1
|
The 6-4 photoproduct is the trigger of UV-induced replication blockage and ATR activation. Proc Natl Acad Sci U S A 2020; 117:12806-12816. [PMID: 32444488 DOI: 10.1073/pnas.1917196117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The most prevalent human carcinogen is sunlight-associated ultraviolet (UV), a physiologic dose of which generates thousands of DNA lesions per cell, mostly of two types: cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs). It has not been possible, in living cells, to precisely characterize the respective contributions of these two lesion types to the signals that regulate cell cycle progression, DNA replication, and cell survival. Here we coupled multiparameter flow cytometry with lesion-specific photolyases that eliminate either CPDs or 6-4PPs and determined their respective contributions to DNA damage responses. Strikingly, only 6-4PP lesions activated the ATR-Chk1 DNA damage response pathway. Mechanistically, 6-4PPs, but not CPDs, impeded DNA replication across the genome as revealed by microfluidic-assisted replication track analysis. Furthermore, single-stranded DNA accumulated preferentially at 6-4PPs during DNA replication, indicating selective and prolonged replication blockage at 6-4PPs. These findings suggest that 6-4PPs, although eightfold fewer in number than CPDs, are the trigger for UV-induced DNA damage responses.
Collapse
|
2
|
Steurer B, Turkyilmaz Y, van Toorn M, van Leeuwen W, Escudero-Ferruz P, Marteijn JA. Fluorescently-labelled CPD and 6-4PP photolyases: new tools for live-cell DNA damage quantification and laser-assisted repair. Nucleic Acids Res 2019; 47:3536-3549. [PMID: 30698791 PMCID: PMC6468286 DOI: 10.1093/nar/gkz035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/29/2018] [Accepted: 01/15/2019] [Indexed: 01/02/2023] Open
Abstract
UV light induces cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts (6-4PPs), which can result in carcinogenesis and aging, if not properly repaired by nucleotide excision repair (NER). Assays to determine DNA damage load and repair rates are invaluable tools for fundamental and clinical NER research. However, most current assays to quantify DNA damage and repair cannot be performed in real time. To overcome this limitation, we made use of the damage recognition characteristics of CPD and 6-4PP photolyases (PLs). Fluorescently-tagged PLs efficiently recognize UV-induced DNA damage without blocking NER activity, and therefore can be used as sensitive live-cell damage sensors. Importantly, FRAP-based assays showed that PLs bind to damaged DNA in a highly sensitive and dose-dependent manner, and can be used to quantify DNA damage load and to determine repair kinetics in real time. Additionally, PLs can instantly reverse DNA damage by 405 nm laser-assisted photo-reactivation during live-cell imaging, opening new possibilities to study lesion-specific NER dynamics and cellular responses to damage removal. Our results show that fluorescently-tagged PLs can be used as a versatile tool to sense, quantify and repair DNA damage, and to study NER kinetics and UV-induced DNA damage response in living cells.
Collapse
Affiliation(s)
- Barbara Steurer
- Erasmus MC, University Medical Center Rotterdam, Department of Molecular Genetics, Oncode Institute, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Yasemin Turkyilmaz
- Erasmus MC, University Medical Center Rotterdam, Department of Molecular Genetics, Oncode Institute, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Marvin van Toorn
- Erasmus MC, University Medical Center Rotterdam, Department of Molecular Genetics, Oncode Institute, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Wessel van Leeuwen
- Erasmus MC, University Medical Center Rotterdam, Department of Molecular Genetics, Oncode Institute, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Paula Escudero-Ferruz
- Erasmus MC, University Medical Center Rotterdam, Department of Molecular Genetics, Oncode Institute, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Jurgen A Marteijn
- Erasmus MC, University Medical Center Rotterdam, Department of Molecular Genetics, Oncode Institute, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Tang Q, Hu Z, Yang Y, Wu H, Qiu L, Chen K, Li G. Overexpression of Bm65 correlates with reduced susceptibility to inactivation by UV light. J Invertebr Pathol 2015; 127:87-92. [PMID: 25791022 DOI: 10.1016/j.jip.2015.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 11/30/2022]
Abstract
Ultraviolet (UV) light is one of the factors that causes baculovirus inactivation. However, little is known about the response of baculoviruses to UV light. In the present study, Bombyx mori nucleopolyhedrovirus (BmNPV) orf 65 (Bm65), the homolog of Autographa californica nucleopolyhedrovirus orf 79 (Ac79), a predicted endonuclease, was analyzed. Preliminary results indicated that Bm65 mainly accumulated within the nucleus and could improve the survival rate of Escherichia coli (E. coli) and BmNPV BVs after UV radiation, suggesting that Bm65 was involved in the repair of UV-induced DNA damage.
Collapse
Affiliation(s)
- Qi Tang
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Zhaoyang Hu
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Yanhua Yang
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Huiling Wu
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Lipeng Qiu
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China.
| | - Guohui Li
- Institute of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
4
|
Aydin ÖZ, Marteijn JA, Ribeiro-Silva C, Rodríguez López A, Wijgers N, Smeenk G, van Attikum H, Poot RA, Vermeulen W, Lans H. Human ISWI complexes are targeted by SMARCA5 ATPase and SLIDE domains to help resolve lesion-stalled transcription. Nucleic Acids Res 2014; 42:8473-85. [PMID: 24990377 PMCID: PMC4117783 DOI: 10.1093/nar/gku565] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chromatin compaction of deoxyribonucleic acid (DNA) presents a major challenge to the detection and removal of DNA damage. Helix-distorting DNA lesions that block transcription are specifically repaired by transcription-coupled nucleotide excision repair, which is initiated by binding of the CSB protein to lesion-stalled RNA polymerase II. Using live cell imaging, we identify a novel function for two distinct mammalian ISWI adenosine triphosphate (ATP)-dependent chromatin remodeling complexes in resolving lesion-stalled transcription. Human ISWI isoform SMARCA5/SNF2H and its binding partners ACF1 and WSTF are rapidly recruited to UV-C induced DNA damage to specifically facilitate CSB binding and to promote transcription recovery. SMARCA5 targeting to UV-C damage depends on transcription and histone modifications and requires functional SWI2/SNF2-ATPase and SLIDE domains. After initial recruitment to UV damage, SMARCA5 re-localizes away from the center of DNA damage, requiring its HAND domain. Our studies support a model in which SMARCA5 targeting to DNA damage-stalled transcription sites is controlled by an ATP-hydrolysis-dependent scanning and proofreading mechanism, highlighting how SWI2/SNF2 chromatin remodelers identify and bind nucleosomes containing damaged DNA.
Collapse
Affiliation(s)
- Özge Z Aydin
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Jurgen A Marteijn
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Cristina Ribeiro-Silva
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Aida Rodríguez López
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Nils Wijgers
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Godelieve Smeenk
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Haico van Attikum
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Raymond A Poot
- Department of Cell Biology, Medical Genetics Cluster, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Wim Vermeulen
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| | - Hannes Lans
- Department of Genetics, Medical Genetics Cluster, Cancer Genomics Netherlands, Erasmus MC, Rotterdam, 3015 GE, The Netherlands
| |
Collapse
|
5
|
Boros G, Miko E, Muramatsu H, Weissman D, Emri E, Rózsa D, Nagy G, Juhász A, Juhász I, van der Horst G, Horkay I, Remenyik É, Karikó K, Emri G. Transfection of pseudouridine-modified mRNA encoding CPD-photolyase leads to repair of DNA damage in human keratinocytes: a new approach with future therapeutic potential. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 129:93-9. [PMID: 24211294 DOI: 10.1016/j.jphotobiol.2013.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/26/2013] [Accepted: 09/29/2013] [Indexed: 12/19/2022]
Abstract
UVB irradiation induces harmful photochemical reactions, including formation of Cyclobutane Pyrimidine Dimers (CPDs) in DNA. Accumulation of unrepaired CPD lesions causes inflammation, premature ageing and skin cancer. Photolyases are DNA repair enzymes that can rapidly restore DNA integrity in a light-dependent process called photoreactivation, but these enzymes are absent in humans. Here, we present a novel mRNA-based gene therapy method that directs synthesis of a marsupial, Potorous tridactylus, CPD-photolyase in cultured human keratinocytes. Pseudouridine was incorporated during in vitro transcription to make the mRNA non-immunogenic and highly translatable. Keratinocytes transfected with lipofectamine-complexed mRNA expressed photolyase in the nuclei for at least 2days. Exposing photolyase mRNA-transfected cells to UVB irradiation resulted in significantly less CPD in those cells that were also treated with photoreactivating light, which is required for photolyase activity. The functional photolyase also diminished other UVB-mediated effects, including induction of IL-6 and inhibition of cell proliferation. These results demonstrate that pseudouridine-containing photolyase mRNA is a powerful tool to repair UVB-induced DNA lesions. The pseudouridine-modified mRNA approach has a strong potential to discern cellular effects of CPD in UV-related cell biological studies. The mRNA-based transient expression of proteins offers a number of opportunities for future application in medicine.
Collapse
Affiliation(s)
- Gábor Boros
- Department of Dermatology, Medical and Health Science Center, University of Debrecen, Nagyerdei korut 98, 4032 Debrecen, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Cortat B, Garcia CCM, Quinet A, Schuch AP, de Lima-Bessa KM, Menck CFM. The relative roles of DNA damage induced by UVA irradiation in human cells. Photochem Photobiol Sci 2013; 12:1483-95. [DOI: 10.1039/c3pp50023c] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Vernhes M, González-Pumariega M, Andrade L, Schuch AP, de Lima-Bessa KM, Menck CFM, Sánchez-Lamar A. Protective effect of a Phyllanthus orbicularis aqueous extract against UVB light in human cells. PHARMACEUTICAL BIOLOGY 2013; 51:1-7. [PMID: 23249398 DOI: 10.3109/13880209.2012.695800] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT One approach to protect human skin against the dangerous effects of solar ultraviolet (UV) irradiation is the use of natural products, such as photoprotectors. Phyllanthus orbicularis Kunth (Euphorbiaceae) is a Cuban endemic plant used in popular medicine. Its antigenotoxicity effect against some harmful agents has been investigated. However, the effect in ultraviolet B (UVB)-irradiated human cells has not been previously assessed. OBJECTIVE The protective effect of a P. orbicularis extract against UVB light-induced damage in human cells was evaluated. MATERIALS AND METHODS DNA repair proficient (MRC5-SV) and deficient (XP4PA, complementation group XPC) cell-lines were used. Damaging effects of UVB light were evaluated by clonogenic assay and apoptosis induction by flow cytometry techniques. The extent of DNA repair itself was determined by the removal of cyclobutane pyrimidine dimers (CPDs). The CPDs were detected and quantified by slot-blot assay. RESULTS Treatment of UVB-irradiated MRC5-SV cells with P. orbicularis extract increased the percentage of colony-forming cells from 36.03 ± 3.59 and 4.42 ± 1.45 to 53.14 ± 8.8 and 14.52 ± 1.97, for 400 and 600 J/m(2), respectively. A decrease in apoptotic cell population was observed in cells maintained within the extract. The P. orbicularis extract enhanced the removal of CPD from genomic DNA. The CPDs remaining were found to be about 27.7 and 1.1%, while with plant extract, treatment these values decreased to 16.1 and 0.2%, for 3 and 24 h, respectively. DISCUSSION AND CONCLUSION P. orbicularis aqueous extract protects human cells against UVB damage. This protective effect is through the modulation of DNA repair effectiveness.
Collapse
Affiliation(s)
- Marioly Vernhes
- Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Ciudad de la Habana, Cuba
| | | | | | | | | | | | | |
Collapse
|
8
|
Brokhman I, Pomp O, Fishman L, Tennenbaum T, Amit M, Itzkovitz-Eldor J, Goldstein RS. Genetic Modification of Human Embryonic Stem Cells With Adenoviral Vectors: Differences of Infectability Between Lines and Correlation of Infectability With Expression of the Coxsackie and Adenovirus Receptor. Stem Cells Dev 2009; 18:447-56. [DOI: 10.1089/scd.2008.0127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Irina Brokhman
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Oz Pomp
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Lital Fishman
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Michal Amit
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | | | - Ronald S. Goldstein
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
9
|
Chiganças V, Lima-Bessa KM, Stary A, Menck CFM, Sarasin A. Defective transcription/repair factor IIH recruitment to specific UV lesions in trichothiodystrophy syndrome. Cancer Res 2008; 68:6074-83. [PMID: 18676829 DOI: 10.1158/0008-5472.can-07-6695] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most trichothiodystrophy (TTD) patients present mutations in the xeroderma pigmentosum D (XPD) gene, coding for a subunit of the transcription/repair factor IIH (TFIIH) complex involved in nucleotide excision repair (NER) and transcription. After UV irradiation, most TTD/XPD patients are more severely affected in the NER of cyclobutane pyrimidine dimers (CPD) than of 6-4-photoproducts (6-4PP). The reasons for this differential DNA repair defect are unknown. Here we report the first study of NER in response to CPDs or 6-4PPs separately analyzed in primary fibroblasts. This was done by using heterologous photorepair; recombinant adenovirus vectors carrying photolyases enzymes that repair CPD or 6-4PP specifically by using the energy of light were introduced in different cell lines. The data presented here reveal that some TTD/XPD mutations affect the recruitment of TFIIH specifically to CPDs, but not to 6-4PPs. This deficiency is further confirmed by the inability of TTD/XPD cells to recruit, specifically for CPDs, NER factors that arrive in a TFIIH-dependent manner later in the NER pathway. For 6-4PPs, we show that TFIIH complexes carrying an NH(2)-terminal XPD mutated protein are also deficient in recruitment of NER proteins downstream of TFIIH. Treatment with the histone deacetylase inhibitor trichostatin A allows the recovery of TFIIH recruitment to CPDs in the studied TTD cells and, for COOH-terminal XPD mutations, increases the repair synthesis and survival after UV, suggesting that this defect can be partially related with accessibility of DNA damage in closed chromatin regions.
Collapse
Affiliation(s)
- Vanessa Chiganças
- Laboratory of Genetic Stability and Oncogenesis, Centre National de la Recherche Scientifique, Formation de Recherche en Evolution 2939, Institut Gustave Roussy, Université Paris-Sud, Villejuif, France.
| | | | | | | | | |
Collapse
|
10
|
CPDs and 6-4PPs play different roles in UV-induced cell death in normal and NER-deficient human cells. DNA Repair (Amst) 2007; 7:303-12. [PMID: 18096446 DOI: 10.1016/j.dnarep.2007.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 11/01/2007] [Accepted: 11/03/2007] [Indexed: 12/22/2022]
Abstract
Ultraviolet (UV) light generates two major DNA lesions: cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyrimidone photoproducts (6-4PPs), but the specific participation of these two lesions in the deleterious effects of UV is a longstanding question. In order to discriminate the precise role of unrepaired CPDs and 6-4PPs in UV-induced responses triggering cell death, human fibroblasts were transduced by recombinant adenoviruses carrying the CPD-photolyase or 6-4PP-photolyase cDNAs. Both photolyases were able to prevent UV-induced apoptosis in cells deficient for nucleotide excision repair (NER) to a similar extent, while in NER-proficient cells UV-induced apoptosis was prevented only by CPD-photolyase, with no effects observed when 6-4PPs were removed by the specific photolyase. These results strongly suggest that both CPDs and 6-4PPs contribute to UV-induced apoptosis in NER-deficient cells, while in NER-proficient cells, CPDs are the only lesions responsible for UV-killing, probably due to the rapid repair of 6-4PPs by NER. As a consequence, the difference in skin photosensitivity, including carcinogenesis, of most of the xeroderma pigmentosum patients and of normal people is probably not only a quantitative aspect, but depends on the type of DNA damage induced by sunlight and its rate of repair.
Collapse
|
11
|
Armelini MG, Lima-Bessa KM, Marchetto MCN, Muotri AR, Chiganças V, Leite RA, Carvalho H, Menck CFM. Exploring DNA damage responses in human cells with recombinant adenoviral vectors. Hum Exp Toxicol 2007; 26:899-906. [PMID: 18042584 DOI: 10.1177/0960327107083556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recombinant adenoviral vectors provide efficient means for gene transduction in mammalian cells in vitro and in vivo. We are currently using these vectors to transduce DNA repair genes into repair deficient cells, derived from xeroderma pigmentosum (XP) patients. XP is an autosomal syndrome characterized by a high frequency of skin tumors, especially in areas exposed to sunlight, and, occasionally, developmental and neurological abnormalities. XP cells are deficient in nucleotide excision repair (affecting one of the seven known XP genes, xpa to xpg) or in DNA replication of DNA lesions (affecting DNA polymerase eta, xpv). The adenovirus approach allows the investigation of different consequences of DNA lesions in cell genomes. Adenoviral vectors carrying several xp and photolyases genes have been constructed and successfully tested in cell culture systems and in vivo directly in the skin of knockout model mice. This review summarizes these recent data and proposes the use of recombinant adenoviruses as tools to investigate the mechanisms that provide protection against DNA damage in human cells, as well as to better understand the higher predisposition of XP patients to cancer.
Collapse
Affiliation(s)
- Melissa G Armelini
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Lima-Bessa KM, Chiganças V, Stary A, Kannouche P, Sarasin A, Armelini MG, de Fátima Jacysyn J, Amarante-Mendes GP, Cordeiro-Stone M, Cleaver JE, Menck CFM. Adenovirus mediated transduction of the human DNA polymerase eta cDNA. DNA Repair (Amst) 2006; 5:925-34. [PMID: 16798111 DOI: 10.1016/j.dnarep.2006.05.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 05/08/2006] [Accepted: 05/16/2006] [Indexed: 01/29/2023]
Abstract
Xeroderma pigmentosum (XP) is an autosomal recessive photosensitive disorder with an extremely high incidence of skin cancers. Seven complementation groups, corresponding to seven proteins involved in nucleotide excision repair (NER), are associated with this syndrome. However, in XP variant patients, the disorder is caused by defects in DNA polymerase eta; this error prone polymerase, encoded by POLH, is involved in translesion DNA synthesis (TLS) on DNA templates damaged by ultraviolet light (UV). We constructed a recombinant adenovirus carrying the human POLH cDNA linked to the EGFP reporter gene (AdXPV-EGFP) and infected skin fibroblasts from both XPV and XPA patients. Twenty-four hours after infection, the DNA polymerase eta-EGFP fusion protein was detected by Western blot analysis, demonstrating successful transduction by the adenoviral vector. Protein expression was accompanied by reduction in the high sensitivity of XPV cells to UV, as determined by cell survival and apoptosis-induction assays. Moreover, the pronounced UV-induced inhibition of DNA synthesis in XPV cells and their arrest in S phase were attenuated in AdXPV-EGFP infected cells, confirming that the transduced polymerase was functional. However, over-expression of polymerase eta mediated by AdXPV-EGFP infection did not result in enhancement of cell survival, prevention of apoptosis, or higher rate of nascent DNA strand growth in irradiated XPA cells. These results suggest that TLS by DNA polymerase eta is not a limiting factor for recovery from cellular responses induced by UV in excision-repair deficient fibroblasts.
Collapse
Affiliation(s)
- Keronninn Moreno Lima-Bessa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374 São Paulo, SP 05508-900, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Batista LFZ, Chiganças V, Brumatti G, Amarante-Mendes GP, Menck CFM. Involvement of DNA replication in ultraviolet-induced apoptosis of mammalian cells. Apoptosis 2006; 11:1139-48. [PMID: 16703265 DOI: 10.1007/s10495-006-7109-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exposure of cells to ultraviolet (UV) light damages the genome and the persistence of DNA lesions triggers apoptosis in mammalian cells. RNA transcription blockage by DNA damage is believed to be implicated in signaling for UV-induced apoptosis, but the role played by DNA replication in this process is still unclear. To address this point, we have employed the DNA polymerase inhibitor aphidicolin in UV-irradiated wild-type and XPB-mutated Chinese hamster ovary cells. The data obtained with synchronized cells indicate that induction of apoptosis by UV light is independent of the cell cycle phase. Nevertheless, cells treated with aphidicolin after UV exposure showed a significant prevention of apoptosis induction when compared to proliferating cells. These results were observed in both DNA-repair proficient and deficient cells, indicating that the prevention of apoptosis by aphidicolin is independent of the cells' ability to repair the photolesions caused by UV. Taken together, these data suggest that replication of damaged DNA also leads to critical events signaling for UV-induced cell death.
Collapse
|