much progress has been made with respect to the unravelling of the functions of peroxisomes in metabolism, and it is now well established that peroxisomes are indispensable organelles, especially in higher eukaryotes. Peroxisomes catalyse a number of essential metabolic functions including fatty acid beta-oxidation, ether phospholipid biosynthesis, fatty acid alpha-oxidation and glyoxylate detoxification. The involvement of peroxisomes in these metabolic pathways necessitates the transport of metabolites in and out of peroxisomes. Recently, considerable progress has been made in the characterization of metabolite transport across the peroxisomal membrane. Peroxisomes posses several specialized transport systems to transport metabolites. This is exemplified by the identification of a specific transporter for adenine nucleotides and several half-ABC (ATP-binding cassette) transporters which may be present as hetero- and homo-dimers. The nature of the substrates handled by the different ABC transporters is less clear. In this review we will describe the current state of knowledge of the permeability properties of the peroxisomal membrane.
Collapse
Key Words
- fatty acid
- genetic disease
- metabolite
- peroxisome
- transport
- zellweger syndrome
- abc, atp-binding cassette
- cpt, carnitine palmitoyltransferase
- dhas, dihydroxyacetone synthetase
- dhca, dihydroxycholestanoic acid
- dnp, 2,4-dinitrophenol
- g3pdh, glycerol-3-phosphate dehydrogenase
- got, glutamate:aspartate aminotransferase
- lacs, long-chain acyl-coa synthetase
- mcf, mitochondrial carrier family
- mcfa, medium-chain fatty acid
- mct, monocarboxylate transporter
- mdh, malate dehydrogenase
- m-lp, mpv17-like protein
- pmp, peroxisomal membrane protein
- ros, reactive oxygen species
- scamc, short calcium-binding mitochondrial carrier
- thca, trihydroxycholestanoic acid
- xald, x-linked adrenoleukodystrophy
Collapse
Affiliation(s)
- Wouter F Visser
- University of Amsterdam, Academic Medical Centre, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, F0-224, Meibergdreef 9, Amsterdam, 1105 AZ The Netherlands.
| | | | | | | | | |
Collapse
|
32
|
Kovacs WJ, Tape KN, Shackelford JE, Duan X, Kasumov T, Kelleher JK, Brunengraber H, Krisans SK. Localization of the pre-squalene segment of the isoprenoid biosynthetic pathway in mammalian peroxisomes. Histochem Cell Biol 2006; 127:273-90. [PMID: 17180682 DOI: 10.1007/s00418-006-0254-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2006] [Indexed: 10/23/2022]
Abstract
Previous studies have indicated that the early steps in the isoprenoid/cholesterol biosynthetic pathway occur in peroxisomes. However, the role of peroxisomes in cholesterol biosynthesis has recently been questioned in several reports concluding that three of the peroxisomal cholesterol biosynthetic enzymes, namely mevalonate kinase, phosphomevalonate kinase, and mevalonate diphosphate decarboxylase, do not localize to peroxisomes in human cells even though they contain consensus peroxisomal targeting signals. We re-investigated the subcellular localization of the cholesterol biosynthetic enzymes of the pre-squalene segment in human cells by using new stable isotopic techniques and data computations with isotopomer spectral analysis, in combination with immunofluorescence and cell permeabilization techniques. Our present findings clearly show and confirm previous studies that the pre-squalene segment of the cholesterol biosynthetic pathway is localized to peroxisomes. In addition, our data are consistent with the hypothesis that acetyl-CoA derived from peroxisomal beta-oxidation of very long-chain fatty acids and medium-chain dicarboxylic acids is preferentially channeled to cholesterol synthesis inside the peroxisomes without mixing with the cytosolic acetyl-CoA pool.
Collapse
Affiliation(s)
- Werner J Kovacs
- Department of Biology, San Diego State University, San Diego, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
This review summarizes the mechanisms of cellular cholesterol transport and monogenic human diseases caused by defects in intracellular cholesterol processing. In addition, selected mouse models of disturbed cholesterol trafficking are discussed. Current pharmacological strategies to prevent atherosclerosis are largely based on altering cellular cholesterol balance and are introduced in this context. Finally, because of the organizing potential of cholesterol in membranes, disturbances in cellular cholesterol transport have implications for a wide variety of human diseases, of which selected examples are given.
Collapse
Affiliation(s)
- Elina Ikonen
- Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
34
|
Ortiz-Gómez A, Jiménez C, Estévez AM, Carrero-Lérida J, Ruiz-Pérez LM, González-Pacanowska D. Farnesyl diphosphate synthase is a cytosolic enzyme in Leishmania major promastigotes and its overexpression confers resistance to risedronate. EUKARYOTIC CELL 2006; 5:1057-64. [PMID: 16835450 PMCID: PMC1489282 DOI: 10.1128/ec.00034-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Farnesyl diphosphate synthase is the most likely molecular target of aminobisphosphonates (e.g., risedronate), a set of compounds that have been shown to have antiprotozoal activity both in vitro and in vivo. This protein, together with other enzymes involved in isoprenoid biosynthesis, is an attractive drug target, yet little is known about the compartmentalization of the biosynthetic pathway. Here we show the intracellular localization of the enzyme in wild-type Leishmania major promastigote cells and in transfectants overexpressing farnesyl diphosphate synthase by using purified antibodies generated towards a homogenous recombinant Leishmania major farnesyl diphosphate synthase protein. Indirect immunofluorescence, together with immunoelectron microscopy, indicated that the enzyme is mainly located in the cytoplasm of both wild-type cells and transfectants. Digitonin titration experiments also confirmed this observation. Hence, while the initial step of isoprenoid biosynthesis catalyzed by 3-hydroxy-3-methylglutaryl-coenzyme A reductase is located in the mitochondrion, synthesis of farnesyl diphosphate by farnesyl diphosphate synthase is a cytosolic process. Leishmania major promastigote transfectants overexpressing farnesyl diphosphate synthase were highly resistant to risedronate, and the degree of resistance correlated with the increase in enzyme activity. Likewise, when resistance was induced by stepwise selection with the drug, the resulting resistant promastigotes exhibited increased levels of farnesyl diphosphate synthase. The overproduction of protein under different conditions of exposure to risedronate further supports the hypothesis that this enzyme is the main target of aminobisphosphonates in Leishmania cells.
Collapse
Affiliation(s)
- Aurora Ortiz-Gómez
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Avda. del Conocimiento s/n, Parque Tecnológico Ciencias de la Salud, 18100 Armilla, Granada, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Wanders RJA, Waterham HR. Peroxisomal disorders: the single peroxisomal enzyme deficiencies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1707-20. [PMID: 17055078 DOI: 10.1016/j.bbamcr.2006.08.010] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 08/18/2006] [Indexed: 01/02/2023]
Abstract
Peroxisomal disorders are a group of inherited diseases in man in which either peroxisome biogenesis or one or more peroxisomal functions are impaired. The peroxisomal disorders identified to date are usually classified in two groups including: (1) the disorders of peroxisome biogenesis, and (2) the single peroxisomal enzyme deficiencies. This review is focused on the second group of disorders, which currently includes ten different diseases in which the mutant gene affects a protein involved in one of the following peroxisomal functions: (1) ether phospholipid (plasmalogen) biosynthesis; (2) fatty acid beta-oxidation; (3) peroxisomal alpha-oxidation; (4) glyoxylate detoxification, and (5) H2O2 metabolism.
Collapse
|
36
|
Abstract
Eight distinct inherited disorders have been linked to different enzyme defects in the isoprenoid/cholesterol biosynthetic pathway following the finding of abnormally increased levels of intermediate metabolites in patients and confirmed by the demonstration of disease-causing mutations in genes encoding the implicated enzymes. Patients afflicted with these disorders are characterized by multiple morphogenic and congenital anomalies including internal organ, skeletal and/or skin abnormalities underlining an important role for cholesterol in human embryogenesis and development. The etiology of the underlying pathophysiology may involve multiple affected processes due to lowered cholesterol and/or the elevated, teratogenic levels of the intermediate sterol precursors.
Collapse
Affiliation(s)
- Hans R Waterham
- Laboratory Genetic Metabolic Diseases, F0-224, Department of Pediatrics/Emma Children's Hospital, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands.
| |
Collapse
|
37
|
Fazal MA, Palmer VR, Dovichi NJ. Analysis of differential detergent fractions of an AtT-20 cellular homogenate using one- and two-dimensional capillary electrophoresis. J Chromatogr A 2006; 1130:182-9. [PMID: 16781720 DOI: 10.1016/j.chroma.2006.05.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 05/09/2006] [Accepted: 05/10/2006] [Indexed: 12/01/2022]
Abstract
Differential detergent fractionation was used to sequentially extract cytosolic, membrane, nuclear, and cytoskeletal fractions from AtT-20 cells. Extracted components were denatured by sodium dodecyl sulfate (SDS) and then labeled with the fluorogenic reagent 3-(2-furoyl) quinoline-1-carboxaldehyde. Both capillary sieving electrophoresis (CSE) and micellar electrokinetic capillary chromatography (MECC) were used to separate labeled components by one-dimensional (1D) electrophoresis. Labeled components were also separated by two-dimensional (2D) capillary electrophoresis; CSE was employed in the first dimension and MECC in the second dimension. Roughly 150 fractions were transferred from the first to the second capillary for this comprehensive analysis in 2.5 h.
Collapse
Affiliation(s)
- Md Abul Fazal
- Department of Chemistry, University of Washington, Seattle, 98195-1700, USA
| | | | | |
Collapse
|
38
|
Weinhofer I, Kunze M, Stangl H, Porter FD, Berger J. Peroxisomal cholesterol biosynthesis and Smith-Lemli-Opitz syndrome. Biochem Biophys Res Commun 2006; 345:205-9. [PMID: 16678134 DOI: 10.1016/j.bbrc.2006.04.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 04/17/2006] [Indexed: 10/24/2022]
Abstract
Smith-Lemli-Opitz syndrome (SLOS), caused by 7-dehydrocholesterol-reductase (DHCR7) deficiency, shows variable severity independent of DHCR7 genotype. To test whether peroxisomes are involved in alternative cholesterol synthesis, we used [1-(14)C]C24:0 for peroxisomal beta-oxidation to generate [1-(14)C]acetyl-CoA as cholesterol precursor inside peroxisomes. The HMG-CoA reductase inhibitor lovastatin suppressed cholesterol synthesis from [2-(14)C]acetate and [1-(14)C]C8:0 but not from [1-(14)C]C24:0, implicating a peroxisomal, lovastatin-resistant HMG-CoA reductase. In SLOS fibroblasts lacking DHCR7 activity, no cholesterol was formed from [1-(14)C]C24:0-derived [1-(14)C]acetyl-CoA, indicating that the alternative peroxisomal pathway also requires this enzyme. Our results implicate peroxisomes in cholesterol biosynthesis but provide no link to phenotypic variation in SLOS.
Collapse
Affiliation(s)
- Isabelle Weinhofer
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
39
|
Yim YI, Scarselletta S, Zang F, Wu X, Lee DW, Kang YS, Eisenberg E, Greene LE. Exchange of clathrin, AP2 and epsin on clathrin-coated pits in permeabilized tissue culture cells. J Cell Sci 2005; 118:2405-13. [PMID: 15923653 DOI: 10.1242/jcs.02356] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clathrin and clathrin adaptors on clathrin-coated pits exchange with cytosolic clathrin and clathrin adaptors in vivo. This exchange might require the molecular chaperone Hsc70 and J-domain-protein auxilin, which, with ATP, uncoat clathrin-coated vesicles both in vivo and in vitro. We find that, although Hsc70 and ATP alone could not uncoat clathrin-coated pits, further addition of auxilin caused rapid uncoating of clathrin but not AP2 and epsin. By contrast, cytosol uncoats clathrin, AP2 and epsin from pits in permeabilized cells, and, concomitantly, these proteins in the cytosol rebind to the same pits, establishing that, like in vivo, these proteins exchange in permeabilized cells. Dissociation and exchange of clathrin in permeabilized cells can be prevented by inhibiting Hsc70 activity. The presence of clathrin-exchange in the permeabilized system substantiates our in vivo observations, and is consistent with the view that Hsc70 and auxilin are involved in the clathrin-exchange that occurs as clathrin-coated pits invaginate in vivo.
Collapse
Affiliation(s)
- Yang-In Yim
- Laboratory of Cell Biology, NHLBI, National Institutes of Heath, Bethesda, MD 20892-0301, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The group of peroxisomal disorders now includes 17 different disorders with Zellweger syndrome as prototype. Thanks to the explosion of new information about the functions and biogenesis of peroxisomes, the metabolic and molecular basis of most of the peroxisomal disorders has been resolved. A review of peroxisomal disorders is provided in this paper.
Collapse
Affiliation(s)
- Ronald J A Wanders
- University of Amsterdam, Academic Medical Centre, Department of Clinical Chemistry, Emma Children's Hospital, Laboratory of Genetic Metabolic Diseases, Amsterdam, The Netherlands.
| |
Collapse
|
41
|
Hogenboom S, Tuyp JJM, Espeel M, Koster J, Wanders RJA, Waterham HR. Phosphomevalonate kinase is a cytosolic protein in humans. J Lipid Res 2004; 45:697-705. [PMID: 14729858 DOI: 10.1194/jlr.m300373-jlr200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the past decade, a predominant peroxisomal localization has been reported for several enzymes functioning in the presqualene segment of the cholesterol/isoprenoid biosynthesis pathway. More recently, however, conflicting results have been reported raising doubts about the postulated role of peroxisomes in isoprenoid biosynthesis, at least in humans. In this study, we have determined the subcellular localization of human phosphomevalonate kinase using a variety of biochemical and microscopic techniques, including conventional subcellular fractionation studies, digitonin permeabilization studies, immunofluorescence, and immunoelectron microscopy. We found an exclusive cytosolic localization of both endogenously expressed human phosphomevalonate kinase (in human fibroblasts, human liver, and HEK293 cells) and overexpressed human phosphomevalonate kinase (in human fibroblasts, HEK293 cells, and CV1 cells). No indication of a peroxisomal localization was obtained. Our results do not support a central role of peroxisomes in isoprenoid biosynthesis.
Collapse
Affiliation(s)
- Sietske Hogenboom
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
42
|
Hogenboom S, Tuyp JJM, Espeel M, Koster J, Wanders RJA, Waterham HR. Human mevalonate pyrophosphate decarboxylase is localized in the cytosol. Mol Genet Metab 2004; 81:216-24. [PMID: 14972328 DOI: 10.1016/j.ymgme.2003.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Revised: 12/01/2003] [Accepted: 12/01/2003] [Indexed: 10/26/2022]
Abstract
In the past decade several reports have claimed that peroxisomes play a critical role in the isoprenoid/cholesterol biosynthetic pathway based on the finding of a predominant peroxisomal localization of several of the enzymes involved. Other reports, however, do not support the peroxisomal localization of these enzymes. In this study we have studied the subcellular localization of one of the enzymes, human mevalonate pyrophosphate decarboxylase, by conventional subcellular fractionation and digitonin permeabilization studies, immunofluorescence microscopy, and immunoelectron microscopy. We found a cytosolic localization for both endogenous human mevalonate pyrophosphate decarboxylase (in human fibroblasts, liver, CV1 and HEK293 cells) and overexpressed mevalonate pyrophosphate decarboxylase (in human fibroblasts, HEK293 and CV1 cells) but no indication for a peroxisomal localization. Our results do not support a central role of peroxisomes in the isoprenoid/cholesterol biosynthetic pathway.
Collapse
Affiliation(s)
- Sietske Hogenboom
- Laboratory of Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics/Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|