1
|
Pandey M, Sarkar S, Ghosh SK. Ancestral TALE homeobox protein transcription factor regulates actin dynamics and cellular activities of protozoan parasite Entamoeba invadens. Mol Microbiol 2024; 122:660-682. [PMID: 38654540 PMCID: PMC11586516 DOI: 10.1111/mmi.15266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Entamoeba histolytica causes invasive amoebiasis, an important neglected tropical disease with a significant global health impact. The pathogenicity and survival of E. histolytica and its reptilian equivalent, Entamoeba invadens, relies on its ability to exhibit efficient motility, evade host immune responses, and exploit host resources, all of which are governed by the actin cytoskeleton remodeling. Our study demonstrates the early origin and the regulatory role of TALE homeobox protein EiHbox1 in actin-related cellular processes. Several genes involved in different biological pathways, including actin dynamics are differentially expressed in EiHbox1 silenced cells. EiHbox1 silenced parasites showed disrupted F-actin organization and loss of cellular polarity. EiHbox1's presence in the anterior region of migrating cells further suggests its involvement in maintaining cellular polarity. Loss of polarized morphology of EiHbox1 silenced parasites leads to altered motility from fast, directionally persistent, and highly chemotactic to slow, random, and less chemotactic, which subsequently leads to defective aggregation during encystation. EiHbox1 knockdown also resulted in a significant reduction in phagocytic capacity and poor capping response. These findings highlight the importance of EiHbox1 of E. invadens in governing cellular processes crucial for their survival, pathogenicity, and evasion of the host immune system.
Collapse
Affiliation(s)
- Meenakshi Pandey
- Department of Bioscience and BiotechnologyIndian Institute of Technology KharagpurKharagpurWest BengalIndia
| | - Shilpa Sarkar
- Department of Bioscience and BiotechnologyIndian Institute of Technology KharagpurKharagpurWest BengalIndia
| | - Sudip K. Ghosh
- Department of Bioscience and BiotechnologyIndian Institute of Technology KharagpurKharagpurWest BengalIndia
| |
Collapse
|
2
|
Benchimol M, de Souza W. Endocytosis in anaerobic parasitic protists. Mem Inst Oswaldo Cruz 2024; 119:e240058. [PMID: 39082582 PMCID: PMC11285859 DOI: 10.1590/0074-02760240058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/05/2024] [Indexed: 08/03/2024] Open
Abstract
The incorporation of different molecules by eukaryotic cells occurs through endocytosis, which is critical to the cell's survival and ability to reproduce. Although this process has been studied in greater detail in mammalian and yeast cells, several groups working with pathogenic protists have made relevant contributions. This review analysed the most relevant data on the endocytic process in anaerobic protists (Entamoeba histolytica, Giardia intestinalis, Trichomonas vaginalis, and Tritrichomonas foetus). Many protozoa can exert endocytic activity across their entire surface and do so with great intensity, as with E. histolytica. The available data on the endocytic pathway and the participation of PI-3 kinase, Rab, and Rho molecular complexes is reviewed from a historical perspective.
Collapse
Affiliation(s)
- Marlene Benchimol
- Universidade Federal do Rio de Janeiro, Centro Nacional de Biologia
Estrutural e Bioimagens, Rio de Janeiro, RJ, Brasil
- Universidade da Grande Rio, Duque de Caxias, RJ, Brasil
| | - Wanderley de Souza
- Universidade Federal do Rio de Janeiro, Centro Nacional de Biologia
Estrutural e Bioimagens, Rio de Janeiro, RJ, Brasil
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica
Carlos Chagas Filho, Laboratório de Ultraestrutura Celular Hertha Meyer, Rio de
Janeiro, RJ, Brasil
| |
Collapse
|
3
|
Bharadwaj R, Kushwaha T, Ahmad A, Inampudi KK, Nozaki T. An atypical EhGEF regulates phagocytosis in Entamoeba histolytica through EhRho1. PLoS Pathog 2021; 17:e1010030. [PMID: 34807955 PMCID: PMC8648123 DOI: 10.1371/journal.ppat.1010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/06/2021] [Accepted: 10/13/2021] [Indexed: 01/09/2023] Open
Abstract
The parasite Entamoeba histolytica is the etiological agent of amoebiasis, a major cause of morbidity and mortality due to parasitic diseases in developing countries. Phagocytosis is an essential mode of obtaining nutrition and has been associated with the virulence behaviour of E. histolytica. Signalling pathways involved in activation of cytoskeletal dynamics required for phagocytosis remains to be elucidated in this parasite. Our group has been studying initiation of phagocytosis and formation of phagosomes in E. histolytica and have described some of the molecules that play key roles in the process. Here we showed the involvement of non-Dbl Rho Guanine Nucleotide Exchange Factor, EhGEF in regulation of amoebic phagocytosis by regulating activation of EhRho1. EhGEF was found in the phagocytic cups during the progression of cups, until closure of phagosomes, but not in the phagosomes themselves. Our observation from imaging, pull down experiments and down regulating expression of different molecules suggest that EhGEF interacts with EhRho1 and it is required during initiation of phagocytosis and phagosome formation. Also, biophysical, and computational analysis reveals that EhGEF mediates GTP exchange on EhRho1 via an unconventional pathway. In conclusion, we describe a non-Dbl EhGEF of EhRho1 which is involved in endocytic processes of E. histolytica.
Collapse
Affiliation(s)
- Ravi Bharadwaj
- Division of Infectious Diseases, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Tushar Kushwaha
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Azhar Ahmad
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Krishna K. Inampudi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- * E-mail: (TN); , (S)
| |
Collapse
|
4
|
Hasan MM, Teixeira JE, Lam YW, Huston CD. Coactosin Phosphorylation Controls Entamoeba histolytica Cell Membrane Protrusions and Cell Motility. mBio 2020; 11:e00660-20. [PMID: 32753489 PMCID: PMC7407079 DOI: 10.1128/mbio.00660-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Invasion of the colon wall by Entamoeba histolytica during amoebic dysentery entails migration of trophozoites through tissue layers that are rich in extracellular matrix. Transcriptional silencing of the E. histolytica surface metalloprotease EhMSP-1 produces hyperadherent less-motile trophozoites that are deficient in forming invadosomes. Reversible protein phosphorylation is often implicated in regulation of cell motility and invadosome formation. To identify such intermediaries of the EhMSP-1-silenced phenotype, here we compared the phosphoproteomes of EhMSP-1-silenced and vector control trophozoites by using quantitative tandem mass spectrometry-based proteomics. Six proteins were found to be differentially phosphorylated in EhMSP-1-silenced and control cells, including EhCoactosin, a member of the ADF/cofilin family of actin-binding proteins, which was more frequently phosphorylated at serine 147. Regulated overexpression of wild-type, phosphomimetic, and nonphosphorylatable EhCoactosin variants was used to test if phosphorylation functions in control of E. histolytica actin dynamics. Each of the overexpressed proteins colocalized with F-actin during E. histolytica phagocytosis. Nonetheless, trophozoites overexpressing an EhCoactosin phosphomimetic mutant formed more and poorly coordinated cell membrane protrusions compared to those in control or cells expressing a nonphosphorylatable mutant, while trophozoites overexpressing nonphosphorylatable EhCoactosin were significantly more motile within a model of mammalian extracellular matrix. Therefore, although EhCoactosin's actin-binding ability appeared unaffected by phosphorylation, EhCoactosin phosphorylation helps to regulate amoebic motility. These data help to understand the mechanisms underlying altered adherence and motility in EhMSP-1-silenced trophozoites and lay the groundwork for identifying kinases and phosphatases critical for control of amoebic invasiveness.IMPORTANCE Invasive amoebiasis, caused by the intestinal parasite Entamoeba histolytica, causes life-threatening diarrhea and liver abscesses, but, for unknown reasons, only approximately 10% of E. histolytica infections become symptomatic. A key requirement of invasion is the ability of the parasite to migrate through tissue layers. Here, we systematically looked for differences in protein phosphorylation between control parasites and a previously identified hyperadherent E. histolytica cell line that has reduced motility. We identified EhCoactosin, an actin-binding protein not previously known to be phosphoregulated, as one of the differentially phosphorylated proteins in E. histolytica and demonstrated that EhCoactosin phosphorylation functions in control of cell membrane dynamics and amoebic motility. This and the additional differentially phosphorylated proteins reported lay the groundwork for identifying kinases and phosphatases that regulate tissue invasiveness.
Collapse
Affiliation(s)
- Muhammad M Hasan
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| | - José E Teixeira
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
| | - Ying-Wai Lam
- Proteomics Facility, Vermont Genetics Network, University of Vermont, Burlington, Vermont, USA
- Department of Biology, University of Vermont, Burlington, Vermont, USA
| | - Christopher D Huston
- Department of Medicine, University of Vermont, Larner College of Medicine, Burlington, Vermont, USA
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
5
|
Talamás-Lara D, Rosales-Encina JL, Chávez-Munguía B, Acosta-Virgen K, Hernández-Ramírez VI, Salazar-Villatoro L, Espinosa-Cantellano M, Martínez-Palomo A, Talamás-Rohana P. Entamoeba histolytica and Entamoeba dispar: Morphological and Behavioral Differences Induced by Fibronectin through GTPases Activation and Actin-Binding Proteins. J Eukaryot Microbiol 2020; 67:491-504. [PMID: 32302033 DOI: 10.1111/jeu.12797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/19/2020] [Accepted: 03/26/2020] [Indexed: 01/09/2023]
Abstract
Early steps of tissue invasion by Entamoeba histolytica are mediated by adhesion and migration through matrix components such as fibronectin with the participation of the actin cytoskeleton. Striking differences in their produced structures, movement, and migration were found. These observations suggest differential changes in their ability to organize the actin cytoskeleton and, therefore, to modify its morphology after adhesion to fibronectin. To understand these observations, we explore deeper the cytoskeleton pathway of E. histolytica compared to Entamoeba dispar, analyzing the activation and involvement of actin cytoskeleton regulatory proteins such as small GTPases (Rho, Rac1 and Cdc42), myosin IB, paxillin, alpha-actinin, and ARP2/3 during interaction with fibronectin. Results showed a higher activation of Rac1 in E. histolytica compared to E. dispar, while Cdc42 and RhoA were equally activated in both amebae; besides, variations in the amount of myosin IB, paxillin, and ARP2/3 were detected among these species, coinciding and reflected in formation of lamellipodia in E. histolytica and filopodia in E. dispar. These could partially explain the higher invasive capacity of E. histolytica compared to E. dispar, due to its pleomorphic ability, high motility, migration, activation, and abundance of proteins involved in the cytoskeleton arrangement.
Collapse
Affiliation(s)
- Daniel Talamás-Lara
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal, 07360, Mexico City, Mexico
| | - José Luis Rosales-Encina
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal, 07360, Mexico City, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal, 07360, Mexico City, Mexico
| | - Karla Acosta-Virgen
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal, 07360, Mexico City, Mexico
| | - Verónica Ivonne Hernández-Ramírez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal, 07360, Mexico City, Mexico
| | - Lizbeth Salazar-Villatoro
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal, 07360, Mexico City, Mexico
| | - Martha Espinosa-Cantellano
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal, 07360, Mexico City, Mexico
| | - Adolfo Martínez-Palomo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal, 07360, Mexico City, Mexico
| | - Patricia Talamás-Rohana
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal, 07360, Mexico City, Mexico
| |
Collapse
|
6
|
|
7
|
Guillén N. The interaction betweenEntamoeba histolyticaand enterobacteria shed light on an ancient antibacterial response. Cell Microbiol 2019; 21:e13039. [DOI: 10.1111/cmi.13039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Nancy Guillén
- Institut Pasteur Paris France
- INSBCentre National de la Recherche Scientifique, CNRS‐ERL9195 Paris France
| |
Collapse
|
8
|
Mueller C, Graindorge A, Soldati-Favre D. Functions of myosin motors tailored for parasitism. Curr Opin Microbiol 2017; 40:113-122. [DOI: 10.1016/j.mib.2017.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 01/01/2023]
|
9
|
Boquet-Pujadas A, Lecomte T, Manich M, Thibeaux R, Labruyère E, Guillén N, Olivo-Marin JC, Dufour AC. BioFlow: a non-invasive, image-based method to measure speed, pressure and forces inside living cells. Sci Rep 2017; 7:9178. [PMID: 28835648 PMCID: PMC5569094 DOI: 10.1038/s41598-017-09240-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 07/19/2017] [Indexed: 12/23/2022] Open
Abstract
Cell motility is governed by a complex molecular machinery that converts physico-chemical cues into whole-cell movement. Understanding the underlying biophysical mechanisms requires the ability to measure physical quantities inside the cell in a simple, reproducible and preferably non-invasive manner. To this end, we developed BioFlow, a computational mechano-imaging method and associated software able to extract intracellular measurements including pressure, forces and velocity everywhere inside freely moving cells in two and three dimensions with high spatial resolution in a non-invasive manner. This is achieved by extracting the motion of intracellular material observed using fluorescence microscopy, while simultaneously inferring the parameters of a given theoretical model of the cell interior. We illustrate the power of BioFlow in the context of amoeboid cell migration, by modelling the intracellular actin bulk flow of the parasite Entamoeba histolytica using fluid dynamics, and report unique experimental measures that complement and extend both theoretical estimations and invasive experimental measures. Thanks to its flexibility, BioFlow is easily adaptable to other theoretical models of the cell, and alleviates the need for complex or invasive experimental conditions, thus constituting a powerful tool-kit for mechano-biology studies. BioFlow is open-source and freely available via the Icy software.
Collapse
Affiliation(s)
- Aleix Boquet-Pujadas
- Institut Pasteur, Bioimage Analysis Unit, Paris, France.,CNRS UMR3691, Paris, France
| | - Timothée Lecomte
- Institut Pasteur, Bioimage Analysis Unit, Paris, France.,CNRS UMR3691, Paris, France
| | - Maria Manich
- Institut Pasteur, Bioimage Analysis Unit, Paris, France.,CNRS UMR3691, Paris, France
| | - Roman Thibeaux
- Institut Pasteur, Cell Biology of Parasitism Unit, Paris, France.,INSERM U786, Paris, France.,Institut Pasteur, Leptospirosis Research Unit, New Caledonia
| | - Elisabeth Labruyère
- Institut Pasteur, Bioimage Analysis Unit, Paris, France.,CNRS UMR3691, Paris, France
| | - Nancy Guillén
- Institut Pasteur, Cell Biology of Parasitism Unit, Paris, France.,INSERM U786, Paris, France.,CNRS ERL9195, Paris, France
| | | | - Alexandre C Dufour
- Institut Pasteur, Bioimage Analysis Unit, Paris, France. .,CNRS UMR3691, Paris, France.
| |
Collapse
|
10
|
Shodja MM, Knutsen R, Cao J, Oda K, Beeson LE, Fraser GE, Knutsen S. Effects of glycosylated hemoglobin levels on neutrophilic phagocytic functions. ACTA ACUST UNITED AC 2017; 8:9-16. [PMID: 30740586 PMCID: PMC6368184 DOI: 10.5897/jde2017.0110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
It is well established that diabetic patients with poor glycemic control have increased susceptibility to infections, but glucose levels have not been directly associated with this increase. The assessment of the effects of glycosylated hemoglobin (A1 c) on the body’s ability to fight infections may be useful directly in establishing a link between elevated blood sugar and the risk of infections. A total of 127 subjects in Heart Pilot Study (HPS), sub-study of the Adventist Health Study 2 (AHS-2) completed a lifestyle, medical and food frequency questionnaire (FFQ) at baseline between 2013 and 2014. The A1 c and phagocytic index (PI) were measured in the same blood sample and their associations were assessed using linear regression. Mean blood glucose (MBG) was estimated based on A1 c levels using a standard formula. Three levels of MBG were used to compare prediabetic and diabetic ranges to the normal range. The PI is the average number of bacteria in the cytoplasm of 50 neutrophils, manually counted under a light microscope after the whole blood was briefly exposed to a standard dose of bacteria and stained. In multivariable analysis, we found that MBG in the prediabetic (117 to137 mg/dL) and diabetic (>137 mg/dL) ranges were associated with 12.9% (β= −0.129, 95% Cl: −0.30, 0.05) and 20.4% decrease in PI (β= −0.204, 95% Cl: −0.592, 0.184) compared to that, observed among those with normal MBG (p for trend=0.119). Elevated MBG levels contribute a decrease in the PI among those in the prediabetic and diabetic range compared to the normal range. Although our findings were not quite statistically significant due to low power which are clinically relevant in line with observations of an increased infections among diabetics. Further research on larger populations is needed.
Collapse
Affiliation(s)
- Mary Michelle Shodja
- Center for Nutrition, Healthy Lifestyle and Disease Prevention Faculty, Loma Linda, California, United State
| | - Raymond Knutsen
- Center for Nutrition, Healthy Lifestyle and Disease Prevention Faculty, Loma Linda, California, United State
| | - Jeffrey Cao
- School of Medicine Loma Linda University, California, United State
| | - Keiji Oda
- Center for Nutrition, Healthy Lifestyle and Disease Prevention Faculty, Loma Linda, California, United State
| | - Lawrence E Beeson
- Center for Nutrition, Healthy Lifestyle and Disease Prevention Faculty, Loma Linda, California, United State
| | - Gary E Fraser
- Center for Nutrition, Healthy Lifestyle and Disease Prevention Faculty, Loma Linda, California, United State.,School of Medicine Loma Linda University, California, United State
| | - Synnove Knutsen
- Center for Nutrition, Healthy Lifestyle and Disease Prevention Faculty, Loma Linda, California, United State.,School of Medicine Loma Linda University, California, United State
| |
Collapse
|
11
|
Verma K, Saito-Nakano Y, Nozaki T, Datta S. Insights into endosomal maturation of human holo-transferrin in the enteric parasite Entamoeba histolytica: essential roles of Rab7A and Rab5 in biogenesis of giant early endocytic vacuoles. Cell Microbiol 2015; 17:1779-96. [PMID: 26096601 DOI: 10.1111/cmi.12470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/28/2015] [Accepted: 06/05/2015] [Indexed: 12/14/2022]
Abstract
The pathogenic amoeba Entamoeba histolytica is one of the causative agents of health hazards in tropical countries. It causes amoebic dysentery, colitis and liver abscesses in human. Iron is one of the essential nutritional resources for survival and chronic infection caused by the amoeba. The parasite has developed multiple ways to import, sequester and utilize iron from various iron-binding proteins from its host. In spite of its central role in pathogenesis, the mechanism of iron uptake by the parasite is largely unknown. Here, we carried out a systematic study to understand the role of some of the amoebic homologues of mammalian endocytic Rab GTPases (Rab5 and Rab21, Rab7A and Rab7B) in intracellular transport of human holo-transferrin by the parasite. Flow cytometry and quantitative microscopic image analysis revealed that Rab5 and Rab7A are required for the biogenesis of amoebic giant endocytic vacuoles (GEVs) and regulate the early phase of intracellular trafficking of transferrin. Rab7B is involved in the late phase, leading to the degradation of transferrin in the amoebic lysosome-like compartments. Using time-lapse fluorescence imaging in fixed trophozoites, we determined the kinetics of the vesicular transport of transferrin through Rab5-, Rab7A- and Rab7B-positive compartments. The involvement of Rab7A in the early phase of endocytosis by the parasite marks a significant divergence from its host in terms of spatiotemporal regulation by the Rab GTPases.
Collapse
Affiliation(s)
- Kuldeep Verma
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal Gas Rahat ITI building, Bhopal, India
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sunando Datta
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal Gas Rahat ITI building, Bhopal, India
| |
Collapse
|
12
|
Crystal structure of calcium binding protein-5 from Entamoeba histolytica and its involvement in initiation of phagocytosis of human erythrocytes. PLoS Pathog 2014; 10:e1004532. [PMID: 25502654 PMCID: PMC4263763 DOI: 10.1371/journal.ppat.1004532] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 10/20/2014] [Indexed: 11/19/2022] Open
Abstract
Entamoeba histolytica is the etiological agent of human amoebic colitis and liver abscess, and causes a high level of morbidity and mortality worldwide, particularly in developing countries. There are a number of studies that have shown a crucial role for Ca2+ and its binding protein in amoebic biology. EhCaBP5 is one of the EF hand calcium-binding proteins of E. histolytica. We have determined the crystal structure of EhCaBP5 at 1.9 Å resolution in the Ca2+-bound state, which shows an unconventional mode of Ca2+ binding involving coordination to a closed yet canonical EF-hand motif. Structurally, EhCaBP5 is more similar to the essential light chain of myosin than to Calmodulin despite its somewhat greater sequence identity with Calmodulin. This structure-based analysis suggests that EhCaBP5 could be a light chain of myosin. Surface plasmon resonance studies confirmed this hypothesis, and in particular showed that EhCaBP5 interacts with the IQ motif of myosin 1B in calcium independent manner. It also appears from modelling of the EhCaBP5-IQ motif complex that EhCaBP5 undergoes a structural change in order to bind the IQ motif of myosin. This specific interaction was further confirmed by the observation that EhCaBP5 and myosin 1B are colocalized in E. histolytica during phagocytic cup formation. Immunoprecipitation of EhCaBP5 from total E. histolytica cellular extract also pulls out myosin 1B and this interaction was confirmed to be Ca2+ independent. Confocal imaging of E. histolytica showed that EhCaBP5 and myosin 1B are part of phagosomes. Overexpression of EhCaBP5 increases slight rate (∼20%) of phagosome formation, while suppression reduces the rate drastically (∼55%). Taken together, these experiments indicate that EhCaBP5 is likely to be the light chain of myosin 1B. Interestingly, EhCaBP5 is not present in the phagosome after its formation suggesting EhCaBP5 may be playing a regulatory role.
Collapse
|
13
|
Bolaños V, Díaz-Martínez A, Soto J, Rodríguez MA, López-Camarillo C, Marchat LA, Ramírez-Moreno E. The flavonoid (-)-epicatechin affects cytoskeleton proteins and functions in Entamoeba histolytica. J Proteomics 2014; 111:74-85. [PMID: 24887480 DOI: 10.1016/j.jprot.2014.05.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 05/01/2014] [Accepted: 05/22/2014] [Indexed: 11/18/2022]
Abstract
UNLABELLED Human amoebiasis is an intestinal disease with a global distribution. Due to reports of parasite resistance or susceptibility reduction to metronidazole treatment, there is a renewed interest for the search of new molecules with antiamoebic activity. The flavonoid (-)-epicatechin that was isolated from the Mexican medicinal plant Geranium mexicanum HBK has an in vitro activity against E. histolytica trophozoites, however its molecular effects have been poorly documented. Using a proteomic approach based on two-dimensional gel electrophoresis and mass spectrometry (ESI-MS/MS) analysis, we evidenced that E. histolytica cytoskeleton proteins exhibit differential abundance in response to (-)-epicatechin treatment. Moreover, functional assays revealed modification on pathogenic mechanisms associated with cytoskeleton functionality, namely, adhesion, migration, phagocytosis and cytolysis. Consequently, these data suggested that (-)-epicatechin could affect virulence properties of this human pathogen. BIOLOGICAL SIGNIFICANCE This work contributes with some advances in the action mechanisms involved in the antiamoebic effect of the flavonoid (-)-epicatechin. We found that this flavonoid has an unusual effect on trophozoites growth that is dependent of its concentration. Additionally, we reported that (-)-epicatechin affects mainly amebic cytoskeleton proteins, which results in alteration on important virulence mechanisms, like adhesion, migration, phagocytosis and cytolysis. This study provides new knowledge about a potential alternative therapy directed to the treatment of amoebiasis.
Collapse
Affiliation(s)
- Verónica Bolaños
- Posgrado en Biomedicina Molecular, ENMyH, Instituto Politécnico Nacional, México City 07320, México
| | - Alfredo Díaz-Martínez
- Posgrado en Biomedicina Molecular, ENMyH, Instituto Politécnico Nacional, México City 07320, México
| | - Jacqueline Soto
- Posgrado en Biomedicina Molecular, ENMyH, Instituto Politécnico Nacional, México City 07320, México
| | - Mario A Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, México City A.P. 14740, México
| | - Cesar López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, México City 03100, México
| | - Laurence A Marchat
- Posgrado en Biomedicina Molecular, ENMyH, Instituto Politécnico Nacional, México City 07320, México; Doctorado en Biotecnología, ENMyH, Instituto Politécnico Nacional, México City 07320, México
| | - Esther Ramírez-Moreno
- Posgrado en Biomedicina Molecular, ENMyH, Instituto Politécnico Nacional, México City 07320, México; Doctorado en Biotecnología, ENMyH, Instituto Politécnico Nacional, México City 07320, México.
| |
Collapse
|
14
|
Mansuri MS, Bhattacharya S, Bhattacharya A. A novel alpha kinase EhAK1 phosphorylates actin and regulates phagocytosis in Entamoeba histolytica. PLoS Pathog 2014; 10:e1004411. [PMID: 25299184 PMCID: PMC4192601 DOI: 10.1371/journal.ppat.1004411] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/19/2014] [Indexed: 01/09/2023] Open
Abstract
Phagocytosis plays a key role in nutrient uptake and virulence of the protist parasite Entamoeba histolytica. Phagosomes have been characterized by proteomics, and their maturation in the cells has been studied. However, there is so far not much understanding about initiation of phagocytosis and formation of phagosomes at the molecular level. Our group has been studying initiation of phagocytosis and formation of phagosomes in E. histolytica, and have described some of the molecules that play key roles in the process. Here we show the involvement of EhAK1, an alpha kinase and a SH3 domain containing protein in the pathway that leads to formation of phagosomes using red blood cell as ligand particle. A number of approaches, such as proteomics, biochemical, confocal imaging using specific antibodies or GFP tagged molecules, expression down regulation by antisense RNA, over expression of wild type and mutant proteins, were used to understand the role of EhAK1 in phagocytosis. EhAK1 was found in the phagocytic cups during the progression of cups, until closure of phagosomes, but not in the phagosomes themselves. It is recruited to the phagosomes through interaction with the calcium binding protein EhCaBP1. A reduction in phagocytosis was observed when EhAK1 was down regulated by antisense RNA, or by over expression of the kinase dead mutant. G-actin was identified as one of the major substrates of EhAK1. Phosphorylated actin preferentially accumulated at the phagocytic cups and over expression of a phosphorylation defective actin led to defects in phagocytosis. In conclusion, we describe an important component of the pathway that is initiated on attachment of red blood cells to E. histolytica cells. The main function of EhAK1 is to couple signalling events initiated after accumulation of EhC2PK to actin dynamics.
Collapse
Affiliation(s)
- M. Shahid Mansuri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
15
|
Maravillas-Montero JL, López-Ortega O, Patiño-López G, Santos-Argumedo L. Myosin 1g regulates cytoskeleton plasticity, cell migration, exocytosis, and endocytosis in B lymphocytes. Eur J Immunol 2014; 44:877-86. [PMID: 24310084 DOI: 10.1002/eji.201343873] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/22/2013] [Accepted: 11/27/2013] [Indexed: 11/07/2022]
Abstract
Myosin 1g (Myo1g) is a hematopoietic-specific myosin expressed mainly by lymphocytes. Here, we report the localization of Myo1g in B-cell membrane compartments such as lipid rafts, microvilli, and membrane extensions formed during spreading. By using Myo1g-deficient mouse B cells, we detected abnormalities in the adhesion ability and chemokine-induced directed migration of these lymphocytes. We also assessed a role for Myo1g in phagocytosis and exocytosis processes, as these were also irregular in Myo1g-deficient B cells. Taken together, our results show that Myo1g acts as a main regulator of different membrane/cytoskeleton-dependent processes in B lymphocytes.
Collapse
Affiliation(s)
- José L Maravillas-Montero
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | | | | | | |
Collapse
|
16
|
Aubertin K, Bonneau S, Silva AKA, Bacri JC, Gallet F, Wilhelm C. Impact of photosensitizers activation on intracellular trafficking and viscosity. PLoS One 2013; 8:e84850. [PMID: 24386423 PMCID: PMC3874004 DOI: 10.1371/journal.pone.0084850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/19/2013] [Indexed: 11/19/2022] Open
Abstract
The intracellular microenvironment is essential for the efficiency of photo-induced therapies, as short-lived reactive oxygen species generated must diffuse through their intracellular surrounding medium to reach their cellular target. Here, by combining measurements of local cytoplasmic dissipation and active trafficking, we found that photosensitizers activation induced small changes in surrounding viscosity but a massive decrease in diffusion. These effects are the signature of a return to thermodynamic equilibrium of the system after photo-activation and correlated with depolymerization of the microtubule network, as shown in a reconstituted system. These mechanical measurements were performed with two intracellular photosensitizing chlorins having similar quantum yield of singlet oxygen production but different intracellular localizations (cytoplasmic for mTHPC, endosomal for TPCS2a). These two agents demonstrated different intracellular impact.
Collapse
Affiliation(s)
- Kelly Aubertin
- Laboratoire Matière et Systèmes Complexes (MSC), CNRS and Université Paris Diderot, Paris, France
| | - Stéphanie Bonneau
- Laboratoire Jean Perrin-CNRS, Université Pierre et Marie Curie, Paris 6, Paris, France
| | - Amanda K. A. Silva
- Laboratoire Matière et Systèmes Complexes (MSC), CNRS and Université Paris Diderot, Paris, France
| | - Jean-Claude Bacri
- Laboratoire Matière et Systèmes Complexes (MSC), CNRS and Université Paris Diderot, Paris, France
| | - François Gallet
- Laboratoire Matière et Systèmes Complexes (MSC), CNRS and Université Paris Diderot, Paris, France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes (MSC), CNRS and Université Paris Diderot, Paris, France
- * E-mail:
| |
Collapse
|
17
|
Kolosnjaj-Tabi J, Wilhelm C, Clément O, Gazeau F. Cell labeling with magnetic nanoparticles: opportunity for magnetic cell imaging and cell manipulation. J Nanobiotechnology 2013; 11 Suppl 1:S7. [PMID: 24564857 PMCID: PMC4029272 DOI: 10.1186/1477-3155-11-s1-s7] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This tutorial describes a method of controlled cell labeling with citrate-coated ultra small superparamagnetic iron oxide nanoparticles. This method may provide basically all kinds of cells with sufficient magnetization to allow cell detection by high-resolution magnetic resonance imaging (MRI) and to enable potential magnetic manipulation. In order to efficiently exploit labeled cells, quantify the magnetic load and deliver or follow-up magnetic cells, we herein describe the main requirements that should be applied during the labeling procedure. Moreover we present some recommendations for cell detection and quantification by MRI and detail magnetic guiding on some real-case studies in vitro and in vivo.
Collapse
|
18
|
Fayol D, Le Visage C, Ino J, Gazeau F, Letourneur D, Wilhelm C. Design of Biomimetic Vascular Grafts with Magnetic Endothelial Patterning. Cell Transplant 2013; 22:2105-18. [DOI: 10.3727/096368912x661300] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The development of small diameter vascular grafts with a controlled pluricellular organization is still needed for effective vascular tissue engineering. Here, we describe a technological approach combining a tubular scaffold and magnetically labeled cells to create a pluricellular and organized vascular graft, the endothelialization of which could be monitored by MRI prior to transplantation. A novel type of scaffold was developed with a tubular geometry and a porous bulk structure enabling the seeding of cells in the scaffold pores. A homogeneous distribution of human mesenchymal stem cells in the macroporous structure was obtained by seeding the freeze-dried scaffold with the cell suspension. The efficient covering of the luminal surface of the tube was then made possible thanks to the implementation of a magnetic-based patterning technique. Human endothelial cells or endothelial progenitors were magnetically labeled with iron oxide nanoparticles and successfully attracted to the 2-mm lumen where they attached and formed a continuous endothelium. The combination of imaging modalities [fluorescence imaging, histology, and 3D magnetic resonance imaging (MRI)] evidenced the integrity of the vascular construct. In particular, the observation of different cell organizations in a vascular scaffold within the range of resolution of single cells by 4.7 T MRI is reported.
Collapse
Affiliation(s)
- Delphine Fayol
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS and Université Paris Diderot, Paris, France
| | - Catherine Le Visage
- Inserm, U698, Bio-ingénierie Cardiovasculaire, Université Paris Diderot, CHU X. Bichat, Paris, France
| | - Julia Ino
- Inserm, U698, Bio-ingénierie Cardiovasculaire, Université Paris Diderot, CHU X. Bichat, Paris, France
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS and Université Paris Diderot, Paris, France
| | - Didier Letourneur
- Inserm, U698, Bio-ingénierie Cardiovasculaire, Université Paris Diderot, CHU X. Bichat, Paris, France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS and Université Paris Diderot, Paris, France
| |
Collapse
|
19
|
Fayol D, Frasca G, Le Visage C, Gazeau F, Luciani N, Wilhelm C. Use of magnetic forces to promote stem cell aggregation during differentiation, and cartilage tissue modeling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:2611-6. [PMID: 23526452 DOI: 10.1002/adma.201300342] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Indexed: 05/23/2023]
Abstract
Magnetic forces induce cell condensation necessary for stem cell differentiation into cartilage and elicit the formation of a tissue-like structure: Magnetically driven fusion of aggregates assembled by micromagnets results in the formation of a continuous tissue layer containing abundant cartilage matrix.
Collapse
Affiliation(s)
- D Fayol
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS & University Paris Diderot, Paris, France
| | | | | | | | | | | |
Collapse
|
20
|
Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics. PLoS One 2013; 8:e57147. [PMID: 23451167 PMCID: PMC3579816 DOI: 10.1371/journal.pone.0057147] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 01/17/2013] [Indexed: 12/12/2022] Open
Abstract
Protrusions are deformations that form at the surface of living cells during biological activities such as cell migration. Using combined optical tweezers and fluorescent microscopy, we quantified the mechanical properties of protrusions in adherent human embryonic kidney cells in response to application of an external force at the cell surface. The mechanical properties of protrusions were analyzed by obtaining the associated force-length plots during protrusion formation, and force relaxation at constant length. Protrusion mechanics were interpretable by a standard linear solid (Kelvin) model, consisting of two stiffness parameters, k0 and k1 (with k0>k1), and a viscous coefficient. While both stiffness parameters contribute to the time-dependant mechanical behavior of the protrusions, k0 and k1 in particular dominated the early and late stages of the protrusion formation and elongation process, respectively. Lowering the membrane cholesterol content by 25% increased the k0 stiffness by 74%, and shortened the protrusion length by almost half. Enhancement of membrane cholesterol content by nearly two-fold increased the protrusion length by 30%, and decreased the k0 stiffness by nearly two-and-half-fold as compared with control cells. Cytoskeleton integrity was found to make a major contribution to protrusion mechanics as evidenced by the effects of F-actin disruption on the resulting mechanical parameters. Viscoelastic behavior of protrusions was further characterized by hysteresis and force relaxation after formation. The results of this study elucidate the coordination of plasma membrane composition and cytoskeleton during protrusion formation.
Collapse
|
21
|
Wilhelm C, Gazeau F. [Magnetic nanoparticles as tools for cell therapy]. Biol Aujourdhui 2013; 206:273-84. [PMID: 23419254 DOI: 10.1051/jbio/2012024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Indexed: 11/15/2022]
Abstract
Labelling living cells with magnetic nanoparticles creates opportunities for numerous biomedical applications such as Magnetic Resonance Imaging (MRI) cell tracking, cell manipulation, cell patterning for tissue engineering and magnetically-assisted cell delivery. The unique advantage of magnetic-based methods is to activate or monitor cell behavior by a remote stimulus, the magnetic field. Cell labelling methods using superparamagnetic nanoparticles have been widely developed, showing no adverse effect on cell proliferation and functionalities while conferring magnetic properties to various cell types. This paper first describes how cells can become responsive to magnetic field by safely internalizing magnetic nanoparticles. We next show how magnetic cells can be detected by MRI, giving the opportunity for non-invasive in vivo monitoring of cell migration. We exemplify the fact that MRI cell tracking has become a method of choice to follow the fate of administrated cells in cell therapy assay, whether the cells are grafted locally or administrated in the circulation. Finally we give different examples of magnetic manipulation of cells and their applications to regenerative medicine. Magnetic cell manipulation are forecasted to be more and more developed, in order to improve tissue engineering technique and assist cell-based therapies. Owing to the clinical approval of iron-oxide nanoparticles as MRI contrast agent, there is no major obstacle in the translation to human clinics of the magnetic methods summarized in this paper.
Collapse
Affiliation(s)
- Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes, CNRS – Université Paris Diderot, 75205 Paris Cedex 13, France.
| | | |
Collapse
|
22
|
Wilson IW, Weedall GD, Hall N. Host-Parasite interactions in Entamoeba histolytica and Entamoeba dispar: what have we learned from their genomes? Parasite Immunol 2012; 34:90-9. [PMID: 21810102 PMCID: PMC3378717 DOI: 10.1111/j.1365-3024.2011.01325.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Invasive amoebiasis caused by Entamoeba histolytica is a major global health problem. Virulence is a rare outcome of infection, occurring in fewer than 1 in 10 infections. Not all strains of the parasite are equally virulent, and understanding the mechanisms and causes of virulence is an important goal of Entamoeba research. The sequencing of the genome of E. histolytica and the related avirulent species Entamoeba dispar has allowed whole-genome-scale analyses of genetic divergence and differential gene expression to be undertaken. These studies have helped elucidate mechanisms of virulence and identified genes differentially expressed in virulent and avirulent parasites. Here, we review the current status of the E. histolytica and E. dispar genomes and the findings of a number of genome-scale studies comparing parasites of different virulence.
Collapse
Affiliation(s)
- I W Wilson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
23
|
Robert D, Pamme N, Conjeaud H, Gazeau F, Iles A, Wilhelm C. Cell sorting by endocytotic capacity in a microfluidic magnetophoresis device. LAB ON A CHIP 2011; 11:1902-10. [PMID: 21512692 DOI: 10.1039/c0lc00656d] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Magnetically labelled cells are finding a wealth of applications for in vitro analysis as well as in vivo treatments. Sorting of cells into subpopulations based on their magnetite loading is an important step in such procedures. Here, we study the sorting of monocytes and macrophages which internalise nanoparticles to different extents based on their endocytotic capacity. Macrophages featured a high endocytotic activity and were found to internalise between 4 and 60 pg of iron per cell. They were successfully sorted into five subpopulations of narrow iron loading distributions via on-chip free-flow magnetophoresis, thus demonstrating the potential of sorting of relatively similarly loaded cells. Monocytes featured a low endocytotic capacity and took on 1 to 4 pg of iron per cell. Mixtures of monocytes and macrophages were successfully sorted within the free-flow magnetophoresis chip and good purity (>88%), efficacy (>60%) and throughput (from 10 to 100 cells s(-1)) could be achieved. The introduced method constitutes a viable tool for studies of endocytotic capacity and sorting/selection of cells based on this functionality.
Collapse
Affiliation(s)
- Damien Robert
- Laboratoire Matière et Systèmes Complexes, UMR CNRS et Université Paris Diderot, France
| | | | | | | | | | | |
Collapse
|
24
|
Campos-Parra A, Hernández-Cuevas N, Hernandez-Rivas R, Vargas M. EhNCABP166: A nucleocytoplasmic actin-binding protein from Entamoeba histolytica. Mol Biochem Parasitol 2010; 172:19-30. [DOI: 10.1016/j.molbiopara.2010.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/09/2010] [Accepted: 03/15/2010] [Indexed: 01/06/2023]
|
25
|
In vivo determination of fluctuating forces during endosome trafficking using a combination of active and passive microrheology. PLoS One 2010; 5:e10046. [PMID: 20386607 PMCID: PMC2850365 DOI: 10.1371/journal.pone.0010046] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 03/07/2010] [Indexed: 11/19/2022] Open
Abstract
Background Regulation of intracellular trafficking is a central issue in cell biology. The forces acting on intracellular vesicles (endosomes) can be assessed in living cells by using a combination of active and passive microrheology. Methodology/Principal Findings This dual approach is based on endosome labeling with magnetic nanoparticles. The resulting magnetic endosomes act both as probes that can be manipulated with external magnetic fields to infer the viscoelastic modulus of their surrounding microenvironment, and as biological vehicles that are trafficked along the microtubule network by means of forces generated by molecular motors. The intracellular viscoelastic modulus exhibits power law dependence with frequency, which is microtubule and actin-dependent. The mean square displacements of endosomes do not follow the predictions of the fluctuation-dissipation theorem, which offers evidence for active force generation. Microtubule disruption brings the intracellular medium closer to thermal equilibrium: active forces acting on the endosomes depend on microtubule-associated motors. The power spectra of these active forces, deduced through the use of a generalized Langevin equation, show a power law decrease with frequency and reveal an actin-dependent persistence of the force with time. Experimental spectra have been reproduced by a simple model consisting in a series of force steps power-law distributed in time. This model enlightens the role of the cytoskeleton dependent force exerted on endosomes to perform intracellular trafficking. Conclusions/Significance In this work, the influence of cytoskeleton components and molecular motors on intracellular viscoelasticity and transport is addressed. The use of an original probe, the magnetic endosome, allows retrieving the power spectrum of active forces on these organelles thanks to interrelated active and passive measures. Finally a computational model gives estimates of the force itself and hence of the number of the motors pulling on endosomes.
Collapse
|
26
|
Robert D, Fayol D, Le Visage C, Frasca G, Brulé S, Ménager C, Gazeau F, Letourneur D, Wilhelm C. Magnetic micro-manipulations to probe the local physical properties of porous scaffolds and to confine stem cells. Biomaterials 2009; 31:1586-95. [PMID: 19932922 DOI: 10.1016/j.biomaterials.2009.11.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022]
Abstract
The in vitro generation of engineered tissue constructs involves the seeding of cells into porous scaffolds. Ongoing challenges are to design scaffolds to meet biochemical and mechanical requirements and to optimize cell seeding in the constructs. In this context, we have developed a simple method based on a magnetic tweezer set-up to manipulate, probe, and position magnetic objects inside a porous scaffold. The magnetic force acting on magnetic objects of various sizes serves as a control parameter to retrieve the local viscosity of the scaffolds internal channels as well as the stiffness of the scaffolds pores. Labeling of human stem cells with iron oxide magnetic nanoparticles makes it possible to perform the same type of measurement with cells as probes and evaluate their own microenvironment. For 18 microm diameter magnetic beads or magnetically labeled stem cells of similar diameter, the viscosity was equivalently equal to 20 mPa s in average. This apparent viscosity was then found to increase with the magnetic probes sizes. The stiffness probed with 100 microm magnetic beads was found in the 50 Pa range, and was lowered by a factor 5 when probed with cells aggregates. The magnetic forces were also successfully applied to the stem cells to enhance the cell seeding process and impose a well defined spatial organization into the scaffold.
Collapse
Affiliation(s)
- Damien Robert
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS & Université Paris Diderot, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
All cell functions that involve membrane deformation or a change in cell shape (e.g., endocytosis, exocytosis, cell motility, and cytokinesis) are regulated by membrane tension. While molecular contacts between the plasma membrane and the underlying actin cytoskeleton are known to make significant contributions to membrane tension, little is known about the molecules that mediate these interactions. We used an optical trap to directly probe the molecular determinants of membrane tension in isolated organelles and in living cells. Here, we show that class I myosins, a family of membrane-binding, actin-based motor proteins, mediate membrane/cytoskeleton adhesion and thus, make major contributions to membrane tension. These studies show that class I myosins directly control the mechanical properties of the cell membrane; they also position these motor proteins as master regulators of cellular events involving membrane deformation.
Collapse
|
28
|
de Souza W, Sant'Anna C, Cunha-e-Silva NL. Electron microscopy and cytochemistry analysis of the endocytic pathway of pathogenic protozoa. ACTA ACUST UNITED AC 2009; 44:67-124. [PMID: 19410686 DOI: 10.1016/j.proghi.2009.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Endocytosis is essential for eukaryotic cell survival and has been well characterized in mammal and yeast cells. Among protozoa it is also important for evading from host immune defenses and to support intense proliferation characteristic of some life cycle stages. Here we focused on the contribution of morphological and cytochemical studies to the understanding of endocytosis in Trichomonas, Giardia, Entamoeba, Plasmodium, and trypanosomatids, mainly Trypanosoma cruzi, and also Trypanosoma brucei and Leishmania.
Collapse
Affiliation(s)
- Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil.
| | | | | |
Collapse
|
29
|
Arcizet D, Meier B, Sackmann E, Rädler JO, Heinrich D. Temporal analysis of active and passive transport in living cells. PHYSICAL REVIEW LETTERS 2008; 101:248103. [PMID: 19113674 DOI: 10.1103/physrevlett.101.248103] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Indexed: 05/27/2023]
Abstract
The cellular cytoskeleton is a fascinating active network, in which Brownian motion is intercepted by distinct phases of active transport. We present a time-resolved statistical analysis dissecting phases of directed motion out of otherwise diffusive motion of tracer particles in living cells. The distribution of active lifetimes is found to decay exponentially with a characteristic time tauA = 0.65 s. The velocity distribution of active events exhibits several peaks, in agreement with a discrete number of motor proteins acting collectively.
Collapse
Affiliation(s)
- Delphine Arcizet
- Center for NanoScience (CeNS), Ludwig-Maximilians Universität, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany.
| | | | | | | | | |
Collapse
|
30
|
Katta SS, Sahasrabuddhe AA, Gupta CM. Flagellar localization of a novel isoform of myosin, myosin XXI, in Leishmania. Mol Biochem Parasitol 2008; 164:105-10. [PMID: 19121339 DOI: 10.1016/j.molbiopara.2008.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 12/03/2008] [Accepted: 12/05/2008] [Indexed: 12/11/2022]
Abstract
Leishmania major genome analysis revealed the presence of putative genes corresponding to two myosins, which have been designated to class IB and a novel class, class XXI, specifically present in kinetoplastids. To characterize these myosin homologs in Leishmania, we have cloned and over-expressed the full-length myosin XXI gene and variable region of myosin IB gene in bacteria, purified the corresponding proteins, and then used the affinity purified anti-sera to analyze the expression and intracellular distribution of these proteins. Whereas myosin XXI was expressed in both the promastigote and amastigote stages, no expression of myosin IB could be detected in any of the two stages of these parasites. Further, myosin XXI expression was more predominant in the promastigote stage where it was preferentially localized in the proximal region of the flagellum. The observed flagellar localization was not dependent on the myosin head region or actin but was exclusively determined by the myosin tail region, as judged by over-expressing GFP conjugates of full-length myosin XXI, its head domain and its tail domain separately in Leishmania. Furthermore, immunofluorescence and immuno-gold electron microscopy analyses revealed that this protein was partly associated with paraflagellar rod proteins but not with tubulins in the flagellar axoneme. Our results, for the first time, report the expression and detailed analysis of cellular localization of a novel class of myosin, myosin XXI in trypanosomatids.
Collapse
Affiliation(s)
- Santharam S Katta
- Division of Molecular and Structural Biology, Central Drug Research Institute, Lucknow, India
| | | | | |
Collapse
|
31
|
Jain R, Santi-Rocca J, Padhan N, Bhattacharya S, Guillen N, Bhattacharya A. Calcium-binding protein 1 of Entamoeba histolytica transiently associates with phagocytic cups in a calcium-independent manner. Cell Microbiol 2008; 10:1373-89. [PMID: 18341598 DOI: 10.1111/j.1462-5822.2008.01134.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ruchi Jain
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | | | |
Collapse
|
32
|
Clark CG, Alsmark UCM, Tazreiter M, Saito-Nakano Y, Ali V, Marion S, Weber C, Mukherjee C, Bruchhaus I, Tannich E, Leippe M, Sicheritz-Ponten T, Foster PG, Samuelson J, Noël CJ, Hirt RP, Embley TM, Gilchrist CA, Mann BJ, Singh U, Ackers JP, Bhattacharya S, Bhattacharya A, Lohia A, Guillén N, Duchêne M, Nozaki T, Hall N. Structure and content of the Entamoeba histolytica genome. ADVANCES IN PARASITOLOGY 2008; 65:51-190. [PMID: 18063096 DOI: 10.1016/s0065-308x(07)65002-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The intestinal parasite Entamoeba histolytica is one of the first protists for which a draft genome sequence has been published. Although the genome is still incomplete, it is unlikely that many genes are missing from the list of those already identified. In this chapter we summarise the features of the genome as they are currently understood and provide previously unpublished analyses of many of the genes.
Collapse
Affiliation(s)
- C G Clark
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Davis PH, Zhang X, Guo J, Townsend RR, Stanley SL. Comparative proteomic analysis of two Entamoeba histolytica strains with different virulence phenotypes identifies peroxiredoxin as an important component of amoebic virulence. Mol Microbiol 2006; 61:1523-32. [PMID: 16968225 DOI: 10.1111/j.1365-2958.2006.05344.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Entamoeba histolytica is a protozoan intestinal parasite that causes amoebic colitis and amoebic liver abscess. To identify virulence factors of E. histolytica, we first defined the phenotypes of two E. histolytica strains, HM-1:IMSS, the prototype virulent strain, and E. histolytica Rahman, a strain that was reportedly less virulent than HM-1:IMSS. We found that compared with HM-1:IMSS, Rahman has a defect in erythrophagocytosis and the ability to cause amoebic colitis in human colonic xenografts. We used differential in-gel 2D electrophoresis to compare the proteome of Rahman and HM-1:IMSS, and identified six proteins that were differentially expressed above a fivefold level between the two organisms. These included two proteins with antioxidative properties (peroxiredoxin and superoxide dismutase), and three proteins of unknown function, grainin 1, grainin 2 and a protein containing a LIM-domain. Overexpression of peroxiredoxin in Rahman rendered the transgenic trophozoites more resistant to killing by H2O2 in vitro, and infection with Rahman trophozoites expressing higher levels of peroxiredoxin was associated with higher levels of intestinal inflammation in human colonic xenografts, and more severe disease based on histology. In contrast, higher levels of grainin appear to be associated with a reduced virulence phenotype, and E. histolytica HM-1:IMSS trophozoites infecting human intestinal xenografts show marked decreases in grainin expression. Our data indicate that there are definable molecular differences between Rahman and HM-1:IMSS that may explain the phenotypic differences, and identify peroxiredoxin as an important component of virulence in amoebic colitis.
Collapse
Affiliation(s)
- Paul H Davis
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | |
Collapse
|
34
|
Welter BH, Powell RR, Laughlin RC, McGugan GC, Bonner M, King A, Temesvari LA. Entamoeba histolytica: Comparison of the role of receptors and filamentous actin among various endocytic processes. Exp Parasitol 2006; 113:91-9. [PMID: 16458294 DOI: 10.1016/j.exppara.2005.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 12/14/2005] [Accepted: 12/20/2005] [Indexed: 11/21/2022]
Abstract
Entamoeba histolytica is the causative agent of amoebic dysentery. Uptake of iron is critical for E. histolytica growth and iron-bound human transferrin (holo-transferrin) has been shown to serve as an iron source in vitro. Although a transferrin-binding protein has been identified in E. histolytica, the mechanism by which this iron source is taken up by this pathogen is not well understood. To gain insight into this process, the uptake of fluorescent-dextran, -holo-transferrin, and human red blood cells (hRBCs) was compared. Both dextran and transferrin were taken up in an apparent receptor-independent fashion as compared to hRBCs, which were taken up in a receptor-mediated fashion. Interestingly, the uptake of FITC-dextran and FITC-holo-transferrin differentially relied on an intact actin cytoskeleton suggesting that their internalization routes may be regulated independently.
Collapse
Affiliation(s)
- B H Welter
- Department of Biological Sciences, Clemson University, SC 29634, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Powell RR, Welter BH, Hwu R, Bowersox B, Attaway C, Temesvari LA. Entamoeba histolytica: FYVE-finger domains, phosphatidylinositol 3-phosphate biosensors, associate with phagosomes but not fluid filled endosomes. Exp Parasitol 2006; 112:221-31. [PMID: 16387299 DOI: 10.1016/j.exppara.2005.11.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 11/09/2005] [Accepted: 11/10/2005] [Indexed: 11/24/2022]
Abstract
Endocytosis is an important virulence function for Entamoeba histolytica, the causative agent of amoebic dysentery. Although a number of E. histolytica proteins that regulate this process have been identified, less is known about the role of lipids. In other systems, phosphatidylinositol 3-phosphate (PI3P), a product of phosphatidylinositol 3-kinase (PI 3-kinase), has been shown to be required for endocytosis. FYVE-finger domains are protein motifs that bind specifically to PI3P. Using a PI3P biosensor consisting of glutathione-S-transferase (GST) fused to two tandem FYVE-finger domains, we have localized PI3P to phagosomes but not fluid-phase pinosomes in E. histolytica, suggesting a role for PI3P in phagocytosis. Treatment of cells with PI 3-kinase inhibitors impaired GST-2 x FYVE-phagosome association supporting the authenticity of the biosensor staining. However, treatment with PI 3-kinase inhibitors did not inhibit E. histolytica-particle interaction, indicating that PI3P is not required for the initial step, but is required for subsequent steps of phagocytosis.
Collapse
Affiliation(s)
- R R Powell
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | | | | | | | | | | |
Collapse
|
36
|
Huston CD, Miller-Sims VC, Teixeira JE. Identification and characterization of EhABC A1, an Entamoeba histolytica Group A ABC transporter with similarity to Ced-7. Mol Biochem Parasitol 2006; 146:272-6. [PMID: 16442643 DOI: 10.1016/j.molbiopara.2005.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 12/21/2005] [Accepted: 12/24/2005] [Indexed: 11/24/2022]
|
37
|
Virel A, Backman L. Characterization of Entamoeba histolytica alpha-actinin. Mol Biochem Parasitol 2005; 145:11-7. [PMID: 16219372 DOI: 10.1016/j.molbiopara.2005.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 08/18/2005] [Accepted: 09/07/2005] [Indexed: 10/25/2022]
Abstract
We have cloned, expressed and characterized a alpha-actinin-like protein of Entamoeba histolytica. Analysis of the primary structure reveals that the essential domains of the alpha-actinin protein family are conserved: an N-terminus actin-binding domain, a C-terminus calcium-binding domain and a central helical rod domain. However, the rod domain of this Entamoeba protein is considerably shorter than the rod domain in alpha-actinins of higher organisms. The cloned Entamoeba 63 kDa protein is recognized by conventional alpha-actinin antibodies as well as binds and cross-links filamentous actin and calcium ions in the same manner as alpha-actinins. Despite the shorter rod domain this protein has conserved the most important functions of alpha-actinins. Therefore, it is suggested that this 63 kDa protein is an atypical and ancestral alpha-actinin.
Collapse
Affiliation(s)
- Ana Virel
- Biochemistry, Umeå University, SE-901 87 Umeå, Sweden
| | | |
Collapse
|
38
|
Okada M, Huston CD, Mann BJ, Petri WA, Kita K, Nozaki T. Proteomic analysis of phagocytosis in the enteric protozoan parasite Entamoeba histolytica. EUKARYOTIC CELL 2005; 4:827-31. [PMID: 15821141 PMCID: PMC1087816 DOI: 10.1128/ec.4.4.827-831.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proteomic analysis of phagosomes isolated from Entamoeba histolytica by liquid chromatography and mass spectrometry identified 85 proteins involved in surface recognition, actin cytoskeleton rearrangement, vesicular trafficking, and degradation. Phagosome localization of representative proteins was verified by immunofluorescence assay. This study should provide a basis for molecular identification and characterization of phagosome biogenesis.
Collapse
Affiliation(s)
- Mami Okada
- Department of Parasitology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Marion S, Laurent C, Guillén N. Signalization and cytoskeleton activity through myosin IB during the early steps of phagocytosis in Entamoeba histolytica: a proteomic approach. Cell Microbiol 2005; 7:1504-18. [PMID: 16153248 DOI: 10.1111/j.1462-5822.2005.00573.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phagocytosis of human cells is a crucial activity for the virulence of the human parasite Entamoeba histolytica. This protozoan invades and destroys the intestine by killing and phagocytosing epithelial cells, erythrocytes and cells from the immune system. In this study, we used magnetic beads covered with proteins from human serum as a model system to study the early events involved in phagocytosis by E. histolytica. We validated the system showing that the beads uptake triggered the activation of the actin-myosin cytoskeleton and involved a PI3-kinase as previously described for erythrophagocytosis. We purified early phagosomes from wild-type (WT) amoeba and from parasites that overproduced myosin IB (MyoIB+), the unique unconventional myosin of E. histolytica. The MyoIB+ cells exhibit a slower and more synchronized uptake process than the WT strain. Proteomic analysis by liquid chromatography and tandem mass spectroscopy (LC-MS/MS) of the WT and MyoIB+ phagosomes allowed us to identify, for the first time, molecular actors involved in the early step of the uptake process. These include proteins involved in cytoskeleton activity, signalling, endocytosis, lytic activity and cell surface proteins. Interestingly, the proteins that we found specifically recruited on the phagosomes from the MyoIB+ strain were previously described in other eukarytotic cells, as involved in the regulation of cortical F-actin dynamics, such as alpha-actinin and formins. This proteomics approach allows a step further towards the understanding of the molecular mechanisms involved in phagocytosis in E. histolytica that revealed some interesting differences compared with phagocytosis in macrophages or Dictyostelium discoideum, and allowed to identify putative candidates for proteins linked to myosin IB activity during the phagocytic process.
Collapse
Affiliation(s)
- Sabrina Marion
- Unité de Biologie Cellulaire du Parasitisme, INSERM U389, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
40
|
Welter BH, Powell RR, Leo M, Smith CM, Temesvari LA. A unique Rab GTPase, EhRabA, is involved in motility and polarization of Entamoeba histolytica cells. Mol Biochem Parasitol 2005; 140:161-73. [PMID: 15760656 DOI: 10.1016/j.molbiopara.2004.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 12/27/2004] [Accepted: 12/27/2004] [Indexed: 11/19/2022]
Abstract
Entamoeba histolytica, an enteric protozoan parasite, infects 10% of the world's population leading to 50 million cases of invasive amoebiasis annually. Motility, which requires cell polarization, is important to the virulence of this pathogen, as it may result in destruction of host tissues and invasion. To gain insight into these processes in Entamoeba, a unique Rab GTPase, EhRabA, which localizes to the leading edge of cells, was characterized. Cell lines expressing a dominant negative version of EhRabA (EhRabA-DN) were generated. These mutant cells exhibited alterations in cell shape, polarity, and motility, supporting a role for this Rab in the regulation of these processes. Consistent with the notion that a dynamic actin cytoskeleton is crucial to cell polarity and motility, these mutants also exhibited alterations in the actin cytoskeleton. Cells expressing EhRabA-DN also displayed defects in several virulence functions including the ability to adhere to host cells, destroy host cells, and release cysteine proteases. Mislocalization of a prominent adhesion molecule, the galactose/N-acetylgalactosamine (Gal/GalNAc) adherence lectin and reorganization of ordered lipid domains, known as lipid rafts, also accompanied expression of EhRabA-DN. Interestingly, several endocytic processes were unaffected by expression of EhRabA-DN. Together, these data suggest that EhRabA may be involved in the regulation of polarization, motility and actin cytoskeletal dynamics: functions that participate in the pathogenicity of Entamoeba.
Collapse
Affiliation(s)
- Brenda H Welter
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | | | | | | | | |
Collapse
|
41
|
Sacconi L, Tolić-Nørrelykke IM, Stringari C, Antolini R, Pavone FS. Optical micromanipulations inside yeast cells. APPLIED OPTICS 2005; 44:2001-2007. [PMID: 15835347 DOI: 10.1364/ao.44.002001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We present a combination of nonlinear microscopy and optical trapping applied to three-dimensional imaging and manipulation of intracellular structures in living cells. We use Titanium-sapphire laser pulses for nonlinear microscopy of the nuclear envelope and the microtubules marked with green fluorescent protein in fission yeast. The same laser source is also used to trap small lipid granules naturally present in the cell. The trapped granule is used as a handle to exert a pushing force on the cell nucleus. The granule is moved in a raster-scanning fashion to cover the area of the nucleus and hence displace the nucleus away from its normal position in the center of the cell. Such indirect manipulations of an organelle (e.g., nucleus) can be useful when direct trapping of the chosen organelle is disadvantageous or inefficient. We show that nonlinear microscopy and optical manipulation can be performed without substantial damage or heating of the cell. We present this method as an important tool in cell biology for manipulation of specific structures, as an alternative to genetic and biochemical methods. This technique can be applied to several fundamental problems in cell biology, including the mechanism of nuclear positioning and the spatial coordination of nuclear and cell division.
Collapse
|
42
|
Nagaoka Y, Morimoto H, Maekawa T. Dynamics of disklike clusters formed in a magnetorheological fluid under a rotational magnetic field. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 71:032502. [PMID: 15903473 DOI: 10.1103/physreve.71.032502] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Indexed: 05/02/2023]
Abstract
We investigate the cluster formations and dynamics in a magnetorheological fluid under a rotational magnetic field focusing on the case of a relatively high volume fraction. We find that isotropic disklike clusters, which rotate more slowly than the field rotation, are formed at low Mason numbers (the ratio of viscous to magnetic forces) and, what is more, we show short rod clusters, which rotate stably thanks to the low Mason numbers and circulate along the surface of the disklike clusters. The circulation velocity of the surface particles is much higher than the rotational surface velocity of the rigid disklike clusters.
Collapse
Affiliation(s)
- Yutaka Nagaoka
- Bio-Nano Electronics Research Center, Toyo University, Saitama, Japan
| | | | | |
Collapse
|
43
|
Marion S, Guillen N, Bacri JC, Wilhelm C. Acto-myosin cytoskeleton dependent viscosity and shear-thinning behavior of the amoeba cytoplasm. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2005; 34:262-72. [PMID: 15711811 DOI: 10.1007/s00249-004-0449-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 11/11/2004] [Accepted: 11/11/2004] [Indexed: 10/25/2022]
Abstract
The mechanical behavior of the human parasite Entamoeba histolytica plays a major role in the invasive process of host tissues and vessels. In this study, we set up an intracellular rheological technique derived from magnetic tweezers to measure the viscoelastic properties within living amoebae. The experimental setup combines two magnetic fields at 90 degrees from each other and is adapted to an inverted microscope, which allows monitoring of the rotation of pairs of magnetic phagosomes. We observe either the response of the phagosome pair to an instantaneous 45 degrees rotation of the magnetic field or the response to a permanent uniform rotation of the field at a given frequency. By the first method, we concluded that the phagosome pairs experience a soft viscoelastic medium, represented by the same mechanical model previously described for the cytoplasm of Dictyostelium discoideum [Feneberg et al. in Eur Biophys J 30(4):284-294 2001]. By the second method, the permanent rotation of a pair allowed us to apply a constant shear rate and to calculate the apparent viscosity of the cytoplasm. As found for entangled polymers, the viscosity decreases with the shear rate applied (shear-thinning behavior) and exhibits a power-law-type thinning, with a corresponding exponent of 0.65. Treatment of amoeba with drugs that affect the actin polymer content demonstrated that the shear-thinning behavior of the cytoplasm depends on the presence of an intact actin cytoskeleton. These data present a physiologic relevance for Entamoeba histolytica virulence. The shear-thinning behavior could facilitate cytoplasm streamings during cell movement and cell deformation, under important shear experienced by the amoeba during the invasion of human tissues. In this study, we also investigated the role of the actin-based motor myosin II and concluded that myosin II stiffens the F-actin gel in living parasites likely by its cross-linking activity.
Collapse
Affiliation(s)
- Sabrina Marion
- Unité de Biologie Cellulaire du Parasitisme, INSERM U389, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|