1
|
Ciura K, Sobota O, Chorążewska A, Krowarsch D, Porębska N, Opaliński Ł. Reprogramming FGF1 from the natural growth factor to the engineered heparan sulphate biosensor. Cell Commun Signal 2025; 23:248. [PMID: 40437501 PMCID: PMC12121223 DOI: 10.1186/s12964-025-02269-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Accepted: 05/25/2025] [Indexed: 06/01/2025] Open
Abstract
Heparan sulphate proteoglycans (HSPGs) are cell surface and extracellular matrix proteoglycan family members, playing a key role in diverse biological activities including signal transduction or endocytosis. To date, many HSPG ligands have been identified, including growth factors interacting via sulfated domains of heparan sulphate (HS) chains. Due to significant overexpression of HSPGs in various cancers, discovering novel biomolecules capable of HSPGs recognition, which may act as HSPGs biosensors or drug carriers targeting HSPGs, is essential. Fibroblast growth factors (FGFs), mainly paracrine FGFs, are natural ligands of membrane-bound HSPGs, forming ternary signaling complex with HSPGs and fibroblast growth factor receptors (FGFRs). Here we employed the natural capability of FGF1 to bind HSPGs to develop HSPGs-specific proteinaceous probe. We identified three point mutations within FGF1 that elevate its affinity for heparin-S116R, S17K and L72R, named B, C and D respectively. Together with substitutions increasing FGF1 stability and abolishing FGF1 binding to FGFRs, we have generated eight HSPGs-specific variants. Among tested mutants, FGF1HSBCD exhibits the highest affinity for heparin and HS/HSPGs, showing over 20-fold increase in affinity for glypican-4 and requiring 0.23 M higher salt concentration for elution from heparin column compared to the initial FGF1HS molecule. Finally, we demonstrated FGF1HSBCD potential to act as a molecular sensor of HSPGs level in cancer cell lines overproducing HSPGs, implicating that FGF1HSBCD can be used as HSPGs biosensor or as a drug delivery carrier in protein-drug conjugates (PDC) targeting HSPGs.
Collapse
Affiliation(s)
- Krzysztof Ciura
- Department of Medical Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Olimpia Sobota
- Department of Medical Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Aleksandra Chorążewska
- Department of Medical Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Daniel Krowarsch
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Natalia Porębska
- Department of Medical Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Łukasz Opaliński
- Department of Medical Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
2
|
Hudák A, Letoha T. Endocytic Pathways Unveil the Role of Syndecans in the Seeding and Spreading of Pathological Protein Aggregates: Insights into Neurodegenerative Disorders. Int J Mol Sci 2025; 26:4037. [PMID: 40362276 PMCID: PMC12071627 DOI: 10.3390/ijms26094037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/07/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Alzheimer's disease and other neurodegenerative disorders are characterized by the accumulation of misfolded proteins, such as amyloid-beta, tau, and α-synuclein, which disrupt neuronal function and contribute to cognitive decline. Heparan sulfate proteoglycans, particularly syndecans, play a pivotal role in the seeding, aggregation, and spreading of toxic protein aggregates through endocytic pathways. Among these, syndecan-3 is particularly critical in regulating the internalization of misfolded proteins, facilitating their propagation in a prion-like manner. This review examines the mechanisms by which syndecans, especially SDC3, contribute to the seeding and spreading of pathological protein aggregates in neurodegenerative diseases. Understanding these endocytic pathways provides valuable insights into the potential of syndecans as biomarkers and therapeutic targets for early intervention in Alzheimer's disease and other related neurodegenerative disorders.
Collapse
Affiliation(s)
- Anett Hudák
- Pharmacoidea Ltd., 6726 Szeged, Hungary;
- Doctoral School of Theoretical Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Tamás Letoha
- Pharmacoidea Ltd., 6726 Szeged, Hungary;
- Doctoral School of Theoretical Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
3
|
Critcher M, Pang JM, Huang ML. Mapping the FGF2 Interactome Identifies a Functional Proteoglycan Coreceptor. ACS Chem Biol 2025; 20:105-116. [PMID: 39704408 PMCID: PMC11858877 DOI: 10.1021/acschembio.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Fibroblast growth factor 2 (FGF2) is a multipotent growth factor and signaling protein that exhibits broad functions across multiple cell types. These functions are often initiated by binding to growth factor receptors and fine-tuned by glycosaminoglycan (GAG)-modified proteins called proteoglycans. The various outputs of FGF2 signaling and functions arise from a dynamic and cell type-specific set of binding partners. However, the interactome of FGF2 has yet to be comprehensively determined. Moreover, the identity of the proteoglycan proteins carrying GAG chains is often overlooked and remains unknown in most cell contexts. Here, we perform peroxidase-catalyzed live cell proximity labeling using an engineered APEX2-FGF2 fusion protein to map the interactome of FGF2. Across two cell lines with established and distinct FGF2-driven functions, we greatly expand upon the known FGF2 interactome, identifying >600 new putative FGF2 interactors. Notably, our results demonstrate a key role for the GAG binding capacity of FGF2 in modulating its interactome.
Collapse
Affiliation(s)
- Meg Critcher
- Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd, La Jolla California 92037, United States
| | - Jia Meng Pang
- Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd, La Jolla California 92037, United States
| | - Mia L Huang
- Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd, La Jolla California 92037, United States
| |
Collapse
|
4
|
Nagai N, Shioiri T, Hatano S, Sugiura N, Watanabe H. Regulatory role of Heparan sulfate in leptin signaling. Cell Signal 2024; 124:111456. [PMID: 39384005 DOI: 10.1016/j.cellsig.2024.111456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Leptin, a hormone mainly secreted by adipocytes, has attracted significant attention since its discovery in 1994. Initially known for its role in appetite suppression and energy regulation, leptin is now recognized for its influence on various physiological processes, including immune response, bone formation, and reproduction. It exerts its effects by binding to receptors and initiating an intracellular signaling cascade. Heparan sulfate (HS) is known to regulate the intracellular signaling of various ligands. HS is present as the glycan portion of HSPGs on cell surfaces and in intercellular spaces, with diverse structures due to extensive sulfation and epimerization. Although HS chains on HSPGs are involved in many physiological processes, the detailed effects of HS chains on leptin signaling are not well understood. This study examined the role of HS chains on HSPGs in leptin signaling using Neuro2A cells expressing the full-length leptin receptor (LepR). We showed that cell surface HS was essential for efficient leptin signaling. Enzymatic degradation of HS significantly reduced leptin-induced phosphorylation of downstream molecules, such as signal transducer and activator of transcription 3 and p44/p42 Mitogen-activated protein kinase. In addition, HS regulated LepR expression and internalization, as treatment with HS-degrading enzymes decreased cell surface LepR. HS was also found to exhibit a weak interaction with LepR. Enzymatic removal of HS enhanced the interaction between LepR and low-density lipoprotein receptor-related protein 1, suggesting that HS negatively regulates this interaction. In conclusion, HS plays a significant role in modulating LepR availability on the cell surface, thereby influencing leptin signaling. These findings provide new insights into the complex regulation of leptin signaling and highlight potential therapeutic targets for metabolic disorders and obesity.
Collapse
Affiliation(s)
- Naoko Nagai
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, Japan.
| | - Tatsumasa Shioiri
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, Japan.
| | - Sonoko Hatano
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, Japan.
| | - Nobuo Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, Japan.
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, Japan.
| |
Collapse
|
5
|
Cárdenas M, Michelson S, Galleguillos C, Vásquez-Martínez Y, Cortez-San Martin M. Modulation of infectious Salmon Anaemia virus infection by clathrin-mediated endocytosis and macropinocytosis inhibitors. Res Vet Sci 2024; 171:105223. [PMID: 38520841 DOI: 10.1016/j.rvsc.2024.105223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/19/2023] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
Infectious salmon anaemia virus (ISAV) is a pathogen that causes disease and large mortality in farm-raised Salmo salar L., being considered as a major problem in the salmon industry. However, despite its relevance, there are still numerous knowledge gaps on virus entry and early stages of infection. Previous studies suggested that virus entry into cells occurs via endocytosis, with no description of specific mechanisms. However, it remains unknown if the endocytosis induced by ISAV is a clathrin-dependent or clathrin-independent process. This study aimed to identify cellular mechanisms allowing ISAV entry into Atlantic Salmon head kidney (ASK) cells. Our results showed that ISAV can be found in coated pits and membrane ruffles, the latter being induced by a rearrangement of actin filaments promoted by ISAV infection. Additionally, it was determined that ISAV stimulate the uptake of extracellular fluid in a multiplicity of infection (MOI)-dependent manner. When the clathrin-mediated endocytic pathway was pharmacologically inhibited, ISAV infection was significantly reduced but not entirely inhibited. Similarly, when the Na+/H+ exchanger (NHE), a key component of macropinocytosis, was inhibited, ISAV infection was negatively affected. Our results suggest that ISAV enters cells via both clathrin-mediated endocytosis and most likely macropinocytosis.
Collapse
Affiliation(s)
- Matías Cárdenas
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile; Poultry Diagnostic and Research Center, Department of Population Health, University of Georgia, Athens, GA 30602, USA
| | - Sofía Michelson
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Claudia Galleguillos
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Yesseny Vásquez-Martínez
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile; Medicine School, Faculty of Medical Sciences, University of Santiago de Chile, Santiago, Chile
| | - Marcelo Cortez-San Martin
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile.
| |
Collapse
|
6
|
Miyazaki T. Pinocytotic engulfment of lipoproteins by macrophages. Front Cardiovasc Med 2022; 9:957897. [PMID: 36105534 PMCID: PMC9464914 DOI: 10.3389/fcvm.2022.957897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022] Open
Abstract
Atherosclerosis is a major cause of acute coronary syndrome and stroke. Foam cell formation in macrophages is involved in controlling plaque stability and the pathogenesis of atherosclerosis. Accordingly, many studies have examined the processes of lipid incorporation, such as scavenger receptor-mediated uptake of oxidized low-density lipoprotein, in cells. In addition to receptor-mediated machinery, growing evidence has suggested that pinocytosis, which is a receptor-independent endocytic pathway, is associated with foam cell formation when a sufficient number of lipoproteins is accumulated around cells. Pinocytotic engulfment of nanoparticles is initiated by plasma membrane ruffling in a phosphatidylinositol-3 kinase-dependent manner. Subsequent to pinosome closure, the majority of pinosomes are internalized through endocytic processes, and they can be recycled into the plasma membrane. These pinocytotic processes are modulated by small GTPases and their cytoskeletal rearrangement. Moreover, pinocytotic abilities may vary between immunological subsets in cells. Accordingly, macrophages may show diverse pinocytotic abilities depending on the surrounding microenvironment. This review summarizes the current understanding of pinocytotic engulfment of lipoprotein in macrophages, and discusses how this endocytic process is governed under hypercholesterolemic conditions.
Collapse
|
7
|
Abstract
Macropinocytosis is an evolutionarily conserved endocytic pathway that mediates non-selective uptake of extracellular fluid in bulk. Macropinocytosis is initiated by localized polymerization of the actin cytoskeleton, which generates plasma membrane protrusions that enclose part of the environment into large endocytic vesicles. From amoebae to mammalian cells, the actin dynamics that drive macropinosome formation are regulated by a conserved set of intracellular signaling proteins including Ras superfamily GTPases and PI3-kinases. In mammalian cells, multiple upstream signaling pathways control activity of these core regulators in response to cell-extrinsic and cell-intrinsic stimuli. Growth factor signaling pathways play a central role in macropinocytosis induction. In addition, an increasing number of functionally diverse processes has been identified as macropinocytosis regulators, including several nutrient-sensing and developmental signaling pathways. Many of these signaling pathways have proto-oncogenic properties, and their dysregulation drives the high macropinocytic activity that is commonly observed in cancer cells. These regulatory principles illustrate how macropinocytosis is controlled by complex upstream inputs to exert diverse cellular functions in physiological and pathological contexts.
Collapse
|
8
|
Pérez LA, Leyton L, Valdivia A. Thy-1 (CD90), Integrins and Syndecan 4 are Key Regulators of Skin Wound Healing. Front Cell Dev Biol 2022; 10:810474. [PMID: 35186924 PMCID: PMC8851320 DOI: 10.3389/fcell.2022.810474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
Acute skin wound healing is a multistage process consisting of a plethora of tightly regulated signaling events in specialized cells. The Thy-1 (CD90) glycoprotein interacts with integrins and the heparan sulfate proteoglycan syndecan 4, generating a trimolecular complex that triggers bi-directional signaling to regulate diverse aspects of the wound healing process. These proteins can act either as ligands or receptors, and they are critical for the successful progression of wound healing. The expression of Thy-1, integrins, and syndecan 4 is controlled during the healing process, and the lack of expression of any of these proteins results in delayed wound healing. Here, we review and discuss the roles and regulatory events along the stages of wound healing that support the relevance of Thy-1, integrins, and syndecan 4 as crucial regulators of skin wound healing.
Collapse
Affiliation(s)
- Leonardo A. Pérez
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Program of Cellular & Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
- *Correspondence: Lisette Leyton, ; Alejandra Valdivia,
| | - Alejandra Valdivia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
- *Correspondence: Lisette Leyton, ; Alejandra Valdivia,
| |
Collapse
|
9
|
Vikan AK, Kostas M, Haugsten EM, Selbo PK, Wesche J. Efficacy and Selectivity of FGF2-Saporin Cytosolically Delivered by PCI in Cells Overexpressing FGFR1. Cells 2021; 10:cells10061476. [PMID: 34204611 PMCID: PMC8231185 DOI: 10.3390/cells10061476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factor receptors (FGFRs) have become an attractive target in cancer research and therapy due to their implication in several cancers. Limitations of current treatment options require a need for additional, more specific and potent strategies to overcome cancers driven by FGFRs. Photochemical internalization (PCI) is a light-controlled method for cytosolic delivery of drugs that are entrapped in endosomes and lysosomes. We here evaluated the efficacy and selectivity of PCI of FGF2-saporin (FGF-SAP) in cells overexpressing FGFR1. FGF-SAP is a conjugate of FGF2 and the highly cytotoxic ribosome-inactivating protein (RIP) saporin, which is used as payload to eliminate cancer cells. Evaluation of the targeting effect of PCI of FGF-SAP was done by comparing the cytotoxic response in osteosarcoma cells with very low levels of FGFR1 (U2OS) to cells overexpressing FGFR1 (U2OS-R1). We demonstrate that PCI greatly enhances cytotoxicity of the drug showing efficient cell killing at pM concentrations of the drug in U2OS-R1 cells. However, U2OS cells were also sensitive to the toxin after PCI. Binding experiments using confocal microscopy and Western blotting techniques indicate that FGF-SAP is taken up by cells through heparan sulfate proteoglycans (HSPGs) in U2OS cells. We further show that the cytotoxicity of FGF-SAP in U2OS cells was reduced when cells were co-treated with heparin to compete out binding to HSPG, demonstrating that the cytotoxic effect was due to internalization by HSPGs. We conclude that to prevent off-target effects of FGF-based toxins, it will be necessary to circumvent binding to HSPGs, for example by mutating the binding site of FGF2 to HSPGs.
Collapse
Affiliation(s)
- Aurora K. Vikan
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (A.K.V.); (M.K.); (E.M.H.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | - Michal Kostas
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (A.K.V.); (M.K.); (E.M.H.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | - Ellen Margrethe Haugsten
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (A.K.V.); (M.K.); (E.M.H.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
| | - Pål K. Selbo
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Correspondence: (P.K.S.); (J.W.)
| | - Jørgen Wesche
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway; (A.K.V.); (M.K.); (E.M.H.)
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway
- Correspondence: (P.K.S.); (J.W.)
| |
Collapse
|
10
|
Takeuchi M, Takeuchi K, Takai T, Yamaguchi R, Furukawa T, Akagi KI, Takeuchi JK. Subcellular localization of glypican-5 is associated with dynamic motility of the human mesenchymal stem cell line U3DT. PLoS One 2021; 16:e0226538. [PMID: 33606708 PMCID: PMC7895401 DOI: 10.1371/journal.pone.0226538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 09/05/2020] [Indexed: 11/18/2022] Open
Abstract
Glypican-5 (GPC5) is a heparan sulfate proteoglycan (HSPG) localized to the plasma membrane. We previously reported that in the human mesenchymal stem cell line UE6E7T-3, GPC5 is overexpressed in association with transformation and promotes cell proliferation by acting as a co-receptor for Sonic hedgehog signaling. In this study, we found using immunofluorescence microscopy that in transformed cells (U3DT), GPC5 localized not only at primary cilia on the cell surface, but also at the leading edge of migrating cells, at the intercellular bridge and blebs during cytokinesis, and in extracellular vesicles. In each subcellular region, GPC5 colocalized with fibroblast growth factor receptor (FGFR) and the small GTPases Rab11 and ARF6, indicating that GPC5 is delivered to these regions by Rab11-associated recycling endosomes. These colocalizations suggest that GPC5 plays an important role in FGF2 stimulation of cell migration, which was abrogated by knockdown of GPC5. Our findings indicate that GPC5 plays a role in regulation of U3DT cell migration and provides several insights into the functions of GPC5 that could be elucidated by future studies.
Collapse
Affiliation(s)
- Masao Takeuchi
- Section of Laboratory Equipment, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki-city, Osaka, Japan
- Division of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Kikuko Takeuchi
- Section of Laboratory Equipment, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki-city, Osaka, Japan
| | - Tomoyo Takai
- Section of Laboratory Equipment, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki-city, Osaka, Japan
| | - Ritsuko Yamaguchi
- Section of Laboratory Equipment, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki-city, Osaka, Japan
| | - Tetsushi Furukawa
- Division of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Ken-ichi Akagi
- Section of Laboratory Equipment, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki-city, Osaka, Japan
| | - Jun K. Takeuchi
- Division of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
11
|
Ricard N, Bailly S, Guignabert C, Simons M. The quiescent endothelium: signalling pathways regulating organ-specific endothelial normalcy. Nat Rev Cardiol 2021; 18:565-580. [PMID: 33627876 PMCID: PMC7903932 DOI: 10.1038/s41569-021-00517-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Endothelial cells are at the interface between circulating blood and tissues. This position confers on them a crucial role in controlling oxygen and nutrient exchange and cellular trafficking between blood and the perfused organs. The endothelium adopts a structure that is specific to the needs and function of each tissue and organ and is subject to tissue-specific signalling input. In adults, endothelial cells are quiescent, meaning that they are not proliferating. Quiescence was considered to be a state in which endothelial cells are not stimulated but are instead slumbering and awaiting activating signals. However, new evidence shows that quiescent endothelium is fully awake, that it constantly receives and initiates functionally important signalling inputs and that this state is actively regulated. Signalling pathways involved in the maintenance of functionally quiescent endothelia are starting to be identified and are a combination of endocrine, autocrine, paracrine and mechanical inputs. The paracrine pathways confer a microenvironment on the endothelial cells that is specific to the perfused organs and tissues. In this Review, we present the current knowledge of organ-specific signalling pathways involved in the maintenance of endothelial quiescence and the pathologies associated with their disruption. Linking organ-specific pathways and human vascular pathologies will pave the way towards the development of innovative preventive strategies and the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Nicolas Ricard
- grid.47100.320000000419368710Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT USA
| | - Sabine Bailly
- grid.457348.9Université Grenoble Alpes, INSERM, CEA, BIG-Biologie du Cancer et de l’Infection, Grenoble, France
| | - Christophe Guignabert
- grid.414221.0INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Michael Simons
- grid.47100.320000000419368710Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cell Biology, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
12
|
Leite DM, Matias D, Battaglia G. The Role of BAR Proteins and the Glycocalyx in Brain Endothelium Transcytosis. Cells 2020; 9:E2685. [PMID: 33327645 PMCID: PMC7765129 DOI: 10.3390/cells9122685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022] Open
Abstract
Within the brain, endothelial cells lining the blood vessels meticulously coordinate the transport of nutrients, energy metabolites and other macromolecules essential in maintaining an appropriate activity of the brain. While small molecules are pumped across specialised molecular transporters, large macromolecular cargos are shuttled from one side to the other through membrane-bound carriers formed by endocytosis on one side, trafficked to the other side and released by exocytosis. Such a process is collectively known as transcytosis. The brain endothelium is recognised to possess an intricate vesicular endosomal network that mediates the transcellular transport of cargos from blood-to-brain and brain-to-blood. However, mounting evidence suggests that brain endothelial cells (BECs) employ a more direct route via tubular carriers for a fast and efficient transport from the blood to the brain. Here, we compile the mechanism of transcytosis in BECs, in which we highlight intracellular trafficking mediated by tubulation, and emphasise the possible role in transcytosis of the Bin/Amphiphysin/Rvs (BAR) proteins and glycocalyx (GC)-a layer of sugars covering BECs, in transcytosis. Both BAR proteins and the GC are intrinsically associated with cell membranes and involved in the modulation and shaping of these membranes. Hence, we aim to summarise the machinery involved in transcytosis in BECs and highlight an uncovered role of BAR proteins and the GC at the brain endothelium.
Collapse
Affiliation(s)
- Diana M. Leite
- Department of Chemistry, University College London, London WC1H 0AJ, UK; (D.M.L.); (D.M.)
- Institute of the Physics and Living Systems, University College London, London WC1H 0AJ, UK
| | - Diana Matias
- Department of Chemistry, University College London, London WC1H 0AJ, UK; (D.M.L.); (D.M.)
- Institute of the Physics and Living Systems, University College London, London WC1H 0AJ, UK
- Samantha Dickson Brain Cancer Unit, Cancer Institute, University College London, London WC1E 06DD, UK
- Cancer Research UK, City of London Centre, London WC1E 06DD, UK
| | - Giuseppe Battaglia
- Department of Chemistry, University College London, London WC1H 0AJ, UK; (D.M.L.); (D.M.)
- Institute of the Physics and Living Systems, University College London, London WC1H 0AJ, UK
- Cancer Research UK, City of London Centre, London WC1E 06DD, UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies, 08010 Barcelona, Spain
| |
Collapse
|
13
|
Endocytosis and Trafficking of Heparan Sulfate Proteoglycans in Triple-Negative Breast Cancer Cells Unraveled with a Polycationic Peptide. Int J Mol Sci 2020; 21:ijms21218282. [PMID: 33167372 PMCID: PMC7663799 DOI: 10.3390/ijms21218282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
The process of heparan sulfate proteoglycan (HSPG) internalization has been described as following different pathways. The tumor-specific branched NT4 peptide has been demonstrated to bind HSPGs on the plasma membrane and to be internalized in tumor cell lines. The polycationic peptide has been also shown to impair migration of different cancer cell lines in 2D and 3D models. Our hypothesis was that HSPG endocytosis could affect two important phenomena of cancer development: cell migration and nourishment. Using NT4 as an experimental tool mimicking heparin-binding ligands, we studied endocytosis and trafficking of HSPGs in a triple-negative human breast cancer cell line, MDA-MB-231. The peptide entered cells employing caveolin- or clathrin-dependent endocytosis and macropinocytosis, in line with what is already known about HSPGs. NT4 then localized in early and late endosomes in a time-dependent manner. The peptide had a negative effect on CDC42-activation triggered by EGF. The effect can be explained if we consider NT4 a competitive inhibitor of EGF on HS that impairs the co-receptor activity of the proteoglycan, reducing EGFR activation. Reduction of the invasive migratory phenotype of MDA-MB-231 induced by NT4 can be ascribed to this effect. RhoA activation was damped by EGF in MDA-MB-231. Indeed, EGF reduced RhoA-GTP and NT4 did not interfere with this receptor-mediated signaling. On the other hand, the peptide alone determined a small but solid reduction in active RhoA in breast cancer cells. This result supports the observation of few other studies, showing direct activation of the GTPase through HSPG, not mediated by EGF/EGFR.
Collapse
|
14
|
Parma L, Peters HAB, Sluiter TJ, Simons KH, Lazzari P, de Vries MR, Quax PHA. bFGF blockade reduces intraplaque angiogenesis and macrophage infiltration in atherosclerotic vein graft lesions in ApoE3*Leiden mice. Sci Rep 2020; 10:15968. [PMID: 32994514 PMCID: PMC7525538 DOI: 10.1038/s41598-020-72992-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Intraplaque angiogenesis increases the chance of unstable atherosclerotic plaque rupture and thrombus formation leading to myocardial infarction. Basic Fibroblast Growth Factor (bFGF) plays a key role in angiogenesis and inflammation and is involved in the pathogenesis of atherosclerosis. Therefore, we aim to test K5, a small molecule bFGF-inhibitor, on remodelling of accelerated atherosclerotic vein grafts lesions in ApoE3*Leiden mice. K5-mediated bFGF-signalling blockade strongly decreased intraplaque angiogenesis and intraplaque hemorrhage. Moreover, it reduced macrophage infiltration in the lesions by modulating CCL2 and VCAM1 expression. Therefore, K5 increases plaque stability. To study the isolated effect of K5 on angiogenesis and SMCs-mediated intimal hyperplasia formation, we used an in vivo Matrigel-plug mouse model that reveals the effects on in vivo angiogenesis and femoral artery cuff model to exclusively looks at SMCs. K5 drastically reduced in vivo angiogenesis in the matrigel plug model while no effect on SMCs migration nor proliferation could be seen in the femoral artery cuff model. Moreover, in vitro K5 impaired endothelial cells functions, decreasing migration, proliferation and tube formation. Our data show that K5-mediated bFGF signalling blockade in hypercholesterolemic ApoE3*Leiden mice reduces intraplaque angiogenesis, haemorrhage and inflammation. Therefore, K5 is a promising candidate to stabilize advanced atherosclerotic plaques.
Collapse
Affiliation(s)
- Laura Parma
- Department of Vascular Surgery, D6-33, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Hendrika A B Peters
- Department of Vascular Surgery, D6-33, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Thijs J Sluiter
- Department of Vascular Surgery, D6-33, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Karin H Simons
- Department of Vascular Surgery, D6-33, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Paolo Lazzari
- KemoTech SrL, Build 3, Loc. Piscinamanna, 09010, Pula, Italy
| | - Margreet R de Vries
- Department of Vascular Surgery, D6-33, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul H A Quax
- Department of Vascular Surgery, D6-33, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands. .,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
15
|
Beurskens DMH, Huckriede JP, Schrijver R, Hemker HC, Reutelingsperger CP, Nicolaes GAF. The Anticoagulant and Nonanticoagulant Properties of Heparin. Thromb Haemost 2020; 120:1371-1383. [PMID: 32820487 DOI: 10.1055/s-0040-1715460] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Heparins represent one of the most frequently used pharmacotherapeutics. Discovered around 1926, routine clinical anticoagulant use of heparin was initiated only after the publication of several seminal papers in the early 1970s by the group of Kakkar. It was shown that heparin prevents venous thromboembolism and mortality from pulmonary embolism in patients after surgery. With the subsequent development of low-molecular-weight heparins and synthetic heparin derivatives, a family of related drugs was created that continues to prove its clinical value in thromboprophylaxis and in prevention of clotting in extracorporeal devices. Fundamental and applied research has revealed a complex pharmacodynamic profile of heparins that goes beyond its anticoagulant use. Recognition of the complex multifaceted beneficial effects of heparin underscores its therapeutic potential in various clinical situations. In this review we focus on the anticoagulant and nonanticoagulant activities of heparin and, where possible, discuss the underlying molecular mechanisms that explain the diversity of heparin's biological actions.
Collapse
Affiliation(s)
- Danielle M H Beurskens
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Joram P Huckriede
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Roy Schrijver
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - H Coenraad Hemker
- Synapse BV, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Chris P Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Gerry A F Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
16
|
Hudák A, Kusz E, Domonkos I, Jósvay K, Kodamullil AT, Szilák L, Hofmann-Apitius M, Letoha T. Contribution of syndecans to cellular uptake and fibrillation of α-synuclein and tau. Sci Rep 2019; 9:16543. [PMID: 31719623 PMCID: PMC6851098 DOI: 10.1038/s41598-019-53038-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/28/2019] [Indexed: 11/09/2022] Open
Abstract
Scientific evidence suggests that α-synuclein and tau have prion-like properties and that prion-like spreading and seeding of misfolded protein aggregates constitutes a central mechanism for neurodegeneration. Heparan sulfate proteoglycans (HSPGs) in the plasma membrane support this process by attaching misfolded protein fibrils. Despite of intense studies, contribution of specific HSPGs to seeding and spreading of α-synuclein and tau has not been explored yet. Here we report that members of the syndecan family of HSPGs mediate cellular uptake of α-synuclein and tau fibrils via a lipid-raft dependent and clathrin-independent endocytic route. Among syndecans, the neuron predominant syndecan-3 exhibits the highest affinity for both α-synuclein and tau. Syndecan-mediated internalization of α-synuclein and tau depends heavily on conformation as uptake via syndecans start to dominate once fibrils are formed. Overexpression of syndecans, on the other hand, reduces cellular uptake of monomeric α-synuclein and tau, yet exerts a fibril forming effect on both proteins. Data obtained from syndecan overexpressing cellular models presents syndecans, especially the neuron predominant syndecan-3, as important mediators of seeding and spreading of α-synuclein and tau and reveal how syndecans contribute to fundamental molecular events of α-synuclein and tau pathology.
Collapse
Affiliation(s)
| | | | - Ildikó Domonkos
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Katalin Jósvay
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | - Alpha Tom Kodamullil
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, 53754, Germany
| | - László Szilák
- Szilak Laboratories, Bioinformatics and Molecule-Design, Szeged, H-6723, Hungary
| | - Martin Hofmann-Apitius
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, 53754, Germany
| | | |
Collapse
|
17
|
Sulfated Glycoaminoglycans and Proteoglycan Syndecan-4 Are Involved in Membrane Fixation of LL-37 and Its Pro-Migratory Effect in Breast Cancer Cells. Biomolecules 2019; 9:biom9090481. [PMID: 31547381 PMCID: PMC6769752 DOI: 10.3390/biom9090481] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Initially characterized by its antimicrobial activities, LL-37 has also been shown to significantly contribute to tumor development. On breast cancer cell lines, LL-37 increases intracellular calcium via the TRPV2 channel and their migration via the activation of PI3K/AKT signaling. Its all-d enantiomer d-LL-37 induces similar effects, which excludes a protein-protein interaction of LL-37 in a classic ligand-receptor manner. Its net charge of +6 gave rise to the hypothesis that the peptide uses the negative charges of sulfoglycans or sialic acids to facilitate its attachment to the cell membrane and to induce its activities. Whereas several vegetal lectins, specifically attaching to sialylated or sulfated structures, blocked the activities of LL-37 on both calcium increase and cell migration, several sialidases had no effect. However, the competitive use of free sulfated glycoaminoglycans (GAGs) as chrondroitin and heparin, or treatment of the cell surface with chondroitinase and heparinase resulted in an activity loss of 50–100% for LL-37. Concordant results were obtained by blocking the synthesis of GAGs with 4-Methylumbelliferyl-β-d-xyloside, and by suppression of glycan sulfatation by sodium chlorate. Using a candidate approach by suppressing proteoglycan synthesis using RNA interference, syndecan-4 was shown to be required for the activities of LL-37 and its binding to the cell surface. This leads to the conclusion that syndecan-4, by means of sulfated GAGs, could act as a receptor for LL-37.
Collapse
|
18
|
Sharma M, Schilero C, Peereboom DM, Hobbs BP, Elson P, Stevens GHJ, McCrae K, Nixon AB, Ahluwalia MS. Phase II study of Dovitinib in recurrent glioblastoma. J Neurooncol 2019; 144:359-368. [PMID: 31292802 DOI: 10.1007/s11060-019-03236-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 06/27/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Dovitinib is an oral, potent inhibitor of FGFR and VEGFR, and can be a promising strategy in patients with recurrent or progressive glioblastoma (GBM). METHODS This was an open label phase II study of two arms: Arm 1 included anti-angiogenic naïve patients with recurrent GBM and Arm 2 included patients with recurrent GBM that had progressed on prior anti-angiogenic therapy. Nineteen subjects were enrolled in Arm 1 and 14 subjects in Arm 2. The primary endpoint was 6-month progression-free survival (PFS-6) in Arm 1 and time to progression (TTP) in Arm 2. The secondary endpoints were toxicity, objective response rate (ORR) and overall survival. RESULTS Patients in Arm 2 (compared to Arm 1) tended to have longer intervals from diagnosis to study entry (median 26.9 vs. 8.9 months, p = 0.002), experienced more recurrences (64%, had 3-4 prior recurrences compared to 0, p < 0.0001) and tended to be heavily pretreated (71% vs. 26-32% p = 0.04 or 0.02). 6-month PFS was 12% ± 6% for the Arm 1 and 0% for Arm 2. TTP was similar in both treatment arms (median 1.8 months Arm 1 and 0.7-1.8 months Arm 2, p = 0.36). Five patients (15%) had grade 4 toxicities and 22 patients (67%) had grade 3 toxicities. There were no significant differences between the two arms with respect to the amount of change in the levels of biomarkers from baseline. CONCLUSION Dovitinib was not efficacious in prolonging the PFS in patients with recurrent GBM irrespective of prior treatment with anti-angiogenic therapy (including bevacizumab).
Collapse
Affiliation(s)
- Mayur Sharma
- Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave, S73, Cleveland, OH, 44195, USA
| | - Cathy Schilero
- Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave, S73, Cleveland, OH, 44195, USA
| | - David M Peereboom
- Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave, S73, Cleveland, OH, 44195, USA.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Brian P Hobbs
- Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Paul Elson
- Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Glen H J Stevens
- Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave, S73, Cleveland, OH, 44195, USA.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Keith McCrae
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew B Nixon
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Manmeet S Ahluwalia
- Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave, S73, Cleveland, OH, 44195, USA. .,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
19
|
Furini G, Verderio EAM. Spotlight on the Transglutaminase 2-Heparan Sulfate Interaction. Med Sci (Basel) 2019; 7:E5. [PMID: 30621228 PMCID: PMC6359630 DOI: 10.3390/medsci7010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs), syndecan-4 (Sdc4) especially, have been suggested as potential partners of transglutaminase-2 (TG2) in kidney and cardiac fibrosis, metastatic cancer, neurodegeneration and coeliac disease. The proposed role for HSPGs in the trafficking of TG2 at the cell surface and in the extracellular matrix (ECM) has been linked to the fibrogenic action of TG2 in experimental models of kidney fibrosis. As the TG2-HSPG interaction is largely mediated by the heparan sulfate (HS) chains of proteoglycans, in the past few years a number of studies have investigated the affinity of TG2 for HS, and the TG2 heparin binding site has been mapped with alternative outlooks. In this review, we aim to provide a compendium of the main literature available on the interaction of TG2 with HS, with reference to the pathological processes in which extracellular TG2 plays a role.
Collapse
Affiliation(s)
- Giulia Furini
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
| | - Elisabetta A M Verderio
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK.
- BiGeA, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
20
|
Koleini N, Nickel BE, Edel AL, Fandrich RR, Ravandi A, Kardami E. Non-mitogenic FGF2 protects cardiomyocytes from acute doxorubicin-induced toxicity independently of the protein kinase CK2/heme oxygenase-1 pathway. Cell Tissue Res 2018; 374:607-617. [PMID: 30159756 PMCID: PMC6267702 DOI: 10.1007/s00441-018-2905-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/25/2018] [Indexed: 12/01/2022]
Abstract
Doxorubicin (Dox)-induced cardiotoxicity, a limiting factor in the use of Dox to treat cancer, can be mitigated by the mitogenic factor FGF2 in vitro, via a heme oxygenase 1 (HO-1)-dependent pathway. HO-1 upregulation was reported to require protein kinase CK2 activity. We show that a mutant non-mitogenic FGF2 (S117A-FGF2), which does not activate CK2, is cardioprotective against acute cardiac ischemic injury. We now investigate the potential of S117A-FGF2 to protect cardiomyocytes against acute Dox injury and decrease Dox-induced upregulation of oxidized phospholipids. The roles of CK2 and HO-1 in cardiomyocyte protection are also addressed.Rat neonatal cardiomyocyte cultures were used as an established in vitro model of acute Dox toxicity. Pretreatment with S117A-FGF2 protected against Dox-induced: oxidative stress; upregulation of fragmented and non-fragmented oxidized phosphatidylcholine species, measured by LC/MS/MS; and cardiomyocyte injury and cell death measured by LDH release and a live-dead assay. CK2 inhibitors (TBB and Ellagic acid), did not affect protection by S117A-FGF2 but prevented protection by mitogenic FGF2. Furthermore, protection by S117A-FGF2, unlike that of FGF2, was not prevented by HO-1 inhibitors and S117A-FGF2 did not upregulate HO-1. Protection by S117A-FGF2 required the activity of FGF receptor 1 and ERK.We conclude that mitogenic and non-mitogenic FGF2 protect from acute Dox toxicity by common (FGFR1) and distinct, CK2/HO-1- dependent or CK2/HO-1-independent (respectively), pathways. Non-mitogenic FGF2 merits further consideration as a preventative treatment against Dox cardiotoxicity.
Collapse
Affiliation(s)
- Navid Koleini
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre., 351 Tache Ave, Winnipeg, Manitoba, R2H2A6, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Barbara E Nickel
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre., 351 Tache Ave, Winnipeg, Manitoba, R2H2A6, Canada
| | - Andrea L Edel
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre., 351 Tache Ave, Winnipeg, Manitoba, R2H2A6, Canada
| | - Robert R Fandrich
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, Canada
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre., 351 Tache Ave, Winnipeg, Manitoba, R2H2A6, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
- Interventional Cardiology, Section of Cardiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Elissavet Kardami
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre., 351 Tache Ave, Winnipeg, Manitoba, R2H2A6, Canada.
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
21
|
Laviña B, Castro M, Niaudet C, Cruys B, Álvarez-Aznar A, Carmeliet P, Bentley K, Brakebusch C, Betsholtz C, Gaengel K. Defective endothelial cell migration in the absence of Cdc42 leads to capillary-venous malformations. Development 2018; 145:dev.161182. [PMID: 29853619 DOI: 10.1242/dev.161182] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/24/2018] [Indexed: 12/26/2022]
Abstract
Formation and homeostasis of the vascular system requires several coordinated cellular functions, but their precise interplay during development and their relative importance for vascular pathologies remain poorly understood. Here, we investigated the endothelial functions regulated by Cdc42 and their in vivo relevance during angiogenic sprouting and vascular morphogenesis in the postnatal mouse retina. We found that Cdc42 is required for endothelial tip cell selection, directed cell migration and filopodia formation, but dispensable for cell proliferation or apoptosis. Although the loss of Cdc42 seems generally compatible with apical-basal polarization and lumen formation in retinal blood vessels, it leads to defective endothelial axial polarization and to the formation of severe vascular malformations in capillaries and veins. Tracking of Cdc42-depleted endothelial cells in mosaic retinas suggests that these capillary-venous malformations arise as a consequence of defective cell migration, when endothelial cells that proliferate at normal rates are unable to re-distribute within the vascular network.
Collapse
Affiliation(s)
- Bàrbara Laviña
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Marco Castro
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Colin Niaudet
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Bert Cruys
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, Belgium
| | - Alberto Álvarez-Aznar
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, Belgium
| | - Katie Bentley
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden.,Computational Biology Laboratory, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Cord Brakebusch
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden .,Integrated Cardio Metabolic Centre (ICMC), Department of Medicine Huddinge, Karolinska Institute, Novum, SE-141 57 Huddinge, Stockholm, Sweden
| | - Konstantin Gaengel
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden
| |
Collapse
|
22
|
Csányi G, Feck DM, Ghoshal P, Singla B, Lin H, Nagarajan S, Meijles DN, Al Ghouleh I, Cantu-Medellin N, Kelley EE, Mateuszuk L, Isenberg JS, Watkins S, Pagano PJ. CD47 and Nox1 Mediate Dynamic Fluid-Phase Macropinocytosis of Native LDL. Antioxid Redox Signal 2017; 26:886-901. [PMID: 27958762 PMCID: PMC5455613 DOI: 10.1089/ars.2016.6834] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIMS Macropinocytosis has been implicated in cardiovascular and other disorders, yet physiological factors that initiate fluid-phase internalization and the signaling mechanisms involved remain poorly identified. The present study was designed to examine whether matrix protein thrombospondin-1 (TSP1) stimulates macrophage macropinocytosis and, if so, to investigate the potential signaling mechanism involved. RESULTS TSP1 treatment of human and murine macrophages stimulated membrane ruffle formation and pericellular solute internalization by macropinocytosis. Blockade of TSP1 cognate receptor CD47 and NADPH oxidase 1 (Nox1) signaling, inhibition of phosphoinositide 3-kinase, and transcriptional knockdown of myotubularin-related protein 6 abolished TSP1-induced macropinocytosis. Our results demonstrate that Nox1 signaling leads to dephosphorylation of actin-binding protein cofilin at Ser-3, actin remodeling, and macropinocytotic uptake of unmodified native low-density lipoprotein (nLDL), leading to foam cell formation. Finally, peritoneal chimera studies suggest the role of CD47 in macrophage lipid macropinocytosis in hypercholesterolemic ApoE-/- mice in vivo. INNOVATION Activation of a previously unidentified TSP1-CD47 signaling pathway in macrophages stimulates direct receptor-independent internalization of nLDL, leading to significant lipid accumulation and foam cell formation. These findings reveal a new paradigm in which delimited Nox1-mediated redox signaling, independent of classical lipid oxidation, contributes to early propagation of vascular inflammatory disease. CONCLUSIONS The findings of the present study demonstrate a new mechanism of solute uptake with implications for a wide array of cell types, including macrophages, dendritic cells, and cancer cells, and multiple pathological conditions in which matrix proteins are upregulated. Antioxid. Redox Signal. 26, 886-901.
Collapse
Affiliation(s)
- Gábor Csányi
- 1 Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Vascular Biology Center, Augusta University , Augusta, Georgia
| | - Douglas M Feck
- 1 Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | | - Bhupesh Singla
- 3 Vascular Biology Center, Augusta University , Augusta, Georgia
| | - Huiping Lin
- 3 Vascular Biology Center, Augusta University , Augusta, Georgia
| | - Shanmugam Nagarajan
- 1 Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Daniel N Meijles
- 1 Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Imad Al Ghouleh
- 1 Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Nadiezhda Cantu-Medellin
- 1 Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Eric E Kelley
- 1 Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Lukasz Mateuszuk
- 4 Jagiellonian Centre for Experimental Therapeutics , Kraków, Poland
| | - Jeffrey S Isenberg
- 1 Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania.,5 Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Simon Watkins
- 6 Center for Biologic Imaging, BSTS, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Patrick J Pagano
- 1 Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
Podyma-Inoue KA, Moriwaki T, Rajapakshe AR, Terasawa K, Hara-Yokoyama M. Characterization of Heparan Sulfate Proteoglycan-positive Recycling Endosomes Isolated from Glioma Cells. Cancer Genomics Proteomics 2017; 13:443-452. [PMID: 27807067 DOI: 10.21873/cgp.20007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/21/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Heparan sulfate proteoglycans (HSPGs)-dependent endocytic events have been involved in glioma progression. Thus, comprehensive understanding of the intracellular trafficking complexes formed in presence of HSPGs would be important for development of glioma treatments. MATERIALS AND METHODS Subcellular fractionation was used to separate vesicles containing HSPGs from the rat C6 glioma cell line. Isolated HSPG-positive vesicles were further characterized with liquid chromatography-mass spectrometry. RESULTS The HSPG-positive vesicular fractions, distinct from plasma membrane-derived material, were enriched in endocytic marker, Rab11. Proteomic analysis identified more than two hundred proteins to be associated with vesicular membrane, among them, over eighty were related to endosomal uptake, recycling or vesicular transport. CONCLUSION Part of HSPGs in glioma cells is internalized through clathrin-dependent endocytosis and undergo recycling. The development of compounds regulating HSPG-mediated trafficking will likely enable design of effective glioma treatment.
Collapse
Affiliation(s)
- Katarzyna A Podyma-Inoue
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takuya Moriwaki
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Anupama R Rajapakshe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kazue Terasawa
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Miki Hara-Yokoyama
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
24
|
Das S, Majid M, Baker AB. Syndecan-4 enhances PDGF-BB activity in diabetic wound healing. Acta Biomater 2016; 42:56-65. [PMID: 27381525 DOI: 10.1016/j.actbio.2016.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 01/13/2023]
Abstract
UNLABELLED Non-healing ulcers are a common consequence of long-term diabetes and severe peripheral vascular disease. These non-healing wounds are a major source of morbidity in patients with diabetes and place a heavy financial burden on the healthcare system. Growth factor therapies are an attractive strategy for enhancing wound closure in non-healing wounds but have only achieved mixed results in clinical trials. Platelet derived growth factor-BB (PDGF-BB) is the only currently approved growth factor therapy for non-healing wounds. However, PDGF-BB therapy is not effective in many patients and requires high doses that increase the potential for side effects. In this work, we demonstrate that syndecan-4 delivered in a proteoliposomal formulation enhances PDGF-BB activity in diabetic wound healing. In particular, syndecan-4 proteoliposomes enhance the migration of keratinocytes derived from patients with diabetes. In addition, syndecan-4 proteoliposomes sensitize keratinocytes to PDGF-BB stimulation, enhancing the intracellular signaling response to PDGF-BB. We further demonstrated that co-therapy with syndecan-4 proteoliposomes enhanced wound closure in diabetic, hyperlipidemic ob/ob mice. Wounds treated with both syndecan-4 proteoliposomes and PDGF-BB had increased re-epithelization and angiogenesis in comparison to wounds treated with PDGF-BB alone. Moreover, the wounds treated with syndecan-4 proteoliposomes and PDGF-BB also had increased M2 macrophages and reduced M1 macrophages, suggesting syndecan-4 delivery induces immunomodulation within the healing wounds. Together our findings support that syndecan-4 proteoliposomes markedly improve PDGF-BB efficacy for wound healing and may be useful in enhancing treatments for non-healing wounds. STATEMENT OF SIGNIFICANCE Non-healing wounds are major healthcare issue for patients with diabetes and peripheral vascular disease. Growth factor therapies have potential for healing chronic wounds but have not been effective for many patients. PDGF-BB is currently the only approved growth factor for enhancing wound healing. However, it has not seen widespread adoption due to limited efficacy and high cost. In this work, we have developed an enhancing agent that improves the activity of PDGF-BB in promoting wound healing in animals with diabetes. This co-therapy may be useful in improving the efficacy of PDGFBB and enhance its safety through lowering the dose of growth factor needed to improve wound healing.
Collapse
Affiliation(s)
- Subhamoy Das
- Department of Biomedical Engineering, University of Texas, Austin, TX, United States
| | - Marjan Majid
- Department of Biomedical Engineering, University of Texas, Austin, TX, United States
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas, Austin, TX, United States; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, United States; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, United States; Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
25
|
Das S, Singh G, Majid M, Sherman MB, Mukhopadhyay S, Wright CS, Martin PE, Dunn AK, Baker AB. Syndesome Therapeutics for Enhancing Diabetic Wound Healing. Adv Healthc Mater 2016; 5:2248-60. [PMID: 27385307 PMCID: PMC5228475 DOI: 10.1002/adhm.201600285] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/24/2016] [Indexed: 12/19/2022]
Abstract
Chronic wounds represent a major healthcare and economic problem worldwide. Advanced wound dressings that incorporate bioactive compounds have great potential for improving outcomes in patients with chronic wounds but significant challenges in designing treatments that are effective in long-standing, nonhealing wounds. Here, an optimized wound healing gel was developed that delivers syndecan-4 proteoliposomes ("syndesomes") with fibroblast growth factor-2 (FGF-2) to enhance diabetic wound healing. In vitro studies demonstrate that syndesomes markedly increase migration of keratinocytes and fibroblasts isolated from both nondiabetic and diabetic donors. In addition, syndesome treatment leads to increased endocytic processing of FGF-2 that includes enhanced recycling of FGF-2 to the cell surface after uptake. The optimized syndesome formulation was incorporated into an alginate wound dressing and tested in a splinted wound model in diabetic, ob/ob mice. It was found that wounds treated with syndesomes and FGF-2 have markedly enhanced wound closure in comparison to wounds treated with only FGF-2. Moreover, syndesomes have an immunomodulatory effect on wound macrophages, leading to a shift toward the M2 macrophage phenotype and alterations in the wound cytokine profile. Together, these studies show that delivery of exogenous syndecan-4 is an effective method for enhancing wound healing in the long-term diabetic diseased state.
Collapse
Affiliation(s)
- Subhamoy Das
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78731, USA
| | - Gunjan Singh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78731, USA
| | - Marjan Majid
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78731, USA
| | - Michael B Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, 78731, USA
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, 78731, USA
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78731, USA
| | - Catherine S Wright
- Diabetes Research Group, Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow, G4 0BA, UK
| | - Patricia E Martin
- Diabetes Research Group, Department of Life Sciences and Institute for Applied Health Research, Glasgow Caledonian University, Glasgow, G4 0BA, UK
| | - Andrew K Dunn
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78731, USA
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78731, USA.
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78731, USA.
- The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, 78731, USA.
- Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, 78731, USA.
| |
Collapse
|
26
|
Whiteford JR, De Rossi G, Woodfin A. Mutually Supportive Mechanisms of Inflammation and Vascular Remodeling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:201-78. [PMID: 27572130 DOI: 10.1016/bs.ircmb.2016.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic inflammation is often accompanied by angiogenesis, the development of new blood vessels from existing ones. This vascular response is a response to chronic hypoxia and/or ischemia, but is also contributory to the progression of disorders including atherosclerosis, arthritis, and tumor growth. Proinflammatory and proangiogenic mediators and signaling pathways form a complex and interrelated network in these conditions, and many factors exert multiple effects. Inflammation drives angiogenesis by direct and indirect mechanisms, promoting endothelial proliferation, migration, and vessel sprouting, but also by mediating extracellular matrix remodeling and release of sequestered growth factors, and recruitment of proangiogenic leukocyte subsets. The role of inflammation in promoting angiogenesis is well documented, but by facilitating greater infiltration of leukocytes and plasma proteins into inflamed tissues, angiogenesis can also propagate chronic inflammation. This review examines the mutually supportive relationship between angiogenesis and inflammation, and considers how these interactions might be exploited to promote resolution of chronic inflammatory or angiogenic disorders.
Collapse
Affiliation(s)
- J R Whiteford
- William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary College, University of London, London, United Kingdom
| | - G De Rossi
- William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary College, University of London, London, United Kingdom
| | - A Woodfin
- Cardiovascular Division, King's College, University of London, London, United Kingdom.
| |
Collapse
|
27
|
Migliorini E, Thakar D, Kühnle J, Sadir R, Dyer DP, Li Y, Sun C, Volkman BF, Handel TM, Coche-Guerente L, Fernig DG, Lortat-Jacob H, Richter RP. Cytokines and growth factors cross-link heparan sulfate. Open Biol 2016; 5:rsob.150046. [PMID: 26269427 PMCID: PMC4554917 DOI: 10.1098/rsob.150046] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The glycosaminoglycan heparan sulfate (HS), present at the surface of most cells and ubiquitous in extracellular matrix, binds many soluble extracellular signalling molecules such as chemokines and growth factors, and regulates their transport and effector functions. It is, however, unknown whether upon binding HS these proteins can affect the long-range structure of HS. To test this idea, we interrogated a supramolecular model system, in which HS chains grafted to streptavidin-functionalized oligoethylene glycol monolayers or supported lipid bilayers mimic the HS-rich pericellular or extracellular matrix, with the biophysical techniques quartz crystal microbalance (QCM-D) and fluorescence recovery after photobleaching (FRAP). We were able to control and characterize the supramolecular presentation of HS chains—their local density, orientation, conformation and lateral mobility—and their interaction with proteins. The chemokine CXCL12α (or SDF-1α) rigidified the HS film, and this effect was due to protein-mediated cross-linking of HS chains. Complementary measurements with CXCL12α mutants and the CXCL12γ isoform provided insight into the molecular mechanism underlying cross-linking. Fibroblast growth factor 2 (FGF-2), which has three HS binding sites, was also found to cross-link HS, but FGF-9, which has just one binding site, did not. Based on these data, we propose that the ability to cross-link HS is a generic feature of many cytokines and growth factors, which depends on the architecture of their HS binding sites. The ability to change matrix organization and physico-chemical properties (e.g. permeability and rigidification) implies that the functions of cytokines and growth factors may not simply be confined to the activation of cognate cellular receptors.
Collapse
Affiliation(s)
- Elisa Migliorini
- Université Grenoble Alpes, Departement de Chimie Moléculaire (DCM), Grenoble, France CNRS, DCM, Grenoble, France CIC biomaGUNE, San Sebastian, Spain
| | - Dhruv Thakar
- Université Grenoble Alpes, Departement de Chimie Moléculaire (DCM), Grenoble, France CNRS, DCM, Grenoble, France
| | - Jens Kühnle
- Department of Biophysical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Rabia Sadir
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble, France CNRS, IBS, Grenoble, France CEA, IBS, Grenoble, France
| | - Douglas P Dyer
- University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
| | - Yong Li
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Changye Sun
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tracy M Handel
- University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
| | - Liliane Coche-Guerente
- Université Grenoble Alpes, Departement de Chimie Moléculaire (DCM), Grenoble, France CNRS, DCM, Grenoble, France
| | - David G Fernig
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Hugues Lortat-Jacob
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble, France CNRS, IBS, Grenoble, France CEA, IBS, Grenoble, France
| | - Ralf P Richter
- Université Grenoble Alpes, Departement de Chimie Moléculaire (DCM), Grenoble, France CNRS, DCM, Grenoble, France CIC biomaGUNE, San Sebastian, Spain Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| |
Collapse
|
28
|
Mihov D, Spiess M. Glycosaminoglycans: Sorting determinants in intracellular protein traffic. Int J Biochem Cell Biol 2015; 68:87-91. [PMID: 26327396 DOI: 10.1016/j.biocel.2015.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 07/29/2015] [Accepted: 08/27/2015] [Indexed: 01/12/2023]
Abstract
Intracellular transport of proteins to their appropriate destinations is crucial for the maintenance of cellular integrity and function. Sorting information is contained either directly in the amino acid sequence or in a protein's post-translational modifications. Glycosaminoglycans (GAGs) are characteristic modifications of proteoglycans. GAGs are long unbranched polysaccharide chains with unique structural and functional properties also contributing to protein sorting in various ways. By deletion or insertion of GAG attachment sites it has been shown that GAGs affect polarized sorting in epithelial cells, targeting to and storage in secretory granules, and endocytosis. Most recently, the role of GAGs as signals for rapid trans-Golgi-to-cell surface transport, dominant over the cytosolic sorting motifs in the core protein, was demonstrated. Here, we provide an overview on existing data on the roles of GAGs on protein and proteoglycan trafficking.
Collapse
Affiliation(s)
- Deyan Mihov
- Biozentrum, University of Basel, Basel, Switzerland.
| | | |
Collapse
|
29
|
Abstract
Syndecans are multifunctional heparan sulfate proteoglycans (HSPGs) with roles in cell adhesion, migration, receptor trafficking and growth-factor interactions and signalling. Studies using syndecan null animals have revealed limited roles for syndecans during development; however, under conditions of challenge or insult, several phenotypes have emerged. Angiogenesis is an important process both in development and in wound healing, but also in pathologies such as cancer and chronic inflammatory conditions. In the present paper, we summarize the main studies elucidating the role of syndecans in angiogenesis and their potential as novel therapeutic targets.
Collapse
|
30
|
Herpes simplex virus enhances chemokine function through modulation of receptor trafficking and oligomerization. Nat Commun 2015; 6:6163. [PMID: 25625471 DOI: 10.1038/ncomms7163] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 12/19/2014] [Indexed: 01/13/2023] Open
Abstract
Glycoprotein G (gG) from herpes simplex virus 1 and 2 (HSV-1 and HSV-2, important human neurotropic pathogens) is the first viral chemokine-binding protein found to potentiate chemokine function. Here we show that gG attaches to cell surface glycosaminoglycans and induces lipid raft clustering, increasing the incorporation of CXCR4 receptors into these microdomains. gG induces conformational rearrangements in CXCR4 homodimers and changes their intracellular partners, leading to sustained, functional chemokine/receptor complexes at the surface. This results in increased chemotaxis dependent on the cholesterol content of the plasma membrane and receptor association to Src-kinases and phosphatidylinositol-3-kinase signalling pathways, but independent of clathrin-mediated endocytosis. Furthermore, using electron microscopy, we show that such enhanced functionality is associated with the accumulation of low-order CXCR4 nanoclusters. Our results provide insights into basic mechanisms of chemokine receptor function and into a viral strategy of immune modulation.
Collapse
|
31
|
Amer LD, Mahoney MJ, Bryant SJ. Tissue engineering approaches to cell-based type 1 diabetes therapy. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:455-67. [PMID: 24417705 DOI: 10.1089/ten.teb.2013.0462] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes mellitus is an autoimmune disease resulting from the destruction of insulin-producing pancreatic β-cells. Cell-based therapies, involving the transplantation of functional β-cells into diabetic patients, have been explored as a potential long-term treatment for this condition; however, success is limited. A tissue engineering approach of culturing insulin-producing cells with extracellular matrix (ECM) molecules in three-dimensional (3D) constructs has the potential to enhance the efficacy of cell-based therapies for diabetes. When cultured in 3D environments, insulin-producing cells are often more viable and secrete more insulin than those in two dimensions. The addition of ECM molecules to the culture environments, depending on the specific type of molecule, can further enhance the viability and insulin secretion. This review addresses the different cell sources that can be utilized as β-cell replacements, the essential ECM molecules for the survival of these cells, and the 3D culture techniques that have been used to benefit cell function.
Collapse
Affiliation(s)
- Luke D Amer
- 1 Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado
| | | | | |
Collapse
|
32
|
What is the potential of syndecan-4-targeted novel delivery technologies? Ther Deliv 2014; 4:1479-81. [PMID: 24304244 DOI: 10.4155/tde.13.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
33
|
Blechinger J, Bauer AT, Torrano AA, Gorzelanny C, Bräuchle C, Schneider SW. Uptake kinetics and nanotoxicity of silica nanoparticles are cell type dependent. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3970-80, 3906. [PMID: 23681841 DOI: 10.1002/smll.201301004] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Indexed: 05/22/2023]
Abstract
In this study, it is shown that the cytotoxic response of cells as well as the uptake kinetics of nanoparticles (NPs) is cell type dependent. We use silica NPs with a diameter of 310 nm labeled with perylene dye and 304 nm unlabeled particles to evaluate cell type-dependent uptake and cytotoxicity on human vascular endothelial cells (HUVEC) and cancer cells derived from the cervix carcinoma (HeLa). Besides their size, the particles are characterized concerning homogeneity of the labeling and their zeta potential. The cellular uptake of the labeled NPs is quantified by imaging the cells via confocal microscopy in a time-dependent manner, with subsequent image analysis via a custom-made and freely available digital method, Particle_in_Cell-3D. We find that within the first 4 h of interaction, the uptake of silica NPs into the cytoplasm is up to 10 times more efficient in HUVEC than in HeLa cells. Interestingly, after 10 or 24 h of interaction, the number of intracellular particles for HeLa cells by far surpasses the one for HUVEC. Inhibitor studies show that these endothelial cells internalize 310 nm SiO₂ NPs via the clathrin-dependent pathway. Remarkably, the differences in the amount of taken up NPs are not directly reflected by the metabolic activity and membrane integrity of the individual cell types. Interaction with NPs leads to a concentration-dependent decrease in mitochondrial activity and an increase in membrane leakage for HUVEC, whereas HeLa cells show only a reduced mitochondrial activity and no membrane leakage. In addition, silica NPs lead to HUVEC cell death while HeLa cells survive. These findings indicate that HUVEC are more sensitive than HeLa cells upon silica NP exposure.
Collapse
Affiliation(s)
- Julia Blechinger
- Ludwig-Maximilians-University Munich, Department of Chemistry and Center for NanoScience, Butenandtstr.11, Gerhard-Ertl-Gebäude, 81377 Munich, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Christianson HC, Belting M. Heparan sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix Biol 2013; 35:51-5. [PMID: 24145152 DOI: 10.1016/j.matbio.2013.10.004] [Citation(s) in RCA: 315] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/10/2013] [Accepted: 10/10/2013] [Indexed: 12/16/2022]
Abstract
How various macromolecules are exchanged between cells and how they gain entry into recipient cells are fundamental questions in cell biology with important implications e.g. non-viral drug delivery, infectious disease, metabolic disorders, and cancer. The role of heparan sulfate proteoglycan (HSPG) as a cell-surface receptor of diverse macromolecular cargo has recently been manifested. Exosomes, cell penetrating peptides, polycation-nucleic acid complexes, viruses, lipoproteins, growth factors and morphogens among other ligands enter cells through HSPG-mediated endocytosis. Key questions that partially have been unraveled over recent years include the respective roles of HSPG core protein and HS chain structure specificity for macromolecular cargo endocytosis, the down-stream intracellular signaling events involved in HSPG-dependent membrane invagination and vesicle formation, and the biological significance of the HSPG transport pathway. Here, we discuss the intriguing role of HSPGs as a major entry pathway of macromolecules in mammalian cells with emphasis on recent in vitro and in vivo data that provide compelling evidence of HSPG as an autonomous endocytosis receptor.
Collapse
Affiliation(s)
| | - Mattias Belting
- Department of Clinical Sciences, Section of Oncology, Lund University, Lund, Sweden; Skåne University Hospital & Oncology Clinic, Lund, Sweden.
| |
Collapse
|
35
|
Abstract
Syndecan-4, a ubiquitous cell surface proteoglycan, mediates numerous cellular processes through signaling pathways that affect cellular proliferation, migration, mechanotransduction and endocytosis. These effects are achieved through syndecan-4 functioning as both a co-receptor for the fibroblast growth factor receptors (FGFR1-FGFR4) and its ability to independently activate signaling pathways upon ligand binding. As an FGFR co-receptor, syndecan-4 strengthens the duration and intensity of downstream signaling upon ligand binding; this is particularly evident with regard to mitogen-activated protein kinase (MAPK) signaling. In contrast, syndecan-4 also functions as an independent receptor for heparin-binding growth factors, such as fibroblast growth factors (FGFs), vascular endothelial growth factors (VEGFs) and platelet-derived growth factors (PDGFs). These signaling cascades affect canonical signaling components, such as the mammalian target of rapamycin (mTOR), AKT1 and the Rho family of GTPases. In combination with the integrin family of proteins, syndecan-4 is also able to form physical connections between the extracellular matrix (ECM) and cytoskeletal signaling proteins, and it has a key role in regulation of integrin turnover. This unique versatility of the interactions of syndecan-4 is characterized in this Cell Science at a Glance article and illustrated in the accompanying poster.
Collapse
Affiliation(s)
- Arye Elfenbein
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
36
|
Odintsova E, van Niel G, Conjeaud H, Raposo G, Iwamoto R, Mekada E, Berditchevski F. Metastasis suppressor tetraspanin CD82/KAI1 regulates ubiquitylation of epidermal growth factor receptor. J Biol Chem 2013; 288:26323-26334. [PMID: 23897813 DOI: 10.1074/jbc.m112.439380] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ligand-induced ubiquitylation of EGF receptor (EGFR) is an important regulatory mechanism that controls endocytic trafficking of the receptor and its signaling potential. Here we report that tetraspanin CD82/KAI1 specifically suppresses ubiquitylation of EGFR after stimulation with heparin-binding EGF or amphiregulin and alters the rate of recruitment of the activated receptor to EEA1-positive endosomes. The suppressive effect of CD82 is dependent on the heparin-binding domain of the ligand. Deletion of the C-terminal cytoplasmic domain of CD82 (CD82ΔC mutant) inhibits endocytic trafficking of the tetraspanin and compromises its activity toward heparin-binding EGF-activated EGFR. Reduced ubiquitylation of EGFR is accompanied by PKC-dependent increase in serine phosphorylation of c-Cbl in cells expressing elevated levels of CD82. Furthermore, phosphorylation of threonine 654 (PKC phosphorylation site) in the juxtamembrane domain of the receptor is considerably increased in CD82-expressing cells. These results describe previously unsuspected links between tetraspanin proteins and ubiquitylation of their molecular partners (e.g., EGFR). Our data identify CD82 as a new regulator of c-Cbl, which discriminatively controls the activity of this E3 ubiquitin ligase toward heparin-binding ligand-EGFR pairs. Taken together, these observations provide an important new insight into the modulatory role of CD82 in endocytic trafficking of EGF receptor.
Collapse
Affiliation(s)
- Elena Odintsova
- From the School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom,.
| | - Guillaume van Niel
- the Institut Curie, Centre de Recherche, and Unité Mixte de Recherche 144, Centre National de la Recherche Scientifique, F-75248 Paris, France
| | - Hélène Conjeaud
- the Matière et Systèmes Complexes, UMR 7057 CNRS, Université Denis Diderot Paris-VII, 75205 Paris, France, and
| | - Graça Raposo
- the Institut Curie, Centre de Recherche, and Unité Mixte de Recherche 144, Centre National de la Recherche Scientifique, F-75248 Paris, France
| | - Ryo Iwamoto
- the Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Eisuke Mekada
- the Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Fedor Berditchevski
- From the School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
37
|
Cell susceptibility to baculovirus transduction and echovirus infection is modified by protein kinase C phosphorylation and vimentin organization. J Virol 2013; 87:9822-35. [PMID: 23824807 DOI: 10.1128/jvi.01004-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Some cell types are more susceptible to viral gene transfer or virus infection than others, irrespective of the number of viral receptors or virus binding efficacy on their surfaces. In order to characterize the cell-line-specific features contributing to efficient virus entry, we studied two cell lines (Ea.hy926 and MG-63) that are nearly nonpermissive to insect-specific baculovirus (BV) and the human enterovirus echovirus 1 (EV1) and compared their characteristics with those of a highly permissive (HepG2) cell line. All the cell lines contained high levels of viral receptors on their surfaces, and virus binding was shown to be efficient. However, in nonpermissive cells, BV and its receptor, syndecan 1, were unable to internalize in the cells and formed large aggregates near the cell surface. Accordingly, EV1 had a low infection rate in nonpermissive cells but was still able to internalize the cells, suggesting that the postinternalization step of the virus was impaired. The nonpermissive and permissive cell lines showed differential expression of syntenin, filamentous actin, vimentin, and phosphorylated protein kinase C subtype α (pPKCα). The nonpermissive nature of the cells could be modulated by the choice of culture medium. RPMI medium could partially rescue infection/transduction and concomitantly showed lower syntenin expression, a modified vimentin network, and altered activities of PKC subtypes PKCα and PKCε. The observed changes in PKCα and PKCε activation caused alterations in the vimentin organization, leading to efficient BV transduction and EV1 infection. This study identifies PKCα, PKCε, and vimentin as key factors affecting efficient infection and transduction by EV1 and BV, respectively.
Collapse
|
38
|
Letoha T, Kolozsi C, Ekes C, Keller-pintér A, Kusz E, Szakonyi G, Duda E, Szilák L. Contribution of syndecans to lipoplex-mediated gene delivery. Eur J Pharm Sci 2013; 49:550-5. [PMID: 23732629 DOI: 10.1016/j.ejps.2013.05.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/26/2013] [Accepted: 05/23/2013] [Indexed: 01/22/2023]
Abstract
The long awaited breakthrough of gene therapy significantly depends on the in vivo efficiency of targeted intracellular delivery. Hidden details of cellular uptake present a great hurdle for non-viral gene delivery with liposomes. Growing scientific evidence supports the involvement of polyanionic cell surface carbohydrates in cellular internalization of cationic liposomes. Syndecans, a highly conserved family of transmembrane heparan sulfate proteoglycans serve attachment sites for great variety of cationic ligands including growth factors, cytokines and even parasites. In the present study we quantitatively measured the contribution of various syndecan isoforms to liposome-mediated gene transfer. The obtained data show the superiority of syndecan-4, the ubiquitously expressed isoform of the syndecan family, in cellular uptake of liposomes. Applied mutational analysis demonstrated that gene delivery could be abolished by mutating the glycosaminoglycan attachment site of syndecans, highlighting the importance of polyanionic heparan sulfate side chains in the attachment of cationic liposomes. Blocking sulfation of syndecans also diminished gene delivery, a finding that confirms the essential role of polyanionic charges in binding cationic liposomes. Mutating other parts of the syndecan extracellular domain, including the cell-binding domain, had clearly smaller effect on liposome internalization. Mutational analyses also revealed that superiority of syndecan-4 in liposome-mediated gene delivery is significantly influenced by its cytoplasmic domain that orchestrates signaling pathways leading to macropinocytosis. In summary our study present a mechanistic insight into syndecan-mediated macropinocytic uptake of lipoplexes and highlights syndecan-4 as a superior target for cationic liposomes.
Collapse
Affiliation(s)
- Tamás Letoha
- Pharmacoidea Development & Service Ltd., Körös sor 50, H-6753 Szeged, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Briñas L, Vassilopoulos S, Bonne G, Guicheney P, Bitoun M. Role of dynamin 2 in the disassembly of focal adhesions. J Mol Med (Berl) 2013; 91:803-9. [DOI: 10.1007/s00109-013-1040-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 11/29/2022]
|
40
|
Brooks R, Williamson R, Bass M. Syndecan-4 independently regulates multiple small GTPases to promote fibroblast migration during wound healing. Small GTPases 2013; 3:73-9. [PMID: 22790193 PMCID: PMC3408980 DOI: 10.4161/sgtp.19301] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Upon wounding, syndecan-4 detects the appearance of fibronectin in the wound bed and mediates regulation of the small GTPases, Rac1, RhoA and RhoG. Cohesive regulation of these molecules results in cycles of membrane protrusion and cytoskeletal contraction, and triggers the endocytosis of α5β1-integrin, which collectively lead to immigration of fibroblasts into the wound bed. In this manuscript we identify the regulation of a fourth GTPase, Arf6 that is responsible for α5β1-integrin recycling and thereby completes the cycle of syndecan-4-regulated integrin trafficking. We demonstrate that each of the GTPase signals can be regulated by syndecan-4, but that they are independent of one another. By doing so we identify syndecan-4 as the coordinating center of pro-migratory signals.
Collapse
|
41
|
Tsonis AI, Afratis N, Gialeli C, Ellina MI, Piperigkou Z, Skandalis SS, Theocharis AD, Tzanakakis GN, Karamanos NK. Evaluation of the coordinated actions of estrogen receptors with epidermal growth factor receptor and insulin-like growth factor receptor in the expression of cell surface heparan sulfate proteoglycans and cell motility in breast cancer cells. FEBS J 2013; 280:2248-59. [DOI: 10.1111/febs.12162] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/25/2013] [Accepted: 01/29/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Anastasios I. Tsonis
- Laboratory of Biochemistry; Department of Chemistry; University of Patras; Patras; Greece
| | - Nikolaos Afratis
- Laboratory of Biochemistry; Department of Chemistry; University of Patras; Patras; Greece
| | - Chrisostomi Gialeli
- Laboratory of Biochemistry; Department of Chemistry; University of Patras; Patras; Greece
| | - Maria-Ioanna Ellina
- Laboratory of Biochemistry; Department of Chemistry; University of Patras; Patras; Greece
| | - Zoi Piperigkou
- Laboratory of Biochemistry; Department of Chemistry; University of Patras; Patras; Greece
| | - Spyridon S. Skandalis
- Laboratory of Biochemistry; Department of Chemistry; University of Patras; Patras; Greece
| | | | | | - Nikos K. Karamanos
- Laboratory of Biochemistry; Department of Chemistry; University of Patras; Patras; Greece
| |
Collapse
|
42
|
Evidence for the interaction of fibroblast growth factor-2 with the lymphatic endothelial cell marker LYVE-1. Blood 2012; 121:1229-37. [PMID: 23264596 DOI: 10.1182/blood-2012-08-450502] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
LYVE-1 (lymphatic vessel endothelial hyaluronan receptor-1) is a homolog of the hyaluronan receptor CD44, and one of the most widely used markers of lymphatic endothelial cells in normal and tumor tissues. However, the physiologic role of LYVE-1 in the lymphatic system still remains unclear. It is well established that fibroblast growth factor 2 (FGF2) induces lymphangiogenesis. Based on the known interaction between FGF2 and CD44 and based on the structural similarity of CD44 and LYVE-1, we investigated whether FGF2 might interact with LYVE-1. We found that FGF2 is able to bind LYVE-1 using AlphaScreen, or after surface-immobilization or in solution. FGF2 binds to LYVE-1 with a higher affinity than any other known LYVE-1–binding molecules, such as hyaluronan or PDGF-BB. Glycosylation of LYVE-1 is important for FGF2 binding. Furthermore, FGF2 interacts with LYVE-1 when overexpressed in CHO cells. Soluble LYVE-1 and knockdown of LYVE-1 in lymphatic endothelial cells impaired FGF2 signaling and functions. In addition, FGF2 but not VEGF-C-induced in vivo lymphangiogenesis, was also inhibited. Conversely, FGF2 also modulates LYVE-1 expression in cells and ex vivo. Thus, our data demonstrate a functional relationship to the interaction between FGF2 and LYVE-1.
Collapse
|
43
|
Rovira-Clavé X, Angulo-Ibáñez M, Noguer O, Espel E, Reina M. Syndecan-2 can promote clearance of T-cell receptor/CD3 from the cell surface. Immunology 2012; 137:214-25. [PMID: 22881146 DOI: 10.1111/j.1365-2567.2012.03626.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
T cells express the heparan sulphate proteoglycans syndecan-2 and syndecan-4. Syndecan-4 plays a T-cell inhibitory role; however, the function of syndecan-2 is unknown. In an attempt to examine this function, syndecan-2 was expressed constitutively in Jurkat T cells. Interestingly, the expression of syndecan-2 decreased the surface levels of T-cell receptor (TCR)/CD3 complex, concomitant with intracellular retention of CD3ε and partial degradation of the TCR-ζ chain. Immunofluorescence microscopy revealed that intracellular CD3ε co-located with Rab-4 endosomes. However, the intracellular pool of CD3ε did not recycle to the cell surface. The lower TCR/CD3 surface levels caused by syndecan-2 led to reduced TCR/CD3 responsiveness. We show that the cytosolic PDZ-binding domain of syndecan-2 is not necessary to elicit TCR/CD3 down-regulation. These results identify a previously unrecognized means of controlling surface TCR/CD3 expression by syndecan-2.
Collapse
Affiliation(s)
- Xavier Rovira-Clavé
- Departament de Biologia Cellular, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
44
|
CXCR4 Stimulates Macropinocytosis: Implications for Cellular Uptake of Arginine-Rich Cell-Penetrating Peptides and HIV. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.chembiol.2012.09.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Cheng JYC, Whitelock J, Poole-Warren L. Syndecan-4 is associated with beta-cells in the pancreas and the MIN6 beta-cell line. Histochem Cell Biol 2012; 138:933-44. [PMID: 22872317 DOI: 10.1007/s00418-012-1004-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2012] [Indexed: 12/21/2022]
Abstract
Basement membranes (BM) in the pancreatic islet are important for islet survival and function, but supplementation of isolated islets with these components have had limited success. Currently, little is understood about which BM components and proteoglycans are essential to maintaining islet homeostasis. This study therefore aimed to characterize the BM components and proteoglycans of the islet in the mouse, rat and rabbit species. The BM of the mouse islet was varied in continuity around the islet and was discontinuous in the rat and rabbit islets. The BM consisted of collagen IV, laminin, fibronectin and perlecan in the mouse and was in tight association with the underlying islet endothelium. None of these components were found directly associated with the β-cells in tissue and in the MIN6 β-cell line. In contrast, heparan sulfate (HS) was distributed throughout the islet in all three species in a pattern distinctly different to that of perlecan and was observed mainly on the β-cells and not the α-cells in the mouse and rat. Similarly, syndecan-4 showed a staining pattern almost identical to that of HS and was mostly observed on the β-cells, not α-cells, in the mouse and rat. Both HS and syndecan-4 were also observed in the MIN6 β-cell line. The mouse islet and MIN6 syndecan-4 were both ~37 kDa in size, after deglycosylation with heparitinase. These results indicate that syndecan-4 may play an important role in β-cell function and that the cell-surface HS proteoglycans may be the missing link to maintaining islet longevity after isolation.
Collapse
Affiliation(s)
- Jennifer Y C Cheng
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.
| | | | | |
Collapse
|
46
|
Syndecan-4 over-expression preserves cardiac function in a rat model of myocardial infarction. J Mol Cell Cardiol 2012; 53:250-8. [DOI: 10.1016/j.yjmcc.2012.04.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/14/2012] [Accepted: 04/25/2012] [Indexed: 12/31/2022]
|
47
|
Dias JV, Benslimane-Ahmim Z, Egot M, Lokajczyk A, Grelac F, Galy-Fauroux I, Juliano L, Le-Bonniec B, Takiya CM, Fischer AM, Blanc-Brude O, Morandi V, Boisson-Vidal C. A motif within the N-terminal domain of TSP-1 specifically promotes the proangiogenic activity of endothelial colony-forming cells. Biochem Pharmacol 2012; 84:1014-23. [PMID: 22796565 DOI: 10.1016/j.bcp.2012.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/28/2012] [Accepted: 07/05/2012] [Indexed: 01/09/2023]
Abstract
Thrombospondin-1 (TSP-1) gives rise to fragments that have both pro- and anti-angiogenic effects in vitro and in vivo. The TSP-HepI peptide (2.3 kDa), located in the N-terminal domain of TSP-1, has proangiogenic effects on endothelial cells. We have previously shown that TSP-1 itself exhibits a dual effect on endothelial colony-forming cells (ECFC) by enhancing their adhesion through its TSP-HepI fragment while reducing their proliferation and differentiation into vascular tubes (tubulogenesis) in vitro. This effect is likely mediated through CD47 binding to the TSP-1 C-terminal domain. Here we investigated the effect of TSP-HepI peptide on the angiogenic properties of ECFC in vitro and in vivo. TSP-HepI peptide potentiated FGF-2-induced neovascularisation by enhancing ECFC chemotaxis and tubulogenesis in a Matrigel plug assay. ECFC exposure to 20 μg/mL of TSP-HepI peptide for 18 h enhanced cell migration (p < 0.001 versus VEGF exposure), upregulated alpha 6-integrin expression, and enhanced their cell adhesion to activated endothelium under physiological shear stress conditions at levels comparable to those of SDF-1α. The adhesion enhancement appeared to be mediated by the heparan sulfate proteoglycan (HSPG) syndecan-4, as ECFC adhesion was significantly reduced by a syndecan-4-neutralising antibody. ECFC migration and tubulogenesis were stimulated neither by a TSP-HepI peptide with a modified heparin-binding site (S/TSP-HepI) nor when the glycosaminoglycans (GAGs) moieties were removed from the ECFC surface by enzymatic treatment. Ex vivo TSP-HepI priming could potentially serve to enhance the effectiveness of therapeutic neovascularisation with ECFC.
Collapse
Affiliation(s)
- Juliana Vieira Dias
- Departamento de Biologia Celular, Laboratório de Biologia da Célula Endotelial e da Angiogênese (LabAngio), Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, UERJ, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder affecting motoneurons. Mutations in angiogenin, encoding a member of the pancreatic RNase A superfamily, segregate with ALS. We previously demonstrated that angiogenin administration shows promise as a neuroprotective therapeutic in studies using transgenic ALS mice and primary motoneuron cultures. Its mechanism of action and target cells in the spinal cord, however, are largely unknown. Using mixed motoneuron cultures, motoneuron-like NSC34 cells, and primary astroglia cultures as model systems, we here demonstrate that angiogenin is a neuronally secreted factor that is endocytosed by astroglia and mediates neuroprotection in paracrine. We show that wild-type angiogenin acts unidirectionally to induce RNA cleavage in astroglia, while the ALS-associated K40I mutant is also secreted and endocytosed, but fails to induce RNA cleavage. Angiogenin uptake into astroglia requires heparan sulfate proteoglycans, and engages clathrin-mediated endocytosis. We show that this uptake mechanism exists for mouse and human angiogenin, and delivers a functional RNase output. Moreover, we identify syndecan 4 as the angiogenin receptor mediating the selective uptake of angiogenin into astroglia. Our data provide new insights into the paracrine activities of angiogenin in the nervous system, and further highlight the critical role of non-neuronal cells in the pathogenesis of ALS.
Collapse
|
49
|
Nonnenmacher M, Weber T. Adeno-associated virus 2 infection requires endocytosis through the CLIC/GEEC pathway. Cell Host Microbe 2012; 10:563-76. [PMID: 22177561 DOI: 10.1016/j.chom.2011.10.014] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 08/23/2011] [Accepted: 10/06/2011] [Indexed: 12/13/2022]
Abstract
Adeno-associated viruses (AAVs) are nonpathogenic, nonenveloped, single-stranded DNA viruses in development as gene therapy vectors. AAV internalization was postulated to proceed via a dynamin-dependent endocytic mechanism. Revisiting this, we find that infectious endocytosis of the prototypical AAV, AAV2, is independent of clathrin, caveolin, and dynamin. AAV2 infection is sensitive to EIPA, a fluid-phase uptake inhibitor, but is unaffected by Rac1 mutants or other macropinocytosis inhibitors. In contrast, AAV2 infection requires actin cytoskeleton remodeling and membrane cholesterol and is sensitive to inhibition of Cdc42, Arf1, and GRAF1, factors known to be involved in the formation of clathrin-independent carriers (CLIC). AAV2 virions are internalized in the detergent-resistant GPI-anchored-protein-enriched endosomal compartment (GEEC) and translocated to the Golgi apparatus, similarly to the CLIC/GEEC marker cholera toxin B. Our results indicate that-unlike the viral entry mechanisms described so far-AAV2 uses the pleiomorphic CLIC/GEEC pathway as its major endocytic infection route.
Collapse
Affiliation(s)
- Mathieu Nonnenmacher
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
50
|
Horowitz A, Seerapu HR. Regulation of VEGF signaling by membrane traffic. Cell Signal 2012; 24:1810-20. [PMID: 22617029 DOI: 10.1016/j.cellsig.2012.05.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 05/09/2012] [Indexed: 01/13/2023]
Abstract
Recent findings have drawn attention to the role of membrane traffic in the signaling of vascular endothelial growth factor (VEGF). The significance of this development stems from the pivotal function of VEGF in vasculogenesis and angiogenesis. The outline of the regulation of VEGF receptor (VEGFR) signaling by membrane traffic is similar to that of the epidermal growth factor receptor (EGFR), a prototype of the intertwining between membrane traffic and signaling. There are, however, unique features in VEGFR signaling that are conferred in part by the involvement of the co-receptor neuropilin (Nrp). Nrp1 and VEGFR2 are integrated into membrane traffic through the adaptor protein synectin, which recruits myosin VI, a molecular motor that drives inward trafficking [17,21,64]. The recent detection of only mild vascular defects in a knockin mouse model that expresses Nrp1 lacking a cytoplasmic domain [104], questions the co-receptor's role in VEGF signaling and membrane traffic. The regulation of endocytosis by ephrin-B2 is another feature unique to VEGR2/3 [18,19], but it awaits a mechanistic explanation. Current models do not fully explain how membrane traffic bridges between VEGFR and the downstream effectors that produce its functional outcome, such as cell migration. VEGF-A appears to accomplish this task in part by recruiting endocytic vesicles carrying RhoA to internalized active VEGFR2 [58].
Collapse
Affiliation(s)
- Arie Horowitz
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | |
Collapse
|