1
|
Tingey M, Ruba A, Jiang Z, Yang W. Deciphering vesicle-assisted transport mechanisms in cytoplasm to cilium trafficking. Front Cell Neurosci 2024; 18:1379976. [PMID: 38860265 PMCID: PMC11163138 DOI: 10.3389/fncel.2024.1379976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
The cilium, a pivotal organelle crucial for cell signaling and proper cell function, relies on meticulous macromolecular transport from the cytoplasm for its formation and maintenance. While the intraflagellar transport (IFT) pathway has traditionally been the focus of extensive study concerning ciliogenesis and ciliary maintenance, recent research highlights a complementary and alternative mechanism-vesicle-assisted transport (VAT) in cytoplasm to cilium trafficking. Despite its potential significance, the VAT pathway remains largely uncharacterized. This review explores recent studies providing evidence for the dynamics of vesicle-related diffusion and transport within the live primary cilium, employing high-speed super-resolution light microscopy. Additionally, we analyze the spatial distribution of vesicles in the cilium, mainly relying on electron microscopy data. By scrutinizing the VAT pathways that facilitate cargo transport into the cilium, with a specific emphasis on recent advancements and imaging data, our objective is to synthesize a comprehensive model of ciliary transport through the integration of IFT-VAT mechanisms.
Collapse
Affiliation(s)
| | | | | | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
2
|
Weijman JF, Vuolo L, Shak C, Pugnetti A, Mukhopadhyay AG, Hodgson LR, Heesom KJ, Roberts AJ, Stephens DJ. Roles for CEP170 in cilia function and dynein-2 assembly. J Cell Sci 2024; 137:jcs261816. [PMID: 38533689 PMCID: PMC11112123 DOI: 10.1242/jcs.261816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Primary cilia are essential eukaryotic organelles required for signalling and secretion. Dynein-2 is a microtubule-motor protein complex and is required for ciliogenesis via its role in facilitating retrograde intraflagellar transport (IFT) from the cilia tip to the cell body. Dynein-2 must be assembled and loaded onto IFT trains for entry into cilia for this process to occur, but how dynein-2 is assembled and how it is recycled back into a cilium remain poorly understood. Here, we identify centrosomal protein of 170 kDa (CEP170) as a dynein-2-interacting protein in mammalian cells. We show that loss of CEP170 perturbs intraflagellar transport and hedgehog signalling, and alters the stability of dynein-2 holoenzyme complex. Together, our data indicate a role for CEP170 in supporting cilia function and dynein-2 assembly.
Collapse
Affiliation(s)
- Johannes F. Weijman
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Laura Vuolo
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Caroline Shak
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Anna Pugnetti
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | - Lorna R. Hodgson
- Wolfson Bioimaging Facility, Faculty of Life Sciences, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Kate J. Heesom
- Proteomics Facility, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Anthony J. Roberts
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - David J. Stephens
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
3
|
Mukhopadhyay AG, Toropova K, Daly L, Wells JN, Vuolo L, Mladenov M, Seda M, Jenkins D, Stephens DJ, Roberts AJ. Structure and tethering mechanism of dynein-2 intermediate chains in intraflagellar transport. EMBO J 2024; 43:1257-1272. [PMID: 38454149 PMCID: PMC10987677 DOI: 10.1038/s44318-024-00060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
Dynein-2 is a large multiprotein complex that powers retrograde intraflagellar transport (IFT) of cargoes within cilia/flagella, but the molecular mechanism underlying this function is still emerging. Distinctively, dynein-2 contains two identical force-generating heavy chains that interact with two different intermediate chains (WDR34 and WDR60). Here, we dissect regulation of dynein-2 function by WDR34 and WDR60 using an integrative approach including cryo-electron microscopy and CRISPR/Cas9-enabled cell biology. A 3.9 Å resolution structure shows how WDR34 and WDR60 use surprisingly different interactions to engage equivalent sites of the two heavy chains. We show that cilia can assemble in the absence of either WDR34 or WDR60 individually, but not both subunits. Dynein-2-dependent distribution of cargoes depends more strongly on WDR60, because the unique N-terminal extension of WDR60 facilitates dynein-2 targeting to cilia. Strikingly, this N-terminal extension can be transplanted onto WDR34 and retain function, suggesting it acts as a flexible tether to the IFT "trains" that assemble at the ciliary base. We discuss how use of unstructured tethers represents an emerging theme in IFT train interactions.
Collapse
Affiliation(s)
- Aakash G Mukhopadhyay
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
| | - Katerina Toropova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
| | - Lydia Daly
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
- Randall Centre of Cell & Molecular Biophysics, King's College London, London, UK
| | - Jennifer N Wells
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
- MRC London Institute of Medical Sciences (LMS), London, UK
| | - Laura Vuolo
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| | - Miroslav Mladenov
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, UK
| | - Marian Seda
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Dagan Jenkins
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| | - Anthony J Roberts
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK.
| |
Collapse
|
4
|
Rao L, Gennerich A. Structure and Function of Dynein's Non-Catalytic Subunits. Cells 2024; 13:330. [PMID: 38391943 PMCID: PMC10886578 DOI: 10.3390/cells13040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Dynein, an ancient microtubule-based motor protein, performs diverse cellular functions in nearly all eukaryotic cells, with the exception of land plants. It has evolved into three subfamilies-cytoplasmic dynein-1, cytoplasmic dynein-2, and axonemal dyneins-each differentiated by their cellular functions. These megadalton complexes consist of multiple subunits, with the heavy chain being the largest subunit that generates motion and force along microtubules by converting the chemical energy of ATP hydrolysis into mechanical work. Beyond this catalytic core, the functionality of dynein is significantly enhanced by numerous non-catalytic subunits. These subunits are integral to the complex, contributing to its stability, regulating its enzymatic activities, targeting it to specific cellular locations, and mediating its interactions with other cofactors. The diversity of non-catalytic subunits expands dynein's cellular roles, enabling it to perform critical tasks despite the conservation of its heavy chains. In this review, we discuss recent findings and insights regarding these non-catalytic subunits.
Collapse
Affiliation(s)
- Lu Rao
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Arne Gennerich
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
5
|
Cevik S, Peng X, Beyer T, Pir MS, Yenisert F, Woerz F, Hoffmann F, Altunkaynak B, Pir B, Boldt K, Karaman A, Cakiroglu M, Oner SS, Cao Y, Ueffing M, Kaplan OI. WDR31 displays functional redundancy with GTPase-activating proteins (GAPs) ELMOD and RP2 in regulating IFT complex and recruiting the BBSome to cilium. Life Sci Alliance 2023; 6:e202201844. [PMID: 37208194 PMCID: PMC10200814 DOI: 10.26508/lsa.202201844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023] Open
Abstract
The correct intraflagellar transport (IFT) assembly at the ciliary base and the IFT turnaround at the ciliary tip are key for the IFT to perform its function, but we still have poor understanding about how these processes are regulated. Here, we identify WDR31 as a new ciliary protein, and analysis from zebrafish and Caenorhabditis elegans reveals the role of WDR31 in regulating the cilia morphology. We find that loss of WDR-31 together with RP-2 and ELMD-1 (the sole ortholog ELMOD1-3) results in ciliary accumulations of IFT Complex B components and KIF17 kinesin, with fewer IFT/BBSome particles traveling along cilia in both anterograde and retrograde directions, suggesting that the IFT/BBSome entry into the cilia and exit from the cilia are impacted. Furthermore, anterograde IFT in the middle segment travels at increased speed in wdr-31;rpi-2;elmd-1 Remarkably, a non-ciliary protein leaks into the cilia of wdr-31;rpi-2;elmd-1, possibly because of IFT defects. This work reveals WDR31-RP-2-ELMD-1 as IFT and BBSome trafficking regulators.
Collapse
Affiliation(s)
- Sebiha Cevik
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| | - Xiaoyu Peng
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Tina Beyer
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Mustafa S Pir
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| | - Ferhan Yenisert
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| | - Franziska Woerz
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Felix Hoffmann
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Betul Altunkaynak
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| | - Betul Pir
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| | - Karsten Boldt
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Asli Karaman
- Science and Advanced Technology Application and Research Center, Istanbul Medeniyet University, Istanbul, Turkey
| | - Miray Cakiroglu
- Science and Advanced Technology Application and Research Center, Istanbul Medeniyet University, Istanbul, Turkey
| | - S Sadik Oner
- Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Turkey
- Science and Advanced Technology Application and Research Center, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ying Cao
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Marius Ueffing
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Oktay I Kaplan
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| |
Collapse
|
6
|
Higashida M, Niwa S. Dynein intermediate chains DYCI-1 and WDR-60 have specific functions in Caenorhabditis elegans. Genes Cells 2023; 28:97-110. [PMID: 36461782 DOI: 10.1111/gtc.12996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/26/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
Dynein is a microtubule-dependent motor protein required for cell division, retrograde intracellular transport, and intraflagellar transport (IFT). Dynein 1 and dynein 2 serve as molecular motors in the cytoplasm and cilia, respectively. Each dynein consists of multiple subunits. Although the components of dynein 1 and dynein 2 are different and specific in most species, a previous study has suggested that dynein intermediate chain subunit DYCI-1 is shared by both dynein 1 and 2 in Caenorhabditis elegans (C. elegans). Here, we show that C. elegans has two dynein intermediate chains-DYCI-1 and WDR-60-and their functions are different. Mutational analysis showed that dyci-1 is essential for the retrograde axonal transport of synaptic vesicles. In the same mutant allele, IFT is not affected at all. Instead, wdr-60 is essential for IFT. Thus, we suggest that dynein 1 and dynein 2 have specific intermediate chains in C. elegans as in other organisms.
Collapse
Affiliation(s)
- Maki Higashida
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Shinsuke Niwa
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan.,Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
7
|
Braschi B, Omran H, Witman GB, Pazour GJ, Pfister KK, Bruford EA, King SM. Consensus nomenclature for dyneins and associated assembly factors. J Cell Biol 2022; 221:e202109014. [PMID: 35006274 PMCID: PMC8754002 DOI: 10.1083/jcb.202109014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/10/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Dyneins are highly complex, multicomponent, microtubule-based molecular motors. These enzymes are responsible for numerous motile behaviors in cytoplasm, mediate retrograde intraflagellar transport (IFT), and power ciliary and flagellar motility. Variants in multiple genes encoding dyneins, outer dynein arm (ODA) docking complex subunits, and cytoplasmic factors involved in axonemal dynein preassembly (DNAAFs) are associated with human ciliopathies and are of clinical interest. Therefore, clear communication within this field is particularly important. Standardizing gene nomenclature, and basing it on orthology where possible, facilitates discussion and genetic comparison across species. Here, we discuss how the human gene nomenclature for dyneins, ODA docking complex subunits, and DNAAFs has been updated to be more functionally informative and consistent with that of the unicellular green alga Chlamydomonas reinhardtii, a key model organism for studying dyneins and ciliary function. We also detail additional nomenclature updates for vertebrate-specific genes that encode dynein chains and other proteins involved in dynein complex assembly.
Collapse
Affiliation(s)
- Bryony Braschi
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, UK
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - George B. Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Worcester, MA
| | - K. Kevin Pfister
- Cell Biology Department, School of Medicine University of Virginia, Charlottesville, VA
| | - Elspeth A. Bruford
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, Cambridgeshire, UK
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|
8
|
De-Castro ARG, Rodrigues DRM, De-Castro MJG, Vieira N, Vieira C, Carvalho AX, Gassmann R, Abreu CMC, Dantas TJ. WDR60-mediated dynein-2 loading into cilia powers retrograde IFT and transition zone crossing. J Cell Biol 2022; 221:212746. [PMID: 34739033 PMCID: PMC8576871 DOI: 10.1083/jcb.202010178] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022] Open
Abstract
The dynein-2 motor complex drives retrograde intraflagellar transport (IFT), playing a pivotal role in the assembly and functions of cilia. However, the mechanisms that regulate dynein-2 motility remain poorly understood. Here, we identify the Caenorhabditis elegans WDR60 homologue, WDR-60, and dissect the roles of this intermediate chain using genome editing and live imaging of endogenous dynein-2/IFT components. We find that loss of WDR-60 impairs dynein-2 recruitment to cilia and its incorporation onto anterograde IFT trains, reducing retrograde motor availability at the ciliary tip. Consistent with this, we show that fewer dynein-2 motors power WDR-60–deficient retrograde IFT trains, which move at reduced velocities and fail to exit cilia, accumulating on the distal side of the transition zone. Remarkably, disrupting the transition zone’s NPHP module almost fully restores ciliary exit of underpowered retrograde trains in wdr-60 mutants. This work establishes WDR-60 as a major contributor to IFT, and the NPHP module as a roadblock to dynein-2 passage through the transition zone.
Collapse
Affiliation(s)
- Ana R G De-Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Diogo R M Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Maria J G De-Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Neide Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cármen Vieira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Ana X Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Reto Gassmann
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Carla M C Abreu
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Tiago J Dantas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
9
|
Antony D, Brunner HG, Schmidts M. Ciliary Dyneins and Dynein Related Ciliopathies. Cells 2021; 10:cells10081885. [PMID: 34440654 PMCID: PMC8391580 DOI: 10.3390/cells10081885] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Although ubiquitously present, the relevance of cilia for vertebrate development and health has long been underrated. However, the aberration or dysfunction of ciliary structures or components results in a large heterogeneous group of disorders in mammals, termed ciliopathies. The majority of human ciliopathy cases are caused by malfunction of the ciliary dynein motor activity, powering retrograde intraflagellar transport (enabled by the cytoplasmic dynein-2 complex) or axonemal movement (axonemal dynein complexes). Despite a partially shared evolutionary developmental path and shared ciliary localization, the cytoplasmic dynein-2 and axonemal dynein functions are markedly different: while cytoplasmic dynein-2 complex dysfunction results in an ultra-rare syndromal skeleto-renal phenotype with a high lethality, axonemal dynein dysfunction is associated with a motile cilia dysfunction disorder, primary ciliary dyskinesia (PCD) or Kartagener syndrome, causing recurrent airway infection, degenerative lung disease, laterality defects, and infertility. In this review, we provide an overview of ciliary dynein complex compositions, their functions, clinical disease hallmarks of ciliary dynein disorders, presumed underlying pathomechanisms, and novel developments in the field.
Collapse
Affiliation(s)
- Dinu Antony
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79106 Freiburg, Germany;
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands;
- Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands
| | - Han G. Brunner
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands;
- Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands
| | - Miriam Schmidts
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79106 Freiburg, Germany;
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands;
- Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands
- Correspondence: ; Tel.: +49-761-44391; Fax: +49-761-44710
| |
Collapse
|
10
|
Primary ciliary dyskinesia relative protein ZMYND10 is involved in regulating ciliary function and intraflagellar transport in Paramecium tetraurelia. Eur J Protistol 2020; 77:125756. [PMID: 33279757 DOI: 10.1016/j.ejop.2020.125756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022]
Abstract
Cilia are highly conserved in most eukaryotes and are regarded as an important organelle for motility and sensation in various species. Cilia are microscopic, hair-like cytoskeletal structures that protrude from the cell surface. The major focus in studies of cilia has been concentrated on the ciliary dysfunction in vertebrates that causes multisymptomatic diseases, which together are referred to as ciliopathies. To date, the understanding of ciliopathies has largely depended on the study of ciliary structure and function in different animal models. Zinc finger MYND-type containing 10 (ZMYND10) is a ciliary protein that was recently found to be mutated in patients with primary ciliary dyskinesia (PCD). In Paramecium tetraurelia, we identified two ZMYND10 genes, arising from a whole-genome duplication. Using RNAi, we found that the depletion of ZMYND10 in P. tetraurelia causes severe ciliary defects, thus provoking swimming dysfunction and lethality. Moreover, we found that the absence of ZMYND10 caused the abnormal localization of the intraflagellar transport (IFT) protein IFT43 along cilia. These results suggest that ZMYND10 is involved in the regulation of ciliary function and IFT, which may contribute to the study of PCD pathogenesis.
Collapse
|
11
|
Webb S, Mukhopadhyay AG, Roberts AJ. Intraflagellar transport trains and motors: Insights from structure. Semin Cell Dev Biol 2020; 107:82-90. [PMID: 32684327 PMCID: PMC7561706 DOI: 10.1016/j.semcdb.2020.05.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 11/17/2022]
Abstract
Intraflagellar transport (IFT) sculpts the proteome of cilia and flagella; the antenna-like organelles found on the surface of virtually all human cell types. By delivering proteins to the growing ciliary tip, recycling turnover products, and selectively transporting signalling molecules, IFT has critical roles in cilia biogenesis, quality control, and signal transduction. IFT involves long polymeric arrays, termed IFT trains, which move to and from the ciliary tip under the power of the microtubule-based motor proteins kinesin-II and dynein-2. Recent top-down and bottom-up structural biology approaches are converging on the molecular architecture of the IFT train machinery. Here we review these studies, with a focus on how kinesin-II and dynein-2 assemble, attach to IFT trains, and undergo precise regulation to mediate bidirectional transport.
Collapse
Affiliation(s)
- Stephanie Webb
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London, United Kingdom
| | - Aakash G Mukhopadhyay
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London, United Kingdom
| | - Anthony J Roberts
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London, United Kingdom.
| |
Collapse
|
12
|
Nakayama K, Katoh Y. Architecture of the IFT ciliary trafficking machinery and interplay between its components. Crit Rev Biochem Mol Biol 2020; 55:179-196. [PMID: 32456460 DOI: 10.1080/10409238.2020.1768206] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cilia and flagella serve as cellular antennae and propellers in various eukaryotic cells, and contain specific receptors and ion channels as well as components of axonemal microtubules and molecular motors to achieve their sensory and motile functions. Not only the bidirectional trafficking of specific proteins within cilia but also their selective entry and exit across the ciliary gate is mediated by the intraflagellar transport (IFT) machinery with the aid of motor proteins. The IFT-B complex, which is powered by the kinesin-2 motor, mediates anterograde protein trafficking from the base to the tip of cilia, whereas the IFT-A complex together with the dynein-2 complex mediates retrograde protein trafficking. The BBSome complex connects ciliary membrane proteins to the IFT machinery. Defects in any component of this trafficking machinery lead to abnormal ciliogenesis and ciliary functions, and results in a broad spectrum of disorders, collectively called the ciliopathies. In this review article, we provide an overview of the architectures of the components of the IFT machinery and their functional interplay in ciliary protein trafficking.
Collapse
Affiliation(s)
- Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Vuolo L, Stevenson NL, Mukhopadhyay AG, Roberts AJ, Stephens DJ. Cytoplasmic dynein-2 at a glance. J Cell Sci 2020; 133:133/6/jcs240614. [DOI: 10.1242/jcs.240614] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT
Cytoplasmic dynein-2 is a motor protein complex that drives the movement of cargoes along microtubules within cilia, facilitating the assembly of these organelles on the surface of nearly all mammalian cells. Dynein-2 is crucial for ciliary function, as evidenced by deleterious mutations in patients with skeletal abnormalities. Long-standing questions include how the dynein-2 complex is assembled, regulated, and switched between active and inactive states. A combination of model organisms, in vitro cell biology, live-cell imaging, structural biology and biochemistry has advanced our understanding of the dynein-2 motor. In this Cell Science at a Glance article and the accompanying poster, we discuss the current understanding of dynein-2 and its roles in ciliary assembly and function.
Collapse
Affiliation(s)
- Laura Vuolo
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Nicola L. Stevenson
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Aakash G. Mukhopadhyay
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London WC1E 7HX, UK
| | - Anthony J. Roberts
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London WC1E 7HX, UK
| | - David J. Stephens
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
14
|
Pazour GJ, Quarmby L, Smith AO, Desai PB, Schmidts M. Cilia in cystic kidney and other diseases. Cell Signal 2019; 69:109519. [PMID: 31881326 DOI: 10.1016/j.cellsig.2019.109519] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/21/2019] [Accepted: 12/21/2019] [Indexed: 12/23/2022]
Abstract
Epithelial cells lining the ducts and tubules of the kidney nephron and collecting duct have a single non-motile cilium projecting from their surface into the lumen of the tubule. These organelles were long considered vestigial remnants left as a result of evolution from a ciliated ancestor, but we now recognize them as critical sensory antennae. In the kidney, the polycystins and fibrocystin, products of the major human polycystic kidney disease genes, localize to this organelle. The polycystins and fibrocystin, through an unknown mechanism, monitor the diameter of the kidney tubules and regulate the proliferation and differentiation of the cells lining the tubule. When the polycystins, fibrocystin or cilia themselves are defective, the cell perceives this as a pro-proliferative signal, which leads to tubule dilation and cystic disease. In addition to critical roles in preventing cyst formation in the kidney, cilia are also important in cystic and fibrotic diseases of the liver and pancreas, and ciliary defects lead to a variety of developmental abnormalities that cause structural birth defects in most organs.
Collapse
Affiliation(s)
- Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, United States of America.
| | - Lynne Quarmby
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Abigail O Smith
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, United States of America
| | - Paurav B Desai
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, United States of America
| | - Miriam Schmidts
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79112 Freiburg, Germany.
| |
Collapse
|
15
|
Structure of the dynein-2 complex and its assembly with intraflagellar transport trains. Nat Struct Mol Biol 2019; 26:823-829. [PMID: 31451806 PMCID: PMC6774794 DOI: 10.1038/s41594-019-0286-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
Dynein-2 assembles with polymeric intraflagellar transport (IFT) trains to form a transport machinery that is crucial for cilia biogenesis and signaling. Here we recombinantly expressed the ~1.4-MDa human dynein-2 complex and solved its cryo-EM structure to near-atomic resolution. The two identical copies of the dynein-2 heavy chain are contorted into different conformations by a WDR60-WDR34 heterodimer and a block of two RB and six LC8 light chains. One heavy chain is steered into a zig-zag conformation, which matches the periodicity of the anterograde IFT-B train. Contacts between adjacent dyneins along the train indicate a cooperative mode of assembly. Removal of the WDR60-WDR34-light chain subcomplex renders dynein-2 monomeric and relieves autoinhibition of its motility. Our results converge on a model in which an unusual stoichiometry of non-motor subunits controls dynein-2 assembly, asymmetry, and activity, giving mechanistic insight into the interaction of dynein-2 with IFT trains and the origin of diverse functions in the dynein family.
Collapse
|
16
|
Patel-King RS, Sakato-Antoku M, Yankova M, King SM. WDR92 is required for axonemal dynein heavy chain stability in cytoplasm. Mol Biol Cell 2019; 30:1834-1845. [PMID: 31116681 PMCID: PMC6727741 DOI: 10.1091/mbc.e19-03-0139] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/24/2019] [Accepted: 05/16/2019] [Indexed: 01/01/2023] Open
Abstract
WDR92 associates with a prefoldin-like cochaperone complex and known dynein assembly factors. WDR92 has been very highly conserved and has a phylogenetic signature consistent with it playing a role in motile ciliary assembly or activity. Knockdown of WDR92 expression in planaria resulted in ciliary loss, reduced beat frequency and dyskinetic motion of the remaining ventral cilia. We have now identified a Chlamydomonas wdr92 mutant that encodes a protein missing the last four WD repeats. The wdr92-1 mutant builds only ∼0.7-μm cilia lacking both inner and outer dynein arms, but with intact doublet microtubules and central pair. When cytoplasmic extracts prepared by freeze/thaw from a control strain were fractionated by gel filtration, outer arm dynein components were present in several distinct high molecular weight complexes. In contrast, wdr92-1 extracts almost completely lacked all three outer arm heavy chains, while the IFT dynein heavy chain was present in normal amounts. A wdr92-1 tpg1-2 double mutant builds ∼7-μm immotile flaccid cilia that completely lack dynein arms. These data indicate that WDR92 is a key assembly factor specifically required for the stability of axonemal dynein heavy chains in cytoplasm and suggest that cytoplasmic/IFT dynein heavy chains use a distinct folding pathway.
Collapse
Affiliation(s)
- Ramila S. Patel-King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Miho Sakato-Antoku
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Maya Yankova
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
- Electron Microscopy Facility, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
- Electron Microscopy Facility, University of Connecticut Health Center, Farmington, CT 06030-3305
| |
Collapse
|
17
|
Tsurumi Y, Hamada Y, Katoh Y, Nakayama K. Interactions of the dynein-2 intermediate chain WDR34 with the light chains are required for ciliary retrograde protein trafficking. Mol Biol Cell 2019; 30:658-670. [PMID: 30649997 PMCID: PMC6589695 DOI: 10.1091/mbc.e18-10-0678] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 01/20/2023] Open
Abstract
The dynein-2 complex drives retrograde ciliary protein trafficking by associating with the intraflagellar transport (IFT) machinery, containing IFT-A and IFT-B complexes. We recently showed that the dynein-2 complex, which comprises 11 subunits, can be divided into three subcomplexes: DYNC2H1-DYNC2LI1, WDR34-DYNLL1/DYNLL2-DYNLRB1/DYNLRB2, and WDR60-TCTEX1D2-DYNLT1/DYNLT3. In this study, we demonstrated that the WDR34 intermediate chain interacts with the two light chains, DYNLL1/DYNLL2 and DYNLRB1/DYNLRB2, via its distinct sites. Phenotypic analyses of WDR34-knockout cells exogenously expressing various WDR34 constructs showed that the interactions of the WDR34 intermediate chain with the light chains are crucial for ciliary retrograde protein trafficking. Furthermore, we found that expression of the WDR34 N-terminal construct encompassing the light chain-binding sites but lacking the WD40 repeat domain inhibits ciliary biogenesis and retrograde trafficking in a dominant-negative manner, probably by sequestering WDR60 or the light chains. Taken together with phenotypic differences of several WDR34-knockout cell lines, these results indicate that incorporation of DYNLL1/DYNLL2 and DYNLRB1/DYNLRB2 into the dynein-2 complex via interactions with the WDR34 intermediate chain is crucial for dynein-2 function in retrograde ciliary protein trafficking.
Collapse
Affiliation(s)
- Yuta Tsurumi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuki Hamada
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
18
|
Jensen VL, Lambacher NJ, Li C, Mohan S, Williams CL, Inglis PN, Yoder BK, Blacque OE, Leroux MR. Role for intraflagellar transport in building a functional transition zone. EMBO Rep 2018; 19:e45862. [PMID: 30429209 PMCID: PMC6280794 DOI: 10.15252/embr.201845862] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 10/22/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
Genetic disorders caused by cilia dysfunction, termed ciliopathies, frequently involve the intraflagellar transport (IFT) system. Mutations in IFT subunits-including IFT-dynein motor DYNC2H1-impair ciliary structures and Hedgehog signalling, typically leading to "skeletal" ciliopathies such as Jeune asphyxiating thoracic dystrophy. Intriguingly, IFT gene mutations also cause eye, kidney and brain ciliopathies often linked to defects in the transition zone (TZ), a ciliary gate implicated in Hedgehog signalling. Here, we identify a C. elegans temperature-sensitive (ts) IFT-dynein mutant (che-3; human DYNC2H1) and use it to show a role for retrograde IFT in anterograde transport and ciliary maintenance. Unexpectedly, correct TZ assembly and gating function for periciliary proteins also require IFT-dynein. Using the reversibility of the novel ts-IFT-dynein, we show that restoring IFT in adults (post-developmentally) reverses defects in ciliary structure, TZ protein localisation and ciliary gating. Notably, this ability to reverse TZ defects declines as animals age. Together, our findings reveal a previously unknown role for IFT in TZ assembly in metazoans, providing new insights into the pathomechanism and potential phenotypic overlap between IFT- and TZ-associated ciliopathies.
Collapse
Affiliation(s)
- Victor L Jensen
- Department of Molecular Biology and Biochemistry, and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Nils J Lambacher
- Department of Molecular Biology and Biochemistry, and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry, and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Swetha Mohan
- Department of Molecular Biology and Biochemistry, and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Corey L Williams
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham Medical School, Birmingham, AL, USA
| | - Peter N Inglis
- Department of Biology, Kwantlen Polytechnic University, Surrey, BC, Canada
| | - Bradley K Yoder
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham Medical School, Birmingham, AL, USA
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
19
|
Vuolo L, Stevenson NL, Heesom KJ, Stephens DJ. Dynein-2 intermediate chains play crucial but distinct roles in primary cilia formation and function. eLife 2018; 7:39655. [PMID: 30320547 PMCID: PMC6211827 DOI: 10.7554/elife.39655] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/14/2018] [Indexed: 12/16/2022] Open
Abstract
The dynein-2 microtubule motor is the retrograde motor for intraflagellar transport. Mutations in dynein-2 components cause skeletal ciliopathies, notably Jeune syndrome. Dynein-2 contains a heterodimer of two non-identical intermediate chains, WDR34 and WDR60. Here, we use knockout cell lines to demonstrate that each intermediate chain has a distinct role in cilium function. Using quantitative proteomics, we show that WDR34 KO cells can assemble a dynein-2 motor complex that binds IFT proteins yet fails to extend an axoneme, indicating complex function is stalled. In contrast, WDR60 KO cells do extend axonemes but show reduced assembly of dynein-2 and binding to IFT proteins. Both proteins are required to maintain a functional transition zone and for efficient bidirectional intraflagellar transport. Our results indicate that the subunit asymmetry within the dynein-2 complex is matched with a functional asymmetry between the dynein-2 intermediate chains. Furthermore, this work reveals that loss of function of dynein-2 leads to defects in transition zone architecture, as well as intraflagellar transport. Almost all cells in the human body are covered in tiny hair-like structures known as primary cilia. These structures act as antennae to receive signals from outside the cell that regulate how the body grows and develops. The cell has to deliver new proteins and other molecules to precise locations within its cilia to ensure that they work properly. Each cilium is separated from the rest of the cell by a selective barrier known as the transition zone, which controls the movement of molecules to and from the rest of the cell. Dynein-2 is a motor protein that moves other proteins and cell materials within cilia. It includes two subunits known as WDR34 and WDR60. The genes that produce these subunits are mutated in Jeune and short rib polydactyly syndromes that primarily affect how the skeleton forms. However, little is known about the roles the individual subunits play within the motor protein. Vuolo et al. used a gene editing technique called CRISPR-Cas9 to remove one or both of the genes encoding the dynein-2 subunits from human cells. The experiments show that the two subunits have very different roles in cilia. WDR34 is required for cells to build a cilium whereas WDR60 is not. Instead, WDR60 is needed to move proteins and other materials within an established cilium. Unexpectedly, the experiments suggest that dynein-2 is also required to maintain the transition zone. This work provides the foundations for future studies on the role of dynein-2 in building and maintaining the structure of cilia. This could ultimately help to develop new treatments to reduce the symptoms of Jeune syndrome and other diseases caused by defects in cilia.
Collapse
Affiliation(s)
- Laura Vuolo
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Nicola L Stevenson
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Kate J Heesom
- Proteomics Facility, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
20
|
Bertiaux E, Mallet A, Fort C, Blisnick T, Bonnefoy S, Jung J, Lemos M, Marco S, Vaughan S, Trépout S, Tinevez JY, Bastin P. Bidirectional intraflagellar transport is restricted to two sets of microtubule doublets in the trypanosome flagellum. J Cell Biol 2018; 217:4284-4297. [PMID: 30275108 PMCID: PMC6279389 DOI: 10.1083/jcb.201805030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/06/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022] Open
Abstract
Intraflagellar transport (IFT) is the movement of large protein complexes responsible for the construction of cilia and flagella. Using a combination of three-dimensional electron microscopy and high-resolution live imaging, Bertiaux et al. show that IFT takes place on only four microtubule doublets out of the nine available in the trypanosome flagellum. Intraflagellar transport (IFT) is the rapid bidirectional movement of large protein complexes driven by kinesin and dynein motors along microtubule doublets of cilia and flagella. In this study, we used a combination of high-resolution electron and light microscopy to investigate how and where these IFT trains move within the flagellum of the protist Trypanosoma brucei. Focused ion beam scanning electron microscopy (FIB-SEM) analysis of trypanosomes showed that trains are found almost exclusively along two sets of doublets (3–4 and 7–8) and distribute in two categories according to their length. High-resolution live imaging of cells expressing mNeonGreen::IFT81 or GFP::IFT52 revealed for the first time IFT trafficking on two parallel lines within the flagellum. Anterograde and retrograde IFT occurs on each of these lines. At the distal end, a large individual anterograde IFT train is converted in several smaller retrograde trains in the space of 3–4 s while remaining on the same side of the axoneme.
Collapse
Affiliation(s)
- Eloïse Bertiaux
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, Paris, France.,Université Pierre et Marie Curie Paris 6, Cellule Pasteur, Paris, France
| | - Adeline Mallet
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, Paris, France.,Université Pierre et Marie Curie Paris 6, Cellule Pasteur, Paris, France.,UtechS Ultrastructural Bioimaging (Ultrapole), Institut Pasteur, Paris, France
| | - Cécile Fort
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, Paris, France.,Université Pierre et Marie Curie Paris 6, Cellule Pasteur, Paris, France
| | - Thierry Blisnick
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, Paris, France
| | - Serge Bonnefoy
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, Paris, France
| | - Jamin Jung
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, Paris, France
| | - Moara Lemos
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, Paris, France
| | - Sergio Marco
- Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique, UMR 9187, Orsay, France.,Institut Curie, Paris Sciences et Lettres Research University, INSERM U1196, Orsay, France
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford, UK
| | - Sylvain Trépout
- Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique, UMR 9187, Orsay, France.,Institut Curie, Paris Sciences et Lettres Research University, INSERM U1196, Orsay, France
| | - Jean-Yves Tinevez
- UtechS Photonic Bioimaging (Imagopole), Institut Pasteur, Paris, France.,Image Analysis Hub, Institut Pasteur, Paris, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur, Paris, France
| |
Collapse
|
21
|
Roberts AJ. Emerging mechanisms of dynein transport in the cytoplasm versus the cilium. Biochem Soc Trans 2018; 46:967-982. [PMID: 30065109 PMCID: PMC6103457 DOI: 10.1042/bst20170568] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 02/08/2023]
Abstract
Two classes of dynein power long-distance cargo transport in different cellular contexts. Cytoplasmic dynein-1 is responsible for the majority of transport toward microtubule minus ends in the cell interior. Dynein-2, also known as intraflagellar transport dynein, moves cargoes along the axoneme of eukaryotic cilia and flagella. Both dyneins operate as large ATP-driven motor complexes, whose dysfunction is associated with a group of human disorders. But how similar are their mechanisms of action and regulation? To examine this question, this review focuses on recent advances in dynein-1 and -2 research, and probes to what extent the emerging principles of dynein-1 transport could apply to or differ from those of the less well-understood dynein-2 mechanoenzyme.
Collapse
Affiliation(s)
- Anthony J Roberts
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London, U.K.
| |
Collapse
|
22
|
Chien A, Shih SM, Bower R, Tritschler D, Porter ME, Yildiz A. Dynamics of the IFT machinery at the ciliary tip. eLife 2017; 6:28606. [PMID: 28930071 PMCID: PMC5662288 DOI: 10.7554/elife.28606] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/12/2017] [Indexed: 12/15/2022] Open
Abstract
Intraflagellar transport (IFT) is essential for the elongation and maintenance of eukaryotic cilia and flagella. Due to the traffic jam of multiple trains at the ciliary tip, how IFT trains are remodeled in these turnaround zones cannot be determined by conventional imaging. Using PhotoGate, we visualized the full range of movement of single IFT trains and motors in Chlamydomonas flagella. Anterograde trains split apart and IFT complexes mix with each other at the tip to assemble retrograde trains. Dynein-1b is carried to the tip by kinesin-II as inactive cargo on anterograde trains. Unlike dynein-1b, kinesin-II detaches from IFT trains at the tip and diffuses in flagella. As the flagellum grows longer, diffusion delays return of kinesin-II to the basal body, depleting kinesin-II available for anterograde transport. Our results suggest that dissociation of kinesin-II from IFT trains serves as a negative feedback mechanism that facilitates flagellar length control in Chlamydomonas.
Collapse
Affiliation(s)
- Alexander Chien
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States
| | - Sheng Min Shih
- Physics Department, University of California, Berkeley, Berkeley, United States
| | - Raqual Bower
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States
| | - Douglas Tritschler
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States
| | - Mary E Porter
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States.,Physics Department, University of California, Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
23
|
Yi P, Li WJ, Dong MQ, Ou G. Dynein-Driven Retrograde Intraflagellar Transport Is Triphasic in C. elegans Sensory Cilia. Curr Biol 2017; 27:1448-1461.e7. [PMID: 28479320 DOI: 10.1016/j.cub.2017.04.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 11/25/2022]
Abstract
Cytoplasmic dynein-2 powers retrograde intraflagellar transport that is essential for cilium formation and maintenance. Inactivation of dynein-2 by mutations in DYNC2H1 causes skeletal dysplasias, and it remains unclear how the dynein-2 heavy chain moves in cilia. Here, using the genome-editing technique to produce fluorescent dynein-2 heavy chain in Caenorhabditis elegans, we show by high-resolution live microscopy that dynein-2 moves in a surprising way along distinct ciliary domains. Dynein-2 shows triphasic movement in the retrograde direction: dynein-2 accelerates in the ciliary distal region and then moves at maximum velocity and finally decelerates adjacent to the base, which may represent a physical obstacle due to transition zone barriers. By knocking the conserved ciliopathy-related mutations into the C. elegans dynein-2 heavy chain, we find that these mutations reduce its transport speed and frequency. Disruption of the dynein-2 tail domain, light intermediate chain, or intraflagellar transport (IFT)-B complex abolishes dynein-2's ciliary localization, revealing their important roles in ciliary entry of dynein-2. Furthermore, our affinity purification and genetic analyses show that IFT-A subunits IFT-139 and IFT-43 function redundantly to promote dynein-2 motility. These results reveal the molecular regulation of dynein-2 movement in sensory cilia.
Collapse
Affiliation(s)
- Peishan Yi
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China
| | - Wen-Jun Li
- National Institute of Biological Science, 7 Science Park Road, ZGC Life Science Park, Beijing 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Science, 7 Science Park Road, ZGC Life Science Park, Beijing 102206, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
24
|
Taschner M, Mourão A, Awasthi M, Basquin J, Lorentzen E. Structural basis of outer dynein arm intraflagellar transport by the transport adaptor protein ODA16 and the intraflagellar transport protein IFT46. J Biol Chem 2017; 292:7462-7473. [PMID: 28298440 DOI: 10.1074/jbc.m117.780155] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/03/2017] [Indexed: 11/06/2022] Open
Abstract
Motile cilia are found on unicellular organisms such as the green alga Chlamydomonas reinhardtii, on sperm cells, and on cells that line the trachea and fallopian tubes in mammals. The motility of cilia relies on a number of large protein complexes including the force-generating outer dynein arms (ODAs). The transport of ODAs into cilia has been previously shown to require the transport adaptor ODA16, as well as the intraflagellar transport (IFT) protein IFT46, but the molecular mechanism by which ODAs are recognized and transported into motile cilia is still unclear. Here, we determined the high-resolution crystal structure of C. reinhardtii ODA16 (CrODA16) and mapped the binding to IFT46 and ODAs. The CrODA16 structure revealed a small 80-residue N-terminal domain and a C-terminal 8-bladed β-propeller domain that are both required for the association with the N-terminal 147 residues of IFT46. The dissociation constant of the IFT46-ODA16 complex was 200 nm, demonstrating that CrODA16 associates with the IFT complex with an affinity comparable with that of the individual IFT subunits. Furthermore, we show, using ODAs extracted from the axonemes of C. reinhardtii, that the C-terminal β-propeller but not the N-terminal domain of CrODA16 is required for the interaction with ODAs. These data allowed us to present an architectural model for ODA16-mediated IFT of ODAs.
Collapse
Affiliation(s)
- Michael Taschner
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - André Mourão
- the Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Mayanka Awasthi
- the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| | - Jerome Basquin
- the Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Esben Lorentzen
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark,
| |
Collapse
|
25
|
Ishikawa H, Marshall WF. Intraflagellar Transport and Ciliary Dynamics. Cold Spring Harb Perspect Biol 2017; 9:9/3/a021998. [PMID: 28249960 DOI: 10.1101/cshperspect.a021998] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cilia and flagella are microtubule-based organelles whose assembly requires a motile process, known as intraflagellar transport (IFT), to bring tubulin and other components to the distal tip of the growing structure. The IFT system uses a multiprotein complex with components that appear to be specialized for the transport of different sets of cargo proteins. The mechanisms by which cargo is selected for ciliary import and transport by IFT remain an area of active research. The complex dynamics of cilia and flagella are under constant regulation to ensure proper length control, and this regulation appears to involve regulation at the stage of IFT injection into the flagellum, as well as regulation of flagellar disassembly and, possibly, of cargo binding. Cilia and flagella thus represent a convenient model system to study how multiple motile and signaling pathways cooperate to control the assembly and dynamics of a complex cellular structure.
Collapse
Affiliation(s)
- Hiroaki Ishikawa
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
26
|
Toriyama M, Lee C, Taylor SP, Duran I, Cohn DH, Bruel AL, Tabler JM, Drew K, Kelley MR, Kim S, Park TJ, Braun D, Pierquin G, Biver A, Wagner K, Malfroot A, Panigrahi I, Franco B, Al-lami HA, Yeung Y, Choi YJ, University of Washington Center for Mendelian Genomics, Duffourd Y, Faivre L, Rivière JB, Chen J, Liu KJ, Marcotte EM, Hildebrandt F, Thauvin-Robinet C, Krakow D, Jackson PK, Wallingford JB. The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery. Nat Genet 2016; 48:648-56. [PMID: 27158779 PMCID: PMC4978421 DOI: 10.1038/ng.3558] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/01/2016] [Indexed: 12/21/2022]
Abstract
Cilia use microtubule-based intraflagellar transport (IFT) to organize intercellular signaling. Ciliopathies are a spectrum of human diseases resulting from defects in cilia structure or function. The mechanisms regulating the assembly of ciliary multiprotein complexes and the transport of these complexes to the base of cilia remain largely unknown. Combining proteomics, in vivo imaging and genetic analysis of proteins linked to planar cell polarity (Inturned, Fuzzy and Wdpcp), we identified and characterized a new genetic module, which we term CPLANE (ciliogenesis and planar polarity effector), and an extensive associated protein network. CPLANE proteins physically and functionally interact with the poorly understood ciliopathy-associated protein Jbts17 at basal bodies, where they act to recruit a specific subset of IFT-A proteins. In the absence of CPLANE, defective IFT-A particles enter the axoneme and IFT-B trafficking is severely perturbed. Accordingly, mutation of CPLANE genes elicits specific ciliopathy phenotypes in mouse models and is associated with ciliopathies in human patients.
Collapse
Affiliation(s)
| | - Chanjae Lee
- Dept. of Molecular Biosciences, University of Texas at Austin
| | - S. Paige Taylor
- Departments of Orthopaedic Surgery, Human Genetics and Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ivan Duran
- Departments of Orthopaedic Surgery, Human Genetics and Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Daniel H. Cohn
- Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, California, USA, 90095
| | - Ange-Line Bruel
- EA4271GAD Genetics of Developmental Anomalies, FHU-TRANSLAD, Medecine Faculty, Burgundy University, F-21079 Dijon, France
| | | | - Kevin Drew
- Dept. of Molecular Biosciences, University of Texas at Austin
| | - Marcus R. Kelley
- Stanford University School of Medicine, Baxter Laboratory, Department of Microbiology & Immunology, Stanford, California 94305
| | - Sukyoung Kim
- Dept. of Molecular Biosciences, University of Texas at Austin
| | - Tae Joo Park
- Dept. of Molecular Biosciences, University of Texas at Austin
| | - Daniella Braun
- HHMI and Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Kerstin Wagner
- Cardiological Pediatric unit, Hospital Center, Luxemburg
| | - Anne Malfroot
- Clinic of Pediatric Respiratory Diseases, Infectious Diseases, Travel Clinic and Cystic Fibrosis Clinic at the Universitair Ziekenhuis UZ Brussel, Belgium
| | - Inusha Panigrahi
- Department of Pediatrics Advanced, Pediatric Centre Pigmer, Chandigarh, India
| | - Brunella Franco
- Department of Medical Translational Sciences, Division of Pediatrics, Federico II University of Naples, Italy
- Telethon Institute of Genetics and Medicine-TIGEM , Naples Italy
| | - Hadeel Adel Al-lami
- Dept. of Craniofacial and Stem Cell Biology, Dental Institute, King's College London
| | - Yvonne Yeung
- Dept. of Craniofacial and Stem Cell Biology, Dental Institute, King's College London
| | - Yeon Ja Choi
- Departments of Pathology and Dermatology, Stony Brook University, Stony Brook, NY 11794
| | | | - Yannis Duffourd
- EA4271GAD Genetics of Developmental Anomalies, FHU-TRANSLAD, Medecine Faculty, Burgundy University, F-21079 Dijon, France
| | - Laurence Faivre
- EA4271GAD Genetics of Developmental Anomalies, FHU-TRANSLAD, Medecine Faculty, Burgundy University, F-21079 Dijon, France
- Clinical genetics centre and Eastern referral centre for developmental anomalies and malformative syndromes, FHU-TRANSLAD, Children Hospital, CHU Dijon, F-21079 Dijon, France
| | - Jean-Baptiste Rivière
- EA4271GAD Genetics of Developmental Anomalies, FHU-TRANSLAD, Medecine Faculty, Burgundy University, F-21079 Dijon, France
- Laboratory of Molecular Genetics, FHU-TRANSLAD, PTB, CHU Dijon, F-21079 Dijon, France
| | - Jiang Chen
- Departments of Pathology and Dermatology, Stony Brook University, Stony Brook, NY 11794
| | - Karen J. Liu
- Dept. of Craniofacial and Stem Cell Biology, Dental Institute, King's College London
| | | | - Friedhelm Hildebrandt
- HHMI and Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christel Thauvin-Robinet
- EA4271GAD Genetics of Developmental Anomalies, FHU-TRANSLAD, Medecine Faculty, Burgundy University, F-21079 Dijon, France
- Laboratory of Molecular Genetics, FHU-TRANSLAD, PTB, CHU Dijon, F-21079 Dijon, France
| | - Deborah Krakow
- Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, California, USA, 90095
| | - Peter K. Jackson
- Stanford University School of Medicine, Baxter Laboratory, Department of Microbiology & Immunology, Stanford, California 94305
| | | |
Collapse
|
27
|
Reck J, Schauer AM, VanderWaal Mills K, Bower R, Tritschler D, Perrone CA, Porter ME. The role of the dynein light intermediate chain in retrograde IFT and flagellar function in Chlamydomonas. Mol Biol Cell 2016; 27:2404-22. [PMID: 27251063 PMCID: PMC4966982 DOI: 10.1091/mbc.e16-03-0191] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/26/2016] [Indexed: 12/28/2022] Open
Abstract
The assembly of cilia and flagella depends on the activity of two microtubule motor complexes, kinesin-2 and dynein-2/1b, but the specific functions of the different subunits are poorly defined. Here we analyze Chlamydomonas strains expressing different amounts of the dynein 1b light intermediate chain (D1bLIC). Disruption of D1bLIC alters the stability of the dynein 1b complex and reduces both the frequency and velocity of retrograde intraflagellar transport (IFT), but it does not eliminate retrograde IFT. Flagellar assembly, motility, gliding, and mating are altered in a dose-dependent manner. iTRAQ-based proteomics identifies a small subset of proteins that are significantly reduced or elevated in d1blic flagella. Transformation with D1bLIC-GFP rescues the mutant phenotypes, and D1bLIC-GFP assembles into the dynein 1b complex at wild-type levels. D1bLIC-GFP is transported with anterograde IFT particles to the flagellar tip, dissociates into smaller particles, and begins processive retrograde IFT in <2 s. These studies demonstrate the role of D1bLIC in facilitating the recycling of IFT subunits and other proteins, identify new components potentially involved in the regulation of IFT, flagellar assembly, and flagellar signaling, and provide insight into the role of D1bLIC and retrograde IFT in other organisms.
Collapse
Affiliation(s)
- Jaimee Reck
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 R&D Systems, Minneapolis, MN 55413
| | - Alexandria M Schauer
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - Kristyn VanderWaal Mills
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 Anoka Technical College, Anoka, MN 55303
| | - Raqual Bower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Douglas Tritschler
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Catherine A Perrone
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455 Medtronic, Minneapolis, MN 55432
| | - Mary E Porter
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
28
|
Vannuccini E, Paccagnini E, Cantele F, Gentile M, Dini D, Fino F, Diener D, Mencarelli C, Lupetti P. Two classes of short intraflagellar transport train with different 3D structures are present in Chlamydomonas flagella. J Cell Sci 2016; 129:2064-74. [PMID: 27044756 DOI: 10.1242/jcs.183244] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/30/2016] [Indexed: 12/18/2022] Open
Abstract
Intraflagellar transport (IFT) is responsible for the bidirectional trafficking of molecular components required for the elongation and maintenance of eukaryotic cilia and flagella. Cargo is transported by IFT 'trains', linear rows of multiprotein particles moved by molecular motors along the axonemal doublets. We have previously described two structurally distinct categories of 'long' and 'short' trains. Here, we analyse the relative number of these trains throughout flagellar regeneration and show that long trains are most abundant at the beginning of flagellar growth whereas short trains gradually increase in number as flagella elongate. These observations are incompatible with the previous hypothesis that short trains are derived solely from the reorganization of long trains at the flagellar tip. We demonstrate with electron tomography the existence of two distinct ultrastructural organizations for the short trains, we name these 'narrow' and 'wide', and provide the first 3D model of the narrow short trains. These trains are characterized by tri-lobed units, which repeat longitudinally every 16 nm and contact protofilament 7 of the B-tubule. Functional implications of the new structural evidence are discussed.
Collapse
Affiliation(s)
- Elisa Vannuccini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Eugenio Paccagnini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Francesca Cantele
- Dipartimento di Chimica, Università degli Studi di Milano, Via Camillo Golgi 19, 20133 Milan, Italy
| | - Mariangela Gentile
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Daniele Dini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Federica Fino
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Dennis Diener
- Department of Molecular, Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06520, USA
| | - Caterina Mencarelli
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Pietro Lupetti
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
29
|
Affiliation(s)
- Saikat Mukhopadhyay
- a Department of Cell Biology; UT Southwestern Medical Center ; Dallas , TX USA
| |
Collapse
|
30
|
Taylor SP, Dantas TJ, Duran I, Wu S, Lachman RS, Nelson SF, Cohn DH, Vallee RB, Krakow D. Mutations in DYNC2LI1 disrupt cilia function and cause short rib polydactyly syndrome. Nat Commun 2015; 6:7092. [PMID: 26077881 PMCID: PMC4470332 DOI: 10.1038/ncomms8092] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 04/02/2015] [Indexed: 12/16/2022] Open
Abstract
The short rib polydactyly syndromes (SRPSs) are a heterogeneous group of autosomal recessive, perinatal lethal skeletal disorders characterized primarily by short, horizontal ribs, short limbs and polydactyly. Mutations in several genes affecting intraflagellar transport (IFT) cause SRPS but they do not account for all cases. Here we identify an additional SRPS gene and further unravel the functional basis for IFT. We perform whole-exome sequencing and identify mutations in a new disease-producing gene, cytoplasmic dynein-2 light intermediate chain 1, DYNC2LI1, segregating with disease in three families. Using primary fibroblasts, we show that DYNC2LI1 is essential for dynein-2 complex stability and that mutations in DYNC2LI1 result in variable length, including hyperelongated, cilia, Hedgehog pathway impairment and ciliary IFT accumulations. The findings in this study expand our understanding of SRPS locus heterogeneity and demonstrate the importance of DYNC2LI1 in dynein-2 complex stability, cilium function, Hedgehog regulation and skeletogenesis.
Collapse
Affiliation(s)
- S Paige Taylor
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Tiago J Dantas
- Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| | - Ivan Duran
- Department of Orthopaedic Surgery and Orthopaedic Institute for Children, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Sulin Wu
- Department of Orthopaedic Surgery and Orthopaedic Institute for Children, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Ralph S Lachman
- International Skeletal Dysplasia Registry, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | - Stanley F Nelson
- 1] Department of Human Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA [2] Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Daniel H Cohn
- 1] Department of Orthopaedic Surgery and Orthopaedic Institute for Children, University of California, Los Angeles, Los Angeles, California 90095, USA [2] International Skeletal Dysplasia Registry, University of California, Los Angeles, Los Angeles, California 90095, USA [3] Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| | - Deborah Krakow
- 1] Department of Human Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA [2] Department of Orthopaedic Surgery and Orthopaedic Institute for Children, University of California, Los Angeles, Los Angeles, California 90095, USA [3] International Skeletal Dysplasia Registry, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
31
|
TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport. Nat Commun 2015; 6:7074. [PMID: 26044572 PMCID: PMC4468853 DOI: 10.1038/ncomms8074] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/31/2015] [Indexed: 02/06/2023] Open
Abstract
The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions. Severe congenital development defects such as Jeune syndrome can result from the malfunction of primary cilia and dynein. Here Schmidts et al. report unique biallelic null mutations in a gene encoding a dynein light chain, helping to explain the nature of ciliopathies in human patients.
Collapse
|
32
|
Li W, Yi P, Ou G. Somatic CRISPR-Cas9-induced mutations reveal roles of embryonically essential dynein chains in Caenorhabditis elegans cilia. ACTA ACUST UNITED AC 2015; 208:683-92. [PMID: 25778918 PMCID: PMC4362450 DOI: 10.1083/jcb.201411041] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CRISPR–Cas9-induced mutations in intraflagellar transport (IFT) motors reveal that IFT-specific dynein and cytoplasmic dynein have unique compositions but share components and regulatory mechanisms. Cilium formation and maintenance require intraflagellar transport (IFT). Although much is known about kinesin-2–driven anterograde IFT, the composition and regulation of retrograde IFT-specific dynein remain elusive. Components of cytoplasmic dynein may participate in IFT; however, their essential roles in cell division preclude functional studies in postmitotic cilia. Here, we report that inducible expression of the clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 system in Caenorhabditis elegans generated conditional mutations in IFT motors and particles, recapitulating ciliary defects in their null mutants. Using this method to bypass the embryonic requirement, we show the following: the dynein intermediate chain, light chain LC8, and lissencephaly-1 regulate retrograde IFT; the dynein light intermediate chain functions in dendrites and indirectly contributes to ciliogenesis; and the Tctex and Roadblock light chains are dispensable for cilium assembly. Furthermore, we demonstrate that these components undergo biphasic IFT with distinct transport frequencies and turnaround behaviors. Together, our results suggest that IFT–dynein and cytoplasmic dynein have unique compositions but also share components and regulatory mechanisms.
Collapse
Affiliation(s)
- Wenjing Li
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Peishan Yi
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Affiliation(s)
- Yuqing Hou
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, United States
| | - George B Witman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, United States.
| |
Collapse
|
34
|
McInerney-Leo A, Harris J, Leo P, Marshall M, Gardiner B, Kinning E, Leong H, McKenzie F, Ong W, Vodopiutz J, Wicking C, Brown M, Zankl A, Duncan E. Whole exome sequencing is an efficient, sensitive and specific method for determining the genetic cause of short-rib thoracic dystrophies. Clin Genet 2015; 88:550-7. [DOI: 10.1111/cge.12550] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 01/14/2023]
Affiliation(s)
- A.M. McInerney-Leo
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital; Woolloongabba QLD 4102 Australia
| | - J.E. Harris
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital; Woolloongabba QLD 4102 Australia
| | - P.J. Leo
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital; Woolloongabba QLD 4102 Australia
| | - M.S. Marshall
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital; Woolloongabba QLD 4102 Australia
| | - B. Gardiner
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital; Woolloongabba QLD 4102 Australia
| | - E. Kinning
- West of Scotland Genetics Service; Southern General Hospital; Glasgow G51 4TF UK
| | - H.Y. Leong
- Genetics Department; Hospital Kuala Lumpur; Kuala Lumpur Malaysia
| | - F. McKenzie
- Genetic Services of Western Australia; Subiaco WA 6008 Australia
- School of Paediatrics and Child Health; The University of Western Australia; Crawley WA 6009 Australia
| | - W.P. Ong
- Genetics Department; Hospital Kuala Lumpur; Kuala Lumpur Malaysia
| | - J. Vodopiutz
- Department of Pediatrics and Adolescent Medicine Medical University of Vienna; A-1090 Vienna Waehringerguertel 18-20 Vienna Austria
| | - C. Wicking
- Institute for Molecular Bioscience; The University of Queensland; St Lucia QLD 4072 Australia
| | - M.A. Brown
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital; Woolloongabba QLD 4102 Australia
| | - A. Zankl
- Discipline of Genetic Medicine; The University of Sydney; Sydney Australia
- Academic Department of Medical Genetics; Sydney Children's Hospital Network (Westmead); Sydney Australia
| | - E.L. Duncan
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital; Woolloongabba QLD 4102 Australia
- Department of Endocrinology, James Mayne Building; Royal Brisbane and Women's Hospital; Butterfield Road Herston QLD 4029 Australia
- The University of Queensland, University of Queensland Centre for Clinical Research; Herston QLD 4029 Australia
| |
Collapse
|
35
|
King SM, Patel-King RS. The oligomeric outer dynein arm assembly factor CCDC103 is tightly integrated within the ciliary axoneme and exhibits periodic binding to microtubules. J Biol Chem 2015; 290:7388-401. [PMID: 25572396 DOI: 10.1074/jbc.m114.616425] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CCDC103 is an ∼29-kDa protein consisting of a central RPAP3_C domain flanked by N- and C-terminal coiled coils. Defects in CCDC103 lead to primary ciliary dyskinesia caused by the loss of outer dynein arms. This protein is present along the entire length of the ciliary axoneme and does not require other dynein or docking complex components for its integration. Unlike other known dynein assembly factors within the axoneme, CCDC103 is not solubilized by 0.6 M NaCl and requires more chaotropic conditions, such as 0.5 M KI. Alternatively, it can be extracted using 0.3% sarkosyl. CCDC103 forms stable dimers and other oligomers in solution through interactions involving the central domain. The smallest particle observed by dynamic light scattering has a hydrodynamic diameter of ∼25 nm. Furthermore, CCDC103 binds microtubules directly, forming ∼9-nm diameter particles that exhibit a 12-nm spacing on the microtubule lattice, suggesting that there may be two CCDC103 units per outer arm dynein repeat. Although the outer dynein arm docking complex is necessary to form arrays of dyneins along microtubules, it is not sufficient to set up a single array in a precise location on each axonemal doublet. We propose that CCDC103 helps generate a high-affinity site on the doublets for outer arm assembly, either through direct interactions or indirectly, perhaps by modifying the underlying microtubule lattice.
Collapse
Affiliation(s)
- Stephen M King
- From the Department of Molecular Biology and Biophysics and Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030-3305
| | | |
Collapse
|
36
|
Gholkar AA, Senese S, Lo YC, Capri J, Deardorff WJ, Dharmarajan H, Contreras E, Hodara E, Whitelegge JP, Jackson PK, Torres JZ. Tctex1d2 associates with short-rib polydactyly syndrome proteins and is required for ciliogenesis. Cell Cycle 2015; 14:1116-25. [PMID: 25830415 PMCID: PMC4614626 DOI: 10.4161/15384101.2014.985066] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/28/2014] [Accepted: 11/03/2014] [Indexed: 12/26/2022] Open
Abstract
Short-rib polydactyly syndromes (SRPS) arise from mutations in genes involved in retrograde intraflagellar transport (IFT) and basal body homeostasis, which are critical for cilia assembly and function. Recently, mutations in WDR34 or WDR60 (candidate dynein intermediate chains) were identified in SRPS. We have identified and characterized Tctex1d2, which associates with Wdr34, Wdr60 and other dynein complex 1 and 2 subunits. Tctex1d2 and Wdr60 localize to the base of the cilium and their depletion causes defects in ciliogenesis. We propose that Tctex1d2 is a novel dynein light chain important for trafficking to the cilium and potentially retrograde IFT and is a new molecular link to understanding SRPS pathology.
Collapse
Affiliation(s)
- Ankur A. Gholkar
- Department of Chemistry and Biochemistry; University of California; Los Angeles, CA USA
| | - Silvia Senese
- Department of Chemistry and Biochemistry; University of California; Los Angeles, CA USA
| | - Yu-Chen Lo
- Department of Chemistry and Biochemistry; University of California; Los Angeles, CA USA
- Program in Bioengineering; University of California; Los Angeles, CA USA
| | - Joseph Capri
- Pasarow Mass Spectrometry Laboratory; The Jane and Terry Semel Institute for Neuroscience and Human Behavior; David Geffen School of Medicine; University of California; Los Angeles, CA USA
| | - William J Deardorff
- Department of Chemistry and Biochemistry; University of California; Los Angeles, CA USA
| | - Harish Dharmarajan
- Department of Chemistry and Biochemistry; University of California; Los Angeles, CA USA
| | - Ely Contreras
- Department of Chemistry and Biochemistry; University of California; Los Angeles, CA USA
| | - Emmanuelle Hodara
- Department of Chemistry and Biochemistry; University of California; Los Angeles, CA USA
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory; The Jane and Terry Semel Institute for Neuroscience and Human Behavior; David Geffen School of Medicine; University of California; Los Angeles, CA USA
- Molecular Biology Institute; University of California; Los Angeles, CA USA
| | - Peter K Jackson
- Baxter Laboratory for Stem Cell Biology; Department of Microbiology & Immunology; Stanford University School of Medicine; Stanford, CA USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry; University of California; Los Angeles, CA USA
- Molecular Biology Institute; University of California; Los Angeles, CA USA
- Jonsson Comprehensive Cancer Center; University of California; Los Angeles, CA USA
| |
Collapse
|
37
|
Goggolidou P, Stevens JL, Agueci F, Keynton J, Wheway G, Grimes DT, Patel SH, Hilton H, Morthorst SK, DiPaolo A, Williams DJ, Sanderson J, Khoronenkova SV, Powles-Glover N, Ermakov A, Esapa CT, Romero R, Dianov GL, Briscoe J, Johnson CA, Pedersen LB, Norris DP. ATMIN is a transcriptional regulator of both lung morphogenesis and ciliogenesis. Development 2014; 141:3966-77. [PMID: 25294941 PMCID: PMC4197704 DOI: 10.1242/dev.107755] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Initially identified in DNA damage repair, ATM-interactor (ATMIN) further functions as a transcriptional regulator of lung morphogenesis. Here we analyse three mouse mutants, Atmingpg6/gpg6, AtminH210Q/H210Q and Dynll1GT/GT, revealing how ATMIN and its transcriptional target dynein light chain LC8-type 1 (DYNLL1) are required for normal lung morphogenesis and ciliogenesis. Expression screening of ciliogenic genes confirmed Dynll1 to be controlled by ATMIN and further revealed moderately altered expression of known intraflagellar transport (IFT) protein-encoding loci in Atmin mutant embryos. Significantly, Dynll1GT/GT embryonic cilia exhibited shortening and bulging, highly similar to the characterised retrograde IFT phenotype of Dync2h1. Depletion of ATMIN or DYNLL1 in cultured cells recapitulated the in vivo ciliogenesis phenotypes and expression of DYNLL1 or the related DYNLL2 rescued the effects of loss of ATMIN, demonstrating that ATMIN primarily promotes ciliogenesis by regulating Dynll1 expression. Furthermore, DYNLL1 as well as DYNLL2 localised to cilia in puncta, consistent with IFT particles, and physically interacted with WDR34, a mammalian homologue of the Chlamydomonas cytoplasmic dynein 2 intermediate chain that also localised to the cilium. This study extends the established Atmin-Dynll1 relationship into a developmental and a ciliary context, uncovering a novel series of interactions between DYNLL1, WDR34 and ATMIN. This identifies potential novel components of cytoplasmic dynein 2 and furthermore provides fresh insights into the molecular pathogenesis of human skeletal ciliopathies.
Collapse
Affiliation(s)
- Paraskevi Goggolidou
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Jonathan L Stevens
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Francesco Agueci
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Jennifer Keynton
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Gabrielle Wheway
- Section of Ophthalmology and Neurosciences, Wellcome Trust Brenner Building, Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Daniel T Grimes
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Saloni H Patel
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Helen Hilton
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Stine K Morthorst
- Department of Biology, University of Copenhagen, Universitetsparken 13, Copenhagen, OE DK-2100, Denmark
| | - Antonella DiPaolo
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Debbie J Williams
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Jeremy Sanderson
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Svetlana V Khoronenkova
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-11, Moscow 119991, Russia
| | - Nicola Powles-Glover
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Alexander Ermakov
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Chris T Esapa
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Rosario Romero
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Grigory L Dianov
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - James Briscoe
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Colin A Johnson
- Section of Ophthalmology and Neurosciences, Wellcome Trust Brenner Building, Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, Copenhagen, OE DK-2100, Denmark
| | - Dominic P Norris
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| |
Collapse
|
38
|
Abstract
Primary ciliary dyskinesia (PCD) is a rare genetically heterogeneous disorder caused by the abnormal structure and/or function of motile cilia. The PCD diagnosis is challenging and requires a well-described clinical phenotype combined with the identification of abnormalities in ciliary ultrastructure and/or beating pattern as well as the recognition of genetic cause of the disease. Regarding the pace of identification of PCD-related genes, a rapid acceleration during the last 2-3 years is notable. This is the result of new technologies, such as whole-exome sequencing, that have been recently applied in genetic research. To date, PCD-causative mutations in 29 genes are known and the number of causative genes is bound to rise. Even though the genetic causes of approximately one-third of PCD cases still remain to be found, the current knowledge can already be used to create new, accurate genetic tests for PCD that can accelerate the correct diagnosis and reduce the proportion of unexplained cases. This review aims to present the latest data on the relations between ciliary structure aberrations and their genetic basis.
Collapse
Affiliation(s)
- Małgorzata Kurkowiak
- Department of Molecular and Clinical Genetics, Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Ewa Ziętkiewicz
- Department of Molecular and Clinical Genetics, Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Michał Witt
- Department of Molecular and Clinical Genetics, Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
39
|
Abstract
Primary ciliary dyskinesia (PCD) is a rare genetically heterogeneous disorder caused by the abnormal structure and/or function of motile cilia. The PCD diagnosis is challenging and requires a well-described clinical phenotype combined with the identification of abnormalities in ciliary ultrastructure and/or beating pattern as well as the recognition of genetic cause of the disease. Regarding the pace of identification of PCD-related genes, a rapid acceleration during the last 2–3 years is notable. This is the result of new technologies, such as whole-exome sequencing, that have been recently applied in genetic research. To date, PCD-causative mutations in 29 genes are known and the number of causative genes is bound to rise. Even though the genetic causes of approximately one-third of PCD cases still remain to be found, the current knowledge can already be used to create new, accurate genetic tests for PCD that can accelerate the correct diagnosis and reduce the proportion of unexplained cases. This review aims to present the latest data on the relations between ciliary structure aberrations and their genetic basis.
Collapse
Affiliation(s)
- Małgorzata Kurkowiak
- Department of Molecular and Clinical Genetics, Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Ewa Ziętkiewicz
- Department of Molecular and Clinical Genetics, Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Michał Witt
- Department of Molecular and Clinical Genetics, Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
40
|
Jin M, Yamada M, Arai Y, Nagai T, Hirotsune S. Arl3 and LC8 regulate dissociation of dynactin from dynein. Nat Commun 2014; 5:5295. [PMID: 25342295 DOI: 10.1038/ncomms6295] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/18/2014] [Indexed: 12/16/2022] Open
Abstract
Cytoplasmic dynein acts as a motor for the intracellular retrograde motility of vesicles and organelles along microtubules. However, the regulatory mechanism underlying release of dynactin bound cargoes from dynein motor remains largely unknown. Here we report that ADP-ribosylation factor-like 3 (Arl3) and dynein light chain LC8 induce dissociation of dynactin from dynein. Immunoprecipitation and microtubule pull-down assays revealed that Arl3(Q71L) and LC8 facilitated detachment of dynactin from dynein. We also demonstrated Arl3(Q71L) or LC8-mediated dynactin release from a dynein-dynactin complex through trace experiments using quantum dot (Qdot)-conjugated proteins. Furthermore, we disclosed interactions of Arl3 and LC8 with dynactin and dynein, respectively, by live-cell imaging. Finally, knockdown (KD) of Arl3 and LC8 by siRNA induced abnormal localizations of dynein, dynactin and related organelles. Our findings uncovered the surprising functional relevance of GTP-bound Arl3 and LC8 for the unloading regulation of dynactin-bound cargo from dynein motor.
Collapse
Affiliation(s)
- Mingyue Jin
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan
| | - Masami Yamada
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan
| | - Yoshiyuki Arai
- Department of Biomolecular Science and Engineering, Institute of Scientific and Industrial Research, Osaka University, Mihoga-oka 8-1, Osaka 567-0047, Japan
| | - Takeharu Nagai
- Department of Biomolecular Science and Engineering, Institute of Scientific and Industrial Research, Osaka University, Mihoga-oka 8-1, Osaka 567-0047, Japan
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan
| |
Collapse
|
41
|
Asante D, Stevenson NL, Stephens DJ. Subunit composition of the human cytoplasmic dynein-2 complex. J Cell Sci 2014; 127:4774-87. [PMID: 25205765 PMCID: PMC4215718 DOI: 10.1242/jcs.159038] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cytoplasmic dynein-2 is the motor for retrograde intraflagellar transport (IFT), and mutations in dynein-2 are known to cause skeletal ciliopathies. Here, we define for the first time the composition of the human cytoplasmic dynein-2 complex. We show that the proteins encoded by the ciliopathy genes WDR34 and WDR60 are bona fide dynein-2 intermediate chains and are both required for dynein-2 function. In addition, we identify TCTEX1D2 as a unique dynein-2 light chain that is itself required for cilia function. We define several subunits common to both dynein-1 and dynein-2, including TCTEX-1 (also known as DYNLT1) and TCTEX-3 (also known as DYNLT3), roadblock-1 (also known as DYNLRB1) and roadblock-2 (also known as DYNLRB2), and LC8-1 and LC8-2 light chains (DYNLL1 and DYNLL2, respectively). We also find that NudCD3 associates with dynein-2 as it does with dynein-1. By contrast, the common dynein-1 regulators dynactin, LIS1 (also known as PAFAH1B1) and BICD2 are not found in association with dynein-2. These data explain why mutations in either WDR34 or WDR60 cause disease, as well as identifying TCTEX1D2 as a candidate ciliopathy gene.
Collapse
Affiliation(s)
- David Asante
- Cell Biology Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Nicola L Stevenson
- Cell Biology Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
42
|
Krock BL, Perkins BD. The Par-PrkC polarity complex is required for cilia growth in zebrafish photoreceptors. PLoS One 2014; 9:e104661. [PMID: 25144710 PMCID: PMC4140697 DOI: 10.1371/journal.pone.0104661] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/13/2014] [Indexed: 01/09/2023] Open
Abstract
Specification and development of the apical membrane in epithelial cells requires the function of polarity proteins, including Pard3 and an atypical protein kinase C (PrkC). Many epithelial cells possess microtubule-based organelles, known as cilia, that project from their apical surface and the membrane surrounding the cilium is contiguous with the apical cell membrane. Although cilia formation in cultured cells required Pard3, the in vivo requirement for Pard3 in cilia development remains unknown. The vertebrate photoreceptor outer segment represents a highly specialized cilia structure in which to identify factors necessary for apical and ciliary membrane formation. Pard3 and PrkC localized to distinct domains within vertebrate photoreceptors. Using partial morpholino knockdown, photo-morpholinos, and pharmacological approaches, the function of Pard3 and PrkC were found to be required for the formation of both the apical and ciliary membrane of vertebrate photoreceptors. Inhibition of Pard3 or PrkC activity significantly reduced the size of photoreceptor outer segments and resulted in mislocalization of rhodopsin. Suppression of Pard3 or PrkC also led to a reduction in cilia size and cilia number in Kupffer's Vesicle, which resulted in left-right asymmetry defects. Thus, the Par-PrkC complex functions in cilia formation in vivo and this likely reflects a general role in specifying non-ciliary and ciliary compartments of the apical domain.
Collapse
Affiliation(s)
- Bryan L. Krock
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Brian D. Perkins
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| |
Collapse
|
43
|
Blisnick T, Buisson J, Absalon S, Marie A, Cayet N, Bastin P. The intraflagellar transport dynein complex of trypanosomes is made of a heterodimer of dynein heavy chains and of light and intermediate chains of distinct functions. Mol Biol Cell 2014; 25:2620-33. [PMID: 24989795 PMCID: PMC4148251 DOI: 10.1091/mbc.e14-05-0961] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cilia and flagella are assembled by intraflagellar transport (IFT) of protein complexes that bring tubulin and other precursors to the incorporation site at their distal tip. Anterograde transport is driven by kinesin, whereas retrograde transport is ensured by a specific dynein. In the protist Trypanosoma brucei, two distinct genes encode fairly different dynein heavy chains (DHCs; ∼40% identity) termed DHC2.1 and DHC2.2, which form a heterodimer and are both essential for retrograde IFT. The stability of each heavy chain relies on the presence of a dynein light intermediate chain (DLI1; also known as XBX-1/D1bLIC). The presence of both heavy chains and of DLI1 at the base of the flagellum depends on the intermediate dynein chain DIC5 (FAP133/WDR34). In the IFT140(RNAi) mutant, an IFT-A protein essential for retrograde transport, the IFT dynein components are found at high concentration at the flagellar base but fail to penetrate the flagellar compartment. We propose a model by which the IFT dynein particle is assembled in the cytoplasm, reaches the base of the flagellum, and associates with the IFT machinery in a manner dependent on the IFT-A complex.
Collapse
Affiliation(s)
- Thierry Blisnick
- Trypanosome Cell Biology Unit, Institut Pasteur, and Centre National de la Recherche Scientifique URA 2581, 75015 Paris, France
| | - Johanna Buisson
- Trypanosome Cell Biology Unit, Institut Pasteur, and Centre National de la Recherche Scientifique URA 2581, 75015 Paris, France
| | - Sabrina Absalon
- Trypanosome Cell Biology Unit, Institut Pasteur, and Centre National de la Recherche Scientifique URA 2581, 75015 Paris, France
| | - Alexandra Marie
- Trypanosome Cell Biology Unit, Institut Pasteur, and Centre National de la Recherche Scientifique URA 2581, 75015 Paris, France
| | - Nadège Cayet
- Imagopole Platform, Institut Pasteur, 75015 Paris, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, Institut Pasteur, and Centre National de la Recherche Scientifique URA 2581, 75015 Paris, France
| |
Collapse
|
44
|
Morga B, Bastin P. Getting to the heart of intraflagellar transport using Trypanosoma and Chlamydomonas models: the strength is in their differences. Cilia 2013; 2:16. [PMID: 24289478 PMCID: PMC4015504 DOI: 10.1186/2046-2530-2-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/11/2013] [Indexed: 11/22/2022] Open
Abstract
Cilia and flagella perform diverse roles in motility and sensory perception, and defects in their construction or their function are responsible for human genetic diseases termed ciliopathies. Cilia and flagella construction relies on intraflagellar transport (IFT), the bi-directional movement of ‘trains’ composed of protein complexes found between axoneme microtubules and the flagellum membrane. Although extensive information about IFT components and their mode of action were discovered in the green algae Chlamydomonas reinhardtii, other model organisms have revealed further insights about IFT. This is the case of Trypanosoma brucei, a flagellated protist responsible for sleeping sickness that is turning out to be an emerging model for studying IFT. In this article, we review different aspects of IFT, based on studies of Chlamydomonas and Trypanosoma. Data available from both models are examined to ask challenging questions about IFT such as the initiation of flagellum construction, the setting-up of IFT and the mode of formation of IFT trains, and their remodeling at the tip as well as their recycling at the base. Another outstanding question is the individual role played by the multiple IFT proteins. The use of different models, bringing their specific biological and experimental advantages, will be invaluable in order to obtain a global understanding of IFT.
Collapse
Affiliation(s)
- Benjamin Morga
- Trypanosome Cell Biology Unit, Institut Pasteur and CNRS, URA 2581, 25 rue du Docteur Roux, 75015, Paris, France.
| | | |
Collapse
|
45
|
Schmidts M, Vodopiutz J, Christou-Savina S, Cortés C, McInerney-Leo A, Emes R, Arts H, Tüysüz B, D’Silva J, Leo P, Giles T, Oud M, Harris J, Koopmans M, Marshall M, Elçioglu N, Kuechler A, Bockenhauer D, Moore A, Wilson L, Janecke A, Hurles M, Emmet W, Gardiner B, Streubel B, Dopita B, Zankl A, Kayserili H, Scambler P, Brown M, Beales P, Wicking C, UK10K, Duncan E, Mitchison H. Mutations in the gene encoding IFT dynein complex component WDR34 cause Jeune asphyxiating thoracic dystrophy. Am J Hum Genet 2013; 93:932-44. [PMID: 24183451 PMCID: PMC3824113 DOI: 10.1016/j.ajhg.2013.10.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/09/2013] [Accepted: 10/03/2013] [Indexed: 11/26/2022] Open
Abstract
Bidirectional (anterograde and retrograde) motor-based intraflagellar transport (IFT) governs cargo transport and delivery processes that are essential for primary cilia growth and maintenance and for hedgehog signaling functions. The IFT dynein-2 motor complex that regulates ciliary retrograde protein transport contains a heavy chain dynein ATPase/motor subunit, DYNC2H1, along with other less well functionally defined subunits. Deficiency of IFT proteins, including DYNC2H1, underlies a spectrum of skeletal ciliopathies. Here, by using exome sequencing and a targeted next-generation sequencing panel, we identified a total of 11 mutations in WDR34 in 9 families with the clinical diagnosis of Jeune syndrome (asphyxiating thoracic dystrophy). WDR34 encodes a WD40 repeat-containing protein orthologous to Chlamydomonas FAP133, a dynein intermediate chain associated with the retrograde intraflagellar transport motor. Three-dimensional protein modeling suggests that the identified mutations all affect residues critical for WDR34 protein-protein interactions. We find that WDR34 concentrates around the centrioles and basal bodies in mammalian cells, also showing axonemal staining. WDR34 coimmunoprecipitates with the dynein-1 light chain DYNLL1 in vitro, and mining of proteomics data suggests that WDR34 could represent a previously unrecognized link between the cytoplasmic dynein-1 and IFT dynein-2 motors. Together, these data show that WDR34 is critical for ciliary functions essential to normal development and survival, most probably as a previously unrecognized component of the mammalian dynein-IFT machinery.
Collapse
Affiliation(s)
- Miriam Schmidts
- Molecular Medicine Unit and Birth Defect Research Centre, Institute of Child Health, University College London (UCL), London WC1N 1EH, UK
| | - Julia Vodopiutz
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Sonia Christou-Savina
- Molecular Medicine Unit and Birth Defect Research Centre, Institute of Child Health, University College London (UCL), London WC1N 1EH, UK
| | - Claudio R. Cortés
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Aideen M. McInerney-Leo
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Level 7, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Richard D. Emes
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
- Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Heleen H. Arts
- Department of Human Genetics, Radboud University Medical Centre, Radboud University, 6500 HB Nijmegen, the Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, the Netherlands
- Institute for Genetic and Metabolic Disease, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Beyhan Tüysüz
- Department of Pediatrics, Division of Pediatric Genetics, Cerrahpasa Medical Faculty, Istanbul University, 34303 Istanbul, Turkey
| | - Jason D’Silva
- Molecular Medicine Unit and Birth Defect Research Centre, Institute of Child Health, University College London (UCL), London WC1N 1EH, UK
| | - Paul J. Leo
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Level 7, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Tom C. Giles
- Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK
| | - Machteld M. Oud
- Department of Human Genetics, Radboud University Medical Centre, Radboud University, 6500 HB Nijmegen, the Netherlands
- Nijmegen Centre for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, the Netherlands
- Institute for Genetic and Metabolic Disease, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Jessica A. Harris
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Level 7, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Marije Koopmans
- Department of Clinical Genetics, Center for Human and Clinical Genetics, Leiden University Medical Centre, 2333 AL Leiden, the Netherlands
| | - Mhairi Marshall
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Level 7, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Nursel Elçioglu
- Department of Pediatrics, Marmara University Hospital, Istanbul 34716, Turkey
| | - Alma Kuechler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, 45122 Essen, Germany
| | - Detlef Bockenhauer
- Great Ormond Street Hospital and Nephro-Urology Unit, Institute of Child Health, University College London (UCL), London WC1N 1EH, UK
| | - Anthony T. Moore
- Moorfields Eye Hospital and UCL Institute of Ophthalmology, London EC1V 2PH, UK
| | - Louise C. Wilson
- Department of Clinical Genetics, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Andreas R. Janecke
- Department of Pediatrics I, and Division of Human Genetics, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Matthew E. Hurles
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1RQ, UK
| | - Warren Emmet
- Department of Genetics, Environment and Evolution, UCL Genetics Institute (UGI), University College London, London WC1E 6BT, UK
| | - Brooke Gardiner
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Level 7, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Berthold Streubel
- Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria
| | - Belinda Dopita
- Department of Genetics, The Canberra Hospital, Woden, ACT 2606, Australia
| | - Andreas Zankl
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD 4029, Australia
| | - Hülya Kayserili
- Istanbul Medical Faculty, Medical Genetics Department, Istanbul University, 34390 Istanbul, Turkey
| | - Peter J. Scambler
- Molecular Medicine Unit and Birth Defect Research Centre, Institute of Child Health, University College London (UCL), London WC1N 1EH, UK
| | - Matthew A. Brown
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Level 7, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Philip L. Beales
- Molecular Medicine Unit and Birth Defect Research Centre, Institute of Child Health, University College London (UCL), London WC1N 1EH, UK
| | - Carol Wicking
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Emma L. Duncan
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, Level 7, 37 Kent Street, Woolloongabba, QLD 4102, Australia
- Department of Endocrinology, James Mayne Building, Royal Brisbane and Women’s Hospital, Butterfield Road, Herston, QLD 4029, Australia
| | - Hannah M. Mitchison
- Molecular Medicine Unit and Birth Defect Research Centre, Institute of Child Health, University College London (UCL), London WC1N 1EH, UK
| |
Collapse
|
46
|
Abstract
Cilia and flagella are surface-exposed, finger-like organelles whose core consists of a microtubule (MT)-based axoneme that grows from a modified centriole, the basal body. Cilia are found on the surface of many eukaryotic cells and play important roles in cell motility and in coordinating a variety of signaling pathways during growth, development, and tissue homeostasis. Defective cilia have been linked to a number of developmental disorders and diseases, collectively called ciliopathies. Cilia are dynamic organelles that assemble and disassemble in tight coordination with the cell cycle. In most cells, cilia are assembled during growth arrest in a multistep process involving interaction of vesicles with appendages present on the distal end of mature centrioles, and addition of tubulin and other building blocks to the distal tip of the basal body and growing axoneme; these building blocks are sorted through a region at the cilium base known as the ciliary necklace, and then transported via intraflagellar transport (IFT) along the axoneme toward the tip for assembly. After assembly, the cilium frequently continues to turn over and incorporate tubulin at its distal end in an IFT-dependent manner. Prior to cell division, the cilia are usually resorbed to liberate centrosomes for mitotic spindle pole formation. Here, we present an overview of the main cytoskeletal structures associated with cilia and centrioles with emphasis on the MT-associated appendages, fibers, and filaments at the cilium base and tip. The composition and possible functions of these structures are discussed in relation to cilia assembly, disassembly, and length regulation.
Collapse
Affiliation(s)
- Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
47
|
Zebrafish Ciliopathy Screen Plus Human Mutational Analysis Identifies C21orf59 and CCDC65 Defects as Causing Primary Ciliary Dyskinesia. Am J Hum Genet 2013; 93:672-86. [PMID: 24094744 DOI: 10.1016/j.ajhg.2013.08.015] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/24/2013] [Accepted: 08/28/2013] [Indexed: 11/21/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is caused when defects of motile cilia lead to chronic airway infections, male infertility, and situs abnormalities. Multiple causative PCD mutations account for only 65% of cases, suggesting that many genes essential for cilia function remain to be discovered. By using zebrafish morpholino knockdown of PCD candidate genes as an in vivo screening platform, we identified c21orf59, ccdc65, and c15orf26 as critical for cilia motility. c21orf59 and c15orf26 knockdown in zebrafish and planaria blocked outer dynein arm assembly, and ccdc65 knockdown altered cilia beat pattern. Biochemical analysis in Chlamydomonas revealed that the C21orf59 ortholog FBB18 is a flagellar matrix protein that accumulates specifically when cilia motility is impaired. The Chlamydomonas ida6 mutant identifies CCDC65/FAP250 as an essential component of the nexin-dynein regulatory complex. Analysis of 295 individuals with PCD identified recessive truncating mutations of C21orf59 in four families and CCDC65 in two families. Similar to findings in zebrafish and planaria, mutations in C21orf59 caused loss of both outer and inner dynein arm components. Our results characterize two genes associated with PCD-causing mutations and elucidate two distinct mechanisms critical for motile cilia function: dynein arm assembly for C21orf59 and assembly of the nexin-dynein regulatory complex for CCDC65.
Collapse
|
48
|
Diniz MC, Pacheco ACL, Farias KM, de Oliveira DM. The eukaryotic flagellum makes the day: novel and unforeseen roles uncovered after post-genomics and proteomics data. Curr Protein Pept Sci 2013; 13:524-46. [PMID: 22708495 PMCID: PMC3499766 DOI: 10.2174/138920312803582951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/21/2022]
Abstract
This review will summarize and discuss the current biological understanding of the motile eukaryotic flagellum,
as posed out by recent advances enabled by post-genomics and proteomics approaches. The organelle, which is crucial
for motility, survival, differentiation, reproduction, division and feeding, among other activities, of many eukaryotes,
is a great example of a natural nanomachine assembled mostly by proteins (around 350-650 of them) that have been conserved
throughout eukaryotic evolution. Flagellar proteins are discussed in terms of their arrangement on to the axoneme,
the canonical “9+2” microtubule pattern, and also motor and sensorial elements that have been detected by recent proteomic
analyses in organisms such as Chlamydomonas reinhardtii, sea urchin, and trypanosomatids. Such findings can be
remarkably matched up to important discoveries in vertebrate and mammalian types as diverse as sperm cells, ciliated
kidney epithelia, respiratory and oviductal cilia, and neuro-epithelia, among others. Here we will focus on some exciting
work regarding eukaryotic flagellar proteins, particularly using the flagellar proteome of C. reinhardtii as a reference map
for exploring motility in function, dysfunction and pathogenic flagellates. The reference map for the eukaryotic flagellar
proteome consists of 652 proteins that include known structural and intraflagellar transport (IFT) proteins, less well-characterized
signal transduction proteins and flagellar associated proteins (FAPs), besides almost two hundred unannotated
conserved proteins, which lately have been the subject of intense investigation and of our present examination.
Collapse
Affiliation(s)
- Michely C Diniz
- Programa de Pós-Graduação em Biotecnologia-RENORBIO-Rede Nordeste de Biotecnologia, Universidade Estadual do Ceará-UECE, Av. Paranjana, 1700, Campus do Itaperi, Fortaleza, CE 60740-000 Brasil
| | | | | | | |
Collapse
|
49
|
Asante D, Maccarthy-Morrogh L, Townley AK, Weiss MA, Katayama K, Palmer KJ, Suzuki H, Westlake CJ, Stephens DJ. A role for the Golgi matrix protein giantin in ciliogenesis through control of the localization of dynein-2. J Cell Sci 2013; 126:5189-97. [PMID: 24046448 DOI: 10.1242/jcs.131664] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The correct formation of primary cilia is central to the development and function of nearly all cells and tissues. Cilia grow from the mother centriole by extension of a microtubule core, the axoneme, which is then surrounded with a specialized ciliary membrane that is continuous with the plasma membrane. Intraflagellar transport moves particles along the length of the axoneme to direct assembly of the cilium and is also required for proper cilia function. The microtubule motor, cytoplasmic dynein-2 mediates retrograde transport along the axoneme from the tip to the base; dynein-2 is also required for some aspects of cilia formation. In most cells, the Golgi lies adjacent to the centrioles and key components of the cilia machinery localize to this organelle. Golgi-localized proteins have also been implicated in ciliogenesis and in intraflagellar transport. Here, we show that the transmembrane Golgi matrix protein giantin (GOLGB1) is required for ciliogenesis. We show that giantin is not required for the Rab11-Rabin8-Rab8 pathway that has been implicated in the early stages of ciliary membrane formation. Instead we find that suppression of giantin results in mis-localization of WDR34, the intermediate chain of dynein-2. Highly effective depletion of giantin or WDR34 leads to an inability of cells to form primary cilia. Partial depletion of giantin or of WDR34 leads to an increase in cilia length consistent with the concept that giantin acts through dynein-2. Our data implicate giantin in ciliogenesis through control of dynein-2 localization.
Collapse
Affiliation(s)
- David Asante
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mencarelli C, Mitchell A, Leoncini R, Rosenbaum J, Lupetti P. Isolation of intraflagellar transport trains. Cytoskeleton (Hoboken) 2013; 70:439-52. [PMID: 23804580 PMCID: PMC4060975 DOI: 10.1002/cm.21121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/14/2013] [Accepted: 06/10/2013] [Indexed: 11/13/2022]
Abstract
The intraflagellar transport (IFT) system was first identified in situ by electron microscopy in thin sections of plastic-embedded flagella as linear arrays of electrondense particles, located between the B tubules of the outer doublets and the flagellar membrane. These arrays of particles are referred to as IFT trains. Upon membrane rupture, IFT trains are thought to easily dissociate to yield soluble IFT particles, which are commonly purified through sucrose gradients as ∼16-17S complexes. The latters easily dissociate into two subcomplexes, named A and B. We report here the isolation, visualization, and identification by immunolabeling of flexible strings of IFT particles, which are structurally similar to in situ IFT trains and appear to be formed by both complex A and complex B polypeptides. Moreover, the particles forming isolated IFT trains are structurally similar to the individual particles found in the ∼17S gradient peak. Our results provide the first direct evidence that ∼17S particles do indeed compose the IFT trains. The paper also represents the first isolation of the IFT trains, and opens new possibilities for higher resolution studies on their structure and how particles are attached to each other to form the particle trains.
Collapse
Affiliation(s)
- Caterina Mencarelli
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | | | | | | | | |
Collapse
|