1
|
Manchinu MF, Pala M, Palmas MF, Diana MA, Maschio A, Etzi M, Pisanu A, Diana FI, Marongiu J, Mansueto S, Carboni E, Fusco G, De Simone A, Carta AR. Region-specific changes in gene expression are associated with cognitive deficits in the alpha-synuclein-induced model of Parkinson's disease: A transcriptomic profiling study. Exp Neurol 2024; 372:114651. [PMID: 38092188 DOI: 10.1016/j.expneurol.2023.114651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Mild cognitive impairment (MCI) is a common trait of Parkinson's disease (PD), often associated with early motor deficits, eventually evolving to PD with dementia in later disease stages. The neuropathological substrate of MCI is poorly understood, which weakens the development and administration of proper therapies. In an α-synuclein (αSyn)-based model of PD featuring early motor and cognitive impairments, we investigated the transcriptome profile of brain regions involved in PD with cognitive deficits, via a transcriptomic analysis based on RNA sequencing (RNA-seq) technology. Rats infused in the substantia nigra with human α-synuclein oligomers (H-SynOs) developed mild cognitive deficits after three months, as measured by the two-trial recognition test in a Y-maze and the novel object recognition test. RNA-seq analysis showed that 17,436 genes were expressed in the anterior cingulate cortex (ACC) and 17,216 genes in the hippocampus (HC). In the ACC, 51 genes were differentially expressed between vehicle and H-αSynOs treated samples, which showed N= 21 upregulated and N = 30 downregulated genes. In the HC, 104 genes were differentially expressed, the majority of them not overlapping with DEGs in the ACC, with N = 41 upregulated and N = 63 downregulated in H-αSynOs-treated samples. The Gene Ontology (GO) and the Kyoto Encyclopedia of Gene and Genomes (KEGG) analysis, followed by the protein-protein interaction (PPI) network inspection of DEGs, revealed that in the ACC most enriched terms were related with immune functions, specifically with antigen processing/presentation via the major histocompatibility complex (MHC) class II and phagocytosis via CD68, supporting a role for dysregulated immune responses in early PD cognitive dysfunction. Immunofluorescence analysis confirmed the decreased expression of CD68 within microglial cells. In contrast, the most significantly enriched terms in the HC were mainly involved in mitochondrial homeostasis, potassium voltage-gated channel, cytoskeleton and fiber organisation, suggesting that the gene expression in the neuronal population was mostly affected in this region in early disease stages. Altogether results show that H-αSynOs trigger a region-specific dysregulation of gene expression in ACC and HC, providing a pathological substrate for MCI associated with early PD.
Collapse
Affiliation(s)
| | - Mauro Pala
- National Research Council, Biomedical and Genetic Research Institute, 09040 Cagliari, Italy
| | | | - Maria Antonietta Diana
- National Research Council, Biomedical and Genetic Research Institute, 09040 Cagliari, Italy
| | - Andrea Maschio
- National Research Council, Biomedical and Genetic Research Institute, 09040 Cagliari, Italy
| | - Michela Etzi
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Augusta Pisanu
- National Research Council, Institute of Neuroscience, 09040 Cagliari, Italy
| | | | - Jacopo Marongiu
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Silvia Mansueto
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Ezio Carboni
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy
| | - Giuliana Fusco
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Alfonso De Simone
- Department of Pharmacy, University of Naples "Federico II", 80131 Naples, Italy
| | - Anna R Carta
- Department of Biomedical Sciences, University of Cagliari, 09040 Cagliari, Italy.
| |
Collapse
|
2
|
Sarango G, Richetta C, Pereira M, Kumari A, Ghosh M, Bertrand L, Pionneau C, Le Gall M, Grégoire S, Jeger‐Madiot R, Rosoy E, Subra F, Delelis O, Faure M, Esclatine A, Graff‐Dubois S, Stevanović S, Manoury B, Ramirez BC, Moris A. The Autophagy Receptor TAX1BP1 (T6BP) improves antigen presentation by MHC-II molecules. EMBO Rep 2022; 23:e55470. [PMID: 36215666 PMCID: PMC9724678 DOI: 10.15252/embr.202255470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 12/12/2022] Open
Abstract
CD4+ T lymphocytes play a major role in the establishment and maintenance of immunity. They are activated by antigenic peptides derived from extracellular or newly synthesized (endogenous) proteins presented by the MHC-II molecules. The pathways leading to endogenous MHC-II presentation remain poorly characterized. We demonstrate here that the autophagy receptor, T6BP, influences both autophagy-dependent and -independent endogenous presentation of HIV- and HCMV-derived peptides. By studying the immunopeptidome of MHC-II molecules, we show that T6BP affects both the quantity and quality of peptides presented. T6BP silencing induces the mislocalization of the MHC-II-loading compartments and rapid degradation of the invariant chain (CD74) without altering the expression and internalization kinetics of MHC-II molecules. Defining the interactome of T6BP, we identify calnexin as a T6BP partner. We show that the calnexin cytosolic tail is required for this interaction. Remarkably, calnexin silencing replicates the functional consequences of T6BP silencing: decreased CD4+ T cell activation and exacerbated CD74 degradation. Altogether, we unravel T6BP as a key player of the MHC-II-restricted endogenous presentation pathway, and we propose one potential mechanism of action.
Collapse
Affiliation(s)
- Gabriela Sarango
- Université Paris‐Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance,Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance
| | - Clémence Richetta
- Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance,LBPA, ENS‐Paris Saclay, CNRS UMR8113Université Paris SaclayGif‐sur‐YvetteFrance
| | - Mathias Pereira
- Université Paris‐Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance,Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance
| | - Anita Kumari
- Université Paris‐Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance,Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance
| | - Michael Ghosh
- Department of Immunology, Institute for Cell BiologyUniversity of TübingenTübingenGermany
| | - Lisa Bertrand
- Université Paris‐Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance,Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance
| | - Cédric Pionneau
- Sorbonne UniversitéINSERM, UMS Production et Analyse de Données en Sciences de la vie et en Santé, PASS, Plateforme Post‐génomique de la Pitié SalpêtrièreParisFrance
| | - Morgane Le Gall
- 3P5 proteom'IC facilityUniversité de Paris, Institut Cochin, INSERM U1016, CNRS‐UMR 8104ParisFrance
| | - Sylvie Grégoire
- Université Paris‐Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance,Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance
| | - Raphaël Jeger‐Madiot
- Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance,Present address:
Sorbonne Université, INSERM U959, Immunology‐Immunopathology‐Immunotherapy (i3)ParisFrance
| | - Elina Rosoy
- Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance
| | - Frédéric Subra
- LBPA, ENS‐Paris Saclay, CNRS UMR8113Université Paris SaclayGif‐sur‐YvetteFrance
| | - Olivier Delelis
- LBPA, ENS‐Paris Saclay, CNRS UMR8113Université Paris SaclayGif‐sur‐YvetteFrance
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de LyonLyonFrance,Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Audrey Esclatine
- Université Paris‐Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Stéphanie Graff‐Dubois
- Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance,Present address:
Sorbonne Université, INSERM U959, Immunology‐Immunopathology‐Immunotherapy (i3)ParisFrance
| | - Stefan Stevanović
- Department of Immunology, Institute for Cell BiologyUniversity of TübingenTübingenGermany
| | - Bénédicte Manoury
- Institut Necker Enfants Malades, INSERM U1151‐CNRS UMR 8253, Faculté de médecine NeckerUniversité de ParisParisFrance
| | - Bertha Cecilia Ramirez
- Université Paris‐Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance,Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance
| | - Arnaud Moris
- Université Paris‐Saclay, CEA, CNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance,Sorbonne UniversitéINSERM, CNRS, Center for Immunology and Microbial Infections (CIMI‐Paris)ParisFrance
| |
Collapse
|
3
|
Günaydın C, Çelik ZB, Bilge SS. CIITA expression is regulated by histone deacetylase enzymes and has a role in α-synuclein pre-formed fibril-induced antigen presentation in murine microglial cell line. Immunopharmacol Immunotoxicol 2022; 44:447-455. [PMID: 35291899 DOI: 10.1080/08923973.2022.2054427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIM Parkinson's disease(PD) is a chronic neurodegenerative disorder related with several genetic and epigenetic factors. In the context of epigenetic factors, histone acetylation is one of the most associated mechanisms with Parkinson's disease progression. This study investigates the effects of the increased histone acetylation on antigen presentation in microglial cells which were induced by pre-formed fibrils of α-synuclein(pFF α-synuclein). METHODS Parkinson's disease model was created with pFF α-synuclein administration to the BV-2 microglial cells. BV-2 cells were co-treated with CUDC-907 and TMP-195 to increase histone acetylation in the presence of α-synuclein. Antigen representation was evaluated by determining expression levels of major histocompatibility complex-II(MHC-II) and class-II major histocompatibility complex(CIITA). RESULTS Our results showed that pFF α-synuclein significantly increased MHC-II expression, and that effect was most severe at 6 hours of administration of α-synuclein. Increasing histone acetylation via CUDC-907 and TMP-195 enhanced MHC-II levels expression, which was more severe in CUDC-907. Additionally, CIITA expression levels were significantly increased with pFF α-synuclein administration and intensified with the co-treatment of CUDC-907 and TMP-195. Furthermore, pFF α-synuclein caused a time-dependent increase in the IFN-gamma(IFN-ɣ) and interleukin-16(IL-16) levels, and that increase was potentiated with CUDC-907 and TMP-195. CONCLUSION Changes in MHC-II and CIITA expression indicate that histone acetylation increases the antigen presentation properties of microglial cells after pFF α-synuclein or histone deacetylase inhibitor(HDACi) administration. Our results show that microglial antigen presentation might have an essential role in the pathology of Parkinson's disease, and α-synuclein likely to play a primary role in this mechanism.
Collapse
Affiliation(s)
- Caner Günaydın
- Samsun University, School of Medicine, Department of Pharmacology, Samsun, Turkey
| | - Z Betül Çelik
- Ondokuz Mayıs University, School of Medicine, Department of Histology and Embryology, Samsun, Turkey
| | - S Sırrı Bilge
- Ondokuz Mayıs University, School of Medicine, Department of Pharmacology, Samsun, Turkey
| |
Collapse
|
4
|
Consensus opinion on immune-mediated cytopenias after hematopoietic cell transplant for inherited metabolic disorders. Bone Marrow Transplant 2021; 56:1238-1247. [PMID: 33441980 DOI: 10.1038/s41409-020-01179-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/04/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022]
Abstract
Hematopoietic stem cell transplantation (HCT) has been increasingly used for patients with inherited metabolic disorders (IMD). Immune mediated cytopenias (IMCs) after HCT, manifesting as hemolytic anemia, thrombocytopenia, and/or neutropenia, are recognized as a significant complication in this patient population, yet our understanding of the incidence, risk factors, and pathophysiology is currently limited. Review of the published literature demonstrates a higher incidence in younger patients who undergo HCT for a nonmalignant disease indication. However, a few reports suggest that the incidence is even higher among those with IMD (incidence ranging from 10 to 56%). This review summarizes the literature, provides an approach to better understanding of the possible etiology of IMCs, and proposes a diagnostic and management plan for patients with IMD who develop single or multi-lineage cytopenias after HCT.
Collapse
|
5
|
Antohe I, Tanasa MP, Dăscălescu A, Dănăilă C, Titieanu A, Zlei M, Ivanov I, Sireteanu A, Cianga P. The MHC-II antigen presentation machinery and B7 checkpoint ligands display distinctive patterns correlated with acute myeloid leukaemias blast cells HLA-DR expression. Immunobiology 2020; 226:152049. [PMID: 33352400 DOI: 10.1016/j.imbio.2020.152049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/09/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
Acute Myeloid Leukaemia (AML) is a neoplasia characterised by rapid proliferation and an increased rate of relapses. The AML blasts display features of antigen-presenting cells (APC), and thus can directly modulate the anti-tumour T cell responses. The bone marrow of a group consisting of 30 newly diagnosed patients and four healthy donors (HD) was investigated for the expression of HLA-DR, several molecules involved in MHC-II antigen-presentation and MHC-II groove editing, like HLA-DM, CD74 and CLIP, as well as a set of immune checkpoint ligands, like ICOS-L, B7.2, PD-L2 and B7-H3. The patients were further characterised for their genetic anomalies and distributed to favourable, intermediate and adverse ELN risk categories. We were able to show that while 23% of our patients displayed a low level of HLA-DR surface expression, all patients displayed higher HLA-DM and CD74 expression compared to HD. However, a higher CLIP expression was noticed only in the HLA-DR low patients. The co-inhibitory PD-L2 and B7-H3 molecules were increased in the cases with normal HLA-DR expression; oppositely, the co-stimulatory ICOS-L and the dual function B7.2 were significantly increased in the cases with HLA-DR low expression. Furthermore, no favourable ELN risk cases were found within the HLA-DR low group. All in all, these data show that the AML with low versus normal HLA-DR expression display different profiles of MHC class II machinery molecules and B7 ligands, which are correlated with distinct ELN stratification. Furthermore, as our study included healthy individuals, it offers valuable information about the expression levels that should be considered as normal for these markers known to cause differences in peptide repertoires, reflected further in distinct T-cells polarisation pathways.
Collapse
Affiliation(s)
- Ion Antohe
- Haematology Department, "Grigore T. Popa" University of Medicine and Pharmacy, Iaşi, Romania; Haematology Department, Regional Oncology Institute, Iaşi, Romania
| | - Mariana Pavel Tanasa
- Immunology Department, "Grigore T. Popa" University of Medicine and Pharmacy, Iaşi, Romania
| | - Angela Dăscălescu
- Haematology Department, "Grigore T. Popa" University of Medicine and Pharmacy, Iaşi, Romania; Haematology Department, Regional Oncology Institute, Iaşi, Romania
| | - Cătălin Dănăilă
- Haematology Department, "Grigore T. Popa" University of Medicine and Pharmacy, Iaşi, Romania; Haematology Department, Regional Oncology Institute, Iaşi, Romania
| | - Amalia Titieanu
- Haematology Department, "Grigore T. Popa" University of Medicine and Pharmacy, Iaşi, Romania; Haematology Department, Regional Oncology Institute, Iaşi, Romania
| | - Mihaela Zlei
- Immunophenotyping Department, Regional Oncology Institute, Iaşi, Romania
| | - Iuliu Ivanov
- Molecular Diagnostic Department, Regional Oncology Institute, Iaşi, Romania
| | - Adriana Sireteanu
- Molecular Diagnostic Department, Regional Oncology Institute, Iaşi, Romania
| | - Petru Cianga
- Immunology Department, "Grigore T. Popa" University of Medicine and Pharmacy, Iaşi, Romania.
| |
Collapse
|
6
|
Kotsias F, Cebrian I, Alloatti A. Antigen processing and presentation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:69-121. [PMID: 31810556 DOI: 10.1016/bs.ircmb.2019.07.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic cells are at the center of immune responses. They are defined by their ability to sense the environment, take up and process antigen, migrate to secondary lymphoid organs, where they present antigens to the adaptive immune system. In particular, they present lipids and proteins from pathogens, which they encountered in peripheral tissues, to T cells in order to induce a specific effector immune response. These complex antigens need to be broken down into peptides of a certain length in association with Major Histocompatibility Complex (MHC) molecules. Presentation of MHC/antigen complexes alongside costimulatory molecules and secretion of proinflammatory cytokines will induce an appropriate immune response. This interaction between dendritic cells and T cells takes place at defined locations within secondary lymphoid organs. In this review, we discuss the current knowledge and recent advances on the cellular and molecular mechanisms that underlie antigen processing and the subsequent presentation to T lymphocytes.
Collapse
Affiliation(s)
- Fiorella Kotsias
- Cátedra de Virología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Instituto de Investigaciones en Producción Animal (INPA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Ignacio Cebrian
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET/Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Andrés Alloatti
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER)-CONICET/Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
7
|
Kobayashi H. Recent trends in mucopolysaccharidosis research. J Hum Genet 2018; 64:127-137. [PMID: 30451936 DOI: 10.1038/s10038-018-0534-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
Abstract
Mucopolysaccharidosis (MPS) is a group of inherited conditions involving metabolic dysfunction. Lysosomal enzyme deficiency leads to the accumulation of glycosaminoglycan (GAG) resulting in systemic symptoms, and is categorized into seven types caused by deficiency in one of eleven different enzymes. The pathophysiological mechanism of these diseases has been investigated, indicating impaired autophagy in neuronal damage initiation, association of activated microglia and astrocytes with the neuroinflammatory processes, and involvement of tauopathy. A new inherited error of metabolism resulting in a multisystem disorder with features of the MPS was also identified. Additionally, new therapeutic methods are being developed that could improve conventional therapies, such as new recombinant enzymes that can penetrate the blood brain barrier, hematopoietic stem cell transplantation with reduced intensity conditioning, gene therapy using a viral vector system or gene editing, and substrate reduction therapy. In this review, we discuss the recent developments in MPS research and provide a framework for developing strategies.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Division of Gene Therapy, Research Center for Medical Sciences, Department of Pediatrics, The Jikei University School of Medicine, Tokyo, 105-8461, Japan.
| |
Collapse
|
8
|
Abele R, Tampé R. Moving the Cellular Peptidome by Transporters. Front Cell Dev Biol 2018; 6:43. [PMID: 29761100 PMCID: PMC5937356 DOI: 10.3389/fcell.2018.00043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022] Open
Abstract
Living matter is defined by metastability, implying a tightly balanced synthesis and turnover of cellular components. The first step of eukaryotic protein degradation via the ubiquitin-proteasome system (UPS) leads to peptides, which are subsequently degraded to single amino acids by an armada of proteases. A small fraction of peptides, however, escapes further cytosolic destruction and is transported by ATP-binding cassette (ABC) transporters into the endoplasmic reticulum (ER) and lysosomes. The ER-resident heterodimeric transporter associated with antigen processing (TAP) is a crucial component in adaptive immunity for the transport and loading of peptides onto major histocompatibility complex class I (MHC I) molecules. Although the function of the lysosomal resident homodimeric TAPL-like (TAPL) remains, until today, only loosely defined, an involvement in immune defense is anticipated since it is highly expressed in dendritic cells and macrophages. Here, we compare the gene organization and the function of single domains of both peptide transporters. We highlight the structural organization, the modes of substrate binding and translocation as well as physiological functions of both organellar transporters.
Collapse
Affiliation(s)
- Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt, Germany.,Cluster of Excellence - Macromolecular Complexes, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
9
|
Veerappan Ganesan AP, Eisenlohr LC. The elucidation of non-classical MHC class II antigen processing through the study of viral antigens. Curr Opin Virol 2017; 22:71-76. [PMID: 28081485 PMCID: PMC5346044 DOI: 10.1016/j.coviro.2016.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/22/2016] [Indexed: 11/22/2022]
Abstract
By convention, CD4+ T cells are activated predominantly by Major Histocompatibility Complex class II-bound peptides derived from extracellular (exogenous) antigens. It has been known for decades that alternative sources of antigen, particularly those synthesized within the antigen-presenting cell, can also supply peptides but the impact on TCD4+ responses, sometimes considerable, has only recently become appreciated. This review focuses on the contributions that studies of viral antigen have made to this shift in perspective, concluding with discussions of relevance to rational vaccine design, autoimmunity and cancer immunotherapy.
Collapse
Affiliation(s)
- Asha Purnima Veerappan Ganesan
- Department of Pathology and Laboratory Medicine at the Children's Hospital of Philadelphia Research Institute and the Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, United States
| | - Laurence C Eisenlohr
- Department of Pathology and Laboratory Medicine at the Children's Hospital of Philadelphia Research Institute and the Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
10
|
Li D, Sun F, Bourajjaj M, Chen Y, Pieters EH, Chen J, van den Dikkenberg JB, Lou B, Camps MGM, Ossendorp F, Hennink WE, Vermonden T, van Nostrum CF. Strong in vivo antitumor responses induced by an antigen immobilized in nanogels via reducible bonds. NANOSCALE 2016; 8:19592-19604. [PMID: 27748778 DOI: 10.1039/c6nr05583d] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cancer vaccines are at present mostly based on tumor associated protein antigens but fail to elicit strong cell-mediated immunity in their free form. For protein-based vaccines, the main challenges to overcome are the delivery of sufficient proteins into the cytosol of dendritic cells (DCs) and processing by, and presentation through, the MHC class I pathway. Recently, we developed a cationic dextran nanogel in which a model antigen (ovalbumin, OVA) is reversibly conjugated via disulfide bonds to the nanogel network to enable redox-sensitive intracellular release. In the present study, it is demonstrated that these nanogels, with the bound OVA, were efficiently internalized by DCs and were capable of maturating them. On the other hand, when the antigen was just physically entrapped in the nanogels, OVA was prematurely released before the particles were taken up by cells. When combined with an adjuvant (polyinosinic-polycytidylic acid, poly(I:C)), nanogels with conjugated OVA induced a strong protective and curative effect against melanoma in vivo. In a prophylactic vaccination setting, 90% of the mice vaccinated with nanogels with conjugated OVA + poly(I:C) did not develop a tumor. Moreover, in a therapeutic model, 40% of the mice showed clearance of established tumors and survived for the duration of the experiment (80 days) while the remaining mice showed substantial delay in tumor progression. In conclusion, our results demonstrate that conjugation of antigens to nanogels via reducible covalent bonds for intracellular delivery is a promising strategy to induce effective antigen-specific immune responses against cancer.
Collapse
Affiliation(s)
- Dandan Li
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Feilong Sun
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Meriem Bourajjaj
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Yinan Chen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Ebel H Pieters
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Jian Chen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Joep B van den Dikkenberg
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Bo Lou
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Marcel G M Camps
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333ZA, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden 2333ZA, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands.
| |
Collapse
|
11
|
Choi SH, Gonen A, Diehl CJ, Kim J, Almazan F, Witztum JL, Miller YI. SYK regulates macrophage MHC-II expression via activation of autophagy in response to oxidized LDL. Autophagy 2016; 11:785-95. [PMID: 25946330 DOI: 10.1080/15548627.2015.1037061] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adaptive immunity, which plays an important role in the development of atherosclerosis, is mediated by major histocompatibility complex (MHC)-dependent antigen presentation. In atherosclerotic lesions, macrophages constitute an important class of antigen-presenting cells that activate adaptive immune responses to oxidized low-density lipoprotein (OxLDL). It has been reported that autophagy regulates adaptive immune responses by enhancing antigen presentation to MHC class II (MHC-II). In a previous study, we have demonstrated that SYK (spleen tyrosine kinase) regulates generation of reactive oxygen species (ROS) and activation of MAPK8/JNK1 in macrophages. Because ROS and MAPK8 are known to regulate autophagy, in this study we investigated the role of SYK in autophagy, MHC-II expression and adaptive immune response to OxLDL. We demonstrate that OxLDL induces autophagosome formation, MHC-II expression, and phosphorylation of SYK in macrophages. Gene knockout and pharmacological inhibitors of NOX2 and MAPK8 reduced OxLDL-induced autophagy. Using bone marrow-derived macrophages isolated from wild-type and myeloid-specific SYK knockout mice, we demonstrate that SYK regulates OxLDL-induced ROS generation, MAPK8 activation, BECN1-BCL2 dissociation, autophagosome formation and presentation of OxLDL-derived antigens to CD4(+) T cells. ldlr(-/-) syk(-/-) mice fed a high-fat diet produced lower levels of IgG to malondialdehyde (MDA)-LDL, malondialdehyde-acetaldehyde (MAA)-LDL, and OxLDL compared to ldlr(-/-) mice. These results provide new insights into the mechanisms by which SYK regulates MHC-II expression via autophagy in macrophages and may contribute to regulation of adaptive immune responses in atherosclerosis.
Collapse
Key Words
- 3MA, 3-methyladenine
- APCs, antigen-presenting cells
- BCR, B cell receptor
- BMDM, bone marrow-derived macrophage
- Baf, bafilomycin A1
- DPI, diphenyleneiodonium
- FCGR, Fc fragment of IgG
- GFP, green fluorescent protein
- HFD, high-fat diet
- IL2, interleukin 2
- ITAM, immunoreceptor tyrosine-based activation motif
- IgG, immunoglobulin G
- IgM, immunoglobulin M
- LPS, lipopolysaccharide
- MAA-LDL, malondialdehyde-acetaldehyde modified low density lipoprotein
- MAP1LC3/LC3, microtubule-associated protein 1 light chain 3
- MAPK, mitogen-activated protein kinase
- MDA-LDL, malondialdehyde modified low density lipoprotein
- MHC-II
- MHC-II, major histocompatibility complex class II
- NOX, NAPDH oxidase
- OSE, oxidation specific epitopes
- OxLDL
- OxLDL, oxidized low density lipoprotein
- PBS, phosphate-buffered saline
- PIC, piceatannol
- ROS
- ROS, reactive oxygen species
- SYK
- SYK, spleen tyrosine kinase
- TCR, T cell receptor
- TLR4, toll-like receptor 4
- TNF, tumor necrosis factor
- autophagy
- low affinity, receptor
- mmLDL, minimally modified low density lipoprotein
- oxidation-specific antibodies
Collapse
Affiliation(s)
- Soo-Ho Choi
- a Department of Medicine; University of California , San Diego; La Jolla , CA , USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Luo Y, Yoshihara A, Oda K, Ishido Y, Suzuki K. Excessive Cytosolic DNA Fragments as a Potential Trigger of Graves' Disease: An Encrypted Message Sent by Animal Models. Front Endocrinol (Lausanne) 2016; 7:144. [PMID: 27895620 PMCID: PMC5107990 DOI: 10.3389/fendo.2016.00144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/27/2016] [Indexed: 01/13/2023] Open
Abstract
Graves' hyperthyroidism is caused by autoantibodies directed against the thyroid-stimulating hormone receptor (TSHR) that mimic the action of TSH. The establishment of Graves' hyperthyroidism in experimental animals has proven to be an important approach to dissect the mechanisms of self-tolerance breakdown that lead to the production of thyroid-stimulating TSHR autoantibodies (TSAbs). "Shimojo's model" was the first successful Graves' animal model, wherein immunization with fibroblasts cells expressing TSHR and a major histocompatibility complex (MHC) class II molecule, but not either alone, induced TSAb production in AKR/N (H-2k) mice. This model highlights the importance of coincident MHC class II expression on TSHR-expressing cells in the development of Graves' hyperthyroidism. These data are also in agreement with the observation that Graves' thyrocytes often aberrantly express MHC class II antigens via mechanisms that remain unclear. Our group demonstrated that cytosolic self-genomic DNA fragments derived from sterile injured cells can induce aberrant MHC class II expression and production of multiple inflammatory cytokines and chemokines in thyrocytes in vitro, suggesting that severe cell injury may initiate immune responses in a way that is relevant to thyroid autoimmunity mediated by cytosolic DNA signaling. Furthermore, more recent successful Graves' animal models were primarily established by immunizing mice with TSHR-expressing plasmids or adenovirus. In these models, double-stranded DNA vaccine contents presumably exert similar immune-activating effect in cells at inoculation sites and thus might pave the way toward successful Graves' animal models. This review focuses on evidence suggesting that cell injury-derived self-DNA fragments could act as Graves' disease triggers.
Collapse
Affiliation(s)
- Yuqian Luo
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Aya Yoshihara
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
- Department of Education Planning and Development, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Kenzaburo Oda
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
- Department of Internal Medicine, Division of Diabetes, Metabolism and Endocrinology, Toho University, Tokyo, Japan
| | - Yuko Ishido
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
- *Correspondence: Koichi Suzuki,
| |
Collapse
|
13
|
Lou Z, Casali P, Xu Z. Regulation of B Cell Differentiation by Intracellular Membrane-Associated Proteins and microRNAs: Role in the Antibody Response. Front Immunol 2015; 6:537. [PMID: 26579118 PMCID: PMC4620719 DOI: 10.3389/fimmu.2015.00537] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/07/2015] [Indexed: 12/17/2022] Open
Abstract
B cells are central to adaptive immunity and their functions in antibody responses are exquisitely regulated. As suggested by recent findings, B cell differentiation is mediated by intracellular membrane structures (including endosomes, lysosomes, and autophagosomes) and protein factors specifically associated with these membranes, including Rab7, Atg5, and Atg7. These factors participate in vesicle formation/trafficking, signal transduction and induction of gene expression to promote antigen presentation, class switch DNA recombination (CSR)/somatic hypermutation (SHM), and generation/maintenance of plasma cells and memory B cells. Their expression is induced in B cells activated to differentiate and further fine-tuned by immune-modulating microRNAs, which coordinates CSR/SHM, plasma cell differentiation, and memory B cell differentiation. These short non-coding RNAs would individually target multiple factors associated with the same intracellular membrane compartments and collaboratively target a single factor in addition to regulating AID and Blimp-1. These, together with regulation of microRNA biogenesis and activities by endosomes and autophagosomes, show that intracellular membranes and microRNAs, two broadly relevant cell constituents, play important roles in balancing gene expression to specify B cell differentiation processes for optimal antibody responses.
Collapse
Affiliation(s)
- Zheng Lou
- Department of Microbiology and Immunology, School of Medicine, The University of Texas Health Science Center , San Antonio, TX , USA
| | - Paolo Casali
- Department of Microbiology and Immunology, School of Medicine, The University of Texas Health Science Center , San Antonio, TX , USA
| | - Zhenming Xu
- Department of Microbiology and Immunology, School of Medicine, The University of Texas Health Science Center , San Antonio, TX , USA
| |
Collapse
|
14
|
Leung CSK. Endogenous Antigen Presentation of MHC Class II Epitopes through Non-Autophagic Pathways. Front Immunol 2015; 6:464. [PMID: 26441969 PMCID: PMC4563256 DOI: 10.3389/fimmu.2015.00464] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/25/2015] [Indexed: 12/30/2022] Open
Abstract
Antigenic peptides presented by major histocompatibility complex (MHC) class II molecules are generally derived from exogenous proteins acquired by antigen presenting cells. However, in some circumstances, MHC class II molecules can present intracellular proteins expressed within the antigen-presenting cells. There are several described pathways by which endogenous antigens are degraded and gain access to MHC class II molecules. These include autophagy and other non-autophagic pathways; the latter category includes the MHC class I-like pathways, heat shock protein 90-mediated pathways, and internalization from the plasma membrane. This review will summarize and discuss the non-autophagic pathways.
Collapse
Affiliation(s)
- Carol S K Leung
- Department of Haematology, University College London Cancer Institute, University College London , London , UK
| |
Collapse
|
15
|
Zhao Y, Scott NA, Quah HS, Krishnamurthy B, Bond F, Loudovaris T, Mannering SI, Kay TWH, Thomas HE. Mouse pancreatic beta cells express MHC class II and stimulate CD4(+) T cells to proliferate. Eur J Immunol 2015; 45:2494-503. [PMID: 25959978 DOI: 10.1002/eji.201445378] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/25/2015] [Accepted: 05/07/2015] [Indexed: 11/05/2022]
Abstract
Type 1 diabetes results from destruction of pancreatic beta cells by autoreactive T cells. Both CD4(+) and CD8(+) T cells have been shown to mediate beta-cell killing. While CD8(+) T cells can directly recognize MHC class I on beta cells, the interaction between CD4(+) T cells and beta cells remains unclear. Genetic association studies have strongly implicated HLA-DQ alleles in human type 1 diabetes. Here we studied MHC class II expression on beta cells in nonobese diabetic mice that were induced to develop diabetes by diabetogenic CD4(+) T cells with T-cell receptors that recognize beta-cell antigens. Acute infiltration of CD4(+) T cells in islets occurred with rapid onset of diabetes. Beta cells from islets with immune infiltration expressed MHC class II mRNA and protein. Exposure of beta cells to IFN-γ increased MHC class II gene expression, and blocking IFN-γ signaling in beta cells inhibited MHC class II upregulation. IFN-γ also increased HLA-DR expression in human islets. MHC class II(+) beta cells stimulated the proliferation of beta-cell-specific CD4(+) T cells. Our study indicates that MHC class II molecules may play an important role in beta-cell interaction with CD4(+) T cells in the development of type 1 diabetes.
Collapse
Affiliation(s)
- Yuxing Zhao
- St. Vincent's Institute, Immunology and Diabetes Laboratory, Fitzroy, Victoria, Australia
| | - Nicholas A Scott
- St. Vincent's Institute, Immunology and Diabetes Laboratory, Fitzroy, Victoria, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Hong Sheng Quah
- St. Vincent's Institute, Immunology and Diabetes Laboratory, Fitzroy, Victoria, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | | | - Francene Bond
- St. Vincent's Institute, Immunology and Diabetes Laboratory, Fitzroy, Victoria, Australia
| | - Thomas Loudovaris
- St. Vincent's Institute, Immunology and Diabetes Laboratory, Fitzroy, Victoria, Australia
| | - Stuart I Mannering
- St. Vincent's Institute, Immunology and Diabetes Laboratory, Fitzroy, Victoria, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Thomas W H Kay
- St. Vincent's Institute, Immunology and Diabetes Laboratory, Fitzroy, Victoria, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Helen E Thomas
- St. Vincent's Institute, Immunology and Diabetes Laboratory, Fitzroy, Victoria, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
16
|
Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction. Nat Commun 2015; 6:6771. [PMID: 25857745 PMCID: PMC4403767 DOI: 10.1038/ncomms7771] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/25/2015] [Indexed: 11/09/2022] Open
Abstract
Lymphatic endothelial cells (LECs) directly express peripheral tissue antigens and induce CD8 T-cell deletional tolerance. LECs express MHC-II molecules, suggesting they might also tolerize CD4 T cells. We demonstrate that when β-galactosidase (β-gal) is expressed in LECs, β-gal-specific CD8 T cells undergo deletion via the PD-1/PD-L1 and LAG-3/MHC-II pathways. In contrast, LECs do not present endogenous β-gal in the context of MHC-II molecules to β-gal-specific CD4 T cells. Lack of presentation is independent of antigen localization, as membrane-bound haemagglutinin and I-Eα are also not presented by MHC-II molecules. LECs express invariant chain and cathepsin L, but not H2-M, suggesting that they cannot load endogenous antigenic peptides onto MHC-II molecules. Importantly, LECs transfer β-gal to dendritic cells, which subsequently present it to induce CD4 T-cell anergy. Therefore, LECs serve as an antigen reservoir for CD4 T-cell tolerance, and MHC-II molecules on LECs are used to induce CD8 T-cell tolerance via LAG-3. Lymphatic endothelial cells (LECs) induce peripheral tolerance of CD8 T cells. Here the authors show that LECs cannot directly tolerize CD4 T cells as they lack the machinery for loading the antigenic peptide to MHC-II; instead, LECs pass these antigens to dendritic cells that induce CD4 tolerance.
Collapse
|
17
|
Seyed N, Taheri T, Vauchy C, Dosset M, Godet Y, Eslamifar A, Sharifi I, Adotevi O, Borg C, Rohrlich PS, Rafati S. Immunogenicity evaluation of a rationally designed polytope construct encoding HLA-A*0201 restricted epitopes derived from Leishmania major related proteins in HLA-A2/DR1 transgenic mice: steps toward polytope vaccine. PLoS One 2014; 9:e108848. [PMID: 25310094 PMCID: PMC4195657 DOI: 10.1371/journal.pone.0108848] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/22/2014] [Indexed: 11/18/2022] Open
Abstract
Background There are several reports demonstrating the role of CD8 T cells against Leishmania species. Therefore peptide vaccine might represent an effective approach to control the infection. We developed a rational polytope-DNA construct encoding immunogenic HLA-A2 restricted peptides and validated the processing and presentation of encoded epitopes in a preclinical mouse model humanized for the MHC-class-I and II. Methods and Findings HLA-A*0201 restricted epitopes from LPG-3, LmSTI-1, CPB and CPC along with H-2Kd restricted peptides, were lined-up together as a polytope string in a DNA construct. Polytope string was rationally designed by harnessing advantages of ubiquitin, spacers and HLA-DR restricted Th1 epitope. Endotoxin free pcDNA plasmid expressing the polytope was inoculated into humanized HLA-DRB1*0101/HLA-A*0201 transgenic mice intramuscularly 4 days after Cardiotoxin priming followed by 2 boosters at one week interval. Mice were sacrificed 10 days after the last booster, and splenocytes were subjected to ex-vivo and in-vitro evaluation of specific IFN-γ production and in-vitro cytotoxicity against individual peptides by ELISpot and standard chromium-51(51Cr) release assay respectively. 4 H-2Kd and 5 HLA-A*0201 restricted peptides were able to induce specific CD8 T cell responses in BALB/C and HLA-A2/DR1 mice respectively. IFN-γ and cytolytic activity together discriminated LPG-3-P1 as dominant, LmSTI-1-P3 and LmSTI-1-P6 as subdominant with both cytolytic activity and IFN-γ production, LmSTI-1-P4 and LPG-3-P5 as subdominant with only IFN-γ production potential. Conclusions Here we described a new DNA-polytope construct for Leishmania vaccination encompassing immunogenic HLA-A2 restricted peptides. Immunogenicity evaluation in HLA-transgenic model confirmed CD8 T cell induction with expected affinities and avidities showing almost efficient processing and presentation of the peptides in relevant preclinical model. Further evaluation will determine the efficacy of this polytope construct protecting against infectious challenge of Leishmania. Fortunately HLA transgenic mice are promising preclinical models helping to speed up immunogenicity analysis in a human related mouse model.
Collapse
Affiliation(s)
- Negar Seyed
- Molecular Immunology and Vaccine Research Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Taheri
- Molecular Immunology and Vaccine Research Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Charline Vauchy
- INSERM U1098, Unité Mixte de Recherche, Besançon, France
- Etablissement Français du Sang de Bourgogne Franche-Comté, Besançon, France
- Université de Franche-Comté, Besançon, France
| | - Magalie Dosset
- INSERM U1098, Unité Mixte de Recherche, Besançon, France
- Etablissement Français du Sang de Bourgogne Franche-Comté, Besançon, France
- Université de Franche-Comté, Besançon, France
| | - Yann Godet
- INSERM U1098, Unité Mixte de Recherche, Besançon, France
- Etablissement Français du Sang de Bourgogne Franche-Comté, Besançon, France
- Université de Franche-Comté, Besançon, France
| | - Ali Eslamifar
- Department of Electron Microscopy and Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Iraj Sharifi
- School of Medicine, Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Olivier Adotevi
- INSERM U1098, Unité Mixte de Recherche, Besançon, France
- Etablissement Français du Sang de Bourgogne Franche-Comté, Besançon, France
- Université de Franche-Comté, Besançon, France
- CHRU de Besançon, Service d′Oncologie, Besançon, France
| | - Christophe Borg
- INSERM U1098, Unité Mixte de Recherche, Besançon, France
- Etablissement Français du Sang de Bourgogne Franche-Comté, Besançon, France
- Université de Franche-Comté, Besançon, France
- CHRU de Besançon, Service d′Oncologie, Besançon, France
| | - Pierre Simon Rohrlich
- INSERM U1098, Unité Mixte de Recherche, Besançon, France
- Etablissement Français du Sang de Bourgogne Franche-Comté, Besançon, France
- Université de Franche-Comté, Besançon, France
- CHRU de Besançon, Service de pédiatrie, Besançon, France
| | - Sima Rafati
- Molecular Immunology and Vaccine Research Lab, Pasteur Institute of Iran, Tehran, Iran
- * E-mail:
| |
Collapse
|
18
|
Cytomegalovirus immune evasion by perturbation of endosomal trafficking. Cell Mol Immunol 2014; 12:154-69. [PMID: 25263490 PMCID: PMC4654299 DOI: 10.1038/cmi.2014.85] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/15/2014] [Accepted: 08/16/2014] [Indexed: 12/30/2022] Open
Abstract
Cytomegaloviruses (CMVs), members of the herpesvirus family, have evolved a variety of mechanisms to evade the immune response to survive in infected hosts and to establish latent infection. They effectively hide infected cells from the effector mechanisms of adaptive immunity by eliminating cellular proteins (major histocompatibility Class I and Class II molecules) from the cell surface that display viral antigens to CD8 and CD4 T lymphocytes. CMVs also successfully escape recognition and elimination of infected cells by natural killer (NK) cells, effector cells of innate immunity, either by mimicking NK cell inhibitory ligands or by downregulating NK cell-activating ligands. To accomplish these immunoevasion functions, CMVs encode several proteins that function in the biosynthetic pathway by inhibiting the assembly and trafficking of cellular proteins that participate in immune recognition and thereby, block their appearance at the cell surface. However, elimination of these proteins from the cell surface can also be achieved by perturbation of their endosomal route and subsequent relocation from the cell surface into intracellular compartments. Namely, the physiological route of every cellular protein, including immune recognition molecules, is characterized by specific features that determine its residence time at the cell surface. In this review, we summarize the current understanding of endocytic trafficking of immune recognition molecules and perturbations of the endosomal system during infection with CMVs and other members of the herpesvirus family that contribute to their immune evasion mechanisms.
Collapse
|
19
|
Archer LD, Langford-Smith KJ, Bigger BW, Fildes JE. Mucopolysaccharide diseases: a complex interplay between neuroinflammation, microglial activation and adaptive immunity. J Inherit Metab Dis 2014; 37:1-12. [PMID: 23653226 DOI: 10.1007/s10545-013-9613-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 04/16/2013] [Indexed: 12/23/2022]
Abstract
Mucopolysaccharide (MPS) diseases are lysosomal storage disorders (LSDs) caused by deficiencies in enzymes required for glycosaminoglycan (GAG) catabolism. Mucopolysaccharidosis I (MPS I), MPS IIIA, MPS IIIB and MPS VII are deficient in the enzymes α-L-Iduronidase, Heparan-N-Sulphatase, N-Acetylglucosaminidase and Beta-Glucuronidase, respectively. Enzyme deficiency leads to the progressive multi-systemic build-up of heparan sulphate (HS) and dermatan sulphate (DS) within cellular lysosomes, followed by cell, tissue and organ damage and in particular neurodegeneration. Clinical manifestations of MPS are well established; however as lysosomes represent vital components of immune cells, it follows that lysosomal accumulation of GAGs could affect diverse immune functions and therefore influence disease pathogenesis. Theoretically, MPS neurodegeneration and GAGs could be substantiating a threat of danger and damage to alert the immune system for cellular clearance, which due to the progressive nature of MPS storage would propagate disease pathogenesis. Innate immunity appears to have a key role in MPS; however the extent of adaptive immune involvement remains to be elucidated. The current literature suggests a complex interplay between neuroinflammation, microglial activation and adaptive immunity in MPS disease.
Collapse
Affiliation(s)
- Louise D Archer
- The Transplant Centre, UHSM, University of Manchester, Manchester, England, UK
| | | | | | | |
Collapse
|
20
|
Tardif V, Riquelme SA, Remy S, Carreño LJ, Cortés CM, Simon T, Hill M, Louvet C, Riedel CA, Blancou P, Bach JM, Chauveau C, Bueno SM, Anegon I, Kalergis AM. Carbon monoxide decreases endosome-lysosome fusion and inhibits soluble antigen presentation by dendritic cells to T cells. Eur J Immunol 2013; 43:2832-44. [PMID: 23852701 DOI: 10.1002/eji.201343600] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/27/2013] [Accepted: 07/11/2013] [Indexed: 11/06/2022]
Abstract
Heme oxygenase-1 (HO-1) inhibits immune responses and inflammatory reactions via the catabolism of heme into carbon monoxide (CO), Fe(2+) , and biliverdin. We have previously shown that either induction of HO-1 or treatment with exogenous CO inhibits LPS-induced maturation of dendritic cells (DCs) and protects in vivo and in vitro antigen-specific inflammation. Here, we evaluated the capacity of HO-1 and CO to regulate antigen presentation on MHC class I and MHC class II molecules by LPS-treated DCs. We observed that HO-1 and CO treatment significantly inhibited the capacity of DCs to present soluble antigens to T cells. Inhibition was restricted to soluble OVA protein, as no inhibition was observed for antigenic OVA-derived peptides, bead-bound OVA protein, or OVA as an endogenous antigen. Inhibition of soluble antigen presentation was not due to reduced antigen uptake by DCs, as endocytosis remained functional after HO-1 induction and CO treatment. On the contrary, CO significantly reduced the efficiency of fusion between late endosomes and lysosomes and not by phagosomes and lysosomes. These data suggest that HO-1 and CO can inhibit the ability of LPS-treated DCs to present exogenous soluble antigens to naïve T cells by blocking antigen trafficking at the level of late endosome-lysosome fusion.
Collapse
Affiliation(s)
- Virginie Tardif
- INSERM, UMR 1064, Nantes, France; CHU Nantes, ITUN, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
MHCII is required for α-synuclein-induced activation of microglia, CD4 T cell proliferation, and dopaminergic neurodegeneration. J Neurosci 2013; 33:9592-600. [PMID: 23739956 DOI: 10.1523/jneurosci.5610-12.2013] [Citation(s) in RCA: 305] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Accumulation of α-synuclein (α-syn) in the brain is a core feature of Parkinson disease (PD) and leads to microglial activation, production of inflammatory cytokines and chemokines, T-cell infiltration, and neurodegeneration. Here, we have used both an in vivo mouse model induced by viral overexpression of α-syn as well as in vitro systems to study the role of the MHCII complex in α-syn-induced neuroinflammation and neurodegeneration. We find that in vivo, expression of full-length human α-syn causes striking induction of MHCII expression by microglia, while knock-out of MHCII prevents α-syn-induced microglial activation, antigen presentation, IgG deposition, and the degeneration of dopaminergic neurons. In vitro, treatment of microglia with aggregated α-syn leads to activation of antigen processing and presentation of antigen sufficient to drive CD4 T-cell proliferation and to trigger cytokine release. These results indicate a central role for microglial MHCII in the activation of both the innate and adaptive immune responses to α-syn in PD and suggest that the MHCII signaling complex may be a target of neuroprotective therapies for the disease.
Collapse
|
22
|
Spencer CT, Dragovic SM, Conant SB, Gray JJ, Zheng M, Samir P, Niu X, Moutaftsi M, Van Kaer L, Sette A, Link AJ, Joyce S. Sculpting MHC class II-restricted self and non-self peptidome by the class I Ag-processing machinery and its impact on Th-cell responses. Eur J Immunol 2013; 43:1162-72. [PMID: 23386199 DOI: 10.1002/eji.201243087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/02/2013] [Accepted: 01/30/2013] [Indexed: 01/14/2023]
Abstract
It is generally assumed that the MHC class I antigen (Ag)-processing (CAP) machinery - which supplies peptides for presentation by class I molecules - plays no role in class II-restricted presentation of cytoplasmic Ags. In striking contrast to this assumption, we previously reported that proteasome inhibition, TAP deficiency or ERAAP deficiency led to dramatically altered T helper (Th)-cell responses to allograft (HY) and microbial (Listeria monocytogenes) Ags. Herein, we tested whether altered Ag processing and presentation, altered CD4(+) T-cell repertoire, or both underlay the above finding. We found that TAP deficiency and ERAAP deficiency dramatically altered the quality of class II-associated self peptides suggesting that the CAP machinery impacts class II-restricted Ag processing and presentation. Consistent with altered self peptidomes, the CD4(+) T-cell receptor repertoire of mice deficient in the CAP machinery substantially differed from that of WT animals resulting in altered CD4(+) T-cell Ag recognition patterns. These data suggest that TAP and ERAAP sculpt the class II-restricted peptidome, impacting the CD4(+) T-cell repertoire, and ultimately altering Th-cell responses. Together with our previous findings, these data suggest multiple CAP machinery components sequester or degrade MHC class II-restricted epitopes that would otherwise be capable of eliciting functional Th-cell responses.
Collapse
Affiliation(s)
- Charles T Spencer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Archer LD, Langford-Smith KJ, Critchley WR, Bigger BW, Fildes JE. Characterisation of the T cell and dendritic cell repertoire in a murine model of mucopolysaccharidosis I (MPS I). J Inherit Metab Dis 2013; 36:257-62. [PMID: 22773246 DOI: 10.1007/s10545-012-9508-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 06/07/2012] [Accepted: 06/12/2012] [Indexed: 12/23/2022]
Abstract
BACKGROUND Mucopolysaccharidosis I (MPS I) is a metabolic disorder caused by α-L-Iduronidase (IDUA) deficiency, resulting in lysosomal accumulation of heparan (HS) and dermatan sulphate (DS). This has been reported in microglia, yet currently the effect of IDUA deficiency on T cells and dendritic cells (DC) and their functionality in disease pathogenesis remains unclear. METHODS Peripheral blood was collected from 3 month old C57BL/6 MPS I (n = 11) and wildtype (WT) (n = 6) mice. T cell and DC phenotype and functional characteristics were identified by flow cytometry. RESULTS MPS I mice exhibited a reduction in DC (p = <0.001) along with CD8+ cytotoxic (p = 0.01) and CD4+ T helper (p = 0.032) cells, compared to WT controls. MPS I DC displayed a significant decrease in cell surface CD123 (p = 0.02) and CD86 (p = 0.006) expression. Furthermore, CD45RB expression was significantly reduced on T helper cells in the MPS I population (p = 0.019). CONCLUSION We report a reduction in circulating DC and T cells in the MPS I mouse; indicative of adaptive immune dysfunction. DC reduction may occur in response to down-regulation of the IL-3 receptor (CD123), necessary for DC survival. We also report down-regulation of cell surface CD86, a molecule required for T cell co-stimulation. T helper cell down-regulation of CD45RB is redolent of an anti-inflammatory phenotype with poor proliferative capacity. The definitive causes of our findings and the consequences and role that these findings play in the pathogenesis of MPS are unclear, but may be in response to lysosomal storage of unmetabolized HS and DS.
Collapse
|
24
|
Schall N, Page N, Macri C, Chaloin O, Briand JP, Muller S. Peptide-based approaches to treat lupus and other autoimmune diseases. J Autoimmun 2012; 39:143-53. [PMID: 22727561 DOI: 10.1016/j.jaut.2012.05.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 05/20/2012] [Indexed: 01/15/2023]
Abstract
After a long period where the potential of therapeutic peptides was let into oblivion and even dismissed, there is a revival of interest in peptides as potential drug candidates. Novel strategies for limiting metabolism and improve their bioavailability, and alternative routes of administration have emerged. This resulted in a large number of peptide-based drugs that are now being marketed in different indications. Regarding autoimmunity, successful data have been reported in numerous mouse models of autoimmune inflammation, yet relatively few clinical trials based on synthetic peptides are currently underway. This review reports on peptides that show much promises in appropriate mouse models of autoimmunity and describes in more detail clinical trials based on peptides for treating autoimmune patients. A particular emphasis is given to the 21-mer peptide P140/Lupuzor that has completed successfully phase I, phase IIa and phase IIb clinical trials for systemic lupus erythematosus.
Collapse
Affiliation(s)
- Nicolas Schall
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
25
|
Bangert I, Tumulka F, Abele R. The lysosomal polypeptide transporter TAPL: more than a housekeeping factor? Biol Chem 2011; 392:61-6. [PMID: 21194361 DOI: 10.1515/bc.2011.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The transporter associated with antigen processing-like (TAPL) is a polypeptide transporter translocating cytosolic peptides into the lumen of lysosomes driven by ATP hydrolysis. TAPL belongs to the family of ABC transporters and forms a homodimer. This ABC transporter not only shows a broad tissue but also a wide phylogenetic distribution, because orthologs are still found in nematodes and insects. Here, we present the topology, substrate specificity, and distribution of this intracellular polypeptide transporter. Additionally, we will discuss its proposed physiological functions such as housekeeping together with a specialized factor for metabolite storage as well as for the adaptive immunity.
Collapse
Affiliation(s)
- Irina Bangert
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Strasse 9, Frankfurt/Main, Germany
| | | | | |
Collapse
|
26
|
Dragovic SM, Hill T, Christianson GJ, Kim S, Elliott T, Scott D, Roopenian DC, Van Kaer L, Joyce S. Proteasomes, TAP, and endoplasmic reticulum-associated aminopeptidase associated with antigen processing control CD4+ Th cell responses by regulating indirect presentation of MHC class II-restricted cytoplasmic antigens. THE JOURNAL OF IMMUNOLOGY 2011; 186:6683-92. [PMID: 21572029 DOI: 10.4049/jimmunol.1100525] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytoplasmic Ags derived from viruses, cytosolic bacteria, tumors, and allografts are presented to T cells by MHC class I or class II molecules. In the case of class II-restricted Ags, professional APCs acquire them during uptake of dead class II-negative cells and present them via a process called indirect presentation. It is generally assumed that the cytosolic Ag-processing machinery, which supplies peptides for presentation by class I molecules, plays very little role in indirect presentation of class II-restricted cytoplasmic Ags. Remarkably, upon testing this assumption, we found that proteasomes, TAP, and endoplasmic reticulum-associated aminopeptidase associated with Ag processing, but not tapasin, partially destroyed or removed cytoplasmic class II-restricted Ags, such that their inhibition or deficiency led to dramatically increased Th cell responses to allograft (HY) and microbial (Listeria monocytogenes) Ags, both of which are indirectly presented. This effect was neither due to enhanced endoplasmic reticulum-associated degradation nor competition for Ag between class I and class II molecules. From these findings, a novel model emerged in which the cytosolic Ag-processing machinery regulates the quantity of cytoplasmic peptides available for presentation by class II molecules and, hence, modulates Th cell responses.
Collapse
Affiliation(s)
- Srdjan M Dragovic
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Shen Y, Nicoletti P, Floratos A, Pirmohamed M, Molokhia M, Geppetti P, Benemei S, Giomi B, Schena D, Vultaggio A, Stern R, Daly MJ, John S, Nelson MR, Pe'er I. Genome-wide association study of serious blistering skin rash caused by drugs. THE PHARMACOGENOMICS JOURNAL 2011; 12:96-104. [PMID: 21221126 DOI: 10.1038/tpj.2010.84] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are rare but severe, potentially life threatening adverse drug reactions characterized by skin blistering. Previous studies have identified drug-specific and population-specific genetic risk factors with large effects. In this study, we report the first genome-wide association study (GWAS) of SJS/TEN induced by a variety of drugs. Our aim was to identify common genetic risk factors with large effects on SJS/TEN risk. We conducted a genome-wide analysis of 96 retrospective cases and 198 controls with a panel of over one million single-nucleotide polymorphisms (SNPs). We further improved power with about 4000 additional controls from publicly available datasets. No genome-wide significant associations with SNPs or copy number variants were observed, although several genomic regions were suggested that may have a role in predisposing to drug-induced SJS/TEN. Our GWAS did not find common, highly penetrant genetic risk factors responsible for SJS/TEN events in the cases selected.
Collapse
Affiliation(s)
- Y Shen
- Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Testa JS, Apcher GS, Comber JD, Eisenlohr LC. Exosome-driven antigen transfer for MHC class II presentation facilitated by the receptor binding activity of influenza hemagglutinin. THE JOURNAL OF IMMUNOLOGY 2010; 185:6608-16. [PMID: 21048109 DOI: 10.4049/jimmunol.1001768] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanisms underlying MHC class I-restricted cross-presentation, the transfer of Ag from an infected cell to a professional APC, have been studied in great detail. Much less is known about the equivalent process for MHC class II-restricted presentation. After infection or transfection of class II-negative donor cells, we observed minimal transfer of a proteasome-dependent "class I-like" epitope within the influenza neuraminidase glycoprotein but potent transfer of a classical, H-2M-dependent epitope within the hemagglutinin (HA) glycoprotein. Additional experiments determined transfer to be exosome-mediated and substantially enhanced by the receptor binding activity of incorporated HA. Furthermore, a carrier effect was observed in that incorporated HA improved exosome-mediated transfer of a second membrane protein. This route of Ag presentation should be relevant to other enveloped viruses, may skew CD4(+) responses toward exosome-incorporated glycoproteins, and points toward novel vaccine strategies.
Collapse
Affiliation(s)
- James S Testa
- Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
29
|
Alternative endogenous protein processing via an autophagy-dependent pathway compensates for Yersinia-mediated inhibition of endosomal major histocompatibility complex class II antigen presentation. Infect Immun 2010; 78:5138-50. [PMID: 20876292 DOI: 10.1128/iai.00155-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Extracellular Yersinia pseudotuberculosis employs a type III secretion system (T3SS) for translocating virulence factors (Yersinia outer proteins [Yops]) directly into the cytosol of eukaryotic cells. Recently, we used YopE as a carrier molecule for T3SS-dependent secretion and translocation of listeriolysin O (LLO) from Listeria monocytogenes. We demonstrated that translocation of chimeric YopE/LLO into the cytosol of macrophages by Yersinia results in the induction of a codominant antigen-specific CD4 and CD8 T-cell response in orally immunized mice. In this study, we addressed the requirements for processing and major histocompatibility complex (MHC) class II presentation of chimeric YopE proteins translocated into the cytosol of macrophages by the Yersinia T3SS. Our data demonstrate the ability of Yersinia to counteract exogenous MHC class II antigen presentation of secreted hybrid YopE by the action of wild-type YopE and YopH. In the absence of exogenous MHC class II antigen presentation, an alternative pathway was identified for YopE fusion proteins originating in the cytosol. This endogenous antigen-processing pathway was sensitive to inhibitors of phagolysosomal acidification and macroautophagy, but it did not require the function either of the proteasome or of transporters associated with antigen processing. Thus, by an autophagy-dependent mechanism, macrophages are able to compensate for the YopE/YopH-mediated inhibition of the endosomal MHC class II antigen presentation pathway for exogenous antigens. This is the first report demonstrating that autophagy might enable the host to mount an MHC class II-restricted CD4 T-cell response against translocated bacterial virulence factors. We provide critical new insights into the interaction between the mammalian immune system and a human pathogen.
Collapse
|
30
|
van Luijn MM, Chamuleau MED, Ressing ME, Wiertz EJ, Ostrand-Rosenberg S, Souwer Y, Zevenbergen A, Ossenkoppele GJ, van de Loosdrecht AA, van Ham SM. Alternative Ii-independent antigen-processing pathway in leukemic blasts involves TAP-dependent peptide loading of HLA class II complexes. Cancer Immunol Immunother 2010; 59:1825-38. [PMID: 20820776 PMCID: PMC2945475 DOI: 10.1007/s00262-010-0908-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 08/14/2010] [Indexed: 01/08/2023]
Abstract
During HLA class II synthesis in antigen-presenting cells, the invariant chain (Ii) not only stabilizes HLA class II complexes in the endoplasmic reticulum, but also mediates their transport to specialized lysosomal antigen-loading compartments termed MIICs. This study explores an alternative HLA class II presentation pathway in leukemic blasts that involves proteasome and transporter associated with antigen processing (TAP)-dependent peptide loading. Although HLA-DR did associate with Ii, Ii silencing in the human class II-associated invariant chain peptide (CLIP)-negative KG-1 myeloid leukemic cell line did not affect total and plasma membrane expression levels of HLA-DR, as determined by western blotting and flow cytometry. Since HLA-DR expression does require peptide binding, we examined the role of endogenous antigen-processing machinery in HLA-DR presentation by CLIP(-) leukemic blasts. The suppression of proteasome and TAP function using various inhibitors resulted in decreased HLA-DR levels in both CLIP(-) KG-1 and ME-1 blasts. Simultaneous inhibition of TAP and Ii completely down-modulated the expression of HLA-DR, demonstrating that together these molecules form the key mediators of HLA class II antigen presentation in leukemic blasts. By the use of a proteasome- and TAP-dependent pathway for HLA class II antigen presentation, CLIP(-) leukemic blasts might be able to present a broad range of endogenous leukemia-associated peptides via HLA class II to activate leukemia-specific CD4(+) T cells.
Collapse
Affiliation(s)
- Marvin M van Luijn
- Department of Hematology, Cancer Center Amsterdam, VU Institute for Cancer and Immunology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Demirel O, Bangert I, Tampé R, Abele R. Tuning the cellular trafficking of the lysosomal peptide transporter TAPL by its N-terminal domain. Traffic 2010; 11:383-93. [PMID: 20377823 DOI: 10.1111/j.1600-0854.2009.01021.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The homodimeric ATP-binding cassette (ABC) transport complex TAPL (transporter associated with antigen processing-like, ABCB9) translocates a broad spectrum of peptides from the cytosol into the lumen of lysosomes. The presence of an extra N-terminal transmembrane domain (TMD0) lacking any sequence homology to known proteins distinguishes TAPL from most other ABC transporters of its subfamily. By dissecting TAPL, we could assign distinct functions to the core complex and TMD0. The core-TAPL complex, composed of six predicted transmembrane helices and a nucleotide-binding domain, is sufficient for peptide transport, showing that the core transport complex is correctly targeted to and assembled in the membrane. Strikingly, in contrast to the full-length transporter, the core translocation complex is targeted preferentially to the plasma membrane. However, TMD0 alone, comprising a putative four transmembrane helix bundle, traffics to lysosomes. Upon coexpression, TMD0 forms a stable non-covalently linked complex with the core translocation machinery and guides core-TAPL into lysosomal compartments. Therefore, TMD0 represents a unique domain, which folds independently and encodes the information for lysosomal targeting. These outcomes are discussed in respect of trafficking, folding and function of TAPL.
Collapse
Affiliation(s)
- Ozlem Demirel
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
32
|
Meyer Zu Horste G, Heidenreich H, Lehmann HC, Ferrone S, Hartung HP, Wiendl H, Kieseier BC. Expression of antigen processing and presenting molecules by Schwann cells in inflammatory neuropathies. Glia 2010; 58:80-92. [PMID: 19544394 DOI: 10.1002/glia.20903] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Schwann cells are the myelinating glia cells of the peripheral nervous system (PNS) and can become targets of an autoimmune response in inflammatory neuropathies like the Guillain-Barré syndrome (GBS). Professional antigen presenting cells (APCs) are known to promote autoimmune responses in target tissues by presenting self-antigens. Other cell types could participate in local autoimmune responses by acting as nonprofessional APCs. Using a combined approach of immunocytochemistry, immunohistochemistry, and flow cytometry analysis we demonstrate that human Schwann cells express the antigen processing and presenting machinery (APM) in vitro and in vivo. Moreover, cultured human Schwann cells increase the expression of proteasome subunit delta (Y), antigen peptide transporter TAP2, and HLA Class I and HLA Class II complexes in an inflammatory environment. In correlation with this observation, Schwann cells in sural nerve biopsies from GBS patients show increased expression of antigen processing and presenting molecules. Furthermore, cultured human Schwann cells can proteolytically digest fluorescently-labeled nonmammalian antigen ovalbumin. Taken together, our data suggest antigen processing and presentation as a possible function of Schwann cells that may contribute to (auto)immune responses within peripheral nerves.
Collapse
|
33
|
van Luijn MM, van den Ancker W, Chamuleau MED, Ossenkoppele GJ, van Ham SM, van de Loosdrecht AA. Impaired antigen presentation in neoplasia: basic mechanisms and implications for acute myeloid leukemia. Immunotherapy 2010; 2:85-97. [DOI: 10.2217/imt.09.84] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
During onset, treatment and progression of acute myeloid leukemia (AML), inadequate immune responses against certain myeloid leukemic blasts might be associated with the occurrence of minimal residual disease and subsequent relapse. Several studies on this subject have demonstrated that, in general, solid tumor cells are able to avoid CD8+ cytotoxic T-cell recognition by downregulating HLA class I-restricted presentation of tumor-associated antigens. In tumor cells that can express HLA class II molecules, such as myeloid leukemic blasts, abnormalities in the processing pathways of endogenous antigens could also result in impaired HLA class II-restricted tumor-associated antigen presentation to CD4+ T helper cells. More insight into impaired tumor-associated antigen presentation by myeloid leukemic blasts could explain their escape from immune recognition and might be crucial for selecting appropriate strategies to improve whole-cell or dendritic cell-based tumor vaccine efficacy in the treatment of AML patients.
Collapse
Affiliation(s)
- Marvin M van Luijn
- VU Institute for Cancer & Immunology, Cancer Center Amsterdam, VU University Medical Center, Department of Hematology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Department of Immunopathology, Sanquin Research & Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Willemijn van den Ancker
- VU Institute for Cancer & Immunology, Cancer Center Amsterdam, VU University Medical Center, Department of Hematology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Martine ED Chamuleau
- VU Institute for Cancer & Immunology, Cancer Center Amsterdam, VU University Medical Center, Department of Hematology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Gert J Ossenkoppele
- VU Institute for Cancer & Immunology, Cancer Center Amsterdam, VU University Medical Center, Department of Hematology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research & Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Arjan A van de Loosdrecht
- VU Institute for Cancer & Immunology, Cancer Center Amsterdam, VU University Medical Center, Department of Hematology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
34
|
The impact of antigen expression in antigen-presenting cells on humoral immune responses against the transgene product. Gene Ther 2009; 17:288-93. [PMID: 19759564 DOI: 10.1038/gt.2009.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Treatment of genetic diseases by gene therapy is hampered by immune responses against the transgene product. Promoter choice has been shown to be an important parameter of the presence or absence of antibodies against the transgene product after gene transfer. Here, the generality of some of these observations was tested by comparing different murine strains and different transgene products. We show immunological unresponsiveness for human apolipoprotein (apo) A-I in six murine strains after transfer with E1E3E4-deleted adenoviral vectors containing hepatocyte-specific expression cassettes. However, differences in the induction of a humoral immune response against human apo A-I after gene transfer with vectors driven by the major histocompatibility complex class II Ebeta promoter and the ubiquitously active cytomegalovirus promoter were not consistent in these six murine strains. Furthermore, use of a potent hepatocyte-specific expression cassette did not prevent a humoral immune response against human plasminogen in C57BL/6 mice. In contrast, human microplasminogen transfer resulted in stable expression in the absence of an immune response against the transgene product. Taken together, the molecular design of strategies to abrogate or induce an immune response against the transgene product may be hampered by the multitude of parameters affecting the outcome, thus limiting the external validity of results.
Collapse
|
35
|
Chaudhry A, Verghese DA, Das SR, Jameel S, George A, Bal V, Mayor S, Rath S. HIV-1 Nef promotes endocytosis of cell surface MHC class II molecules via a constitutive pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:2415-24. [PMID: 19620308 PMCID: PMC7616452 DOI: 10.4049/jimmunol.0804014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
HIV-1 Nef has been reported to disrupt MHC class II (MHCII)-mediated Ag presentation by a dual strategy that comprises a reduction in cell surface levels of peptide-loaded mature MHCII molecules and a up-regulation of immature MHCII molecules. We show that Nef achieves relocation of MHCII away from the cell surface in monocytic cells by both delaying its transport to the cell surface and by accelerating endocytic removal of cell surface MHCII to a lysosomal compartment. Nef-induced MHCII endocytosis is cholesterol-sensitive but clathrin- and dynamin-independent. Internalized MHCII molecules traverse the early endosomal system and colocalize with pinocytic cargo before reaching lysosomes. Nef-triggered MHCII endocytosis requires Rab5 activity and lyst function, whereas lysosomal trafficking of internalized MHCII molecules requires Rab7 activity. We further show that a similar pathway can remove peptide-MHCII complexes from the surface of monocytic cells not expressing Nef. Our data suggest that Nef uses mechanisms involved in normal MHCII recycling and turnover to mediate the delivery of cell surface MHCII to a lysosomal destination. Thus, Nef-mediated endocytosis of MHCII provides a novel perspective on the regulation of normal MHCII trafficking.
Collapse
|
36
|
Abele R, Tampé R. Peptide trafficking and translocation across membranes in cellular signaling and self-defense strategies. Curr Opin Cell Biol 2009; 21:508-15. [PMID: 19443191 DOI: 10.1016/j.ceb.2009.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 04/11/2009] [Accepted: 04/14/2009] [Indexed: 01/03/2023]
Abstract
Cells are metastable per se and a fine-tuned balance of de novo protein synthesis and degradation shapes their proteome. The primary function of peptides is to supply amino acids for de novo protein synthesis or as an energy source during starvation. Peptides are intrinsically short-lived and steadily trimmed by an armada of intra and extracellular peptidases. However, peptides acquired additional, more sophisticated tasks already early in evolution. Here, we summarize current knowledge on intracellular peptide trafficking and translocation mediated by ATP-binding cassette (ABC) transport machineries with a focus on the functions of protein degradation products as important signaling molecules in self-defense mechanisms.
Collapse
Affiliation(s)
- Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt aM, Germany
| | | |
Collapse
|
37
|
Crotzer VL, Blum JS. Autophagy and its role in MHC-mediated antigen presentation. THE JOURNAL OF IMMUNOLOGY 2009; 182:3335-41. [PMID: 19265109 DOI: 10.4049/jimmunol.0803458] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Intracellular degradation by autophagy plays a role in the maintenance of cellular homeostasis under normal conditions and during periods of cellular stress. Autophagy has also been implicated in several other cellular processes including immune recognition and responsiveness. More specifically, autophagy has been identified as a route by which cytoplasmic and nuclear Ag are delivered to MHC class II molecules for presentation to CD4(+) T cells. Autophagy has also recently been implicated in MHC class I cross-presentation of tumor Ag and the activation of CD8(+) T cells. This review discusses the role of autophagy in modulating MHC class I and class II Ag presentation as well as its implication in regulating autoimmunity and tolerance, tumor immunity, and host defense against intracellular pathogens.
Collapse
Affiliation(s)
- Victoria L Crotzer
- Department of Microbiology and Immunology and the Walther Oncology Center, Indiana University School of Medicine and the Walther Cancer Institute, Indianapolis, IN 46202, USA
| | | |
Collapse
|
38
|
Prestwich RJ, Errington F, Ilett EJ, Morgan RSM, Scott KJ, Kottke T, Thompson J, Morrison EE, Harrington KJ, Pandha HS, Selby PJ, Vile RG, Melcher AA. Tumor infection by oncolytic reovirus primes adaptive antitumor immunity. Clin Cancer Res 2009; 14:7358-66. [PMID: 19010851 DOI: 10.1158/1078-0432.ccr-08-0831] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Early clinical trials are under way exploring the direct oncolytic potential of reovirus. This study addresses whether tumor infection by reovirus is also able to generate bystander, adaptive antitumor immunity. EXPERIMENTAL DESIGN Reovirus was delivered intravenously to C57BL/6 mice bearing lymph node metastases from the murine melanoma, B16-tk, with assessment of nodal metastatic clearance, priming of antitumor immunity against the tumor-associated antigen tyrosinase-related protein-2, and cytokine responses. In an in vitro human system, the effect of reovirus infection on the ability of Mel888 melanoma cells to activate and load dendritic cells for cytotoxic lymphocyte (CTL) priming was investigated. RESULTS In the murine model, a single intravenous dose of reovirus reduced metastatic lymph node burden and induced antitumor immunity (splenocyte response to tyrosinase-related protein-2 and interleukin-12 production in disaggregated lymph nodes). In vitro human assays revealed that uninfected Mel888 cells failed to induce dendritic cell maturation or support priming of an anti-Mel888 CTL response. In contrast, reovirus-infected Mel888 cells (reo-Mel) matured dendritic cells in a reovirus dose-dependent manner. When cultured with autologous peripheral blood lymphocytes, dendritic cells loaded with reo-Mel induced lymphocyte expansion, IFN-gamma production, specific anti-Mel888 cell cytotoxicity, and cross-primed CD8+ T cells specific against the human tumor-associated antigen MART-1. CONCLUSION Reovirus infection of tumor cells reduces metastatic disease burden and primes antitumor immunity. Future clinical trials should be designed to explore both direct cytotoxic and immunotherapeutic effects of reovirus.
Collapse
Affiliation(s)
- Robin J Prestwich
- Cancer Research UK Clinical Centre, Leeds Institute of Molecular Medicine, University of Leeds, Leeds, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Macroautophagy is a catabolic process for the lysosomal turnover of cell organelles and protein aggregates. Lysosomal degradation products are displayed by major histocompatibility class II molecules to CD4(+) T cells in the steady state for tolerance induction and during infections to mount adaptive immune responses. It has recently been shown that macroautophagy substrates can also give rise to MHC class II ligands. We review here the breadth of antigens that may utilize this pathway and the possible implications of this alternate route to MHC class II antigen presentation for immunity and tolerance. Based on this discussion, it is apparent that the regulation of macroautophagy may be beneficial in various disease settings in order to enhance adaptive immune responses or to reduce autoimmunity.
Collapse
|
40
|
Abstract
Autophagy is a homeostatic process that enables eukaryotic cells to deliver cytoplasmic constituents for lysosomal degradation, to recycle nutrients and to survive during starvation. In addition to these primordial functions, autophagy has emerged as a key mechanism in orchestrating innate and adaptive immune responses to intracellular pathogens. Autophagy restricts viral infections as well as replication of intracellular bacteria and parasites and delivers pathogenic determinants for TLR stimulation and for MHC class II presentation to the adaptive immune system. Apart from its role in defense against pathogens, autophagy-mediated presentation of self-antigens in the steady state could have a crucial role in the induction and maintenance of CD4(+) T-cell tolerance. This review describes the mechanisms by which the immune system utilizes autophagic degradation of cytoplasmic material to regulate adaptive immune responses.
Collapse
|
41
|
Zhao C, Haase W, Tampé R, Abele R. Peptide Specificity and Lipid Activation of the Lysosomal Transport Complex ABCB9 (TAPL). J Biol Chem 2008; 283:17083-91. [DOI: 10.1074/jbc.m801794200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
42
|
A two-pronged mechanism for HIV-1 Nef-mediated endocytosis of immune costimulatory molecules CD80 and CD86. Cell Host Microbe 2008; 1:37-49. [PMID: 18005680 DOI: 10.1016/j.chom.2007.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/21/2006] [Accepted: 01/18/2007] [Indexed: 12/14/2022]
Abstract
The Nef protein of HIV-1 mediates immune evasion by relocating major histocompatibility complex (MHC) molecules and the immune costimulatory molecules CD80 and CD86 away from the monocytic cell surface. We describe a two-pronged mechanism by which Nef removes CD80 and CD86 from the cell surface. While MHCI, CD80, and CD86 are all internalized via a dynamin-independent pathway, the endocytic mechanism used for costimulatory molecules is distinct from MHCI relocation. Nef expression results in the activation and actin-dependent translocation of Src kinase to the cell periphery. At the cell surface, Src promotes Rac activation via TIAM, a guanine nucleotide exchange factor for Rac. Nef also binds to the cytosolic tails of CD80 and CD86, triggering their endocytosis via Rac-based actin polymerization. These data reveal the use of an unusual molecular mechanism triggered in the host cell by HIV to affect its viral immune evasion strategy and suggest approaches for its subversion.
Collapse
|
43
|
Miura S, Kagamu H, Tanaka H, Yoshizawa H, Gejyo F. Appropriate Timing of CD40 Ligation for RNA-Pulsed DCs to Induce Antitumor Immunity. Scand J Immunol 2008; 67:385-91. [DOI: 10.1111/j.1365-3083.2008.02083.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Transporter associated with antigen processing (TAP) 1 gene polymorphisms in patients with hypersensitivity pneumonitis. Exp Mol Pathol 2008; 84:173-7. [PMID: 18342853 DOI: 10.1016/j.yexmp.2008.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 01/22/2008] [Indexed: 11/23/2022]
Abstract
Hypersensitivity pneumonitis (HP) is a lung inflammatory disease caused by the inhalation of a variety of antigens. Previous studies support the role of the major histocompatibility complex (MHC) class II genes in the susceptibility to develop HP. However, the putative role of other MHC loci has not been elucidated. Transporters associated with antigen processing (TAP) genes are located within the MHC class II region and play an important role transporting peptides across the endoplasmic reticulum membrane for MHC class I molecules assembly. The distribution of single nucleotide polymorphisms (SNPs) in TAP1 genes was analyzed in 73 hypersensitivity pneumonitis (HP) patients and 58 normal subjects. We found a significant association of the allele Gly-637 (GGC) (p=0.00004, OR=27.30, CI=3.87-548.04) and the genotypes Asp-637/Gly-637 (p=0.01, OR=16.0, CI=2.19-631.21), Pro-661/Pro-661 (p=0.006, OR=11.30, CI=2.28-75.77) with HP. A significant decrease in the frequency of the allele Pro-661 (CCA) (p=0.008, OR=0.06, CI=0-0.45), the genotype Asp-637/Asp-637 (p=0.01, OR=0.17, 95% CI=0.05-0.58) and the haplotype [Val-333 (GTC), Val-458 (GTG), Gly-637 (GGC), Pro-661 (CCA)] was detected in HP patients compared with controls (p=0.002, OR=0.07, CI=0.0-0.57). These findings suggest that TAP1 gene polymorphisms are related to HP risk, and highlight the importance of the MHC in the development of this disease.
Collapse
|
45
|
Demirel Ö, Waibler Z, Kalinke U, Grünebach F, Appel S, Brossart P, Hasilik A, Tampé R, Abele R. Identification of a Lysosomal Peptide Transport System Induced during Dendritic Cell Development. J Biol Chem 2007; 282:37836-43. [DOI: 10.1074/jbc.m708139200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
46
|
Abstract
The delivery of intracellular substrates such as misfolded proteins and damaged organelles from the cytosol to the lysosome for degradation is crucial for cell survival. Multiple transport pathways including bulk autophagy (microautophagy and macroautophagy) and chaperone‐mediated autophagy (CMA) have been identified to efficiently facilitate this transit of macromolecules from the cytoplasm to acidic vacuolar organelles. While autophagy plays a role in the general housekeeping of cells, it also functions in more specialized processes such as development and differentiation, responses to physiological stress and immunity. The presentation of both exogenous and endogenous antigens (Ag) by major histocompatibility complex (MHC) class II molecules to CD4+ T lymphocytes is critical for the induction of tolerance to self Ag as well as the development of immunity against intracellular pathogens and tumors. Here, we discuss the class II‐mediated presentation of several endogenous Ag, dependent on either macroautophagy or CMA for their transport from the cytosol to endosomal/lysosomal compartments. Thus, the various pathways of autophagy as routes of cytoplasmic Ag delivery to lysosomes have significant implications for the MHC class II‐mediated immune response to intracellular pathogens and cancer.
Collapse
Affiliation(s)
- Victoria L Crotzer
- Department of Microbiology and Immunology and the Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
47
|
Strawbridge AB, Blum JS. Autophagy in MHC class II antigen processing. Curr Opin Immunol 2007; 19:87-92. [PMID: 17129719 DOI: 10.1016/j.coi.2006.11.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 11/21/2006] [Indexed: 10/23/2022]
Abstract
Durable adaptive immunity is dependent upon CD4 T-cell recognition of MHC class II molecules that display peptides from exogenous and endogenous antigens. Endogenously expressed cytosolic and nuclear antigens access MHC class II by way of several intracellular autophagic routes. These pathways include macroautophagy, microautophagy and chaperone-mediated autophagy. Macroautophagy can deliver antigens into autophagosomes for processing by acidic proteases before MHC class II presentation. However, other endogenous antigens are processed by cytoplasmic proteases, yielding fragments that translocate via chaperone-mediated autophagy into the endosomal network to intersect MHC class II. Cross-talk between autophagy pathways, particularly in response to stress, appears to balance the relative efficiency of each pathway. This might limit redundancy, giving MHC class II broader access to antigens within intracellular compartments distinct from the endosomal network.
Collapse
Affiliation(s)
- Andrew B Strawbridge
- Department of Microbiology and Immunology, Center for Immunobiology, Indiana University School of Medicine, 635 Barnhill Drive, MS420, Indianapolis, IN 46202, USA
| | | |
Collapse
|
48
|
Heemskerk B, van Vreeswijk T, Veltrop-Duits LA, Sombroek CC, Franken K, Verhoosel RM, Hiemstra PS, van Leeuwen D, Ressing ME, Toes REM, van Tol MJD, Schilham MW. Adenovirus-specific CD4+ T cell clones recognizing endogenous antigen inhibit viral replication in vitro through cognate interaction. THE JOURNAL OF IMMUNOLOGY 2007; 177:8851-9. [PMID: 17142788 DOI: 10.4049/jimmunol.177.12.8851] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human adenovirus (HAdV) infection is a frequent and potentially severe complication following allogeneic stem cell transplantation in children. Because treatment with antiviral drugs is often ineffective, adoptive transfer of donor-derived HAdV-specific T cells able to control viral replication of HAdV of multiple serotypes may be an option for therapy. In healthy donors, predominantly HAdV-specific T cells expressing CD4 are detected. In this study, a preclinical in vitro model was used to measure the antiviral effect of HAdV-specific CD4+ T cells. CD4+ HAdV-specific T cell clones restricted by HLA class II molecules were generated and most of these clones recognized conserved peptides derived from the hexon protein. These cross-reactive T cell clones were able to control viral replication of multiple serotypes of HAdV in EBV-transformed B cells (B-LCL), melanoma cells (MJS) and primary bronchial epithelial cells through cognate interaction. The HAdV-specific CD4+ T cell clones were able to specifically lyse infected target cells using a perforin-dependent mechanism. Antigenic peptides were also presented to the CD4+ T cell clones when derived from endogenously produced hexon protein. Together, these results show that cross-reactive HAdV-specific CD4+ T cells can control replication of HAdV in vitro and provide a rationale for the use of HAdV-specific T cells in adoptive immunotherapy protocols for control of life-threatening HAdV-infections in immunocompromised patients.
Collapse
Affiliation(s)
- Bianca Heemskerk
- Department of Pediatrics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Godefroy E, Scotto L, Souleimanian NE, Ritter G, Old LJ, Jotereau F, Valmori D, Ayyoub M. Identification of two Melan-A CD4+ T cell epitopes presented by frequently expressed MHC class II alleles. Clin Immunol 2006; 121:54-62. [PMID: 16814609 DOI: 10.1016/j.clim.2006.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 05/11/2006] [Accepted: 05/12/2006] [Indexed: 11/20/2022]
Abstract
Because of its expression pattern restricted to cells of the melanocytic lineage and to melanoma cells, Melan-A is an important target of immunotherapeutic approaches for the treatment of melanoma. Identification of Melan-A derived sequences recognized by specific T cells is therefore of great interest for the development of these therapeutic strategies. Using circulating CD4(+) T cells from healthy donors, we identified two Melan-A-derived CD4(+) T cell epitopes mapping to the 1-20 and 91-110 regions of the protein and restricted by HLA-DR11 and HLA-DR52 molecules, respectively. CD4(+) T cells specific for the identified epitopes were able to recognize the native antigen when endogenously expressed by antigen presenting cells and tumor cells. In addition, CD4(+) T cells specific for Melan-A 91-110 recognized the epitope after exogenous processing and presentation of Melan-A recombinant protein. Identification of these epitopes will be instrumental for the evaluation of the immune response to Melan-A in cancer patients.
Collapse
Affiliation(s)
- Emmanuelle Godefroy
- Ludwig Institute Clinical Trial Center, Division of Medical Oncology, Department of Medicine, Columbia University College of Physicians and Surgeons, 650 West 168th Street, Black Building Room 20-09, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Naota H, Miyahara Y, Okumura S, Kuzushima K, Akatsuka Y, Hiasa A, Kitano S, Takahashi T, Yuta A, Majima Y, Shiku H. Generation of peptide-specific CD8+ T cells by phytohemagglutinin-stimulated antigen-mRNA-transduced CD4+ T cells. J Immunol Methods 2006; 314:54-66. [PMID: 16828790 DOI: 10.1016/j.jim.2006.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 05/10/2006] [Accepted: 05/15/2006] [Indexed: 12/29/2022]
Abstract
Functional analysis of antigen-specific CD8(+) T cells is important for understanding the immune response in various immunological disorders. To analyze CD8(+) T cell responses to a variety of antigens with no readily defined peptides available, we developed a system using CD4(+) phytohemagglutinin (PHA) blasts transduced with mRNA for antigen molecules. CD4(+) PHA blasts express MHC class I and II, and also CD80 and CD86 and are thus expected to serve as potent antigen presenting cells. EGFP mRNA could be transduced into and the protein expressed by more than 90% of either LCL or CD4(+) PHA blasts. Its expression stably persisted for more than 2 weeks after transduction. In experiments with HLA-A*2402 restricted CD8(+) CTL clones for either EBNA3A or a cancer-testis antigen, SAGE, mRNA-transduced lymphoid cells were appropriate target cells in ELISPOT assays or (51)Cr releasing assays. Finally, using CD4(+) PHA blasts transduced with mRNA of a cancer-testis antigen MAGE-A4, we successfully generated specific CTL clones that recognized a novel HLA-B*4002 restricted epitope, MAGE-A4(223-231). Messenger RNA-transduced CD4(+) PHA blasts are thus useful antigen presenting cells for analysis of CD8(+) T cell responses and induction of specific T cells for potential immunotherapy.
Collapse
Affiliation(s)
- Hiroaki Naota
- Second Department of Internal Medicine, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|