1
|
Zhang M, Zeng Y, Wang F, Feng H, Liu Q, Li F, Zhao S, Zhao J, Liu Z, Zheng F, Liu H. Effects of the Nonstructural Protein-Nucleolar and Coiled-Body Phosphoprotein 1 Protein Interaction on rRNA Synthesis Through Telomeric Repeat-Binding Factor 2 Regulation Under Nucleolar Stress. AIDS Res Hum Retroviruses 2024; 40:408-416. [PMID: 38062753 DOI: 10.1089/aid.2023.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024] Open
Abstract
To investigate the effects and underlying molecular mechanisms of the interaction between the non-structural protein 1 (NS1) and nucleolar and coiled-body phosphoprotein 1 (NOLC1) on rRNA synthesis through nucleolar telomeric repeat-binding factor 2 (TRF2) under nucleolar stress in avian influenza A virus infection. The analysis of TRF2 ties into the exploration of ribosomal protein L11 (RPL11) and mouse double minute 2 (MDM2) because TRF2 has been found to interact with NOLC1, and the RPL11-MDM2 pathway plays an important role in nucleolar regulation and cellular processes. Both human embryonic kidney 293T cells and human lung adenocarcinoma A549 cells were transfected with the plasmids pCAGGS-HA and pCAGGS-HA-NS1, respectively. In addition, A549 cells were transfected with the plasmids pEGFP-N1, pEGFP-N1-NS1, and pDsRed2-N1-TRF2. The cell cycle was detected by flow cytometry, and coimmunoprecipitation was applied to examine the interactions between different proteins. The effect of NS1 on TRF2 was detected by immunoprecipitation, and the colocalization of NOLC1 and TRF2 or NS1 and TRF2 was visualized by immunofluorescence. Quantitative real-time PCR was conducted to detect the expression of the TRF2 and p21. There is a strong interaction between NOLC1 and TRF2, and the colocalization of NOLC1 and TRF2 in the nucleus. The protein expression of NOLC1 in A549-HA-NS1 cells was lower than that in A549-HA cells, which was accompanied by the upregulated protein expression of p53 in A549-HA-NS1 cells (all p < .05). TRF2 was scattered throughout the nucleus without clear nucleolar aggregation. RPL11 specifically interacted with MDM2 in the NS1 group, and expression of the p21 gene was significantly increased in the HA-NS1 group compared with the HA group (p < .01). NS1 protein can lead to the reduced aggregation of TRF2 in the nucleolus, inhibition of rRNA expression, and cell cycle blockade by interfering with the NOLC1 protein and generating nucleolar stress.
Collapse
Affiliation(s)
- Man Zhang
- School of Life Science, Liaoning University, Shenyang, China
| | - Yingyue Zeng
- School of Life Science, Liaoning University, Shenyang, China
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, China
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, China
| | - Fengchao Wang
- School of Life Science, Liaoning University, Shenyang, China
| | - Huawei Feng
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, China
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, China
- School of Pharmacy, Liaoning University, Shenyang, China
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drug, Shenyang, China
| | - Qingqing Liu
- School of Life Science, Liaoning University, Shenyang, China
| | - Feng Li
- School of Life Science, Liaoning University, Shenyang, China
| | - Shan Zhao
- School of Life Science, Liaoning University, Shenyang, China
| | - Jian Zhao
- School of Life Science, Liaoning University, Shenyang, China
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, China
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, China
- School of Pharmacy, Liaoning University, Shenyang, China
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drug, Shenyang, China
| | - Zhikui Liu
- Liaoning Huikang Testing and Evaluation Technology Co., Shenyang, China
| | - Fangliang Zheng
- School of Life Science, Liaoning University, Shenyang, China
| | - Hongsheng Liu
- Key Laboratory of Computational Simulation and Information Processing of Biomacromolecules of Liaoning, Shenyang, China
- Shenyang Key Laboratory of Computational Simulation and Information Processing of Biological Macromolecules, Shenyang, China
- School of Pharmacy, Liaoning University, Shenyang, China
- Liaoning Provincial Engineering Laboratory of Molecular Modeling and Design for Drug, Shenyang, China
| |
Collapse
|
2
|
Li X, An Z, Zhang W, Li F. Phase Separation: Direct and Indirect Driving Force for High-Order Chromatin Organization. Genes (Basel) 2023; 14:499. [PMID: 36833426 PMCID: PMC9956262 DOI: 10.3390/genes14020499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The multi-level spatial chromatin organization in the nucleus is closely related to chromatin activity. The mechanism of chromatin organization and remodeling attract much attention. Phase separation describes the biomolecular condensation which is the basis for membraneless compartments in cells. Recent research shows that phase separation is a key aspect to drive high-order chromatin structure and remodeling. In addition, chromatin functional compartmentalization in the nucleus which is formed by phase separation also plays an important role in overall chromatin structure. In this review, we summarized the latest work about the role of phase separation in spatial chromatin organization, focusing on direct and indirect effects of phase separation on 3D chromatin organization and its impact on transcription regulation.
Collapse
Affiliation(s)
- Xiaoli Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Department of Cell Biology and Genetics, Core Facility of Developmental Biology, Chongqing Medical University, Chongqing 400016, China
| | - Ziyang An
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Feifei Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Amankwaa B, Schoborg T, Labrador M. Drosophila insulator proteins exhibit in vivo liquid-liquid phase separation properties. Life Sci Alliance 2022; 5:5/12/e202201536. [PMID: 35853678 PMCID: PMC9297610 DOI: 10.26508/lsa.202201536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
Drosophila insulator proteins and the cohesin subunit Rad21 coalesce in vivo to form liquid-droplet condensates, suggesting that liquid–liquid phase separation mediates their function in 3D genome organization. Mounting evidence implicates liquid–liquid phase separation (LLPS), the condensation of biomolecules into liquid-like droplets in the formation and dissolution of membraneless intracellular organelles (MLOs). Cells use MLOs or condensates for various biological processes, including emergency signaling and spatiotemporal control over steady-state biochemical reactions and heterochromatin formation. Insulator proteins are architectural elements involved in establishing independent domains of transcriptional activity within eukaryotic genomes. In Drosophila, insulator proteins form nuclear foci known as insulator bodies in response to osmotic stress. However, the mechanism through which insulator proteins assemble into bodies is yet to be investigated. Here, we identify signatures of LLPS by insulator bodies, including high disorder tendency in insulator proteins, scaffold–client–dependent assembly, extensive fusion behavior, sphericity, and sensitivity to 1,6-hexanediol. We also show that the cohesin subunit Rad21 is a component of insulator bodies, adding to the known insulator protein constituents and γH2Av. Our data suggest a concerted role of cohesin and insulator proteins in insulator body formation and under physiological conditions. We propose a mechanism whereby these architectural proteins modulate 3D genome organization through LLPS.
Collapse
Affiliation(s)
- Bright Amankwaa
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| | - Todd Schoborg
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| | - Mariano Labrador
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
4
|
Schellenbauer A, Guilly MN, Grall R, Le Bars R, Paget V, Kortulewski T, Sutcu H, Mathé C, Hullo M, Biard D, Leteurtre F, Barroca V, Corre Y, Irbah L, Rass E, Theze B, Bertrand P, Demmers JAA, Guirouilh-Barbat J, Lopez BS, Chevillard S, Delic J. Phospho-Ku70 induced by DNA damage interacts with RNA Pol II and promotes the formation of phospho-53BP1 foci to ensure optimal cNHEJ. Nucleic Acids Res 2021; 49:11728-11745. [PMID: 34718776 PMCID: PMC8599715 DOI: 10.1093/nar/gkab980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/15/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
Canonical non-homologous end-joining (cNHEJ) is the prominent mammalian DNA double-strand breaks (DSBs) repair pathway operative throughout the cell cycle. Phosphorylation of Ku70 at ser27-ser33 (pKu70) is induced by DNA DSBs and has been shown to regulate cNHEJ activity, but the underlying mechanism remained unknown. Here, we established that following DNA damage induction, Ku70 moves from nucleoli to the sites of damage, and once linked to DNA, it is phosphorylated. Notably, the novel emanating functions of pKu70 are evidenced through the recruitment of RNA Pol II and concomitant formation of phospho-53BP1 foci. Phosphorylation is also a prerequisite for the dynamic release of Ku70 from the repair complex through neddylation-dependent ubiquitylation. Although the non-phosphorylable ala-Ku70 form does not compromise the formation of the NHEJ core complex per se, cells expressing this form displayed constitutive and stress-inducible chromosomal instability. Consistently, upon targeted induction of DSBs by the I-SceI meganuclease into an intrachromosomal reporter substrate, cells expressing pKu70, rather than ala-Ku70, are protected against the joining of distal DNA ends. Collectively, our results underpin the essential role of pKu70 in the orchestration of DNA repair execution in living cells and substantiated the way it paves the maintenance of genome stability.
Collapse
Affiliation(s)
- Amelie Schellenbauer
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Marie-Noelle Guilly
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Romain Grall
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Romain Le Bars
- Light Microscopy Facility, Imagerie-Gif, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Vincent Paget
- IRS[N]/PSE-SANTE/SERAMED/LRMed, 31, Av. De la Division Leclerc, 92260 Fontenay aux Roses, France
| | - Thierry Kortulewski
- Laboratoire de Radiopathologie, UMR Stabilité Génétique Cellules Souches et Radiations, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18 Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Haser Sutcu
- IRS[N]/PSE-SANTE/SERAMED/LRAcc, 31, Av. De la Division Leclerc, 92260 Fontenay aux Roses, France
| | - Cécile Mathé
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Marie Hullo
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Denis Biard
- Service d'étude des prions et maladies atypiques (SEPIA), DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - François Leteurtre
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Vilma Barroca
- Laboratoire Réparation et Transcription dans les cellules Souches, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Youenn Corre
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Lamya Irbah
- Plateforme de Microscopie, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U12745, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Emilie Rass
- Laboratoire de Réparation et Vieillissement; Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Benoit Theze
- Laboratoire de Réparation et Vieillissement; Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Pascale Bertrand
- Laboratoire de Réparation et Vieillissement; Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Jeroen A A Demmers
- Proteomics Center, Room Ee-679A | Faculty Building, Erasmus University Medical Center Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Josée Guirouilh-Barbat
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Bernard S Lopez
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Sylvie Chevillard
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Jozo Delic
- To whom correspondence should be addressed. Tel: +33 1 4654 7552;
| |
Collapse
|
5
|
Trigiante G, Blanes Ruiz N, Cerase A. Emerging Roles of Repetitive and Repeat-Containing RNA in Nuclear and Chromatin Organization and Gene Expression. Front Cell Dev Biol 2021; 9:735527. [PMID: 34722514 PMCID: PMC8552494 DOI: 10.3389/fcell.2021.735527] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
Genomic repeats have been intensely studied as regulatory elements controlling gene transcription, splicing and genome architecture. Our understanding of the role of the repetitive RNA such as the RNA coming from genomic repeats, or repetitive sequences embedded in mRNA/lncRNAs, in nuclear and cellular functions is instead still limited. In this review we discuss evidence supporting the multifaceted roles of repetitive RNA and RNA binding proteins in nuclear organization, gene regulation, and in the formation of dynamic membrane-less aggregates. We hope that our review will further stimulate research in the consolidating field of repetitive RNA biology.
Collapse
Affiliation(s)
| | | | - Andrea Cerase
- Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
6
|
Gupta S, Santoro R. Regulation and Roles of the Nucleolus in Embryonic Stem Cells: From Ribosome Biogenesis to Genome Organization. Stem Cell Reports 2020; 15:1206-1219. [PMID: 32976768 PMCID: PMC7724472 DOI: 10.1016/j.stemcr.2020.08.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
The nucleolus is the largest compartment of the eukaryotic cell's nucleus. It acts as a ribosome factory, thereby sustaining the translation machinery. The nucleolus is also the subnuclear compartment with the highest transcriptional activity in the cell, where hundreds of ribosomal RNA (rRNA) genes transcribe the overwhelming majority of RNAs. The structure and composition of the nucleolus change according to the developmental state. For instance, in embryonic stem cells (ESCs), rRNA genes display a hyperactive transcriptional state and open chromatin structure compared with differentiated cells. Increasing evidence indicates that the role of the nucleolus and rRNA genes might go beyond the control of ribosome biogenesis. One such role is linked to the genome architecture, since repressive domains are often located close to the nucleolus. This review highlights recent findings describing how the nucleolus is regulated in ESCs and its role in regulating ribosome biogenesis and genome organization for the maintenance of stem cell identity.
Collapse
Affiliation(s)
- Shivani Gupta
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, 8057 Zurich, Switzerland
| | - Raffaella Santoro
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
7
|
Estermann M, Huang YL, Septiadi D, Ritz D, Liang CY, Jacob F, Drasler B, Petri-Fink A, Heinzelmann-Schwarz V, Rothen-Rutishauser B. Patient-derived and artificial ascites have minor effects on MeT-5A mesothelial cells and do not facilitate ovarian cancer cell adhesion. PLoS One 2020; 15:e0241500. [PMID: 33270665 PMCID: PMC7714103 DOI: 10.1371/journal.pone.0241500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/07/2020] [Indexed: 12/02/2022] Open
Abstract
The presence of ascites in the peritoneal cavity leads to morphological and functional changes of the peritoneal mesothelial cell layer. Cells loose cell-cell interactions, rearrange their cytoskeleton, activate the production of fibronectin, and change their cell surface morphology in a proinflammatory environment. Moreover, ovarian cancer cell adhesion has been shown to be facilitated by these changes due to increased integrin- and CD44-mediated binding sites. In this study, the biological responsiveness of the human pleural mesothelial cell line MeT-5A to patient-derived and artificial ascites was studied in vitro and adhesion of ovarian cancer cells, i.e. SKOV-3 cells, investigated. Changes were mainly observed in cells exposed to artificial ascites containing higher cytokine concentrations than patient-derived ascites. Interestingly, reduced cell-cell interactions were already observed in untreated MeT-5A cells and effects on tight junction protein expression and permeability upon exposure to ascites were minor. Ascites induced upregulation of CDC42 effector protein 2 expression, which affects stress fiber formation, however significant F-actin reorganization was not observed. Moreover, fibronectin production remained unchanged. Analysis of mesothelial cell surface characteristics showed upregulated expression of intercellular adhesion molecule 1, slightly increased hyaluronic acid secretion and decreased microvillus expression upon exposure to ascites. Nevertheless, the observed changes were not sufficient to facilitate adhesion of SKOV-3 cells on MeT-5A cell layer. This study revealed that MeT-5A cells show a reduced biological responsiveness to the presence of ascites, in contrast to published studies on primary human peritoneal mesothelial cells.
Collapse
Affiliation(s)
- Manuela Estermann
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Yen-Lin Huang
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Danilo Ritz
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Ching-Yeu Liang
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Francis Jacob
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Barbara Drasler
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | | | | |
Collapse
|
8
|
Kumar N, Hori Y, Nishiura M, Kikuchi K. Rapid no-wash labeling of PYP-tag proteins with reactive fluorogenic ligands affords stable fluorescent protein conjugates for long-term cell imaging studies. Chem Sci 2020; 11:3694-3701. [PMID: 34094058 PMCID: PMC8152630 DOI: 10.1039/d0sc00499e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Covalent labeling systems that employ protein-tags or chemical probes to convert proteins into fluorescent conjugates are powerful tools for carrying out real time imaging and pulse-chase tracking studies that enable the spatiotemporal role of proteins in complex biological systems to be investigated. In this study, we have covalently modified a specific nucleophilic cysteine residue of the PYP-tag protein with weakly fluorescent α,β-unsaturated ketone (conjugate addition) and α-halomethyl ketone (SN2 reaction) acceptors to afford highly fluorescent PYP-tag-dimethylaminocoumarin (DMAC) conjugates, whose ligands are covalently bound to the PYP-protein through stable thioether linkers. A chloromethylketone derived DMAC-CMK reagent was found to afford the best kinetic and stability profile for labeling the PYP-tag in cellular systems, with in vitro studies demonstrating that PYP-DMAC-CMK conjugates exhibit excellent photostability and cellular stability profiles which enables them to be used for long-term protein imaging studies in cellular systems. The potential of using this no wash fluorescent labeling PYP-tag-DMAC system to visualise dividing cells undergoing mitosis and for imaging a PYP-tag fused telomere binding protein bound to chromatin in cell nuclei has been demonstrated.
Collapse
Affiliation(s)
- Naresh Kumar
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Yuichiro Hori
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
- Immunology Frontier Research Center, Osaka University Suita Osaka 565-0871 Japan
| | - Miyako Nishiura
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
- Immunology Frontier Research Center, Osaka University Suita Osaka 565-0871 Japan
- Quantum Information and Quantum Biology Division, Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
9
|
Genome Organization in and around the Nucleolus. Cells 2019; 8:cells8060579. [PMID: 31212844 PMCID: PMC6628108 DOI: 10.3390/cells8060579] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
The nucleolus is the largest substructure in the nucleus, where ribosome biogenesis takes place, and forms around the nucleolar organizer regions (NORs) that comprise ribosomal RNA (rRNA) genes. Each cell contains hundreds of rRNA genes, which are organized in three distinct chromatin and transcriptional states—silent, inactive and active. Increasing evidence indicates that the role of the nucleolus and rRNA genes goes beyond the control of ribosome biogenesis. Recent results highlighted the nucleolus as a compartment for the location and regulation of repressive genomic domains and, together with the nuclear lamina, represents the hub for the organization of the inactive heterochromatin. In this review, we aim to describe the crosstalk between the nucleolus and the rest of the genome and how distinct rRNA gene chromatin states affect nucleolus structure and are implicated in genome stability, genome architecture, and cell fate decision.
Collapse
|
10
|
Iarovaia OV, Minina EP, Sheval EV, Onichtchouk D, Dokudovskaya S, Razin SV, Vassetzky YS. Nucleolus: A Central Hub for Nuclear Functions. Trends Cell Biol 2019; 29:647-659. [PMID: 31176528 DOI: 10.1016/j.tcb.2019.04.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022]
Abstract
The nucleolus is the largest and most studied nuclear body, but its role in nuclear function is far from being comprehensively understood. Much work on the nucleolus has focused on its role in regulating RNA polymerase I (RNA Pol I) transcription and ribosome biogenesis; however, emerging evidence points to the nucleolus as an organizing hub for many nuclear functions, accomplished via the shuttling of proteins and nucleic acids between the nucleolus and nucleoplasm. Here, we discuss the cellular mechanisms affected by shuttling of nucleolar components, including the 3D organization of the genome, stress response, DNA repair and recombination, transcription regulation, telomere maintenance, and other essential cellular functions.
Collapse
Affiliation(s)
- Olga V Iarovaia
- Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France
| | - Elizaveta P Minina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eugene V Sheval
- LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Daria Onichtchouk
- Developmental Biology Unit, Department of Biology I, University of Freiburg, Hauptstrasse 1, D-79104 Freiburg, Germany
| | - Svetlana Dokudovskaya
- LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France; UMR8126, Université Paris-Sud, CNRS, Institut Gustave Roussy, 94805 Villejuif, France
| | - Sergey V Razin
- Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France; Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yegor S Vassetzky
- LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, 94805 Villejuif, France; Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; UMR8126, Université Paris-Sud, CNRS, Institut Gustave Roussy, 94805 Villejuif, France.
| |
Collapse
|
11
|
Yuan F, Xu C, Li G, Tong T. Nucleolar TRF2 attenuated nucleolus stress-induced HCC cell-cycle arrest by altering rRNA synthesis. Cell Death Dis 2018; 9:518. [PMID: 29725012 PMCID: PMC5938709 DOI: 10.1038/s41419-018-0572-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 01/14/2023]
Abstract
The nucleolus is an important organelle that is responsible for the biogenesis of ribosome RNA (rRNA) and ribosomal subunits assembly. It is also deemed to be the center of metabolic control, considering the critical role of ribosomes in protein translation. Perturbations of rRNA synthesis are closely related to cell proliferation and tumor progression. Telomeric repeat-binding factor 2 (TRF2) is a member of shelterin complex that is responsible for telomere DNA protection. Interestingly, it was recently reported to localize in the nucleolus of human cells in a cell-cycle-dependent manner, while the underlying mechanism and its role on the nucleolus remained unclear. In this study, we found that nucleolar and coiled-body phosphoprotein 1 (NOLC1), a nucleolar protein that is responsible for the nucleolus construction and rRNA synthesis, interacted with TRF2 and mediated the shuttle of TRF2 between the nucleolus and nucleus. Abating the expression of NOLC1 decreased the nucleolar-resident TRF2. Besides, the nucleolar TRF2 could bind rDNA and promoted rRNA transcription. Furthermore, in hepatocellular carcinoma (HCC) cell lines HepG2 and SMMC7721, TRF2 overexpression participated in the nucleolus stress-induced rRNA inhibition and cell-cycle arrest.
Collapse
Affiliation(s)
- Fuwen Yuan
- Research Center on Aging, Department of Medical Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chenzhong Xu
- Research Center on Aging, Department of Medical Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Guodong Li
- Research Center on Aging, Department of Medical Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Tanjun Tong
- Research Center on Aging, Department of Medical Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
12
|
Tchelidze P, Benassarou A, Kaplan H, O’Donohue MF, Lucas L, Terryn C, Rusishvili L, Mosidze G, Lalun N, Ploton D. Nucleolar sub-compartments in motion during rRNA synthesis inhibition: Contraction of nucleolar condensed chromatin and gathering of fibrillar centers are concomitant. PLoS One 2017; 12:e0187977. [PMID: 29190286 PMCID: PMC5708645 DOI: 10.1371/journal.pone.0187977] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/30/2017] [Indexed: 12/26/2022] Open
Abstract
The nucleolus produces the large polycistronic transcript (47S precursor) containing the 18S, 5.8S and 28S rRNA sequences and hosts most of the nuclear steps of pre-rRNA processing. Among numerous components it contains condensed chromatin and active rRNA genes which adopt a more accessible conformation. For this reason, it is a paradigm of chromosome territory organization. Active rRNA genes are clustered within several fibrillar centers (FCs), in which they are maintained in an open configuration by Upstream Binding Factor (UBF) molecules. Here, we used the reproducible reorganization of nucleolar components induced by the inhibition of rRNA synthesis by Actinomycin D (AMD) to address the steps of the spatiotemporal reorganization of FCs and nucleolar condensed chromatin. To reach that goal, we used two complementary approaches: i) time-lapse confocal imaging of cells expressing one or several GFP-tagged proteins (fibrillarin, UBF, histone H2B) and ii) ultrastructural identification of nucleolar components involved in the reorganization. Data obtained by time lapse confocal microscopy were analyzed through detailed 3D imaging. This allowed us to demonstrate that AMD treatment induces no fusion and no change in the relative position of the different nucleoli contained in one nucleus. In contrast, for each nucleolus, we observed step by step gathering and fusion of both FCs and nucleolar condensed chromatin. To analyze the reorganization of FCs and condensed chromatin at a higher resolution, we performed correlative light and electron microscopy electron microscopy (CLEM) imaging of the same cells. We demonstrated that threads of intranucleolar condensed chromatin are localized in a complex 3D network of vacuoles. Upon AMD treatment, these structures coalesce before migrating toward the perinucleolar condensed chromatin, to which they finally fuse. During their migration, FCs, which are all linked to ICC, are pulled by the latter to gather as caps disposed at the periphery of nucleoli.
Collapse
Affiliation(s)
- Pavel Tchelidze
- Faculty of Exact and Life Sciences, Department of Morphology, Tbilisi State University, Tbilisi, Georgia
| | - Aassif Benassarou
- EA 3804 (CRESTIC), Université de Reims Champagne Ardenne, Reims, France
| | - Hervé Kaplan
- Université de Reims Champagne Ardenne, Reims, France
| | - Marie-Françoise O’Donohue
- Laboratoire de Biologie Moléculaire Eukaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laurent Lucas
- EA 3804 (CRESTIC), Université de Reims Champagne Ardenne, Reims, France
| | - Christine Terryn
- Platform of Cellular and Tissular Imaging (PICT), Université de Reims Champagne Ardenne, Reims, France
| | - Levan Rusishvili
- Faculty of Exact and Life Sciences, Department of Morphology, Tbilisi State University, Tbilisi, Georgia
| | - Giorgi Mosidze
- Faculty of Exact and Life Sciences, Department of Morphology, Tbilisi State University, Tbilisi, Georgia
| | - Nathalie Lalun
- CNRS UMR 7369, Université de Reims Champagne Ardenne, Reims, France
| | - Dominique Ploton
- CNRS UMR 7369, Université de Reims Champagne Ardenne, Reims, France
| |
Collapse
|
13
|
Nucleolar and coiled-body phosphoprotein 1 (NOLC1) regulates the nucleolar retention of TRF2. Cell Death Discov 2017; 3:17043. [PMID: 28875039 PMCID: PMC5582526 DOI: 10.1038/cddiscovery.2017.43] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/24/2017] [Accepted: 06/03/2017] [Indexed: 01/24/2023] Open
Abstract
Telomeric repeat-binding factor 2 (TRF2) was reported to localize in the nucleolus of human cells in a cell cycle-dependent manner; however, the underlying mechanism remains unclear. Here, we found that nucleolar and coiled-body phosphoprotein 1 (NOLC1) interacted with TRF2 and mediated the shuttling of TRF2 between the nucleolus and nucleus in human 293T and HepG2 cells. Ablation of NOLC1 expression increased the number of nuclear TRF2 foci and decreased the nucleolar level of TRF2. Conversely, NOLC1 overexpression promoted the nucleolar accumulation of TRF2. NOLC1 overexpression also increased the number of 53BP1 foci and induced the DNA damage response. In addition, co-expression of TRF2 rescued NOLC1 overexpression-induced cell cycle arrest and apoptosis.
Collapse
|
14
|
Abstract
Nucleoli are formed on the basis of ribosomal genes coding for RNAs of ribosomal particles, but also include a great variety of other DNA regions. In this article, we discuss the characteristics of ribosomal DNA: the structure of the rDNA locus, complex organization and functions of the intergenic spacer, multiplicity of gene copies in one cell, selective silencing of genes and whole gene clusters, relation to components of nucleolar ultrastructure, specific problems associated with replication. We also review current data on the role of non-ribosomal DNA in the organization and function of nucleoli. Finally, we discuss probable causes preventing efficient visualization of DNA in nucleoli.
Collapse
|
15
|
The relationship between the nucleolus and cancer: Current evidence and emerging paradigms. Semin Cancer Biol 2015; 37-38:36-50. [PMID: 26721423 DOI: 10.1016/j.semcancer.2015.12.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/15/2015] [Accepted: 12/19/2015] [Indexed: 12/13/2022]
Abstract
The nucleolus is the most prominent nuclear substructure assigned to produce ribosomes; molecular machines that are responsible for carrying out protein synthesis. To meet the increased demand for proteins during cell growth and proliferation the cell must increase protein synthetic capacity by upregulating ribosome biogenesis. While larger nucleolar size and number have been recognized as hallmark features of many tumor types, recent evidence has suggested that, in addition to overproduction of ribosomes, decreased ribosome biogenesis as well as qualitative changes in this process could also contribute to tumor initiation and cancer progression. Furthermore, the nucleolus has become the focus of intense attention for its involvement in processes that are clearly unrelated to ribosome biogenesis such as sensing and responding to endogenous and exogenous stressors, maintenance of genome stability, regulation of cell-cycle progression, cellular senescence, telomere function, chromatin structure, establishment of nuclear architecture, global regulation of gene expression and biogenesis of multiple ribonucleoprotein particles. The fact that dysregulation of many of these fundamental cellular processes may contribute to the malignant phenotype suggests that normal functioning of the nucleolus safeguards against the development of cancer and indicates its potential as a therapeutic approach. Here we review the recent advances made toward understanding these newly-recognized nucleolar functions and their roles in normal and cancer cells, and discuss possible future research directions.
Collapse
|
16
|
Sun L, Tan R, Xu J, LaFace J, Gao Y, Xiao Y, Attar M, Neumann C, Li GM, Su B, Liu Y, Nakajima S, Levine AS, Lan L. Targeted DNA damage at individual telomeres disrupts their integrity and triggers cell death. Nucleic Acids Res 2015; 43:6334-6347. [PMID: 26082495 PMCID: PMC4513870 DOI: 10.1093/nar/gkv598] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/22/2015] [Accepted: 05/24/2015] [Indexed: 01/25/2023] Open
Abstract
Cellular DNA is organized into chromosomes and capped by a unique nucleoprotein structure, the telomere. Both oxidative stress and telomere shortening/dysfunction cause aging-related degenerative pathologies and increase cancer risk. However, a direct connection between oxidative damage to telomeric DNA, comprising <1% of the genome, and telomere dysfunction has not been established. By fusing the KillerRed chromophore with the telomere repeat binding factor 1, TRF1, we developed a novel approach to generate localized damage to telomere DNA and to monitor the real time damage response at the single telomere level. We found that DNA damage at long telomeres in U2OS cells is not repaired efficiently compared to DNA damage in non-telomeric regions of the same length in heterochromatin. Telomeric DNA damage shortens the average length of telomeres and leads to cell senescence in HeLa cells and cell death in HeLa, U2OS and IMR90 cells, when DNA damage at non-telomeric regions is undetectable. Telomere-specific damage induces chromosomal aberrations, including chromatid telomere loss and telomere associations, distinct from the damage induced by ionizing irradiation. Taken together, our results demonstrate that oxidative damage induces telomere dysfunction and underline the importance of maintaining telomere integrity upon oxidative damage.
Collapse
Affiliation(s)
- Luxi Sun
- School of Medicine, Tsinghua University, No. 1 Tsinghua Yuan, Haidian District, Beijing 100084, China University of Pittsburgh Cancer Institute; University of Pittsburgh School of Medicine; 5117 Centre Avenue, Pittsburgh, PA 15213, USA Department of Microbiology and Molecular Genetics; University of Pittsburgh School of Medicine; 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Rong Tan
- University of Pittsburgh Cancer Institute; University of Pittsburgh School of Medicine; 5117 Centre Avenue, Pittsburgh, PA 15213, USA Department of Microbiology and Molecular Genetics; University of Pittsburgh School of Medicine; 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Jianquan Xu
- University of Pittsburgh Cancer Institute; University of Pittsburgh School of Medicine; 5117 Centre Avenue, Pittsburgh, PA 15213, USA Departments of Medicine and Bioengineering, University of Pittsburgh, 3550 Terrace Street, 1218 Scaife Hall, Pittsburgh, PA 15261, USA
| | - Justin LaFace
- University of Pittsburgh Cancer Institute; University of Pittsburgh School of Medicine; 5117 Centre Avenue, Pittsburgh, PA 15213, USA Departments of Medicine and Bioengineering, University of Pittsburgh, 3550 Terrace Street, 1218 Scaife Hall, Pittsburgh, PA 15261, USA
| | - Ying Gao
- School of Medicine, Tsinghua University, No. 1 Tsinghua Yuan, Haidian District, Beijing 100084, China University of Pittsburgh Cancer Institute; University of Pittsburgh School of Medicine; 5117 Centre Avenue, Pittsburgh, PA 15213, USA Department of Microbiology and Molecular Genetics; University of Pittsburgh School of Medicine; 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Yanchun Xiao
- University of Pittsburgh Cancer Institute; University of Pittsburgh School of Medicine; 5117 Centre Avenue, Pittsburgh, PA 15213, USA Department of Microbiology and Molecular Genetics; University of Pittsburgh School of Medicine; 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Myriam Attar
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine. W1340 Biomedical Science Tower 3, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Carola Neumann
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine. W1340 Biomedical Science Tower 3, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Guo-Min Li
- School of Medicine, Tsinghua University, No. 1 Tsinghua Yuan, Haidian District, Beijing 100084, China Graduate Center for Toxicology, Markey Cancer Center, University of Kentucky College of Medicine, 1905 V.A. Drive, 306 Health Science Research Building, Lexington, KY 40536, USA
| | - Bing Su
- Xiangya Hospital, Central South University, Changsha, 410000, China Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China Department of Immunobiology and Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yang Liu
- University of Pittsburgh Cancer Institute; University of Pittsburgh School of Medicine; 5117 Centre Avenue, Pittsburgh, PA 15213, USA Departments of Medicine and Bioengineering, University of Pittsburgh, 3550 Terrace Street, 1218 Scaife Hall, Pittsburgh, PA 15261, USA
| | - Satoshi Nakajima
- University of Pittsburgh Cancer Institute; University of Pittsburgh School of Medicine; 5117 Centre Avenue, Pittsburgh, PA 15213, USA Department of Microbiology and Molecular Genetics; University of Pittsburgh School of Medicine; 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Arthur S Levine
- University of Pittsburgh Cancer Institute; University of Pittsburgh School of Medicine; 5117 Centre Avenue, Pittsburgh, PA 15213, USA Department of Microbiology and Molecular Genetics; University of Pittsburgh School of Medicine; 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Li Lan
- University of Pittsburgh Cancer Institute; University of Pittsburgh School of Medicine; 5117 Centre Avenue, Pittsburgh, PA 15213, USA Department of Microbiology and Molecular Genetics; University of Pittsburgh School of Medicine; 523 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA 15219, USA
| |
Collapse
|
17
|
Abstract
The nucleolus was one of the first subcellular organelles to be isolated from the cell. The advent of modern proteomic techniques has resulted in the identification of thousands of proteins in this organelle, and live cell imaging technology has allowed the study of the dynamics of these proteins. However, the limitations of current nucleolar isolation methods hinder the further exploration of this structure. In particular, these methods require the use of a large number of cells and tedious procedures. In this chapter we describe a new and improved nucleolar isolation method for cultured adherent cells. In this method cells are snap-frozen before direct sonication and centrifugation onto a sucrose cushion. The nucleoli can be obtained within a time as short as 20 min, and the high yield allows the use of less starting material. As a result, this method can capture rapid biochemical changes in nucleoli by freezing the cells at a precise time, hence faithfully reflecting the protein composition of nucleoli at the specified time point. This protocol will be useful for proteomic studies of dynamic events in the nucleolus and for better understanding of the biology of mammalian cells.
Collapse
Affiliation(s)
- Zhou Fang Li
- Department of Biology, South University of Science and Technology of China, 1088 Xueyuan Blvd., Nanshan, Shenzhen, Guangdong, P.R. China,
| | | |
Collapse
|
18
|
Figueroa RI, Cuadrado A, Stüken A, Rodríguez F, Fraga S. Ribosomal DNA Organization Patterns within the Dinoflagellate Genus Alexandrium as Revealed by FISH: Life Cycle and Evolutionary Implications. Protist 2014; 165:343-63. [DOI: 10.1016/j.protis.2014.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 10/25/2022]
|
19
|
Nucleolar organization, ribosomal DNA array stability, and acrocentric chromosome integrity are linked to telomere function. PLoS One 2014; 9:e92432. [PMID: 24662969 PMCID: PMC3963894 DOI: 10.1371/journal.pone.0092432] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/21/2014] [Indexed: 12/16/2022] Open
Abstract
The short arms of the ten acrocentric human chromosomes share several repetitive DNAs, including ribosomal RNA genes (rDNA). The rDNA arrays correspond to nucleolar organizing regions that coalesce each cell cycle to form the nucleolus. Telomere disruption by expressing a mutant version of telomere binding protein TRF2 (dnTRF2) causes non-random acrocentric fusions, as well as large-scale nucleolar defects. The mechanisms responsible for acrocentric chromosome sensitivity to dysfunctional telomeres are unclear. In this study, we show that TRF2 normally associates with the nucleolus and rDNA. However, when telomeres are crippled by dnTRF2 or RNAi knockdown of TRF2, gross nucleolar and chromosomal changes occur. We used the controllable dnTRF2 system to precisely dissect the timing and progression of nucleolar and chromosomal instability induced by telomere dysfunction, demonstrating that nucleolar changes precede the DNA damage and morphological changes that occur at acrocentric short arms. The rDNA repeat arrays on the short arms decondense, and are coated by RNA polymerase I transcription binding factor UBF, physically linking acrocentrics to one another as they become fusogenic. These results highlight the importance of telomere function in nucleolar stability and structural integrity of acrocentric chromosomes, particularly the rDNA arrays. Telomeric stress is widely accepted to cause DNA damage at chromosome ends, but our findings suggest that it also disrupts chromosome structure beyond the telomere region, specifically within the rDNA arrays located on acrocentric chromosomes. These results have relevance for Robertsonian translocation formation in humans and mechanisms by which acrocentric-acrocentric fusions are promoted by DNA damage and repair.
Collapse
|
20
|
Quin JE, Devlin JR, Cameron D, Hannan KM, Pearson RB, Hannan RD. Targeting the nucleolus for cancer intervention. Biochim Biophys Acta Mol Basis Dis 2014; 1842:802-16. [PMID: 24389329 DOI: 10.1016/j.bbadis.2013.12.009] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/17/2013] [Indexed: 12/17/2022]
Abstract
The contribution of the nucleolus to cancer is well established with respect to its traditional role in facilitating ribosome biogenesis and proliferative capacity. More contemporary studies however, infer that nucleoli contribute a much broader role in malignant transformation. Specifically, extra-ribosomal functions of the nucleolus position it as a central integrator of cellular proliferation and stress signaling, and are emerging as important mechanisms for modulating how oncogenes and tumor suppressors operate in normal and malignant cells. The dependence of certain tumor cells to co-opt nucleolar processes to maintain their cancer phenotypes has now clearly been demonstrated by the application of small molecule inhibitors of RNA Polymerase I to block ribosomal DNA transcription and disrupt nucleolar function (Bywater et al., 2012 [1]). These drugs, which selectively kill tumor cells in vivo while sparing normal cells, have now progressed to clinical trials. It is likely that we have only just begun to scratch the surface of the potential of the nucleolus as a new target for cancer therapy, with "suppression of nucleolar stress" representing an emerging "hallmark" of cancer. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Jaclyn E Quin
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer R Devlin
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Donald Cameron
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Kate M Hannan
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Richard B Pearson
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Ross D Hannan
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia; School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
21
|
Abstract
As the most prominent sub-nuclear compartment in the interphase nucleus and the site of ribosome biogenesis, the nucleolus synthesizes and processes rRNA and also assembles ribosomal subunits. Though several lines of research in recent years have indicated that the nucleolus might have additional functions-such as the assembling of signal recognition particles, the processing of mRNA, tRNA and telomerase activities, and regulating the cell cycle-proteomic analyses of the nucleolus in three representative eukaryotic species has shown that a plethora of proteins either have no association with ribosome biogenesis or are of presently unknown function. This phenomenon further indicates that the composition and function of the nucleolus is far more complicated than previously thought. Meanwhile, the available nucleolar proteome databases has provided new approaches and led to remarkable progress in understanding the nucleolus. Here, we have summarized recent advances in the study of the nucleolus, including new discoveries of its structure, function, genomics/proteomics as well as its origin and evolution. Moreover, we highlight several of the important unresolved issues in this field.
Collapse
|
22
|
Liang YM, Wang X, Ramalingam R, So KY, Lam YW, Li ZF. Novel nucleolar isolation method reveals rapid response of human nucleolar proteomes to serum stimulation. J Proteomics 2012; 77:521-30. [DOI: 10.1016/j.jprot.2012.09.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/23/2012] [Accepted: 09/24/2012] [Indexed: 12/31/2022]
|
23
|
Rosa-Garrido M, Ceballos L, Alonso-Lecue P, Abraira C, Delgado MD, Gandarillas A. A cell cycle role for the epigenetic factor CTCF-L/BORIS. PLoS One 2012; 7:e39371. [PMID: 22724006 PMCID: PMC3378572 DOI: 10.1371/journal.pone.0039371] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 05/19/2012] [Indexed: 11/19/2022] Open
Abstract
CTCF is a ubiquitous epigenetic regulator that has been proposed as a master keeper of chromatin organisation. CTCF-like, or BORIS, is thought to antagonise CTCF and has been found in normal testis, ovary and a large variety of tumour cells. The cellular function of BORIS remains intriguing although it might be involved in developmental reprogramming of gene expression patterns. We here unravel the expression of CTCF and BORIS proteins throughout human epidermis. While CTCF is widely distributed within the nucleus, BORIS is confined to the nucleolus and other euchromatin domains. Nascent RNA experiments in primary keratinocytes revealed that endogenous BORIS is present in active transcription sites. Interestingly, BORIS also localises to interphase centrosomes suggesting a role in the cell cycle. Blocking the cell cycle at S phase or mitosis, or causing DNA damage, produced a striking accumulation of BORIS. Consistently, ectopic expression of wild type or GFP- BORIS provoked a higher rate of S phase cells as well as genomic instability by mitosis failure. Furthermore, down-regulation of endogenous BORIS by specific shRNAs inhibited both RNA transcription and cell cycle progression. The results altogether suggest a role for BORIS in coordinating S phase events with mitosis.
Collapse
Affiliation(s)
- Manuel Rosa-Garrido
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, Santander, Spain
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, SODERCAN, Santander, Spain
| | - Laura Ceballos
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, Santander, Spain
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, SODERCAN, Santander, Spain
| | - Pilar Alonso-Lecue
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, Santander, Spain
| | - Cristina Abraira
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, SODERCAN, Santander, Spain
| | - M. Dolores Delgado
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, SODERCAN, Santander, Spain
| | - Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Marqués de Valdecilla-Instituto de Formación e Investigación Marqués de Valdecilla, Santander, Spain
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, SODERCAN, Santander, Spain
- Institut National de la Santé et de la Recherche Médicale, ADR Languedoc-Roussillon, Montpellier, France
| |
Collapse
|
24
|
Park JH, Sihn CR, Lee YS, Lee SJ, Kim SH. Depletion of Neuroguidin/CANu1 sensitizes human osteosarcoma U2OS cells to doxorubicin. BMB Rep 2011; 44:46-51. [DOI: 10.5483/bmbrep.2011.44.1.46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
25
|
Zhdanova NS, Minina JM, Karamysheva TV, Rubtsov NB, Londono-Vallejo JA. The structure of long telomeres in chromosomes of the Iberian shrew. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410090188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Stimpson KM, Song IY, Jauch A, Holtgreve-Grez H, Hayden KE, Bridger JM, Sullivan BA. Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes. PLoS Genet 2010; 6. [PMID: 20711355 PMCID: PMC2920838 DOI: 10.1371/journal.pgen.1001061] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 07/12/2010] [Indexed: 01/05/2023] Open
Abstract
Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the α-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extra-chromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same α-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment. Endogenous human centromeres are defined by large arrays of α-satellite DNA. A portion of each α-satellite array is assembled into CENP-A chromatin, the structural and functional platform for kinetochore formation. Most chromosomes are monocentric, meaning they have a single centromere. However, genome rearrangement can produce chromosomes with two centromeres (dicentrics). In most organisms, dicentrics typically break during cell division; however, dicentric human chromosomes can be stable in mitosis and meiosis. This stability reflects centromere inactivation, a poorly understood phenomenon in which one centromere is functionally silenced. To explore molecular and genomic events that occur at the time of dicentric formation, we describe a cell-based system to create dicentric human chromosomes and monitor their behavior after formation. Such dicentrics can experience several fates, including centromere inactivation, breakage, or maintaining two functional centromeres. Unexpectedly, we also find that dicentrics with large (>20Mb) inter-centromeric distances are stable through at least 20 cell divisions. Our results highlight similarities and differences in dicentric behavior between humans and model organisms, and they provide evidence for one mechanism of centromere inactivation by centromeric deletion in some dicentrics. The ability to create dicentric human chromosomes provides a system to test other mechanisms of centromere disassembly and dicentric chromosome stability.
Collapse
Affiliation(s)
- Kaitlin M. Stimpson
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
| | - Ihn Young Song
- Department of Genetics and Genomics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Anna Jauch
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Heidi Holtgreve-Grez
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Karen E. Hayden
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
| | - Joanna M. Bridger
- Laboratory of Nuclear and Genomic Health, Centre for Cell and Chromosome Biology, Division of Biosciences, Brunel University, Uxbridge, United Kingdom
| | - Beth A. Sullivan
- Duke Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
27
|
Uhlírová R, Horáková AH, Galiová G, Legartová S, Matula P, Fojtová M, Varecha M, Amrichová J, Vondrácek J, Kozubek S, Bártová E. SUV39h- and A-type lamin-dependent telomere nuclear rearrangement. J Cell Biochem 2010; 109:915-26. [PMID: 20069564 DOI: 10.1002/jcb.22466] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Telomeres are specialized chromatin structures that are situated at the end of linear chromosomes and play an important role in cell senescence and immortalization. Here, we investigated whether changes in histone signature influence the nuclear arrangement and positioning of telomeres. Analysis of mouse embryonic fibroblasts revealed that telomeres were organized into specific clusters that partially associated with centromeric clusters. This nuclear arrangement was influenced by deficiency of the histone methyltransferase SUV39h, LMNA deficiency, and the histone deacetylase inhibitor Trichostatin A (TSA). Similarly, nuclear radial distributions of telomeric clusters were preferentially influenced by TSA, which caused relocation of telomeres closer to the nuclear center. Telomeres also co-localized with promyelocytic leukemia bodies (PML). This association was increased by SUV39h deficiency and decreased by LMNA deficiency. These differences could be explained by differing levels of the telomerase subunit, TERT, in SUV39h- and LMNA-deficient fibroblasts. Taken together, our data show that SUV39h and A-type lamins likely play a key role in telomere maintenance and telomere nuclear architecture.
Collapse
Affiliation(s)
- Radka Uhlírová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-612 65 Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Identification of target genes for wild type and truncated HMGA2 in mesenchymal stem-like cells. BMC Cancer 2010; 10:329. [PMID: 20576167 PMCID: PMC2912264 DOI: 10.1186/1471-2407-10-329] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 06/25/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The HMGA2 gene, coding for an architectural transcription factor involved in mesenchymal embryogenesis, is frequently deranged by translocation and/or amplification in mesenchymal tumours, generally leading to over-expression of shortened transcripts and a truncated protein. METHODS To identify pathways that are affected by sarcoma-associated variants of HMGA2, we have over-expressed wild type and truncated HMGA2 protein in an immortalized mesenchymal stem-like cell (MSC) line, and investigated the localisation of these proteins and their effects on differentiation and gene expression patterns. RESULTS Over-expression of both transgenes blocked adipogenic differentiation of these cells, and microarray analysis revealed clear changes in gene expression patterns, more pronounced for the truncated protein. Most of the genes that showed altered expression in the HMGA2-overexpressing cells fell into the group of NF-kappaB-target genes, suggesting a central role for HMGA2 in this pathway. Of particular interest was the pronounced up-regulation of SSX1, already implicated in mesenchymal oncogenesis and stem cell functions, only in cells expressing the truncated protein. Furthermore, over-expression of both HMGA2 forms was associated with a strong repression of the epithelial marker CD24, consistent with the reported low level of CD24 in cancer stem cells. CONCLUSIONS We conclude that the c-terminal part of HMGA2 has important functions at least in mesenchymal cells, and the changes in gene expression resulting from overexpressing a protein lacking this domain may add to the malignant potential of sarcomas.
Collapse
|
29
|
Dvorácková M, Rossignol P, Shaw PJ, Koroleva OA, Doonan JH, Fajkus J. AtTRB1, a telomeric DNA-binding protein from Arabidopsis, is concentrated in the nucleolus and shows highly dynamic association with chromatin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:637-49. [PMID: 19947985 DOI: 10.1111/j.1365-313x.2009.04094.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
AtTRB1, 2 and 3 are members of the SMH (single Myb histone) protein family, which comprises double-stranded DNA-binding proteins that are specific to higher plants. They are structurally conserved, containing a Myb domain at the N-terminus, a central H1/H5-like domain and a C-terminally located coiled-coil domain. AtTRB1, 2 and 3 interact through their Myb domain specifically with telomeric double-stranded DNA in vitro, while the central H1/H5-like domain interacts non-specifically with DNA sequences and mediates protein-protein interactions. Here we show that AtTRB1, 2 and 3 preferentially localize to the nucleus and nucleolus during interphase. Both the central H1/H5-like domain and the Myb domain from AtTRB1 can direct a GFP fusion protein to the nucleus and nucleolus. AtTRB1-GFP localization is cell cycle-regulated, as the level of nuclear-associated GFP diminishes during mitotic entry and GFP progressively re-associates with chromatin during anaphase/telophase. Using fluorescence recovery after photobleaching and fluorescence loss in photobleaching, we determined the dynamics of AtTRB1 interactions in vivo. The results reveal that AtTRB1 interaction with chromatin is regulated at two levels at least, one of which is coupled with cell-cycle progression, with the other involving rapid exchange.
Collapse
Affiliation(s)
- Martina Dvorácková
- Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | | | | | | | | | |
Collapse
|
30
|
Nittis T, Guittat L, LeDuc RD, Dao B, Duxin JP, Rohrs H, Townsend RR, Stewart SA. Revealing novel telomere proteins using in vivo cross-linking, tandem affinity purification, and label-free quantitative LC-FTICR-MS. Mol Cell Proteomics 2010; 9:1144-56. [PMID: 20097687 DOI: 10.1074/mcp.m900490-mcp200] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Telomeres are DNA-protein structures that protect chromosome ends from the actions of the DNA repair machinery. When telomeric integrity is compromised, genomic instability ensues. Considerable effort has focused on identification of telomere-binding proteins and elucidation of their functions. To date, protein identification has relied on classical immunoprecipitation and mass spectrometric approaches, primarily under conditions that favor isolation of proteins with strong or long lived interactions that are present at sufficient quantities to visualize by SDS-PAGE. To facilitate identification of low abundance and transiently associated telomere-binding proteins, we developed a novel approach that combines in vivo protein-protein cross-linking, tandem affinity purification, and stringent sequential endoprotease digestion. Peptides were identified by label-free comparative nano-LC-FTICR-MS. Here, we expressed an epitope-tagged telomere-binding protein and utilized a modified chromatin immunoprecipitation approach to cross-link associated proteins. The resulting immunoprecipitant contained telomeric DNA, establishing that this approach captures bona fide telomere binding complexes. To identify proteins present in the immunocaptured complexes, samples were reduced, alkylated, and digested with sequential endoprotease treatment. The resulting peptides were purified using a microscale porous graphite stationary phase and analyzed using nano-LC-FTICR-MS. Proteins enriched in cells expressing HA-FLAG-TIN2 were identified by label-free quantitative analysis of the FTICR mass spectra from different samples and ion trap tandem mass spectrometry followed by database searching. We identified all of the proteins that constitute the telomeric shelterin complex, thus validating the robustness of this approach. We also identified 62 novel telomere-binding proteins. These results demonstrate that DNA-bound protein complexes, including those present at low molar ratios, can be identified by this approach. The success of this approach will allow us to create a more complete understanding of telomere maintenance and have broad applicability.
Collapse
Affiliation(s)
- Thalia Nittis
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Tsai RYL. Nucleolar modulation of TRF1: a dynamic way to regulate telomere and cell cycle by nucleostemin and GNL3L. Cell Cycle 2009; 8:2912-6. [PMID: 19713769 DOI: 10.4161/cc.8.18.9543] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chromosomal ends are protected by a high-order structure called telomere. Maintenance of correct telomere length and structure is critically important for the viability of both dividing and non-dividing cells. Notably, targeted deletion of a component of the multi-protein telomere-capping complex, TRF1 (telomeric repeat binding factor 1), causes lethality at embryonic day 5-6 without apparent telomere deficiency, raising the possibility that TRF1 may also moonlight outside the telomere. Further reinforcing the extra-telomeric tie of TRF1, two studies from our group have reported the findings that TRF1 can be bound and modulated by two nucleolar GTP-binding proteins, nucleostemin (NS) and guanine nucleotide binding protein-like 3-like (GNL3L), which exhibit apparently opposite effects on the protein degradation of TRF1. In particular, GNL3L is able to stabilize TRF1 protein during mitosis and promote the metaphase-to-anaphase transition. This manuscript extends the discussion on how this GNL3L-mediated TRF1 regulation creates a novel dynamic control on telomere and cell cycle, and extrapolates its evolutionary significance by contrasting the activities of NS and GNL3L.
Collapse
Affiliation(s)
- Robert Y L Tsai
- Center for Cancer and Stem Cell Biology, Alkek Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX, USA.
| |
Collapse
|
32
|
Dejmek J, Iglehart JD, Lazaro JB. DNA-dependent protein kinase (DNA-PK)-dependent cisplatin-induced loss of nucleolar facilitator of chromatin transcription (FACT) and regulation of cisplatin sensitivity by DNA-PK and FACT. Mol Cancer Res 2009; 7:581-91. [PMID: 19372586 DOI: 10.1158/1541-7786.mcr-08-0049] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Both the Ku subunit of the DNA-dependent protein kinase (DNA-PK) and the facilitator of chromatin transcription (FACT) complex reportedly bind cisplatin-DNA adducts. For this study, we developed an immunocytochemical assay based on detergent extraction allowing unveiling nucleolar subpopulations of proteins present in both the nucleoplasm and the nucleolus. Immunofluorescence analysis in various human cancer cell lines and immunoblotting of isolated nucleoli show that DNA-PK catalytic subunit (DNA-PKcs), Ku86, the Werner syndrome protein (WRN), and the structure-specific recognition protein 1 (SSRP1) subunit of FACT colocalize in the nucleolus and exit the nucleolus after cisplatin treatment. Nucleolar localization of Ku is also lost after gamma or UV irradiation and exposure to DNA-damaging drugs, such as actinomycin D, mitomycin C, hydroxyurea, and doxorubicin. Ku86 and WRN leave the nucleolus after exposure to low (>1 microg/mL) doses of cisplatin. In contrast, the SSRP1 association with the nucleolus was disrupted only by high (50-100 microg/mL) doses of cisplatin. Both cisplatin-induced loss of nucleolar SSRP1 and DNA-PK activation are suppressed by pretreatment of the cells with wortmannin or the DNA-PK inhibitor NU7026 but not by the phosphatidylinositol 3-kinase inhibitor LY294002. In the same conditions, kinase inhibitors did not alter the exit of DNA-PKcs and WRN, suggesting that different mechanisms regulate the exit of DNA-PK/WRN and FACT from the nucleolus. Furthermore, RNA silencing of DNA-PKcs blocked the cisplatin-induced exit of nucleolar SSRP1. Finally, silencing of DNA-PKcs or SSRP1 by short hairpin RNA significantly increased the sensitivity of cancer cells to cisplatin.
Collapse
Affiliation(s)
- Janna Dejmek
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|
33
|
Nuclear Akt interacts with B23/NPM and protects it from proteolytic cleavage, enhancing cell survival. Proc Natl Acad Sci U S A 2008; 105:16584-9. [PMID: 18931307 DOI: 10.1073/pnas.0807668105] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
B23/NPM is a major nucleolar phosphoprotein that has a critical role in cell proliferation and cell death. Here, we show that it forms a complex with Akt on growth factor (GF) stimulation in both the cytoplasm and the nucleus, for which Akt activation is indispensable. The C terminus of B23 (239-294 residues) potently binds pleckstrin homology (PH) domain of Akt. Akt binding to B23 protects it from proteolytic degradation by caspase-3, leading to the up-regulation of cell survival. Interestingly, unsumoylated B23 K263R, but not wild-type B23, strongly interacts with Akt in the nucleoplasm in the absence of GFs. Furthermore, we show that Akt2, but not other isoforms, specifically regulates B23 sumoylation and protein stability. Also, nuclear Akt regulates the cell cycle progression activity of B23. Therefore, our findings support that nuclear Akt binds and stabilizes B23 in the nucleoplasm, and regulates its activities in cell survival and cell cycle.
Collapse
|
34
|
Rubtsov NB, Karamisheva TV, Minina YM, Zhdanova NS. Three-dimensional organization of interphase fibroblast nuclei in two closely related shrew species (Sorex granarius and Sorex araneus) differing in the structures of their chromosome termini. ACTA ACUST UNITED AC 2008. [DOI: 10.1134/s1990519x08030024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Medugno L, Florio F, Cesaro E, Grosso M, Lupo A, Izzo P, Costanzo P. Differential expression and cellular localization of ZNF224 and ZNF255, two isoforms of the Krüppel-like zinc-finger protein family. Gene 2007; 403:125-31. [PMID: 17900823 DOI: 10.1016/j.gene.2007.07.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 07/25/2007] [Accepted: 07/31/2007] [Indexed: 11/29/2022]
Abstract
We previously reported that ZNF224, a novel Krüppel-associated box-containing zinc-finger protein, represses aldolase A gene transcription by interacting with the KAP-1 co-repressor. Using northern blot and PCR procedures, we now demonstrate that the transcript encoding ZNF255 is a ZNF224 isoform and that the corresponding mRNAs are differentially expressed in human adult and foetal tissues. Moreover, transient transfection of recombinant ZNF224 and ZNF255 proteins and chromatin-immunoprecipitation assays indicate that ZNF224 binds the negative regulatory element of the aldolase A gene (AldA-NRE) and inhibits transcription more efficiently than ZNF255. Finally, ZNF224 was homogeneously distributed in the nucleus, whereas its isoform ZNF255 was identified in subnuclear structures in association with nucleoli, and also in the cytoplasm. The different repression of transcription and the different cellular localization of ZNF224 and ZNF255 suggest these proteins exert different biological role.
Collapse
Affiliation(s)
- Lina Medugno
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli "Federico II", Via S. Pansini 5, 80131 Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Telomeres are among the most important structures in eukaryotic cells. Creating the physical ends of linear chromosomes, they play a crucial role in maintaining genome stability, control of cell division, cell growth and senescence. In vertebrates, telomeres consist of G-rich repetitive DNA sequences (TTAGGG)n and specific proteins, creating a specialized structure called the telosome that through mutual interactions with many other factors in the cell give rise to dynamic regulation of chromosome maintenance. In this review, we survey the structural and mechanistic aspects of telomere length regulation and how these processes lead to alterations in normal and immortal cell growth.
Collapse
Affiliation(s)
- M Matulić
- Ruder Bosković Institute, Department of Molecular Biology, Zagreb, Croatia
| | | | | |
Collapse
|
37
|
Wong LH, Brettingham-Moore KH, Chan L, Quach JM, Anderson MA, Northrop EL, Hannan R, Saffery R, Shaw ML, Williams E, Choo KHA. Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genes Dev 2007; 17:1146-60. [PMID: 17623812 PMCID: PMC1933521 DOI: 10.1101/gr.6022807] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Accepted: 04/27/2007] [Indexed: 11/24/2022]
Abstract
The centromere is a complex structure, the components and assembly pathway of which remain inadequately defined. Here, we demonstrate that centromeric alpha-satellite RNA and proteins CENPC1 and INCENP accumulate in the human interphase nucleolus in an RNA polymerase I-dependent manner. The nucleolar targeting of CENPC1 and INCENP requires alpha-satellite RNA, as evident from the delocalization of both proteins from the nucleolus in RNase-treated cells, and the nucleolar relocalization of these proteins following alpha-satellite RNA replenishment in these cells. Using protein truncation and in vitro mutagenesis, we have identified the nucleolar localization sequences on CENPC1 and INCENP. We present evidence that CENPC1 is an RNA-associating protein that binds alpha-satellite RNA by an in vitro binding assay. Using chromatin immunoprecipitation, RNase treatment, and "RNA replenishment" experiments, we show that alpha-satellite RNA is a key component in the assembly of CENPC1, INCENP, and survivin (an INCENP-interacting protein) at the metaphase centromere. Our data suggest that centromere satellite RNA directly facilitates the accumulation and assembly of centromere-specific nucleoprotein components at the nucleolus and mitotic centromere, and that the sequestration of these components in the interphase nucleolus provides a regulatory mechanism for their timely release into the nucleoplasm for kinetochore assembly at the onset of mitosis.
Collapse
Affiliation(s)
- Lee H Wong
- Chromosome and Chromatin Research Laboratory, Murdoch Children's Research Institute & Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang S, Hemmerich P, Grosse F. Centrosomal localization of DNA damage checkpoint proteins. J Cell Biochem 2007; 101:451-65. [PMID: 17171639 DOI: 10.1002/jcb.21195] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During mitosis, the phosphatidylinositol-3 (PI-3) family-related DNA damage checkpoint kinases ATM and ATR were found on the centrosomes of human cells. ATRIP, an interaction partner of ATR, as well as Chk1 and Chk2, the downstream targets of ATR or ATM, were also localized to the centrosomes. Surprisingly, the DNA-PK inhibitor vanillin enhanced the level of ATM on centrosomes. Accordingly, DNA-PKcs, the catalytic subunit of DNA-PK, was also found on the centrosomes. Vanillin altered the phosphorylation of Chk2 in the centrosomes and in whole cell extracts. Nucleoplasmic ATM co-immunoprecipitated with Ku70/86, the DNA binding subunits of DNA-PK, while vanillin diminished this association. Vanillin did not affect microtubule polymerization at the centrosomes but, surprisingly, caused a transient enhancement of alpha-tubulin foci in the nucleus. Interestingly, gamma-tubulin was also present in the nucleus and co-immunoprecipitated with ATR or BRCA1. DNA damage led to a reduction of the mentioned checkpoint proteins on the centrosomes but increased the level of gamma-tubulin at this organelle. Taken together, these results indicate that DNA damage checkpoint proteins may control the formation of gamma-tubulin and/or the kinetics of microtubule formation at the centrosomes, and thereby couple them to the DNA damage response.
Collapse
|
39
|
Torrano V, Navascués J, Docquier F, Zhang R, Burke LJ, Chernukhin I, Farrar D, León J, Berciano MT, Renkawitz R, Klenova E, Lafarga M, Delgado MD. Targeting of CTCF to the nucleolus inhibits nucleolar transcription through a poly(ADP-ribosyl)ation-dependent mechanism. J Cell Sci 2006; 119:1746-59. [PMID: 16595548 DOI: 10.1242/jcs.02890] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multiple functions have been reported for the transcription factor and candidate tumour suppressor, CTCF. Among others, they include regulation of cell growth, differentiation and apoptosis, enhancer-blocking activity and control of imprinted genes. CTCF is usually localized in the nucleus and its subcellular distribution during the cell cycle is dynamic; CTCF was found associated with mitotic chromosomes and the midbody, suggesting different roles for CTCF at different stages of the cell cycle. Here we report the nucleolar localization of CTCF in several experimental model systems. Translocation of CTCF from nucleoplasm to the nucleolus was observed after differentiation of K562 myeloid cells and induction of apoptosis in MCF7 breast cancer cells. CTCF was also found in the nucleoli in terminally differentiated rat trigeminal ganglion neurons. Thus our data show that nucleolar localization of CTCF is associated with growth arrest. Interestingly, the 180 kDa poly(ADP-ribosyl)ated isoform of CTCF was predominantly found in the nucleoli fractions. By transfecting different CTCF deletion constructs into cell lines of different origin we demonstrate that the central zinc-finger domain of CTCF is the region responsible for nucleolar targeting. Analysis of subnucleolar localization of CTCF revealed that it is distributed homogeneously in both dense fibrillar and granular components of the nucleolus, but is not associated with fibrillar centres. RNA polymerase I transcription and protein synthesis were required to sustain nucleolar localization of CTCF. Notably, the labelling of active transcription sites by in situ run-on assays demonstrated that CTCF inhibits nucleolar transcription through a poly(ADP-ribosyl)ation-dependent mechanism.
Collapse
Affiliation(s)
- Verónica Torrano
- Grupo de Biología Molecular del Cáncer, Departamento de Biologia Molecular, Universidad de Cantabria, 39011-Santander, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Díez JL, Vilariño VR, Medina FJ, Morcillo G. Nucleolar localization of a reverse transcriptase related to telomere maintenance in Chironomus (Diptera). Histochem Cell Biol 2006; 126:445-52. [PMID: 16607537 DOI: 10.1007/s00418-006-0179-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
A growing number of cellular processes originally thought not to involve the nucleolus now seem to be associated with this organelle. In recent years, a variety of RNAs and proteins with no apparent function in ribosome genesis have been discovered in this nuclear compartment. This paper reports the presence in the nucleolus of a reverse transcriptase (RT) previously found to be associated with telomeres in Chironomus. Immunofluorescence detection using a specific antibody against conserved domains shared by RTs showed a distinct pattern of staining in the giant nucleoli of polytenized cells. This nucleolar localization was confirmed in a number of larval tissues and embryonic cells of Chironomus thummi and C. pallidivitatus; its distribution showed a definite necklace pattern that did not completely colocalize with fibrillarin or nucleolin and appeared to be different to that of typical nucleolar components. There is evidence that both telomerase RT and RNA template subunits are present in the nucleoli of mammalian and yeast cells. However, chironomids do not have typical telomeres or telomerase. As in other Diptera, telomeres lack the short, simple repeats maintained by telomerase and instead have more complex sequences in the range of hundreds of nucleotides. It has been suggested that the RT associated with these telomeres might be involved in their maintenance, perhaps involving a mechanism similar to that of telomerase retrotranscription and retrotransposition in Drosophila. The present results indicate that the putative Chironomus telomere elongation machinery and telomerase share a nucleolar localization. This reinforces the idea that nucleoli are functionally linked to telomere maintenance irrespective of the differences in their molecular organization and therefore in the strategy adopted for their elongation.
Collapse
Affiliation(s)
- José Luis Díez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | | | | | | |
Collapse
|
41
|
Raska I, Shaw PJ, Cmarko D. New Insights into Nucleolar Architecture and Activity. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:177-235. [PMID: 17178467 DOI: 10.1016/s0074-7696(06)55004-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The nucleolus is the most obvious and clearly differentiated nuclear subcompartment. It is where ribosome biogenesis takes place and has been the subject of research over many decades. In recent years progress in our understanding of ribosome biogenesis has been rapid and is accelerating. This review discusses current understanding of how the biochemical processes of ribosome biosynthesis relate to an observable nucleolar structure. Emerging evidence is also described that points to other, unconventional roles for the nucleolus, particularly in the biogenesis of other RNA-containing cellular machinery, and in stress sensing and the control of cellular activity. Striking recent observations show that the nucleolus and its components are highly dynamic, and that the steady state structure observed by microscopical methods must be interpreted as the product of these dynamic processes. We still do not have detailed enough information to understand fully the organization and regulation of the various processes taking place in the nucleolus. However, the present power of light and electron microscopy (EM) techniques means that a description of nucleolar processes at the molecular level is now achievable, and the time is ripe for such an effort.
Collapse
Affiliation(s)
- Ivan Raska
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | | | | |
Collapse
|
42
|
Shinmura K, Tarapore P, Tokuyama Y, George KR, Fukasawa K. Characterization of centrosomal association of nucleophosmin/B23 linked to Crm1 activity. FEBS Lett 2005; 579:6621-34. [PMID: 16297385 DOI: 10.1016/j.febslet.2005.10.057] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 10/20/2005] [Accepted: 10/28/2005] [Indexed: 11/24/2022]
Abstract
Nucleophosmin (NPM)/B23 is a multifunctional protein, involving in a wide variety of basic cellular processes, including ribosome assembly, DNA duplication, nucleocytoplasmic trafficking, and centrosome duplication. It has previously been shown that NPM/B23 localizes to centrosomes, and dissociate from centrosomes upon phosphorylation by Cdk2/cyclin E. However, detail characterization of centrosomal association of NPM/B23 has been hampered by the lack of appropriate antibodies that efficiently detects centrosomally localized NPM/B23, as well as by apparent loss of natural behavior of NPM/B23 when tagged with fluorescent proteins. Here, by the use of newly generated anti-NPM/B23 antibody, we conducted a careful analysis of centrosomal localization of NPM/B23. We found that NPM/B23 localizes between the paired centrioles of unduplicated centrosomes, suggesting the role of NPM/B23 in the centriole pairing. Upon initiation of centrosome duplication, some NPM/B23 proteins remain at mother centrioles of the parental centriole pairs. We further found that inhibition of Crm1 nuclear export receptor results in both accumulation of cyclin E at centrosomes and efficient dissociation of NPM/B23 from centrosomes.
Collapse
Affiliation(s)
- Kazuya Shinmura
- Department of Cell Biology, University of Cincinnati College of Medicine, P.O. Box 670521 (3125 Eden Avenue), Cincinnati, OH 45267-0521, United States
| | | | | | | | | |
Collapse
|
43
|
Politz JCR, Polena I, Trask I, Bazett-Jones DP, Pederson T. A nonribosomal landscape in the nucleolus revealed by the stem cell protein nucleostemin. Mol Biol Cell 2005; 16:3401-10. [PMID: 15857956 PMCID: PMC1165421 DOI: 10.1091/mbc.e05-02-0106] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Nucleostemin is a p53-interactive cell cycle progression factor that shuttles between the nucleolus and nucleoplasm, but it has no known involvement in ribosome synthesis. We found the dynamic properties of nucleostemin differed strikingly from fibrillarin (a protein directly involved in rRNA processing) both in response to rRNA transcription inhibition and in the schedule of reentry into daughter nuclei and the nucleolus during late telophase/early G1. Furthermore, nucleostemin was excluded from the nucleolar domains in which ribosomes are born--the fibrillar centers and dense fibrillar component. Instead it was concentrated in rRNA-deficient sites within the nucleolar granular component. This finding suggests that the nucleolus may be more subcompartmentalized than previously thought. In support of this concept, electron spectroscopic imaging studies of the nitrogen and phosphorus distribution in the nucleolar granular component revealed regions that are very rich in protein and yet devoid of nucleic acid. Together, these results suggest that the ultrastructural texture of the nucleolar granular component represents not only ribosomal particles but also RNA-free zones populated by proteins or protein complexes that likely serve other functions.
Collapse
Affiliation(s)
- Joan C Ritland Politz
- Department of Biochemistry and Molecular Pharmacology and Program in Cell Dynamics, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Yun Wah Lam
- Wellcome Trust Biocentre, MSI/WTB Complex, University of Dundee, Dundee, DD1 5EH, UK
| | | | | |
Collapse
|
45
|
Tillemans V, Dispa L, Remacle C, Collinge M, Motte P. Functional distribution and dynamics of Arabidopsis SR splicing factors in living plant cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:567-82. [PMID: 15686520 DOI: 10.1111/j.1365-313x.2004.02321.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Serine/arginine-rich (SR) proteins constitute an important class of splicing regulators in higher eukaryotes that share a modular structure consisting of one or two N-terminal RNA recognition motif (RRM) domains and a C-terminal RS-rich domain. Herein, we have investigated the in vivo functional distribution of Arabidopsis SR factors. Agrobacterium-mediated transient transformation revealed nuclear speckled distribution and the overall colocalization of fluorescent protein (FP)-tagged SR factors in both tobacco and Arabidopsis cells. Their overall colocalization in larger nucleoplasmic domains was further observed after transcriptional and phosphorylation/dephosphorylation inhibition, indicating a close functional association between SR factors, independent of their phosphorylation state. Furthermore, we demonstrated in vivo the conserved role of the RS and RRM domains in the efficient targeting of Arabidopsis SR proteins to nuclear speckles by using a series of structural domain-deleted mutants of atRSp31 and atRSZp22. We suggest additional roles of RS domain such as the shuttling of atRSZp22 between nucleoplasm and nucleolus through its phosphorylation level. The coexpression of deletion mutants with wild-type SR proteins revealed potential complex associations between them. Fluorescence recovery after photobleaching demonstrated similar dynamic properties of SR factors in both tobacco transiently expressing cells and Arabidopsis transgenics. Cell cycle phase-dependent organization of FP-tagged SR proteins was observed in living tobacco BY-2 cells. We showed that atRSp31 is degraded at metaphase by fluorescence quantification. SR proteins also localized within small foci at anaphase. These results demonstrate interesting related features as well as potentially important differences between plant and animal SR proteins.
Collapse
Affiliation(s)
- Vinciane Tillemans
- Laboratory of Plant Cell and Molecular Biology, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | |
Collapse
|