1
|
Elçin-Guinot S, Lagies S, Avi-Guy Y, Neugebauer D, Huber TB, Schell C, Kammerer B, Römer W. Lectin-Based Substrate Detection in Fabry Disease Using the Gb3-Binding Lectins StxB and LecA. Int J Mol Sci 2025; 26:2272. [PMID: 40076891 PMCID: PMC11900420 DOI: 10.3390/ijms26052272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Fabry disease, the second most common lysosomal storage disorder, is caused by a deficiency of α-galactosidase A (α-Gal A), which leads to an accumulation of glycosphingolipids (GSL), mainly globotriaosylceramide (also known as Gb3). This aberrant GSL metabolism subsequently causes cellular dysfunction; however, the underlying cellular and molecular mechanisms are still unknown. There is growing evidence that damage to organelles, including lysosomes, mitochondria, and plasma membranes, is associated with substrate accumulation. Current methods for the detection of Gb3 are based on anti-Gb3 antibodies, the specificity and sensitivity of which are problematic for glycan detection. This study presents a robust method using lectins, specifically the B-subunit of Shiga toxin (StxB) from Shigella dysenteriae and LecA from Pseudomonas aeruginosa, as alternatives for Gb3 detection in Fabry fibroblasts by flow cytometry and confocal microscopy. StxB and LecA showed superior sensitivity, specificity, and consistency in different cell types compared to all anti-Gb3 antibodies used in this study. In addition, sphingolipid metabolism was analyzed in primary Fabry fibroblasts and α-Gal A knockout podocytes using targeted tandem liquid chromatography-mass spectrometry. Our findings establish lectins as a robust tool for improved diagnostics and research of Fabry disease and provide evidence of SL changes in cultured human cells, filling a knowledge gap.
Collapse
Affiliation(s)
- Serap Elçin-Guinot
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; (S.E.-G.); (Y.A.-G.); (D.N.)
- BIOSS, Centre for Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany;
- CIBSS, Centre for Integrative Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Simon Lagies
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, Habsburgerstraße 19, 79104 Freiburg, Germany;
- Institute of Organic Chemistry, University of Freiburg, Albertstraße 19, 79104 Freiburg, Germany
| | - Yoav Avi-Guy
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; (S.E.-G.); (Y.A.-G.); (D.N.)
- BIOSS, Centre for Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany;
- CIBSS, Centre for Integrative Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Daniela Neugebauer
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; (S.E.-G.); (Y.A.-G.); (D.N.)
- BIOSS, Centre for Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany;
- CIBSS, Centre for Integrative Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany;
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany
| | - Christoph Schell
- Faculty of Medicine, Institute for Surgical Pathology Medical Center, University of Freiburg, Breisacher Str. 115A, 70106 Freiburg, Germany;
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, 79106 Freiburg, Germany
| | - Bernd Kammerer
- BIOSS, Centre for Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany;
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, Habsburgerstraße 19, 79104 Freiburg, Germany;
- Institute of Organic Chemistry, University of Freiburg, Albertstraße 19, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19, 79104 Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; (S.E.-G.); (Y.A.-G.); (D.N.)
- BIOSS, Centre for Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany;
- CIBSS, Centre for Integrative Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, 79106 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Naslavsky N, Caplan S. Advances and challenges in understanding endosomal sorting and fission. FEBS J 2023; 290:4187-4195. [PMID: 36413090 PMCID: PMC10200825 DOI: 10.1111/febs.16687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/04/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Endosomes play crucial roles in the cell, serving as focal and 'triage' points for internalized lipids and receptors. As such, endosomes are a critical branching point that determines whether receptors are sorted for degradation or recycling. This Viewpoint aims to highlight recent advances in endosome research, including key endosomal functions such as sorting and fission. Moreover, the Viewpoint addresses key technical and conceptual challenges in studying endosomes.
Collapse
Affiliation(s)
- Naava Naslavsky
- Department of Biochemistry & Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology and Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
3
|
Suzuki SW, Oishi A, Nikulin N, Jorgensen JR, Baile MG, Emr SD. A PX-BAR protein Mvp1/SNX8 and a dynamin-like GTPase Vps1 drive endosomal recycling. eLife 2021; 10:69883. [PMID: 34524084 PMCID: PMC8504969 DOI: 10.7554/elife.69883] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Membrane protein recycling systems are essential for maintenance of the endosome-lysosome system. In yeast, retromer and Snx4 coat complexes are recruited to the endosomal surface, where they recognize cargos. They sort cargo and deform the membrane into recycling tubules that bud from the endosome and target to the Golgi. Here, we reveal that the SNX-BAR protein, Mvp1, mediates an endosomal recycling pathway that is mechanistically distinct from the retromer and Snx4 pathways. Mvp1 deforms the endosomal membrane and sorts cargos containing a specific sorting motif into a membrane tubule. Subsequently, Mvp1 recruits the dynamin-like GTPase Vps1 to catalyze membrane scission and release of the recycling tubule. Similarly, SNX8, the human homolog of Mvp1, which has been also implicated in Alzheimer’s disease, mediates formation of an endosomal recycling tubule. Thus, we present evidence for a novel endosomal retrieval pathway that is conserved from yeast to humans.
Collapse
Affiliation(s)
- Sho W Suzuki
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Akihiko Oishi
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Nadia Nikulin
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Jeff R Jorgensen
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Matthew G Baile
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Scott D Emr
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| |
Collapse
|
4
|
The Protein Toxins Ricin and Shiga Toxin as Tools to Explore Cellular Mechanisms of Internalization and Intracellular Transport. Toxins (Basel) 2021; 13:toxins13060377. [PMID: 34070659 PMCID: PMC8227415 DOI: 10.3390/toxins13060377] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/22/2021] [Indexed: 12/18/2022] Open
Abstract
Protein toxins secreted by bacteria and found in plants can be threats to human health. However, their extreme toxicity can also be exploited in different ways, e.g., to produce hybrid toxins directed against cancer cells and to study transport mechanisms in cells. Investigations during the last decades have shown how powerful these molecules are as tools in cell biological research. Here, we first present a partly historical overview, with emphasis on Shiga toxin and ricin, of how such toxins have been used to characterize processes and proteins of importance for their trafficking. In the second half of the article, we describe how one can now use toxins to investigate the role of lipid classes for intracellular transport. In recent years, it has become possible to quantify hundreds of lipid species using mass spectrometry analysis. Thus, it is also now possible to explore the importance of lipid species in intracellular transport. The detailed analyses of changes in lipids seen under conditions of inhibited toxin transport reveal previously unknown connections between syntheses of lipid classes and demonstrate the ability of cells to compensate under given conditions.
Collapse
|
5
|
Sato W, Watanabe-Takahashi M, Hamabata T, Furukawa K, Funamoto S, Nishikawa K. A nontoxigenic form of Shiga toxin 2 suppresses the production of amyloid β by altering the intracellular transport of amyloid precursor protein through its receptor-binding B-subunit. Biochem Biophys Res Commun 2021; 557:247-253. [PMID: 33894410 DOI: 10.1016/j.bbrc.2021.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 11/25/2022]
Abstract
Accumulation of amyloid-β peptide (Aβ) in neuronal cells and in the extracellular regions in the brain is a major cause of Alzheimer's disease (AD); therefore, inhibition of Aβ accumulation offers a promising approach for therapeutic strategies against AD. Aβ is produced by sequential proteolysis of amyloid precursor protein (APP) in late/recycling endosomes after endocytosis of APP located in the plasma membrane. Aβ is then released from cells in a free form or in an exosome-bound form. Shiga toxin (Stx) is a major virulence factor of enterohemorrhagic Escherichia coli. Recently, we found that one of the Stx subtypes, Stx2a, has a unique intracellular transport route after endocytosis through its receptor-binding B-subunit. A part of Stx2a can be transported to late/recycling endosomes and then degraded in a lysosomal acidic compartment, although in general Stx is transported to the Golgi and then to the endoplasmic reticulum in a retrograde manner. In this study, we found that treatment of APP-expressing cells with a mutant Stx2a (mStx2a), lacking cytotoxic activity because of mutations in the catalytic A-subunit, stimulated the transport of APP to the acidic compartment, which led to degradation of APP and a reduction in the amount of Aβ. mStx2a-treatment also inhibited the extracellular release of Aβ. Therefore, mStx2a may provide a new strategy to inhibit the production of Aβ by modulating the intracellular transport of APP.
Collapse
Affiliation(s)
- Waka Sato
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Miho Watanabe-Takahashi
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Takashi Hamabata
- Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, 487-8501, Japan
| | - Satoru Funamoto
- Department of Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Kiyotaka Nishikawa
- Department of Molecular Life Sciences, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan.
| |
Collapse
|
6
|
Molecular Biology of Escherichia Coli Shiga Toxins' Effects on Mammalian Cells. Toxins (Basel) 2020; 12:toxins12050345. [PMID: 32456125 PMCID: PMC7290813 DOI: 10.3390/toxins12050345] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Shiga toxins (Stxs), syn. Vero(cyto)toxins, are potent bacterial exotoxins and the principal virulence factor of enterohemorrhagic Escherichia coli (EHEC), a subset of Shiga toxin-producing E. coli (STEC). EHEC strains, e.g., strains of serovars O157:H7 and O104:H4, may cause individual cases as well as large outbreaks of life-threatening diseases in humans. Stxs primarily exert a ribotoxic activity in the eukaryotic target cells of the mammalian host resulting in rapid protein synthesis inhibition and cell death. Damage of endothelial cells in the kidneys and the central nervous system by Stxs is central in the pathogenesis of hemolytic uremic syndrome (HUS) in humans and edema disease in pigs. Probably even more important, the toxins also are capable of modulating a plethora of essential cellular functions, which eventually disturb intercellular communication. The review aims at providing a comprehensive overview of the current knowledge of the time course and the consecutive steps of Stx/cell interactions at the molecular level. Intervention measures deduced from an in-depth understanding of this molecular interplay may foster our basic understanding of cellular biology and microbial pathogenesis and pave the way to the creation of host-directed active compounds to mitigate the pathological conditions of STEC infections in the mammalian body.
Collapse
|
7
|
Targeting the Early Endosome-to-Golgi Transport of Shiga Toxins as a Therapeutic Strategy. Toxins (Basel) 2020; 12:toxins12050342. [PMID: 32456007 PMCID: PMC7290323 DOI: 10.3390/toxins12050342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
Shiga toxin (STx) produced by Shigella and closely related Shiga toxin 1 and 2 (STx1 and STx2) synthesized by Shiga toxin-producing Escherichia coli (STEC) are bacterial AB5 toxins. All three toxins target kidney cells and may cause life-threatening renal disease. While Shigella infections can be treated with antibiotics, resistance is increasing. Moreover, antibiotic therapy is contraindicated for STEC, and there are no definitive treatments for STEC-induced disease. To exert cellular toxicity, STx, STx1, and STx2 must undergo retrograde trafficking to reach their cytosolic target, ribosomes. Direct transport from early endosomes to the Golgi apparatus is an essential step that allows the toxins to bypass degradative late endosomes and lysosomes. The essentiality of this transport step also makes it an ideal target for the development of small-molecule inhibitors of toxin trafficking as potential therapeutics. Here, we review the recent advances in understanding the molecular mechanisms of the early endosome-to-Golgi transport of STx, STx1, and STx2, as well as the development of small-molecule inhibitors of toxin trafficking that act at the endosome/Golgi interface.
Collapse
|
8
|
Mesquita FS, van der Goot FG, Sergeeva OA. Mammalian membrane trafficking as seen through the lens of bacterial toxins. Cell Microbiol 2020; 22:e13167. [PMID: 32185902 PMCID: PMC7154709 DOI: 10.1111/cmi.13167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/12/2022]
Abstract
A fundamental question of eukaryotic cell biology is how membrane organelles are organised and interact with each other. Cell biologists address these questions by characterising the structural features of membrane compartments and the mechanisms that coordinate their exchange. To do so, they must rely on variety of cargo molecules and treatments that enable targeted perturbation, localisation, and labelling of specific compartments. In this context, bacterial toxins emerged in cell biology as paradigm shifting molecules that enabled scientists to not only study them from the side of bacterial infection but also from the side of the mammalian host. Their selectivity, potency, and versatility made them exquisite tools for uncovering much of our current understanding of membrane trafficking mechanisms. Here, we will follow the steps that lead toxins until their intracellular targets, highlighting how specific events helped us comprehend membrane trafficking and establish the fundamentals of various cellular organelles and processes. Bacterial toxins will continue to guide us in answering crucial questions in cellular biology while also acting as probes for new technologies and applications.
Collapse
Affiliation(s)
| | | | - Oksana A Sergeeva
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| |
Collapse
|
9
|
Berdasco C, Duhalde Vega M, Rosato-Siri MV, Goldstein J. Environmental Cues Modulate Microglial Cell Behavior Upon Shiga Toxin 2 From Enterohemorrhagic Escherichia coli Exposure. Front Cell Infect Microbiol 2020; 9:442. [PMID: 31970091 PMCID: PMC6960108 DOI: 10.3389/fcimb.2019.00442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
Shiga toxin (Stx) produced by enterohemorrhagic E. coli produces hemolytic uremic syndrome and encephalopathies in patients, which can lead to either reversible or permanent neurological abnormalities, or even fatal cases depending on the degree of intoxication. It has been observed that the inflammatory component plays a decisive role in the severity of the disease. Therefore, the objective of this work was to evaluate the behavior of microglial cell primary cultures upon Stx2 exposure and heat shock or lipopolysaccharide challenges, as cues which modulate cellular environments, mimicking fever and inflammation states, respectively. In these contexts, activated microglial cells incorporated Stx2, increased their metabolism, phagocytic capacity, and pro-inflammatory profile. Stx2 uptake was associated to receptor globotriaosylceramide (Gb3)-pathway. Gb3 had three clearly distinguishable distribution patterns which varied according to different contexts. In addition, toxin uptake exhibited both a Gb3-dependent and a Gb3-independent binding depending on those contexts. Altogether, these results suggest a fundamental role for microglial cells in pro-inflammatory processes in encephalopathies due to Stx2 intoxication and highlight the impact of environmental cues.
Collapse
Affiliation(s)
- Clara Berdasco
- Laboratorio de Neurofisiopatología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Medicina, Instituto de Fisiología y Biofísica "Houssay", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maite Duhalde Vega
- Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - María Victoria Rosato-Siri
- Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Jorge Goldstein
- Laboratorio de Neurofisiopatología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Medicina, Instituto de Fisiología y Biofísica "Houssay", Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
10
|
Garimano N, Amaral MM, Ibarra C. Endocytosis, Cytotoxicity, and Translocation of Shiga Toxin-2 Are Stimulated by Infection of Human Intestinal (HCT-8) Monolayers With an Hypervirulent E. coli O157:H7 Lacking stx2 Gene. Front Cell Infect Microbiol 2019; 9:396. [PMID: 31824869 PMCID: PMC6881261 DOI: 10.3389/fcimb.2019.00396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/05/2019] [Indexed: 11/13/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) strains are responsible for multiple clinical syndromes, including hemolytic uremic syndrome (HUS). E. coli O157:H7 is the most prevalent serotype associated with HUS and produces a variety of virulence factors being Stx2 the responsible of the most HUS severe cases. After intestinal colonization by STEC, Stx2 is released into the intestinal lumen, translocated to the circulatory system and then binds to its receptor, globotriaosylceramide (Gb3), in target cells. Thus, Stx2 passage through the colonic epithelial barrier is a key step in order to produce disease, being its mechanisms still poorly understood. We have previously reported that STEC interaction with the human colonic mucosa enhanced Stx2 production. In the present work, we have demonstrated that infection with O157:H7Δstx2, a mutant unable to produce Stx2, enhanced either Stx2 cytotoxicity on an intestinal cell line (HCT-8), or translocation across HCT-8 monolayers. Moreover, we found that translocation was enhanced by both paracellular and transcellular pathways. Using specific endocytosis inhibitors, we have further demonstrated that the main mechanisms implicated on Stx2 endocytosis and translocation, either when O157:H7Δstx2 was present or not, were Gb3-dependent, but dynamin-independent. On the other hand, dynamin dependent endocytosis and macropinocytosis became more relevant only when O157:H7Δstx2 infection was present. Overall, this study highlights the effects of STEC infection on the intestinal epithelial cell host and the mechanisms underlying Stx2 endocytosis, cytotoxic activity and translocation, in the aim of finding new tools toward a therapeutic approach.
Collapse
Affiliation(s)
- Nicolás Garimano
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Marta Amaral
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cristina Ibarra
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
11
|
Lee MS, Tesh VL. Roles of Shiga Toxins in Immunopathology. Toxins (Basel) 2019; 11:E212. [PMID: 30970547 PMCID: PMC6521259 DOI: 10.3390/toxins11040212] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/20/2022] Open
Abstract
Shigella species and Shiga toxin-producing Escherichia coli (STEC) are agents of bloody diarrhea that may progress to potentially lethal complications such as diarrhea-associated hemolytic uremic syndrome (D+HUS) and neurological disorders. The bacteria share the ability to produce virulence factors called Shiga toxins (Stxs). Research over the past two decades has identified Stxs as multifunctional toxins capable of inducing cell stress responses in addition to their canonical ribotoxic function inhibiting protein synthesis. Notably, Stxs are not only potent inducers of cell death, but also activate innate immune responses that may lead to inflammation, and these effects may increase the severity of organ injury in patients infected with Stx-producing bacteria. In the intestines, kidneys, and central nervous system, excessive or uncontrolled host innate and cellular immune responses triggered by Stxs may result in sensitization of cells to toxin mediated damage, leading to immunopathology and increased morbidity and mortality in animal models (including primates) and human patients. Here, we review studies describing Stx-induced innate immune responses that may be associated with tissue damage, inflammation, and complement activation. We speculate on how these processes may contribute to immunopathological responses to the toxins.
Collapse
Affiliation(s)
- Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea.
| | - Vernon L Tesh
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
12
|
Chang SJ, Jin SC, Jiao X, Galán JE. Unique features in the intracellular transport of typhoid toxin revealed by a genome-wide screen. PLoS Pathog 2019; 15:e1007704. [PMID: 30951565 PMCID: PMC6469816 DOI: 10.1371/journal.ppat.1007704] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/17/2019] [Accepted: 03/13/2019] [Indexed: 12/29/2022] Open
Abstract
Typhoid toxin is a virulence factor for Salmonella Typhi and Paratyphi, the cause of typhoid fever in humans. This toxin has a unique architecture in that its pentameric B subunit, made of PltB, is linked to two enzymatic A subunits, the ADP ribosyl transferase PltA and the deoxyribonuclease CdtB. Typhoid toxin is uniquely adapted to humans, recognizing surface glycoprotein sialoglycans terminated in acetyl neuraminic acid, which are preferentially expressed by human cells. The transport pathway to its cellular targets followed by typhoid toxin after receptor binding is currently unknown. Through a genome-wide CRISPR/Cas9-mediated screen we have characterized the mechanisms by which typhoid toxin is transported within human cells. We found that typhoid toxin hijacks specific elements of the retrograde transport and endoplasmic reticulum-associated degradation machineries to reach its subcellular destination within target cells. Our study reveals unique and common features in the transport mechanisms of bacterial toxins that could serve as the bases for the development of novel anti-toxin therapeutic strategies.
Collapse
Affiliation(s)
- Shu-Jung Chang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sheng Chih Jin
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Xuyao Jiao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jorge E Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
13
|
Morace I, Pilz R, Federico G, Jennemann R, Krunic D, Nordström V, von Gerichten J, Marsching C, Schießl IM, Müthing J, Wunder C, Johannes L, Sandhoff R, Gröne HJ. Renal globotriaosylceramide facilitates tubular albumin absorption and its inhibition protects against acute kidney injury. Kidney Int 2019; 96:327-341. [PMID: 31101366 DOI: 10.1016/j.kint.2019.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 11/29/2022]
Abstract
To elucidate the physiologic function of renal globotriaosylceramide (Gb3/CD77), which up-to-date has been associated exclusively with Shiga toxin binding, we have analyzed renal function in Gb3-deficient mice. Gb3 synthase KO (Gb3S-/-) mice displayed an increased renal albumin and low molecular weight protein excretion compared to WT. Gb3 localized at the brush border and within vesicular structures in WT proximal tubules and has now been shown to be closely associated with the receptor complex megalin/cubilin and with albumin uptake. In two clinically relevant mouse models of acute kidney injury caused by myoglobin as seen in rhabdomyolysis and the aminoglycoside gentamicin, Gb3S-/- mice showed a preserved renal function and morphology, compared to WT. Pharmacologic inhibition of glucosylceramide-based glycosphingolipids, including Gb3, in WT mice corroborated the results of genetically Gb3-deficient mice. In conclusion, our data significantly advance the current knowledge on the physiologic and pathophysiologic role of Gb3 in proximal tubules, showing an involvement in the reabsorption of filtered albumin, myoglobin and the aminoglycoside gentamicin.
Collapse
Affiliation(s)
- Ivan Morace
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.
| | - Robert Pilz
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany; Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Giuseppina Federico
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Richard Jennemann
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Damir Krunic
- Light Microscopy Facility, German Cancer Research Center, Heidelberg, Germany
| | - Viola Nordström
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Johanna von Gerichten
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany; Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Christian Marsching
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany; Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Ina Maria Schießl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | | | - Christian Wunder
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery Unit, CNRS UMR3666, INSERM U1143, Paris, France
| | - Ludger Johannes
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery Unit, CNRS UMR3666, INSERM U1143, Paris, France
| | - Roger Sandhoff
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany; Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany; Institute of Pharmacology, University of Marburg, Marburg, Germany.
| |
Collapse
|
14
|
Sandvig K, Kavaliauskiene S, Skotland T. Clathrin-independent endocytosis: an increasing degree of complexity. Histochem Cell Biol 2018; 150:107-118. [PMID: 29774430 PMCID: PMC6096564 DOI: 10.1007/s00418-018-1678-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2018] [Indexed: 11/03/2022]
Abstract
This article aims at providing an update on the complexity of clathrin-independent endocytosis. It is now almost 30 years since we first wrote a review about its existence; at that time many people believed that with the exception of macropinocytosis, which will only be briefly mentioned in this review, all uptake could be accounted for by clathrin-dependent endocytosis. Now it is generally accepted that there are different clathrin-independent mechanisms, some of them regulated by ligands and membrane lipid composition. They can be both dynamin-dependent and -independent, meaning that the uptake cannot be accounted for by caveolae and other dynamin-dependent processes such as tubular structures that can be induced by toxins, e.g. Shiga toxin, or the fast endophilin mediated endocytosis recently described. Caveolae seem to be mostly quite stable structures with other functions than endocytosis, but evidence suggests that they may have cell-type dependent functions. Although several groups have been working on endocytic mechanisms for years, and new advanced methods have improved our ability to study mechanistic details, there are still a number of important questions we need to address, such as: How many endocytic mechanisms does a cell have? How quantitatively important are they? What about the complexity in polarized cells where clathrin-independent endocytosis is differentially regulated on the apical and basolateral poles? These questions are not easy to answer since one and the same molecule may contribute to more than one process, and manipulating one mechanism can affect another. Also, several inhibitors of endocytic processes commonly used turn out to be less specific than originally thought. We will here describe the current view of clathrin-independent endocytic processes and the challenges in studying them.
Collapse
Affiliation(s)
- Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379, Oslo, Norway.
- Department of Molecular Biosciences, University of Oslo, 0316, Oslo, Norway.
| | - Simona Kavaliauskiene
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379, Oslo, Norway
| | - Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379, Oslo, Norway
| |
Collapse
|
15
|
Zhang J, Liu J, Norris A, Grant BD, Wang X. A novel requirement for ubiquitin-conjugating enzyme UBC-13 in retrograde recycling of MIG-14/Wntless and Wnt signaling. Mol Biol Cell 2018; 29:2098-2112. [PMID: 29927348 PMCID: PMC6232959 DOI: 10.1091/mbc.e17-11-0639] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
After endocytosis, transmembrane cargoes such as signaling receptors, channels, and transporters enter endosomes where they are sorted to different destinations. Retromer and ESCRT (endosomal sorting complex required for transport) are functionally distinct protein complexes on endosomes that direct cargo sorting into the recycling retrograde transport pathway and the degradative multivesicular endosome pathway (MVE), respectively. Cargoes destined for degradation in lysosomes are decorated with K63-linked ubiquitin chains, which serve as an efficient sorting signal for entry into the MVE pathway. Defects in K63-linked ubiquitination disrupt MVE sorting and degradation of membrane proteins. Here, we unexpectedly found that UBC-13, the E2 ubiquitin-conjugating enzyme that generates K63-linked ubiquitin chains, is essential for retrograde transport of multiple retromer-dependent cargoes including MIG-14/Wntless. Loss of ubc-13 disrupts MIG-14/Wntless trafficking from endosomes to the Golgi, causing missorting of MIG-14 to lysosomes and impairment of Wnt-dependent processes. We observed that retromer-associated SNX-1 and the ESCRT-0 subunit HGRS-1/Hrs localized to distinct regions on a common endosome in wild type but overlapped on ubc-13(lf) endosomes, indicating that UBC-13 is important for the separation of retromer and ESCRT microdomains on endosomes. Our data suggest that cargo ubiquitination mediated by UBC-13 plays an important role in maintaining the functionally distinct subdomains to ensure efficient cargo segregation on endosomes.
Collapse
Affiliation(s)
- Junbing Zhang
- College of Life Science, Beijing Normal University, Beijing 100875, China.,National Institute of Biological Sciences, Beijing 102206, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinchao Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Anne Norris
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| | - Xiaochen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
The anti-tumor drug 2-hydroxyoleic acid (Minerval) stimulates signaling and retrograde transport. Oncotarget 2018; 7:86871-86888. [PMID: 27894086 PMCID: PMC5349960 DOI: 10.18632/oncotarget.13508] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/17/2016] [Indexed: 11/25/2022] Open
Abstract
2-hydroxyoleic acid (OHOA, Minerval®) is an example of a substance used for membrane lipid therapy, where the cellular membranes rather than specific proteins constitute the therapeutical target. OHOA is thought to mediate its anti-tumor effect by affecting the biophysical properties of membranes, which leads to altered recruitment and activation of amphitropic proteins, altered cellular signaling, and eventual cell death. Little is known about the initial signaling events upon treatment with OHOA, and whether the altered membrane properties would have any impact on the dynamic intracellular transport system. In the present study we demonstrate that treatment with OHOA led to a rapid release of intracellular calcium and activation of multiple signaling pathways in HeLa cells, including the PI3K-AKT1-MTOR pathway and several MAP kinases, in a process independent of the EGFR. By lipidomics we confirmed that OHOA was incorporated into several lipid classes. Concomitantly, OHOA potently increased retrograde transport of the plant toxin ricin from endosomes to the Golgi and further to the endoplasmic reticulum. The OHOA-stimulated ricin transport seemed to require several amphitropic proteins, including Src, phospholipase C, protein kinase C, and also Ca2+/calmodulin. Interestingly, OHOA induced a slight increase in endosomal localization of the retromer component VPS35. Thus, our data show that addition of a lipid known to alter membrane properties not only affects signaling, but also intracellular transport.
Collapse
|
17
|
Johannes L. Shiga Toxin-A Model for Glycolipid-Dependent and Lectin-Driven Endocytosis. Toxins (Basel) 2017; 9:toxins9110340. [PMID: 29068384 PMCID: PMC5705955 DOI: 10.3390/toxins9110340] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/15/2017] [Accepted: 10/20/2017] [Indexed: 12/27/2022] Open
Abstract
The cellular entry of the bacterial Shiga toxin and the related verotoxins has been scrutinized in quite some detail. This is due to their importance as a threat to human health. At the same time, the study of Shiga toxin has allowed the discovery of novel molecular mechanisms that also apply to the intracellular trafficking of endogenous proteins at the plasma membrane and in the endosomal system. In this review, the individual steps that lead to Shiga toxin uptake into cells will first be presented from a purely mechanistic perspective. Membrane-biological concepts will be highlighted that are often still poorly explored, such as fluctuation force-driven clustering, clathrin-independent membrane curvature generation, friction-driven scission, and retrograde sorting on early endosomes. It will then be explored whether and how these also apply to other pathogens, pathogenic factors, and cellular proteins. The molecular nature of Shiga toxin as a carbohydrate-binding protein and that of its cellular receptor as a glycosylated raft lipid will be an underlying theme in this discussion. It will thereby be illustrated how the study of Shiga toxin has led to the proposal of the GlycoLipid-Lectin (GL-Lect) hypothesis on the generation of endocytic pits in processes of clathrin-independent endocytosis.
Collapse
Affiliation(s)
- Ludger Johannes
- Cellular and Chemical Biology Department, Institut Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, 26 rue d'Ulm, 75248 Paris CEDEX 05, France.
| |
Collapse
|
18
|
Hall G, Kurosawa S, Stearns-Kurosawa DJ. Shiga Toxin Therapeutics: Beyond Neutralization. Toxins (Basel) 2017; 9:toxins9090291. [PMID: 28925976 PMCID: PMC5618224 DOI: 10.3390/toxins9090291] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 01/04/2023] Open
Abstract
Ribotoxic Shiga toxins are the primary cause of hemolytic uremic syndrome (HUS) in patients infected with Shiga toxin-producing enterohemorrhagic Escherichia coli (STEC), a pathogen class responsible for epidemic outbreaks of gastrointestinal disease around the globe. HUS is a leading cause of pediatric renal failure in otherwise healthy children, resulting in a mortality rate of 10% and a chronic morbidity rate near 25%. There are currently no available therapeutics to prevent or treat HUS in STEC patients despite decades of work elucidating the mechanisms of Shiga toxicity in sensitive cells. The preclinical development of toxin-targeted HUS therapies has been hindered by the sporadic, geographically dispersed nature of STEC outbreaks with HUS cases and the limited financial incentive for the commercial development of therapies for an acute disease with an inconsistent patient population. The following review considers potential therapeutic targeting of the downstream cellular impacts of Shiga toxicity, which include the unfolded protein response (UPR) and the ribotoxic stress response (RSR). Outcomes of the UPR and RSR are relevant to other diseases with large global incidence and prevalence rates, thus reducing barriers to the development of commercial drugs that could improve STEC and HUS patient outcomes.
Collapse
Affiliation(s)
- Gregory Hall
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Shinichiro Kurosawa
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Deborah J Stearns-Kurosawa
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
19
|
Saimani U, Kim K. Traffic from the endosome towards trans-Golgi network. Eur J Cell Biol 2017; 96:198-205. [PMID: 28256269 DOI: 10.1016/j.ejcb.2017.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/24/2017] [Accepted: 02/16/2017] [Indexed: 11/16/2022] Open
Abstract
Retrograde passage of a transport carrier entails cargo sorting at the endosome, generation of a cargo-laden carrier and its movement along cytoskeletal tracks towards trans-Golgi network (TGN), tethering at the TGN, and fusion with the Golgi membrane. Significant advances have been made in understanding this traffic system, revealing molecular requirements in each step and the functional connection between them as well as biomedical implication of the dysregulation of those important traffic factors. This review focuses on describing up-to-date action mechanisms for retrograde transport from the endosomal system to the TGN.
Collapse
Affiliation(s)
- Uma Saimani
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65807, United States
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65807, United States.
| |
Collapse
|
20
|
Schultzhaus Z, Johnson TB, Shaw BD. Clathrin localization and dynamics in Aspergillus nidulans. Mol Microbiol 2016; 103:299-318. [PMID: 27741567 DOI: 10.1111/mmi.13557] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2016] [Indexed: 12/15/2022]
Abstract
Cell growth necessitates extensive membrane remodeling events including vesicle fusion or fission, processes that are regulated by coat proteins. The hyphal cells of filamentous fungi concentrate both exocytosis and endocytosis at the apex. This investigation focuses on clathrin in Aspergillus nidulans, with the aim of understanding its role in membrane remodeling in growing hyphae. We examined clathrin heavy chain (ClaH-GFP) which localized to three distinct subcellular structures: late Golgi (trans-Golgi equivalents of filamentous fungi), which are concentrated just behind the hyphal tip but are intermittently present throughout all hyphal cells; the region of concentrated endocytosis just behind the hyphal apex (the "endocytic collar"); and small, rapidly moving puncta that were seen trafficking long distances in nearly all hyphal compartments. ClaH localized to distinct domains on late Golgi, and these clathrin "hubs" dispersed in synchrony after the late Golgi marker PHOSBP . Although clathrin was essential for growth, ClaH did not colocalize well with the endocytic patch marker fimbrin. Tests of FM4-64 internalization and repression of ClaH corroborated the observation that clathrin does not play an important role in endocytosis in A. nidulans. A minor portion of ClaH puncta exhibited bidirectional movement, likely along microtubules, but were generally distinct from early endosomes.
Collapse
Affiliation(s)
- Z Schultzhaus
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, 77845, USA
| | - T B Johnson
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, 77845, USA
| | - B D Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX, 77845, USA
| |
Collapse
|
21
|
Regulation of Notch Signaling Through Intracellular Transport. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 323:107-27. [PMID: 26944620 DOI: 10.1016/bs.ircmb.2015.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The highly conserved Notch-signaling pathway performs a central role in cell differentiation, survival, and proliferation. A major mechanism by which cells modulate signaling is by controlling the intracellular transport itinerary of Notch. Indeed, Notch removal from the cell surface and its targeting to the lysosome for degradation is one way in which Notch activity is downregulated since it limits receptor exposure to ligand. In contrast, Notch-signaling capacity is maintained through repeated rounds of receptor recycling and redelivery of Notch to the cell surface from endosomal stores. This review discusses the molecular mechanisms by which Notch transit through the endosome is controlled and how various intracellular sorting decisions are thought to impact signaling activity.
Collapse
|
22
|
Selyunin AS, Mukhopadhyay S. A Conserved Structural Motif Mediates Retrograde Trafficking of Shiga Toxin Types 1 and 2. Traffic 2015; 16:1270-87. [PMID: 26420131 DOI: 10.1111/tra.12338] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 12/20/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) produce two types of Shiga toxin (STx): STx1 and STx2. The toxin A-subunits block protein synthesis, while the B-subunits mediate retrograde trafficking. STEC infections do not have definitive treatments, and there is growing interest in generating toxin transport inhibitors for therapy. However, a comprehensive understanding of the mechanisms of toxin trafficking is essential for drug development. While STx2 is more toxic in vivo, prior studies focused on STx1 B-subunit (STx1B) trafficking. Here, we show that, compared with STx1B, trafficking of the B-subunit of STx2 (STx2B) to the Golgi occurs with slower kinetics. Despite this difference, similar to STx1B, endosome-to-Golgi transport of STx2B does not involve transit through degradative late endosomes and is dependent on dynamin II, epsinR, retromer and syntaxin5. Importantly, additional experiments show that a surface-exposed loop in STx2B (β4-β5 loop) is required for its endosome-to-Golgi trafficking. We previously demonstrated that residues in the corresponding β4-β5 loop of STx1B are required for interaction with GPP130, the STx1B-specific endosomal receptor, and for endosome-to-Golgi transport. Overall, STx1B and STx2B share a common pathway and use a similar structural motif to traffic to the Golgi, suggesting that the underlying mechanisms of endosomal sorting may be evolutionarily conserved.
Collapse
Affiliation(s)
- Andrey S Selyunin
- Division of Pharmacology & Toxicology, College of Pharmacy; Institute for Cellular & Molecular Biology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy; Institute for Cellular & Molecular Biology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
23
|
Matsudaira T, Niki T, Taguchi T, Arai H. Transport of the cholera toxin B-subunit from recycling endosomes to the Golgi requires clathrin and AP-1. J Cell Sci 2015; 128:3131-42. [PMID: 26136365 DOI: 10.1242/jcs.172171] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/22/2015] [Indexed: 11/20/2022] Open
Abstract
The retrograde pathway is defined by the transport of proteins and lipids from the plasma membrane through endosomes to the Golgi complex, and is essential for a variety of cellular activities. Recycling endosomes are important sorting stations for some retrograde cargo. SMAP2, a GTPase-activating protein (GAP) for Arf1 with a putative clathrin-binding domain, has previously been shown to participate in the retrograde transport of the cholera toxin B-subunit (CTxB) from recycling endosomes. Here, we found that clathrin, a vesicle coat protein, and clathrin adaptor protein complex 1 (AP-1) were present at recycling endosomes and were needed for the retrograde transport of CTxB from recycling endosomes to the Golgi, but not from the plasma membrane to recycling endosomes. SMAP2 immunoprecipitated clathrin and AP-1 through a putative clathrin-binding domain and a CALM-binding domain, and SMAP2 mutants that did not interact with clathrin or AP-1 could not localize to recycling endosomes. Moreover, knockdown of Arf1 suppressed the retrograde transport of CTxB from recycling endosomes to the Golgi. These findings suggest that retrograde transport is mediated by clathrin-coated vesicles from recycling endosomes and that the role of the coat proteins is in the recruitment of Arf GAP to transport vesicles.
Collapse
Affiliation(s)
- Tatsuyuki Matsudaira
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahiro Niki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomohiko Taguchi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan Pathological Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan Pathological Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
24
|
Molecular dynamics at the endocytic portal and regulations of endocytic and recycling traffics. Eur J Cell Biol 2015; 94:235-48. [DOI: 10.1016/j.ejcb.2015.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 02/01/2023] Open
|
25
|
Geldanamycin Enhances Retrograde Transport of Shiga Toxin in HEp-2 Cells. PLoS One 2015; 10:e0129214. [PMID: 26017782 PMCID: PMC4445914 DOI: 10.1371/journal.pone.0129214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/06/2015] [Indexed: 12/22/2022] Open
Abstract
The heat shock protein 90 (Hsp90) inhibitor geldanamycin (GA) has been shown to alter endosomal sorting, diverting cargo destined for the recycling pathway into the lysosomal pathway. Here we investigated whether GA also affects the sorting of cargo into the retrograde pathway from endosomes to the Golgi apparatus. As a model cargo we used the bacterial toxin Shiga toxin, which exploits the retrograde pathway as an entry route to the cytosol. Indeed, GA treatment of HEp-2 cells strongly increased the Shiga toxin transport to the Golgi apparatus. The enhanced Golgi transport was not due to increased endocytic uptake of the toxin or perturbed recycling, suggesting that GA selectively enhances endosomal sorting into the retrograde pathway. Moreover, GA activated p38 and both inhibitors of p38 or its substrate MK2 partially counteracted the GA-induced increase in Shiga toxin transport. Thus, our data suggest that GA-induced p38 and MK2 activation participate in the increased Shiga toxin transport to the Golgi apparatus.
Collapse
|
26
|
Uptake of clostridium botulinum C3 exoenzyme into intact HT22 and J774A.1 cells. Toxins (Basel) 2015; 7:380-95. [PMID: 25648844 PMCID: PMC4344630 DOI: 10.3390/toxins7020380] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/22/2015] [Indexed: 01/05/2023] Open
Abstract
The Clostridium botulinum C3 exoenzyme selectively ADP-ribosylates low molecular weight GTP-binding proteins RhoA, B and C. This covalent modification inhibits Rho signaling activity, resulting in distinct actin cytoskeleton changes. Although C3 exoenzyme has no binding, the translocation domain assures that C3 enters cells and acts intracellularly. C3 uptake is thought to occur due to the high concentration of the C3 enzyme. However, recent work indicates that C3 is selectively endocytosed, suggesting a specific endocytotic pathway, which is not yet understood. In this study, we show that the C3 exoenzyme binds to cell surfaces and is internalized in a time-dependent manner. We show that the intermediate filament, vimentin, is involved in C3 uptake, as indicated by the inhibition of C3 internalization by acrylamide, a known vimentin disruption agent. Inhibition of C3 internalization was not observed by chemical inhibitors, like bafilomycin A, methyl-β-cyclodextrin, nocodazole or latrunculin B. Furthermore, the internalization of C3 exoenzyme was markedly inhibited in dynasore-treated HT22 cells. Our results indicate that C3 internalization depends on vimentin and does not depend strictly on both clathrin and caveolae.
Collapse
|
27
|
Syntaxin 5-dependent retrograde transport to the trans-Golgi network is required for adeno-associated virus transduction. J Virol 2014; 89:1673-87. [PMID: 25410859 DOI: 10.1128/jvi.02520-14] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Intracellular transport of recombinant adeno-associated virus (AAV) is still incompletely understood. In particular, the trafficking steps preceding the release of incoming AAV particles from the endosomal system into the cytoplasm, allowing subsequent nuclear import and the initiation of gene expression, remain to be elucidated fully. Others and we previously showed that a significant proportion of viral particles are transported to the Golgi apparatus and that Golgi apparatus disruption caused by the drug brefeldin A efficiently blocks AAV serotype 2 (AAV2) transduction. However, because brefeldin A is known to exert pleiotropic effects on the entire endosomal system, the functional relevance of transport to the Golgi apparatus for AAV transduction remains to be established definitively. Here, we show that AAV2 trafficking toward the trans-Golgi network (TGN) and the Golgi apparatus correlates with transduction efficiency and relies on a nonclassical retrograde transport pathway that is independent of the retromer complex, late endosomes, and recycling endosomes. AAV2 transduction is unaffected by the knockdown of syntaxins 6 and 16, which are two major effectors in the retrograde transport of both exogenous and endogenous cargo. On the other hand, inhibition of syntaxin 5 function by small interfering RNA silencing or treatment with cyclized Retro-2 strongly decreases AAV2 transduction and transport to the Golgi apparatus. This inhibition of transduction is observed with several AAV serotypes and a number of primary and immortalized cells. Together, our data strongly suggest that syntaxin 5-mediated retrograde transport to the Golgi apparatus is a broadly conserved feature of AAV trafficking that appears to be independent of the identity of the receptors used for viral attachment. IMPORTANCE Gene therapy constitutes a promising approach for the treatment of life-threatening conditions refractory to any other form of remedy. Adeno-associated virus (AAV) vectors are currently being evaluated for the treatment of diseases such as Duchenne muscular dystrophy, hemophilia, heart failure, Parkinson's disease, and others. Despite their promise as gene delivery vehicles, a better understanding of the biology of AAV-based vectors is necessary to improve further their efficacy. AAV vectors must reach the nucleus in order to deliver their genome, and their intracellular transport is not fully understood. Here, we dissect an important step of the intracellular journey of AAV by showing that retrograde transport of capsids to the trans-Golgi network is necessary for gene delivery. We show that the AAV trafficking route differs from that of known Golgi apparatus-targeted cargos, and we raise the possibility that this nonclassical pathway is shared by most AAV variants, regardless of their attachment receptors.
Collapse
|
28
|
Sandvig K, Skotland T, van Deurs B, Klokk TI. Retrograde transport of protein toxins through the Golgi apparatus. Histochem Cell Biol 2013; 140:317-26. [PMID: 23765164 DOI: 10.1007/s00418-013-1111-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2013] [Indexed: 12/13/2022]
Abstract
A number of protein toxins from plants and bacteria take advantage of transport through the Golgi apparatus to gain entry into the cytosol where they exert their action. These toxins include the plant toxin ricin, the bacterial Shiga toxins, and cholera toxin. Such toxins bind to lipids or proteins at the cell surface, and they are endocytosed both by clathrin-dependent and clathrin-independent mechanisms. Sorting to the Golgi and retrograde transport to the endoplasmic reticulum (ER) are common to these toxins, but the exact mechanisms turn out to be toxin and cell-type dependent. In the ER, the enzymatically active part is released and then transported into the cytosol, exploiting components of the ER-associated degradation system. In this review, we will discuss transport of different protein toxins, but we will focus on factors involved in entry and sorting of ricin and Shiga toxin into and through the Golgi apparatus.
Collapse
Affiliation(s)
- Kirsten Sandvig
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway.
| | | | | | | |
Collapse
|
29
|
Kvalvaag AS, Pust S, Sundet KI, Engedal N, Simm R, Sandvig K. The ERM proteins ezrin and moesin regulate retrograde Shiga toxin transport. Traffic 2013; 14:839-52. [PMID: 23593995 DOI: 10.1111/tra.12077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 04/12/2013] [Accepted: 04/17/2013] [Indexed: 01/23/2023]
Abstract
The ERM proteins (ezrin, radixin and moesin) are known for connecting the actin cytoskeleton to the plasma membrane. They have been found to associate with lipid rafts as well as to be important for endosomal sorting and receptor signaling. However, little is known about the role of ERM proteins in retrograde transport and lipid homeostasis. In this study, we show that ezrin and moesin are important for efficient cell surface association of Shiga toxin (Stx) as well as for its retrograde transport. Furthermore, we show that depletion of these proteins influences endosomal dynamics and seems to enhance Stx transport toward lysosomes. We also show that knockdown of Vps11, a subunit of the HOPS complex, leads to increased retrograde Stx transport and reverses the inhibiting effect of ezrin and moesin knockdown. Importantly, retrograde transport of the plant toxin ricin, which binds to both glycolipids and glycoproteins with a terminal galactose, seems to be unaffected by ezrin and moesin depletion.
Collapse
Affiliation(s)
- Audun Sverre Kvalvaag
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0379, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
30
|
Mukhopadhyay S, Linstedt AD. Retrograde trafficking of AB₅ toxins: mechanisms to therapeutics. J Mol Med (Berl) 2013; 91:1131-41. [PMID: 23665994 DOI: 10.1007/s00109-013-1048-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 01/28/2023]
Abstract
Bacterial AB5 toxins are a clinically relevant class of exotoxins that include several well-known members such as Shiga, cholera, and pertussis toxins. Infections with toxin-producing bacteria cause devastating human diseases that affect millions of individuals each year and have no definitive medical treatment. The molecular targets of AB5 toxins reside in the cytosol of infected cells, and the toxins reach the cytosol by trafficking through the retrograde membrane transport pathway that avoids degradative late endosomes and lysosomes. Focusing on Shiga toxin as the archetype member, we review recent advances in understanding the molecular mechanisms involved in the retrograde trafficking of AB5 toxins and highlight how these basic science advances are leading to the development of a promising new therapeutic approach based on inhibiting toxin transport.
Collapse
Affiliation(s)
- Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology, College of Pharmacy and Institute for Cellular & Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | | |
Collapse
|
31
|
Krishnan M, Kannan TR, Baseman JB. Mycoplasma pneumoniae CARDS toxin is internalized via clathrin-mediated endocytosis. PLoS One 2013; 8:e62706. [PMID: 23667510 PMCID: PMC3647021 DOI: 10.1371/journal.pone.0062706] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 03/28/2013] [Indexed: 01/27/2023] Open
Abstract
Bacterial toxins possess specific mechanisms of binding and uptake by mammalian cells. Mycoplasma pneumoniae CARDS (Community Acquired Respiratory Distress Syndrome) toxin is a 68 kDa protein, which demonstrates high binding affinity to human surfactant protein-A and exhibits specific biological activities including mono-ADP ribosylation and vacuolization. These properties lead to inflammatory processes in the airway and a range of cytopathologies including ciliostasis, loss of tissue integrity and injury, and cell death. However, the process by which CARDS toxin enters target cells is unknown. In this study, we show that CARDS toxin binds to mammalian cell surfaces and is internalized rapidly in a dose and time-dependent manner using a clathrin-mediated pathway, as indicated by inhibition of toxin internalization by monodansylcadaverine but not by methyl-β-cyclodextrin or filipin. Furthermore, the internalization of CARDS toxin was markedly inhibited in clathrin-depleted cells.
Collapse
Affiliation(s)
- Manickam Krishnan
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - T. R. Kannan
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Joel B. Baseman
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
32
|
Harper CB, Popoff MR, McCluskey A, Robinson PJ, Meunier FA. Targeting membrane trafficking in infection prophylaxis: dynamin inhibitors. Trends Cell Biol 2013; 23:90-101. [DOI: 10.1016/j.tcb.2012.10.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 10/11/2012] [Accepted: 10/11/2012] [Indexed: 12/01/2022]
|
33
|
Kural C, Tacheva-Grigorova SK, Boulant S, Cocucci E, Baust T, Duarte D, Kirchhausen T. Dynamics of intracellular clathrin/AP1- and clathrin/AP3-containing carriers. Cell Rep 2012; 2:1111-9. [PMID: 23103167 DOI: 10.1016/j.celrep.2012.09.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 06/05/2012] [Accepted: 09/19/2012] [Indexed: 12/13/2022] Open
Abstract
Clathrin/AP1- and clathrin/AP3-coated vesicular carriers originate from endosomes and the trans-Golgi network. Here, we report the real-time visualization of these structures in living cells reliably tracked by rapid, three-dimensional imaging with the use of a spinning-disk confocal microscope. We imaged relatively sparse, diffraction-limited, fluorescent objects containing chimeric fluorescent protein (clathrin light chain, σ adaptor subunits, or dynamin2) with a spatial precision of up to ~30 nm and a temporal resolution of ~1 s. The dynamic characteristics of the intracellular clathrin/AP1 and clathrin/AP3 carriers are similar to those of endocytic clathrin/AP2 pits and vesicles; the clathrin/AP1 coats are, on average, slightly shorter-lived than their AP2 and AP3 counterparts. We confirmed that although dynamin2 is recruited as a burst to clathrin/AP2 pits immediately before their budding from the plasma membrane, we found no evidence supporting a similar association of dynamin2 with clathrin/AP1 or clathrin/AP3 carriers at any stage during their lifetime. We found no effects of chemical inhibitors of dynamin function or the K44A dominant-negative mutant of dynamin on AP1 and AP3 dynamics. This observation suggests that an alternative budding mechanism, yet to be discovered, is responsible for the scission step of clathrin/AP1 and clathrin/AP3 carriers.
Collapse
Affiliation(s)
- Comert Kural
- Department of Cell Biology, Harvard Medical School, Boston and Program in Cellular and Molecular Medicine at Boston Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Bergan J, Dyve Lingelem AB, Simm R, Skotland T, Sandvig K. Shiga toxins. Toxicon 2012; 60:1085-107. [PMID: 22960449 DOI: 10.1016/j.toxicon.2012.07.016] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/19/2012] [Accepted: 07/25/2012] [Indexed: 02/03/2023]
Abstract
Shiga toxins are virulence factors produced by the bacteria Shigella dysenteriae and certain strains of Escherichia coli. There is currently no available treatment for disease caused by these toxin-producing bacteria, and understanding the biology of the Shiga toxins might be instrumental in addressing this issue. In target cells, the toxins efficiently inhibit protein synthesis by inactivating ribosomes, and they may induce signaling leading to apoptosis. To reach their cytoplasmic target, Shiga toxins are endocytosed and transported by a retrograde pathway to the endoplasmic reticulum, before the enzymatically active moiety is translocated to the cytosol. The toxins thereby serve as powerful tools to investigate mechanisms of intracellular transport. Although Shiga toxins are a serious threat to human health, the toxins may be exploited for medical purposes such as cancer therapy or imaging.
Collapse
Affiliation(s)
- Jonas Bergan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
35
|
Abstract
This article focuses on drug targeting to specific cellular organelles for therapeutic purposes. Drugs can be delivered to all major organelles of the cell (cytosol, endosome/lysosome, nucleus, nucleolus, mitochondria, endoplasmic reticulum, Golgi apparatus, peroxisomes and proteasomes) where they exert specific effects in those particular subcellular compartments. Delivery can be achieved by chemical (e.g., polymeric) or biological (e.g., signal sequences) means. Unidirectional targeting to individual organelles has proven to be immensely successful for drug therapy. Newer technologies that accommodate multiple signals (e.g., protein switch and virus-like delivery systems) mimic nature and allow for a more sophisticated approach to drug delivery. Harnessing different methods of targeting multiple organelles in a cell will lead to better drug delivery and improvements in disease therapy.
Collapse
|
36
|
Annexin A1 and A2: roles in retrograde trafficking of Shiga toxin. PLoS One 2012; 7:e40429. [PMID: 22792315 PMCID: PMC3391278 DOI: 10.1371/journal.pone.0040429] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/06/2012] [Indexed: 01/05/2023] Open
Abstract
Annexins constitute a family of calcium and membrane binding proteins. As annexin A1 and A2 have previously been linked to various membrane trafficking events, we initiated this study to investigate the role of these annexins in the uptake and intracellular transport of the bacterial Shiga toxin (Stx) and the plant toxin ricin. Once endocytosed, both toxins are retrogradely transported from endosomes to the Golgi apparatus and the endoplasmic reticulum before being targeted to the cytosol where they inhibit protein synthesis. This study was performed to obtain new information both about toxin transport and the function of annexin A1 and annexin A2. Our data show that depletion of annexin A1 or A2 alters the retrograde transport of Stx but not ricin, without affecting toxin binding or internalization. Knockdown of annexin A1 increases Golgi transport of Stx, whereas knockdown of annexin A2 slightly decreases the same transport step. Interestingly, annexin A1 was found in proximity to cytoplasmic phospholipase A2 (cPLA2), and the basal as well as the increased Golgi transport of Stx upon annexin A1 knockdown is dependent on cPLA2 activity. In conclusion, annexin A1 and A2 have different roles in Stx transport to the trans-Golgi network. The most prominent role is played by annexin A1 which normally works as a negative regulator of retrograde transport from the endosomes to the Golgi network, most likely by complex formation and inhibition of cPLA2.
Collapse
|
37
|
Abstract
Shiga toxins and ricin are potent inhibitors of protein synthesis. In addition to causing inhibition of protein synthesis, these toxins activate proinflammatory signaling cascades that may contribute to the severe diseases associated with toxin exposure. Treatment of cells with Shiga toxins and ricin have been shown to activate a number of signaling pathways including those associated with the ribotoxic stress response, Nuclear factor kappa B activation, inflammasome activation, the unfolded protein response, mTOR signaling, hemostasis, and retrograde trafficking. In this chapter, we review our current understanding of these signaling pathways as they pertain to intoxication by Shiga toxins and ricin.
Collapse
|
38
|
Saito M, Mylvaganum M, Tam P, Novak A, Binnington B, Lingwood C. Structure-dependent pseudoreceptor intracellular traffic of adamantyl globotriaosyl ceramide mimics. J Biol Chem 2012; 287:16073-87. [PMID: 22418442 DOI: 10.1074/jbc.m111.318196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The verotoxin (VT) (Shiga toxin) receptor globotriaosyl ceramide (Gb(3)), mediates VT1/VT2 retrograde transport to the endoplasmic reticulum (ER) for cytosolic A subunit access to inhibit protein synthesis. Adamantyl Gb(3) is an amphipathic competitive inhibitor of VT1/VT2 Gb(3) binding. However, Gb(3)-negative VT-resistant CHO/Jurkat cells incorporate adaGb(3) to become VT1/VT2-sensitive. CarboxyadaGb(3), urea-adaGb(3), and hydroxyethyl adaGb(3), preferentially bound by VT2, also mediate VT1/VT2 cytotoxicity. VT1/VT2 internalize to early endosomes but not to Golgi/ER. AdabisGb(3) (two deacyl Gb(3)s linked to adamantane) protects against VT1/VT2 more effectively than adaGb(3) without incorporating into Gb(3)-negative cells. AdaGb(3) (but not hydroxyethyl adaGb(3)) incorporation into Gb(3)-positive Vero cells rendered punctate cell surface VT1/VT2 binding uniform and subverted subsequent Gb(3)-dependent retrograde transport to Golgi/ER to render cytotoxicity (reduced for VT1 but not VT2) brefeldin A-resistant. VT2-induced vacuolation was maintained in adaGb(3)-treated Vero cells, but vacuolar membrane VT2 was lost. AdaGb(3) destabilized membrane cholesterol and reduced Gb(3) cholesterol stabilization in phospholipid liposomes. Cholera toxin GM1-mediated Golgi/ER targeting was unaffected by adaGb(3). We demonstrate the novel, lipid-dependent, pseudoreceptor function of Gb(3) mimics and their structure-dependent modulation of endogenous intracellular Gb(3) vesicular traffic.
Collapse
Affiliation(s)
- Mitsumasa Saito
- Research Institute, Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Engedal N, Skotland T, Torgersen ML, Sandvig K. Shiga toxin and its use in targeted cancer therapy and imaging. Microb Biotechnol 2012; 4:32-46. [PMID: 21255370 PMCID: PMC3023029 DOI: 10.1111/j.1751-7915.2010.00180.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Shiga and the Shiga‐like toxins are related protein toxins produced by Shigella dysenteriae and certain strains of Escherichia coli. These toxins are composed of two non‐covalently attached, modular parts: the A moiety (StxA) containing the enzymatically active A1 fragment, and the non‐toxic, pentameric binding moiety (StxB). Stx binds specifically to the glycosphingolipid globotriaosylceramide (Gb3) at the surface of target cells and is then internalized by endocytosis. Subsequently, in toxin‐sensitive cells, the Stx/Gb3 complex is transported in a retrograde manner via the Golgi apparatus to the endoplasmic reticulum, where the enzymatically active part of Stx is translocated to the cytosol, enabling it to irreversibly inhibit protein synthesis via modification of ribosomal 28S RNA. Whereas Gb3 shows a relatively restricted expression in normal human tissues, it has been reported to be highly expressed in many types of cancers. This review gives a brief introduction to Stx and its intracellular transport. Furthermore, after a description of Gb3 and the methods that are currently used to detect its cellular expression, we provide an updated overview of the published reports on Gb3 overexpression in human cancers. Finally, we discuss the possibility of utilizing Stx or StxB coupled to therapeutic compounds or contrast agents in targeted cancer therapy and imaging.
Collapse
Affiliation(s)
- Nikolai Engedal
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310 Oslo, Norway
| | | | | | | |
Collapse
|
40
|
Abstract
All bacterial toxins, which globally are hydrophilic proteins, interact first with their target cells by recognizing a surface receptor, which is either a lipid or a lipid derivative, or another compound but in a lipid environment. Intracellular active toxins follow various trafficking pathways, the sorting of which is greatly dependent on the nature of the receptor, notably lipidic receptor or receptor embedded into a distinct environment such as lipid microdomains. Numerous other toxins act locally on cell membrane. Indeed, phospholipase activity is a common mechanism shared by several membrane-damaging toxins. In addition, many toxins active intracellularly or on cell membrane modulate host cell phospholipid pathways. Unusually, a few bacterial toxins require a lipid post-translational modification to be active. Thereby, lipids are obligate partners of bacterial toxins.
Collapse
Affiliation(s)
- Blandine Geny
- Unité des Bactéries Anaérobies et Toxines, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | | |
Collapse
|
41
|
Intracellular trafficking of Shiga-toxin-B-subunit-functionalized spherulites. Biol Cell 2012; 100:717-25. [DOI: 10.1042/bc20080009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Abstract
The endo-lysosomal system is an interconnected tubulo-vesicular network that acts as a sorting station to process and distribute internalised cargo. This network accepts cargoes from both the plasma membrane and the biosynthetic pathway, and directs these cargos either towards the lysosome for degradation, the peri-nuclear recycling endosome for return to the cell surface, or to the trans-Golgi network. These intracellular membranes are variously enriched in different phosphoinositides that help to shape compartmental identity. These lipids act to localise a number of phosphoinositide-binding proteins that function as sorting machineries to regulate endosomal cargo sorting. Herein we discuss regulation of these machineries by phosphoinositides and explore how phosphoinositide-switching contributes toward sorting decisions made at this platform.
Collapse
Affiliation(s)
- Peter J Cullen
- Henry Wellcome Integrated Signaling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, BS8 1TD, Bristol, United Kingdom,
| | | |
Collapse
|
43
|
Dyve Lingelem AB, Bergan J, Sandvig K. Inhibitors of intravesicular acidification protect against Shiga toxin in a pH-independent manner. Traffic 2011; 13:443-54. [PMID: 22132807 DOI: 10.1111/j.1600-0854.2011.01319.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 11/28/2011] [Accepted: 12/01/2011] [Indexed: 01/01/2023]
Abstract
Shiga toxin inhibits protein synthesis after being transported from the cell surface to endosomes and retrogradely through the Golgi apparatus to the endoplasmic reticulum (ER) and into the cytosol. In this study, we have abolished proton gradients across internal membranes in different ways and investigated the effect on the various transport steps of Shiga toxin. Although inhibitors of the proton pump such as bafilomycin A1 and concanamycin A as well as some ionophores and chloroquine all protect against Shiga toxin, they mediate protection by inhibiting different transport steps. For instance, chloroquine protects the cells, although the toxin is transported to the ER. Importantly, our data indicate that proton pump activity is required for efficient endosome-to-Golgi transport of Shiga toxin, although acidification as such does not seem to be required.
Collapse
Affiliation(s)
- Anne Berit Dyve Lingelem
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | | | | |
Collapse
|
44
|
de la Vega M, Marin M, Kondo N, Miyauchi K, Kim Y, Epand RF, Epand RM, Melikyan GB. Inhibition of HIV-1 endocytosis allows lipid mixing at the plasma membrane, but not complete fusion. Retrovirology 2011; 8:99. [PMID: 22145853 PMCID: PMC3297528 DOI: 10.1186/1742-4690-8-99] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 12/06/2011] [Indexed: 12/03/2022] Open
Abstract
Background We recently provided evidence that HIV-1 enters HeLa-derived TZM-bl and lymphoid CEMss cells by fusing with endosomes, whereas its fusion with the plasma membrane does not proceed beyond the lipid mixing step. The mechanism of restriction of HIV-1 fusion at the cell surface and/or the factors that aid the virus entry from endosomes remain unclear. Results We examined HIV-1 fusion with a panel of target cells lines and with primary CD4+ T cells. Kinetic measurements of fusion combined with time-resolved imaging of single viruses further reinforced the notion that HIV-1 enters the cells via endocytosis and fusion with endosomes. Furthermore, we attempted to deliberately redirect virus fusion to the plasma membrane, using two experimental strategies. First, the fusion reaction was synchronized by pre-incubating the viruses with cells at reduced temperature to allow CD4 and coreceptors engagement, but not the virus uptake or fusion. Subsequent shift to a physiological temperature triggered accelerated virus uptake followed by entry from endosomes, but did not permit fusion at the cell surface. Second, blocking HIV-1 endocytosis by a small-molecule dynamin inhibitor, dynasore, resulted in transfer of viral lipids to the plasma membrane without any detectable release of the viral content into the cytosol. We also found that a higher concentration of dynasore is required to block the HIV-endosome fusion compared to virus internalization. Conclusions Our results further support the notion that HIV-1 enters disparate cell types through fusion with endosomes. The block of HIV-1 fusion with the plasma membrane at a post-lipid mixing stage shows that this membrane is not conducive to fusion pore formation and/or enlargement. The ability of dynasore to interfere with the virus-endosome fusion suggests that dynamin could be involved in two distinct steps of HIV-1 entry - endocytosis and fusion within intracellular compartments.
Collapse
Affiliation(s)
- Michelle de la Vega
- Division of Pediatric Infectious Diseases, Emory University Children's Center, 2015 Uppergate Drive, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Chia PZC, Gleeson PA. The Regulation of Endosome-to-Golgi Retrograde Transport by Tethers and Scaffolds. Traffic 2011; 12:939-47. [DOI: 10.1111/j.1600-0854.2011.01185.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Pust S, Barth H, Sandvig K. Clostridium botulinum C2 toxin is internalized by clathrin- and Rho-dependent mechanisms. Cell Microbiol 2011; 12:1809-20. [PMID: 20690924 DOI: 10.1111/j.1462-5822.2010.01512.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Clostridium botulinum C2 toxin is an ADP-ribosyltransferase, causing depolymerization of the actin cytoskeleton in eukaryotic cells. The C2 toxin is a binary toxin consisting of the enzymatic subunit C2I and the binding subunit C2II. Proteolytical activation of the binding subunit triggers the formation of heptameric structures (C2IIa), which bind to cellular receptors. C2I is able to bind to C2IIa oligomers, and it has been suggested that the whole complex is internalized by a raft-dependent mechanism. Here we analysed by which mechanism C2 toxin is endocytosed. In HeLa cells expressing a dominant-negative dynamin mutant, cytotoxicity and C2 toxin uptake were blocked. Furthermore, siRNA-mediated knockdown of flotillins or inhibition of Arf6 function, proteins suggested to be involved in dynamin-independent endocytosis, did not affect C2 toxicity. Knockdown of caveolin did not inhibit endocytosis of C2 toxin, whereas inhibition of clathrin function reduced the uptake of C2 toxin and delayed the cytotoxic effect. Finally, we found evidence for a Rho-mediated uptake of C2 toxin. In conclusion, C2 toxin is endocytosed by dynamin-dependent mechanisms and we provide evidence for involvement of clathrin and Rho.
Collapse
Affiliation(s)
- Sascha Pust
- Centre for Cancer Biomedicine and Institute for Cancer Research, Department of Biochemistry, Oslo University Hospital and University of Oslo, 0316 Oslo, Norway
| | | | | |
Collapse
|
47
|
Abstract
After binding to its cell surface receptor ganglioside GM1, simian virus 40 (SV40) is endocytosed by lipid raft-mediated endocytosis and slowly transported to the endoplasmic reticulum, where partial uncoating occurs. We analyzed the intracellular pathway taken by the virus in HeLa and CV-1 cells by using a targeted small interfering RNA (siRNA) silencing screen, electron microscopy, and live-cell imaging as well as by testing a variety of cellular inhibitors and other perturbants. We found that the virus entered early endosomes, late endosomes, and probably endolysosomes before reaching the endoplasmic reticulum and that this pathway was part of the infectious route. The virus was especially sensitive to a variety of perturbations that inhibited endosome acidification and maturation. Contrary to our previous models, which postulated the passage of the virus through caveolin-rich organelles that we called caveosomes, we conclude that SV40 depends on the classical endocytic pathway for infectious entry.
Collapse
|
48
|
Endocytosis and retrograde transport of Shiga toxin. Toxicon 2010; 56:1181-5. [DOI: 10.1016/j.toxicon.2009.11.021] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 11/17/2009] [Indexed: 01/22/2023]
|
49
|
Anitei M, Wassmer T, Stange C, Hoflack B. Bidirectional transport between the trans-Golgi network and the endosomal system. Mol Membr Biol 2010; 27:443-56. [DOI: 10.3109/09687688.2010.522601] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Valério E, Chaves S, Tenreiro R. Diversity and impact of prokaryotic toxins on aquatic environments: a review. Toxins (Basel) 2010; 2:2359-410. [PMID: 22069558 PMCID: PMC3153167 DOI: 10.3390/toxins2102359] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 10/01/2010] [Accepted: 10/13/2010] [Indexed: 12/17/2022] Open
Abstract
Microorganisms are ubiquitous in all habitats and are recognized by their metabolic versatility and ability to produce many bioactive compounds, including toxins. Some of the most common toxins present in water are produced by several cyanobacterial species. As a result, their blooms create major threats to animal and human health, tourism, recreation and aquaculture. Quite a few cyanobacterial toxins have been described, including hepatotoxins, neurotoxins, cytotoxins and dermatotoxins. These toxins are secondary metabolites, presenting a vast diversity of structures and variants. Most of cyanobacterial secondary metabolites are peptides or have peptidic substructures and are assumed to be synthesized by non-ribosomal peptide synthesis (NRPS), involving peptide synthetases, or NRPS/PKS, involving peptide synthetases and polyketide synthases hybrid pathways. Besides cyanobacteria, other bacteria associated with aquatic environments are recognized as significant toxin producers, representing important issues in food safety, public health, and human and animal well being. Vibrio species are one of the most representative groups of aquatic toxin producers, commonly associated with seafood-born infections. Some enterotoxins and hemolysins have been identified as fundamental for V. cholerae and V. vulnificus pathogenesis, but there is evidence for the existence of other potential toxins. Campylobacter spp. and Escherichia coli are also water contaminants and are able to produce important toxins after infecting their hosts. Other bacteria associated with aquatic environments are emerging as toxin producers, namely Legionella pneumophila and Aeromonas hydrophila, described as responsible for the synthesis of several exotoxins, enterotoxins and cytotoxins. Furthermore, several Clostridium species can produce potent neurotoxins. Although not considered aquatic microorganisms, they are ubiquitous in the environment and can easily contaminate drinking and irrigation water. Clostridium members are also spore-forming bacteria and can persist in hostile environmental conditions for long periods of time, contributing to their hazard grade. Similarly, Pseudomonas species are widespread in the environment. Since P. aeruginosa is an emergent opportunistic pathogen, its toxins may represent new hazards for humans and animals. This review presents an overview of the diversity of toxins produced by prokaryotic microorganisms associated with aquatic habitats and their impact on environment, life and health of humans and other animals. Moreover, important issues like the availability of these toxins in the environment, contamination sources and pathways, genes involved in their biosynthesis and molecular mechanisms of some representative toxins are also discussed.
Collapse
Affiliation(s)
- Elisabete Valério
- Centro de Recursos Microbiológicos (CREM), Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal;
| | - Sandra Chaves
- Centro de Biodiversidade, Genómica Integrativa e Funcional (BioFIG), Faculdade de Ciências, Universidade de Lisboa, Edificio ICAT, Campus da FCUL, Campo Grande, 1740-016 Lisboa, Portugal;
| | - Rogério Tenreiro
- Centro de Biodiversidade, Genómica Integrativa e Funcional (BioFIG), Faculdade de Ciências, Universidade de Lisboa, Edificio ICAT, Campus da FCUL, Campo Grande, 1740-016 Lisboa, Portugal;
| |
Collapse
|