1
|
Wu M, Sarkar C, Guo B. Regulation of Cancer Metastasis by PAK2. Int J Mol Sci 2024; 25:13443. [PMID: 39769207 PMCID: PMC11676821 DOI: 10.3390/ijms252413443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
PAK2 is a serine-threonine kinase and a member of the p21-activated kinase (PAK) family. PAK2 is activated by GTP-bound rho family GTPases, Rac, and Cdc42, and it regulates actin dynamics, cell adhesion to the extracellular matrix, and cell motility. In various types of cancers, PAK2 has been implicated in the regulation of cancer cell proliferation, cell cycle, and apoptosis. In addition, recent studies have shown that PAK2 plays an important role in cancer cell metastasis, indicating PAK2 as a potential therapeutic target. This review discusses recent discoveries on the functions of PAK2 in the regulation of various types of cancers. A better understanding of the mechanisms of function of PAK2 will facilitate future development of cancer therapies.
Collapse
Affiliation(s)
- Megan Wu
- The Kinkaid School, Houston, TX 77024, USA;
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh;
| | - Bin Guo
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
2
|
Liu C, Chen S, Zhang Y, Zhou X, Wang H, Wang Q, Lan X. Mechanisms of Rho GTPases in regulating tumor proliferation, migration and invasion. Cytokine Growth Factor Rev 2024; 80:168-174. [PMID: 39317522 DOI: 10.1016/j.cytogfr.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
The occurrence of most cancers is due to the clonal proliferation of tumor cells, immune evasion, and the ability to spread to other body parts. Rho GTPases, a family of small GTPases, are key regulators of cytoskeleton reorganization and cell polarity. Additionally, Rho GTPases are key proteins that induce the proliferation and metastasis of tumor cells. This review focuses on the complex regulatory mechanisms of Rho GTPases, exploring their critical role in promoting tumor cell proliferation and dissemination. Regarding tumor cell proliferation, attention is given to the role of Rho GTPases in regulating the cell cycle and mitosis. In terms of tumor cell dissemination, the focus is on the role of Rho GTPases in regulating cell migration and invasion. Overall, this review elucidates the mechanisms of Rho GTPases members in the development of tumor cells, aiming to provide theoretical references for the treatment of mammalian tumor diseases and related applications.
Collapse
Affiliation(s)
- Cheng Liu
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| | - Shutao Chen
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| | - Yu Zhang
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| | - Xinyi Zhou
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| | - Haiwei Wang
- Chongqing Academy Of Animal Sciences, Chongqing 402460, China.
| | - Qigui Wang
- Chongqing Academy Of Animal Sciences, Chongqing 402460, China.
| | - Xi Lan
- College Of Animal, Science And Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Thangavelu L, Altamimi ASA, Ghaboura N, Babu MA, Roopashree R, Sharma P, Pal P, Choudhary C, Prasad GVS, Sinha A, Balaraman AK, Rawat S. Targeting the p53-p21 axis in liver cancer: Linking cellular senescence to tumor suppression and progression. Pathol Res Pract 2024; 263:155652. [PMID: 39437639 DOI: 10.1016/j.prp.2024.155652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Liver cancer is a major health epidemic worldwide, mainly due to its high mortality rates and limited treatment options. The association of cellular senescence to tumorigenesis and the cancer hallmarks remains a subject of interest in cancer biology. The p53-p21 signalling axis is an important regulator in restoring the cell's balance by supporting tumor suppression and tumorigenesis in liver cancer. We review the novel molecular mechanisms that p53 and its downstream effector, p21, employ to induce cellular senescence, making it last longer, and halt the proliferation of damaged hepatocytes to become tumorous cells. We also examine how dysregulation of this pathway contributes to HCC pathogenesis, proliferation, survival, acquired resistance to apoptosis, and increased invasiveness. Furthermore, we comprehensively describe the molecular cross-talk between the p53-p21 signalling axis and major cell cycle signalling pathways, including Wnt/β-catenin, PI3K/Akt, and TGF-β in liver cancer and provide an overview of promising candidates for chemoprevention and future therapeutic strategies. This review article explores the roles of the p53-p21 pathway in liver cancer, examining its function in promoting cellular senescence under normal conditions and its potential role in cancer progression. It also highlights novel therapeutic drugs and drug targets within the pathway and discusses the implications for treatment strategies and prognosis in liver cancer.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP 281406, India.
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pawan Sharma
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Pusparghya Pal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Chhavi Choudhary
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, Punjab 140307, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| |
Collapse
|
4
|
Du Y, Chen X, Chen W, Chen G, Cheng X, Wang H, Guo L, Li C, Yao D. Design, synthesis and biological evaluation of a novel PAK1 degrader for the treatment of triple negative breast cancer. Bioorg Med Chem 2024; 112:117896. [PMID: 39214014 DOI: 10.1016/j.bmc.2024.117896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Triple-negative breast cancer is one of the most malignant subtypes in clinical practice, and it is urgent to find new therapies. The p21-activated kinase I (PAK1) has been considered to be an attractive therapeutic target for TNBC. In this study, we designed and synthesized a series of novel PROTAC PAK1 degraders by conjugating VHL or CRBN ligase ligands to PAK1 inhibitors which are connected by alkyl chains or PEG chains. The most promising compound, 19s, can significantly degrade PAK1 protein at concentrations as low as 0.1 μM, and achieves potent anti-proliferative activity with an IC50 value of 1.27 μM in MDA-MB-231 cells. Additionally, 19s exhibits potent anti-migration activity in vitro and induces rapid tumor regression in vivo. Collectively, these findings document that 19s is a potent and novel PAK1 degrader with promising potential for TNBC treatment.
Collapse
Affiliation(s)
- Yi Du
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518060, China
| | - Weiji Chen
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518060, China
| | - Gang Chen
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518060, China
| | - Xiaoling Cheng
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518060, China
| | - Hailing Wang
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518060, China
| | - Ling Guo
- Department of Science and Research, The Affiliated Anning First People's Hospital of Kunming University of Science and Technology, Kunming, 650302, Yunnan Province, China
| | - Chenyang Li
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| | - Dahong Yao
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518060, China.
| |
Collapse
|
5
|
Hu B, Moiseev D, Schena I, Faezov B, Dunbrack R, Chernoff J, Li J. PAK2 is necessary for myelination in the peripheral nervous system. Brain 2024; 147:1809-1821. [PMID: 38079473 PMCID: PMC11068108 DOI: 10.1093/brain/awad413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/03/2023] [Accepted: 11/12/2023] [Indexed: 02/12/2024] Open
Abstract
Myelination enables electrical impulses to propagate on axons at the highest speed, encoding essential life functions. The Rho family GTPases, RAC1 and CDC42, have been shown to critically regulate Schwann cell myelination. P21-activated kinase 2 (PAK2) is an effector of RAC1/CDC42, but its specific role in myelination remains undetermined. We produced a Schwann cell-specific knockout mouse of Pak2 (scPak2-/-) to evaluate PAK2's role in myelination. Deletion of Pak2, specifically in mouse Schwann cells, resulted in severe hypomyelination, slowed nerve conduction velocity and behaviour dysfunctions in the scPak2-/- peripheral nerve. Many Schwann cells in scPak2-/- sciatic nerves were arrested at the stage of axonal sorting. These abnormalities were rescued by reintroducing Pak2, but not the kinase-dead mutation of Pak2, via lentivirus delivery to scPak2-/- Schwann cells in vivo. Moreover, ablation of Pak2 in Schwann cells blocked the promyelinating effect driven by neuregulin-1, prion protein and inactivated RAC1/CDC42. Conversely, the ablation of Pak2 in neurons exhibited no phenotype. Such PAK2 activity can also be either enhanced or inhibited by different myelin lipids. We have identified a novel promyelinating factor, PAK2, that acts as a critical convergence point for multiple promyelinating signalling pathways. The promyelination by PAK2 is Schwann cell-autonomous. Myelin lipids, identified as inhibitors or activators of PAK2, may be utilized to develop therapies for repairing abnormal myelin in peripheral neuropathies.
Collapse
Affiliation(s)
- Bo Hu
- Department of Neurology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Daniel Moiseev
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Isabella Schena
- Department of Neurology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Bulat Faezov
- Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Roland Dunbrack
- Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jonathan Chernoff
- Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jun Li
- Department of Neurology, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
6
|
Godbole SS, Dokholyan NV. Allosteric regulation of kinase activity in living cells. eLife 2023; 12:RP90574. [PMID: 37943025 PMCID: PMC10635643 DOI: 10.7554/elife.90574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
The dysregulation of protein kinases is associated with multiple diseases due to the kinases' involvement in a variety of cell signaling pathways. Manipulating protein kinase function, by controlling the active site, is a promising therapeutic and investigative strategy to mitigate and study diseases. Kinase active sites share structural similarities, making it difficult to specifically target one kinase, and allosteric control allows specific regulation and study of kinase function without directly targeting the active site. Allosteric sites are distal to the active site but coupled via a dynamic network of inter-atomic interactions between residues in the protein. Establishing an allosteric control over a kinase requires understanding the allosteric wiring of the protein. Computational techniques offer effective and inexpensive mapping of the allosteric sites on a protein. Here, we discuss the methods to map and regulate allosteric communications in proteins, and strategies to establish control over kinase functions in live cells and organisms. Protein molecules, or 'sensors,' are engineered to function as tools to control allosteric activity of the protein as these sensors have high spatiotemporal resolution and help in understanding cell phenotypes after immediate activation or inactivation of a kinase. Traditional methods used to study protein functions, such as knockout, knockdown, or mutation, cannot offer a sufficiently high spatiotemporal resolution. We discuss the modern repertoire of tools to regulate protein kinases as we enter a new era in deciphering cellular signaling and developing novel approaches to treat diseases associated with signal dysregulation.
Collapse
Affiliation(s)
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of MedicineHersheyUnited States
- Department of Biomedical Engineering, Penn State University, University ParkHersheyUnited States
- Department of Engineering Science and Mechanics, Penn State University, University ParkHersheyUnited States
- Department of Biochemistry & Molecular Biology, Penn State College of MedicineHersheyUnited States
- Department of Chemistry, Penn State University, University ParkHersheyUnited States
| |
Collapse
|
7
|
Godbole S, Dokholyan NV. Allosteric regulation of kinase activity in living cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549709. [PMID: 37503033 PMCID: PMC10370130 DOI: 10.1101/2023.07.19.549709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The dysregulation of protein kinases is associated with multiple diseases due to the kinases' involvement in a variety of cell signaling pathways. Manipulating protein kinase function, by controlling the active site, is a promising therapeutic and investigative strategy to mitigate and study diseases. Kinase active sites share structural similarities making it difficult to specifically target one kinase, allosteric control allows specific regulation and study of kinase function without directly targeting the active site. Allosteric sites are distal to the active site but coupled via a dynamic network of inter-atomic interactions between residues in the protein. Establishing an allosteric control over a kinase requires understanding the allosteric wiring of the protein. Computational techniques offer effective and inexpensive mapping of the allosteric sites on a protein. Here, we discuss methods to map and regulate allosteric communications in proteins, and strategies to establish control over kinase functions in live cells and organisms. Protein molecules, or "sensors" are engineered to function as tools to control allosteric activity of the protein as these sensors have high spatiotemporal resolution and help in understanding cell phenotypes after immediate activation or inactivation of a kinase. Traditional methods used to study protein functions, such as knockout, knockdown, or mutation, cannot offer a sufficiently high spatiotemporal resolution. We discuss the modern repertoire of tools to regulate protein kinases as we enter a new era in deciphering cellular signaling and developing novel approaches to treat diseases associated with signal dysregulation.
Collapse
Affiliation(s)
- Shivani Godbole
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, Penn State University, University Park, PA 16802, USA
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
- Department of Chemistry, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
8
|
Kichina JV, Maslov A, Kandel ES. PAK1 and Therapy Resistance in Melanoma. Cells 2023; 12:2373. [PMID: 37830586 PMCID: PMC10572217 DOI: 10.3390/cells12192373] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Malignant melanoma claims more lives than any other skin malignancy. While primary melanomas are usually cured via surgical excision, the metastatic form of the disease portents a poor prognosis. Decades of intense research has yielded an extensive armamentarium of anti-melanoma therapies, ranging from genotoxic chemo- and radiotherapies to targeted interventions in specific signaling pathways and immune functions. Unfortunately, even the most up-to-date embodiments of these therapies are not curative for the majority of metastatic melanoma patients, and the need to improve their efficacy is widely recognized. Here, we review the reports that implicate p21-regulated kinase 1 (PAK1) and PAK1-related pathways in the response of melanoma to various therapeutic modalities. Ample data suggest that PAK1 may decrease cell sensitivity to programmed cell death, provide additional stimulation to growth-promoting molecular pathways, and contribute to the creation of an immunosuppressive tumor microenvironment. Accordingly, there is mounting evidence that the concomitant inhibition of PAK1 enhances the potency of various anti-melanoma regimens. Overall, the available information suggests that a safe and effective inhibition of PAK1-dependent molecular processes would enhance the potency of the currently available anti-melanoma treatments, although considerable challenges in implementing such strategies still exist.
Collapse
Affiliation(s)
- Julia V. Kichina
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton St., Buffalo, NY 14263, USA
| | - Alexei Maslov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm & Carlton St., Buffalo, NY 14263, USA
| | - Eugene S. Kandel
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm & Carlton St., Buffalo, NY 14263, USA
| |
Collapse
|
9
|
Toudji I, Toumi A, Chamberland É, Rossignol E. Interneuron odyssey: molecular mechanisms of tangential migration. Front Neural Circuits 2023; 17:1256455. [PMID: 37779671 PMCID: PMC10538647 DOI: 10.3389/fncir.2023.1256455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Cortical GABAergic interneurons are critical components of neural networks. They provide local and long-range inhibition and help coordinate network activities involved in various brain functions, including signal processing, learning, memory and adaptative responses. Disruption of cortical GABAergic interneuron migration thus induces profound deficits in neural network organization and function, and results in a variety of neurodevelopmental and neuropsychiatric disorders including epilepsy, intellectual disability, autism spectrum disorders and schizophrenia. It is thus of paramount importance to elucidate the specific mechanisms that govern the migration of interneurons to clarify some of the underlying disease mechanisms. GABAergic interneurons destined to populate the cortex arise from multipotent ventral progenitor cells located in the ganglionic eminences and pre-optic area. Post-mitotic interneurons exit their place of origin in the ventral forebrain and migrate dorsally using defined migratory streams to reach the cortical plate, which they enter through radial migration before dispersing to settle in their final laminar allocation. While migrating, cortical interneurons constantly change their morphology through the dynamic remodeling of actomyosin and microtubule cytoskeleton as they detect and integrate extracellular guidance cues generated by neuronal and non-neuronal sources distributed along their migratory routes. These processes ensure proper distribution of GABAergic interneurons across cortical areas and lamina, supporting the development of adequate network connectivity and brain function. This short review summarizes current knowledge on the cellular and molecular mechanisms controlling cortical GABAergic interneuron migration, with a focus on tangential migration, and addresses potential avenues for cell-based interneuron progenitor transplants in the treatment of neurodevelopmental disorders and epilepsy.
Collapse
Affiliation(s)
- Ikram Toudji
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Asmaa Toumi
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Émile Chamberland
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Elsa Rossignol
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
10
|
Huang M, Zhang J, Li M, Cao H, Zhu Q, Yang D. PAK1 contributes to cerebral ischemia/reperfusion injury by regulating the blood-brain barrier integrity. iScience 2023; 26:107333. [PMID: 37529106 PMCID: PMC10387573 DOI: 10.1016/j.isci.2023.107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/29/2023] [Accepted: 07/05/2023] [Indexed: 08/03/2023] Open
Abstract
Globally, stroke is one of the leading causes of death and significant contributors to disability. Gaining a thorough comprehension of the underlying pathogenic processes is essential for stroke treatment and prevention. In this study, we investigated the role of p21-activated kinase 1 (PAK1) in stroke by using oxygen-glucose deprivation (OGD) and transient middle cerebral artery occlusion and reperfusion (tMCAO/R) models. We reported that focal ischemia and reperfusion affect the PAK1 expression and activity levels. We further demonstrated that PAK1 is responsible for the endothelial hyperpermeability that occurs in the early stages of ischemia and reperfusion. Additionally, inhibition of PAK1 was discovered to alleviate blood-brain barrier disruption and protect against brain injury induced by tMCAO/R. Mechanistically, we provide the evidence that PAK1 regulates the formation of stress fibers and expression of surface junctional proteins. Together, our findings reveal a pathogenic function of PAK1 in stroke.
Collapse
Affiliation(s)
- Ming Huang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Jinshun Zhang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Mengwei Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Haowei Cao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Qiuju Zhu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Dejun Yang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
11
|
Uechi H, Kuranaga E. Underlying mechanisms that ensure actomyosin-mediated directional remodeling of cell-cell contacts for multicellular movement: Tricellular junctions and negative feedback as new aspects underlying actomyosin-mediated directional epithelial morphogenesis: Tricellular junctions and negative feedback as new aspects underlying actomyosin-mediated directional epithelial morphogenesis. Bioessays 2023; 45:e2200211. [PMID: 36929512 DOI: 10.1002/bies.202200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
Actomyosin (actin-myosin II complex)-mediated contractile forces are central to the generation of multifaceted uni- and multi-cellular material properties and dynamics such as cell division, migration, and tissue morphogenesis. In the present article, we summarize our recent researches addressing molecular mechanisms that ensure actomyosin-mediated directional cell-cell junction remodeling, either shortening or extension, driving cell rearrangement for epithelial morphogenesis. Genetic perturbation clarified two points concerning cell-cell junction remodeling: an inhibitory mechanism against negative feedback in which actomyosin contractile forces, which are well known to induce cell-cell junction shortening, can concomitantly alter actin dynamics, oppositely leading to perturbation of the shortening; and tricellular junctions as a point that organizes extension of new cell-cell junctions after shortening. These findings highlight the notion that cells develop underpinning mechanisms to transform the multi-tasking property of actomyosin contractile forces into specific and proper cellular dynamics in space and time.
Collapse
Affiliation(s)
- Hiroyuki Uechi
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Erina Kuranaga
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
12
|
Chow HY, Karchugina S, Groendyke BJ, Toenjes S, Hatcher J, Donovan KA, Fischer ES, Abalakov G, Faezov B, Dunbrack R, Gray NS, Chernoff J. Development and Utility of a PAK1-Selective Degrader. J Med Chem 2022; 65:15627-15641. [PMID: 36416208 PMCID: PMC10029980 DOI: 10.1021/acs.jmedchem.2c00756] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Overexpression of PAK1, a druggable kinase, is common in several malignancies, and inhibition of PAK1 by small molecules has been shown to impede the growth and survival of such cells. Potent inhibitors of PAKs 1-3 have been described, but clinical development has been hindered by recent findings that PAK2 function is required for normal cardiovascular function in adult mice. A unique allosteric PAK1-selective inhibitor, NVS-PAK1-1, provides a potential path forward, but has modest potency. Here, we report the development of BJG-05-039, a PAK1-selective degrader consisting of NVS-PAK1-1 conjugated to lenalidomide, a recruiter of the E3 ubiquitin ligase substrate adaptor Cereblon. BJG-05-039 induced selective degradation of PAK1 and displayed enhanced anti-proliferative effects relative to its parent compound in PAK1-dependent, but not PAK2-dependent, cell lines. Our findings suggest that selective PAK1 degradation may confer more potent pharmacological effects compared with catalytic inhibition and highlight the potential advantages of PAK1-targeted degradation.
Collapse
Affiliation(s)
- Hoi-Yee Chow
- Fox Chase Cancer Center, Philadelphia, PA 19111
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China 610041
| | | | - Brian J. Groendyke
- Department of Cancer Biology; Dana Farber Cancer Institute, Boston, MA 02215
- Current address: Blueprint Medicines, Cambridge, MA 02139
| | - Sean Toenjes
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA 94305
| | - John Hatcher
- Department of Cancer Biology; Dana Farber Cancer Institute, Boston, MA 02215
| | - Katherine A. Donovan
- Department of Cancer Biology; Dana Farber Cancer Institute, Boston, MA 02215
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215
| | - Eric S. Fischer
- Department of Cancer Biology; Dana Farber Cancer Institute, Boston, MA 02215
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215
| | | | - Bulat Faezov
- Fox Chase Cancer Center, Philadelphia, PA 19111
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation, 420008
| | | | - Nathanael S. Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA 94305
| | | |
Collapse
|
13
|
Chetty AK, Ha BH, Boggon TJ. Rho family GTPase signaling through type II p21-activated kinases. Cell Mol Life Sci 2022; 79:598. [PMID: 36401658 PMCID: PMC10105373 DOI: 10.1007/s00018-022-04618-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/07/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022]
Abstract
Signaling from the Rho family small GTPases controls a wide range of signaling outcomes. Key among the downstream effectors for many of the Rho GTPases are the p21-activated kinases, or PAK group. The PAK family comprises two types, the type I PAKs (PAK1, 2 and 3) and the type II PAKs (PAK4, 5 and 6), which have distinct structures and mechanisms of regulation. In this review, we discuss signal transduction from Rho GTPases with a focus on the type II PAKs. We discuss the role of PAKs in signal transduction pathways and selectivity of Rho GTPases for PAK family members. We consider the less well studied of the Rho GTPases and their PAK-related signaling. We then discuss the molecular basis for kinase domain recognition of substrates and for regulation of signaling. We conclude with a discussion of the role of PAKs in cross talk between Rho family small GTPases and the roles of PAKs in disease.
Collapse
Affiliation(s)
- Ashwin K Chetty
- Yale College, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Byung Hak Ha
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
14
|
Minor Kinases with Major Roles in Cytokinesis Regulation. Cells 2022; 11:cells11223639. [PMID: 36429067 PMCID: PMC9688779 DOI: 10.3390/cells11223639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Cytokinesis, the conclusive act of cell division, allows cytoplasmic organelles and chromosomes to be faithfully partitioned between two daughter cells. In animal organisms, its accurate regulation is a fundamental task for normal development and for preventing aneuploidy. Cytokinesis failures produce genetically unstable tetraploid cells and ultimately result in chromosome instability, a hallmark of cancer cells. In animal cells, the assembly and constriction of an actomyosin ring drive cleavage furrow ingression, resulting in the formation of a cytoplasmic intercellular bridge, which is severed during abscission, the final event of cytokinesis. Kinase-mediated phosphorylation is a crucial process to orchestrate the spatio-temporal regulation of the different stages of cytokinesis. Several kinases have been described in the literature, such as cyclin-dependent kinase, polo-like kinase 1, and Aurora B, regulating both furrow ingression and/or abscission. However, others exist, with well-established roles in cell-cycle progression but whose specific role in cytokinesis has been poorly investigated, leading to considering these kinases as "minor" actors in this process. Yet, they deserve additional attention, as they might disclose unexpected routes of cell division regulation. Here, we summarize the role of multifunctional kinases in cytokinesis with a special focus on those with a still scarcely defined function during cell cleavage. Moreover, we discuss their implication in cancer.
Collapse
|
15
|
Mehrotra S, Pierce ML, Dravid SM, Murray TF. Stimulation of Neurite Outgrowth in Cerebrocortical Neurons by Sodium Channel Activator Brevetoxin-2 Requires Both N-Methyl-D-aspartate Receptor 2B (GluN2B) and p21 Protein (Cdc42/Rac)-Activated Kinase 1 (PAK1). Mar Drugs 2022; 20:559. [PMID: 36135748 PMCID: PMC9504648 DOI: 10.3390/md20090559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 12/05/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors play a critical role in activity-dependent dendritic arborization, spinogenesis, and synapse formation by stimulating calcium-dependent signaling pathways. Previously, we have shown that brevetoxin 2 (PbTx-2), a voltage-gated sodium channel (VGSC) activator, produces a concentration-dependent increase in intracellular sodium [Na+]I and increases NMDA receptor (NMDAR) open probabilities and NMDA-induced calcium (Ca2+) influxes. The objective of this study is to elucidate the downstream signaling mechanisms by which the sodium channel activator PbTx-2 influences neuronal morphology in murine cerebrocortical neurons. PbTx-2 and NMDA triggered distinct Ca2+-influx pathways, both of which involved the NMDA receptor 2B (GluN2B). PbTx-2-induced neurite outgrowth in day in vitro 1 (DIV-1) neurons required the small Rho GTPase Rac1 and was inhibited by both a PAK1 inhibitor and a PAK1 siRNA. PbTx-2 exposure increased the phosphorylation of PAK1 at Thr-212. At DIV-5, PbTx-2 induced increases in dendritic protrusion density, p-cofilin levels, and F-actin throughout the dendritic arbor and soma. Moreover, PbTx-2 increased miniature excitatory post-synaptic currents (mEPSCs). These data suggest that the stimulation of neurite outgrowth, spinogenesis, and synapse formation produced by PbTx-2 are mediated by GluN2B and PAK1 signaling.
Collapse
Affiliation(s)
- Suneet Mehrotra
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
- Omeros, Seattle, WA 98119, USA
| | - Marsha L. Pierce
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Shashank M. Dravid
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Thomas F. Murray
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
16
|
Inhibition of negative feedback for persistent epithelial cell-cell junction contraction by p21-activated kinase 3. Nat Commun 2022; 13:3520. [PMID: 35725726 PMCID: PMC9209458 DOI: 10.1038/s41467-022-31252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/12/2022] [Indexed: 11/25/2022] Open
Abstract
Actin-mediated mechanical forces are central drivers of cellular dynamics. They generate protrusive and contractile dynamics, the latter of which are induced in concert with myosin II bundled at the site of contraction. These dynamics emerge concomitantly in tissues and even each cell; thus, the tight regulation of such bidirectional forces is important for proper cellular deformation. Here, we show that contractile dynamics can eventually disturb cell–cell junction contraction in the absence of p21-activated kinase 3 (Pak3). Upon Pak3 depletion, contractility induces the formation of abnormal actin protrusions at the shortening junctions, which causes decrease in E-cadherin levels at the adherens junctions and mislocalization of myosin II at the junctions before they enough shorten, compromising completion of junction shortening. Overexpressing E-cadherin restores myosin II distribution closely placed at the junctions and junction contraction. Our results suggest that contractility both induces and perturbs junction contraction and that the attenuation of such perturbations by Pak3 facilitates persistent junction shortening. Actin and myosin operate at cell–cell junctions during junctional shortening. Here the authors show that prolonged actomyosin contractility can compromise junctional shortening, and that Pak3 is required for attenuation of abnormal active protrusive structure and thus keeps junction contraction, appropriate E-cadherin distribution, and junction shortening in Drosophila.
Collapse
|
17
|
Omelchenko T. Cellular protrusions in 3D: Orchestrating early mouse embryogenesis. Semin Cell Dev Biol 2022; 129:63-74. [PMID: 35577698 DOI: 10.1016/j.semcdb.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022]
Abstract
Cellular protrusions generated by the actin cytoskeleton are central to the process of building the body of the embryo. Problems with cellular protrusions underlie human diseases and syndromes, including implantation defects and pregnancy loss, congenital birth defects, and cancer. Cells use protrusive activity together with actin-myosin contractility to create an ordered body shape of the embryo. Here, I review how actin-rich protrusions are used by two major morphological cell types, epithelial and mesenchymal cells, during collective cell migration to sculpt the mouse embryo body. Pre-gastrulation epithelial collective migration of the anterior visceral endoderm is essential for establishing the anterior-posterior body axis. Gastrulation mesenchymal collective migration of the mesoderm wings is crucial for body elongation, and somite and heart formation. Analysis of mouse mutants with disrupted cellular protrusions revealed the key role of protrusions in embryonic morphogenesis and embryo survival. Recent technical approaches have allowed examination of the mechanisms that control cell and tissue movements in vivo in the complex 3D microenvironment of living mouse embryos. Advancing our understanding of protrusion-driven morphogenesis should provide novel insights into human developmental disorders and cancer metastasis.
Collapse
Affiliation(s)
- Tatiana Omelchenko
- Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, 1230 York Avenue, New York 10065, USA.
| |
Collapse
|
18
|
Sementino E, Kadariya Y, Cheung M, Menges CW, Tan Y, Kukuyan AM, Shrestha U, Karchugina S, Cai KQ, Peri S, Duncan JS, Chernoff J, Testa JR. Inactivation of p21-Activated Kinase 2 (Pak2) Inhibits the Development of Nf2-Deficient Tumors by Restricting Downstream Hedgehog and Wnt Signaling. Mol Cancer Res 2022; 20:699-711. [PMID: 35082167 PMCID: PMC9081258 DOI: 10.1158/1541-7786.mcr-21-0837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/02/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022]
Abstract
Because loss of the NF2 tumor suppressor gene results in p21-activated kinase (Pak) activation, PAK inhibitors hold promise for the treatment of NF2-deficient tumors. To test this possibility, we asked if loss of Pak2, a highly expressed group I PAK member, affects the development of malignant mesothelioma in Nf2;Cdkn2a-deficient (NC) mice and the growth properties of NC mesothelioma cells in culture. In vivo, deletion of Pak2 resulted in a markedly decreased incidence and delayed onset of both pleural and peritoneal malignant mesotheliomas in NC mice. In vitro, Pak2 deletion decreased malignant mesothelioma cell viability, migration, clonogenicity, and spheroid formation. RNA-sequencing analysis demonstrated downregulated expression of Hedgehog and Wnt pathway genes in NC;Pak2-/- mesothelioma cells versus NC;Pak2+/+ mesothelioma cells. Targeting of the Hedgehog signaling component Gli1 or its target gene Myc inhibited cell viability and spheroid formation in NC;P+/+ mesothelioma cells. Kinome profiling uncovered kinase changes indicative of EMT in NC;Pak2-/- mesothelioma cells, suggesting that Pak2-deficient malignant mesotheliomas can adapt by reprogramming their kinome in the absence of Pak activity. The identification of such compensatory pathways offers opportunities for rational combination therapies to circumvent resistance to anti-PAK drugs. IMPLICATIONS We provide evidence supporting a role for PAK inhibitors in treating NF2-deficient tumors. NF2-deficient tumors lacking Pak2 eventually adapt by kinome reprogramming, presenting opportunities for combination therapies to bypass anti-PAK drug resistance.
Collapse
Affiliation(s)
- Eleonora Sementino
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yuwaraj Kadariya
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mitchell Cheung
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Craig W. Menges
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yinfei Tan
- Genomics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Anna-Mariya Kukuyan
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Ujjawal Shrestha
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Sofiia Karchugina
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kathy Q. Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Suraj Peri
- Bioinformatics and Biostatistics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - James S. Duncan
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jonathan Chernoff
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Joseph R. Testa
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Joseph R. Testa, Ph.D., Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 1911; Phone: (215) 728-2610; Fax: (215) 214-1619;
| |
Collapse
|
19
|
Cla4p Kinase Activity Is Down-Regulated by Fus3p during Yeast Mating. Biomolecules 2022; 12:biom12040598. [PMID: 35454186 PMCID: PMC9028331 DOI: 10.3390/biom12040598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 01/20/2023] Open
Abstract
In Saccharomyces cerevisiae, the p21-activated kinase Cla4p regulates polarized morphogenesis and cytokinesis. However, it remains unknown how Cla4p kinase activity is regulated. After pheromone exposure, yeast cells temporally separate the mitotic and mating programs by sequestering Fus2p in the nucleus until cell cycle completion, after which Fus2p exits to facilitate cell fusion. Previously, we showed that sequestration is regulated by two opposing protein kinases, Cla4p and Fus3p. Phosphorylation of Fus2p-S67 by Cla4p promotes nuclear localization by both activating nuclear import and blocking export. During mating, phosphorylation of Fus2p-S85 and Fus2p-S100 by Fus3p promotes nuclear export and blocks import. Here, we find that Cla4p kinase activity is itself down-regulated during mating. Pheromone exposure causes Cla4p hyper-phosphorylation and reduced Fus2p-S67 phosphorylation, dependent on Fus3p. Multiple phosphorylation sites in Cla4p are mating- and/or Fus3p-specific. Of these, Cla4p-S186 phosphorylation reduced the kinase activity of Cla4p, in vitro. A phosphomimetic cla4-S186E mutation caused a strong reduction in Fus2p-S67 phosphorylation and nuclear localization, in vivo. More generally, a non-phosphorylatable mutation, cla4-S186A, caused failure to maintain pheromone arrest and delayed formation of the mating-specific septin morphology. Thus, as cells enter the mating pathway, Fus3p counteracts Cla4p kinase activity to allow proper mating differentiation.
Collapse
|
20
|
Zeng J, Liu N, Yang Y, Cheng Y, Li Y, Guo X, Luo Q, Zhu L, Guan H, Song B, Sun X. Pak2 reduction induces a failure of early embryonic development in mice. Reprod Biol Endocrinol 2021; 19:181. [PMID: 34879863 PMCID: PMC8656077 DOI: 10.1186/s12958-021-00865-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/28/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The quality of the early embryo is vital to embryonic development and implantation. As a highly conserved serine/threonine kinase, p21-activated kinase 2 (Pak2) participates in diverse biologic processes, especially in cytoskeleton remodeling and cell apoptosis. In mice, Pak2 knock out and endothelial depletion of Pak2 showed embryonic lethality. However, the role of Pak2 in preimplantation embryos remains unelucidated. METHODS In the present work, Pak2 was reduced using a specific small interfering RNA in early mouse embryos, validating the unique roles of Pak2 in spindle assembly and DNA repair during mice early embryonic development. We also employed immunoblotting, immunostaining, in vitro fertilization (IVF) and image quantification analyses to test the Pak2 knockdown on the embryonic development progression, spindle assembly, chromosome alignment, oxidative stress, DNA lesions and blastocyst cell apoptosis. Areas in chromatin with γH2AX were detected by immunofluorescence microscopy and serve as a biomarker of DNA damages. RESULTS We found that Pak2 knockdown significantly reduced blastocyst formation of early embryos. In addition, Pak2 reduction led to dramatically increased abnormal spindle assembly and chromosomal aberrations in the embryos. We noted the overproduction of reactive oxygen species (ROS) with Pak2 knockdown in embryos. In response to DNA double strand breaks (DSBs), the histone protein H2AX is specifically phosphorylated at serine139 to generate γH2AX, which is used to quantitative DSBs. In this research, Pak2 knockdown also resulted in the accumulation of phosphorylated γH2AX, indicative of increased embryonic DNA damage. Commensurate with this, a significantly augmented rate of blastocyst cell apoptosis was detected in Pak2-KD embryos compared to their controls. CONCLUSIONS Collectively, our data suggest that Pak2 may serve as an important regulator of spindle assembly and DNA repair, and thus participate in the development of early mouse embryos.
Collapse
Affiliation(s)
- Juan Zeng
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, Guangdong, China
| | - Nengqing Liu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, Guangdong, China
| | - Yinghong Yang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, Guangdong, China
| | - Yi Cheng
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, Guangdong, China
| | - Yuanshuai Li
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, Guangdong, China
| | - Xiaoxia Guo
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, Guangdong, China
| | - Qian Luo
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, Guangdong, China
| | - Lifen Zhu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, Guangdong, China
| | - Hongmei Guan
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, Guangdong, China
| | - Bing Song
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, Guangdong, China
| | - Xiaofang Sun
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, Guangdong, China.
| |
Collapse
|
21
|
Wang Y, Guo F. Group I PAKs in myelin formation and repair of the central nervous system: what, when, and how. Biol Rev Camb Philos Soc 2021; 97:615-639. [PMID: 34811887 DOI: 10.1111/brv.12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
p21-activated kinases (PAKs) are a family of cell division control protein 42/ras-related C3 botulinum toxin substrate 1 (Cdc42/Rac1)-activated serine/threonine kinases. Group I PAKs (PAK1-3) have distinct activation mechanisms from group II PAKs (PAK4-6) and are the focus of this review. In transformed cancer cells, PAKs regulate a variety of cellular processes and molecular pathways which are also important for myelin formation and repair in the central nervous system (CNS). De novo mutations in group I PAKs are frequently seen in children with neurodevelopmental defects and white matter anomalies. Group I PAKs regulate virtually every aspect of neuronal development and function. Yet their functions in CNS myelination and remyelination remain incompletely defined. Herein, we highlight the current understanding of PAKs in regulating cellular and molecular pathways and discuss the status of PAK-regulated pathways in oligodendrocyte development. We point out outstanding questions and future directions in the research field of group I PAKs and oligodendrocyte development.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, Shriners Hospitals for Children/School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), University of California, Davis, 2425 Stockton Blvd, Sacramento, CA, 95817, U.S.A
| | - Fuzheng Guo
- Department of Neurology, Shriners Hospitals for Children/School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), University of California, Davis, 2425 Stockton Blvd, Sacramento, CA, 95817, U.S.A
| |
Collapse
|
22
|
p21-Activated kinase 1 (PAK1) in aging and longevity: An overview. Ageing Res Rev 2021; 71:101443. [PMID: 34390849 DOI: 10.1016/j.arr.2021.101443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
The p21-activated kinases (PAKs) belong to serine/threonine kinases family, regulated by ∼21 kDa small signaling G proteins RAC1 and CDC42. The mammalian PAK family comprises six members (PAK1-6) that are classified into two groups (I and II) based on their domain architecture and regulatory mechanisms. PAKs are implicated in a wide range of cellular functions. PAK1 has recently attracted increasing attention owing to its involvement in oncogenesis, tumor progression, and metastasis as well as several life-limiting diseases and pathological conditions. In Caenorhabditis elegans, PAK1 functions limit the lifespan under basal conditions by inhibiting forkhead transcription factor DAF-16. Interestingly, PAK depletion extended longevity and attenuated the onset of age-related phenotypes in a premature-aging mouse model and delayed senescence in mammalian fibroblasts. These observations implicate PAKs as not only oncogenic but also aging kinases. Therefore, PAK-targeting genetic and/or pharmacological interventions, particularly PAK1-targeting, could be a viable strategy for developing cancer therapies with relatively no side effects and promoting healthy longevity. This review describes PAK family proteins, their biological functions, and their role in regulating aging and longevity using C. elegans. Moreover, we discuss the effect of small-molecule PAK1 inhibitors on the lifespan and healthspan of C. elegans.
Collapse
|
23
|
Magliozzi JO, Moseley JB. Pak1 kinase controls cell shape through ribonucleoprotein granules. eLife 2021; 10:67648. [PMID: 34282727 PMCID: PMC8318594 DOI: 10.7554/elife.67648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022] Open
Abstract
Fission yeast cells maintain a rod shape due to conserved signaling pathways that organize the cytoskeleton for polarized growth. We discovered a mechanism linking the conserved protein kinase Pak1 with cell shape through the RNA-binding protein Sts5. Pak1 (also called Shk1 and Orb2) prevents Sts5 association with P bodies by directly phosphorylating its intrinsically disordered region (IDR). Pak1 and the cell polarity kinase Orb6 both phosphorylate the Sts5 IDR but at distinct residues. Mutations preventing phosphorylation in the Sts5 IDR cause increased P body formation and defects in cell shape and polarity. Unexpectedly, when cells encounter glucose starvation, PKA signaling triggers Pak1 recruitment to stress granules with Sts5. Through retargeting experiments, we reveal that Pak1 localizes to stress granules to promote rapid dissolution of Sts5 upon glucose addition. Our work reveals a new role for Pak1 in regulating cell shape through ribonucleoprotein granules during normal and stressed growth conditions.
Collapse
Affiliation(s)
- Joseph O Magliozzi
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, United States
| | - James B Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, United States
| |
Collapse
|
24
|
Song P, Song B, Liu J, Wang X, Nan X, Wang J. Blockage of PAK1 alleviates the proliferation and invasion of NSCLC cells via inhibiting ERK and AKT signaling activity. Clin Transl Oncol 2020; 23:892-901. [PMID: 32974862 DOI: 10.1007/s12094-020-02486-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE P21-activated kinase 1 (PAK1), a serine/threonine protein kinase which functions downstream of RAC and CDC42 GTPase, is activated by a variety of stimuli, including RAS and other growth signaling factors. The extracellular signal kinase (ERK) and protein kinase B (AKT) signal pathways have been implicated in the pathogenesis of cancers. Whether PAK1 is sensitive to KRAS mutation signals and plays a role through ERK and AKT signaling pathways in NSCLC needs to be studied. METHODS The expression of PAK1, ERK and AKT was detected in both lung cancer cell lines and clinical samples. PAK1 RNA interference and specific inhibitor of PAK1(IPA-3) were applied to lung cancer cell lines and mouse xenograft tumors. Cell growth was measured by MTT and colony formation assays. Cell migration and invasion were detected by wound healing and transwell assays. RAS mutation was detected by Taqman probe method. Correlation between KRAS, PAK1, ERK and AKT activities was analyzed in lung cancer patients. RESULTS PAK1 was highly expressed not only in RAS mutant but also in RAS wild-type lung cancer cells. Using specific inhibitor of PAK1, IPA-3 and PAK1 RNA interference, cell proliferation, migration and invasion of lung cancer cells were reduced significantly, accompanied by decreased activities of ERK and AKT. Dual inhibition of ERK and AKT suppressed these cellular processes to levels comparable to those achieved by reduction in PAK1 expression. In NSCLC patients, PAK1 was not correlated with KRAS mutation but was significantly positively correlated with pERK and pAKT. CONCLUSION PAK1 played roles in NSCLC proliferation and invasion via ERK and AKT signaling and suggested a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- P Song
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - B Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jjinan, China.
| | - J Liu
- Department of Respiratory Internal, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - X Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jjinan, China
| | - X Nan
- Department of Respiratory Internal, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - J Wang
- Department of Respiratory Internal, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
25
|
Møller LLV, Jaurji M, Kjøbsted R, Joseph GA, Madsen AB, Knudsen JR, Lundsgaard AM, Andersen NR, Schjerling P, Jensen TE, Krauss RS, Richter EA, Sylow L. Insulin-stimulated glucose uptake partly relies on p21-activated kinase (PAK)2, but not PAK1, in mouse skeletal muscle. J Physiol 2020; 598:5351-5377. [PMID: 32844438 DOI: 10.1113/jp280294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/24/2020] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS Muscle-specific genetic ablation of p21-activated kinase (PAK)2, but not whole-body PAK1 knockout, impairs glucose tolerance in mice. Insulin-stimulated glucose uptake partly relies on PAK2 in glycolytic extensor digitorum longus muscle By contrast to previous reports, PAK1 is dispensable for insulin-stimulated glucose uptake in mouse muscle. ABSTRACT The group I p21-activated kinase (PAK) isoforms PAK1 and PAK2 are activated in response to insulin in skeletal muscle and PAK1/2 signalling is impaired in insulin-resistant mouse and human skeletal muscle. Interestingly, PAK1 has been suggested to be required for insulin-stimulated glucose transporter 4 translocation in mouse skeletal muscle. Therefore, the present study aimed to examine the role of PAK1 in insulin-stimulated muscle glucose uptake. The pharmacological inhibitor of group I PAKs, IPA-3 partially reduced (-20%) insulin-stimulated glucose uptake in isolated mouse soleus muscle (P < 0.001). However, because there was no phenotype with genetic ablation of PAK1 alone, consequently, the relative requirement for PAK1 and PAK2 in whole-body glucose homeostasis and insulin-stimulated muscle glucose uptake was investigated. Whole-body respiratory exchange ratio was largely unaffected in whole-body PAK1 knockout (KO), muscle-specific PAK2 KO and in mice with combined whole-body PAK1 KO and muscle-specific PAK2 KO. By contrast, glucose tolerance was mildly impaired in mice lacking PAK2 specifically in muscle, but not PAK1 KO mice. Moreover, while PAK1 KO muscles displayed normal insulin-stimulated glucose uptake in vivo and in isolated muscle, insulin-stimulated glucose uptake was slightly reduced in isolated glycolytic extensor digitorum longus muscle lacking PAK2 alone (-18%) or in combination with PAK1 KO (-12%) (P < 0.05). In conclusion, glucose tolerance and insulin-stimulated glucose uptake partly rely on PAK2 in glycolytic mouse muscle, whereas PAK1 is dispensable for whole-body glucose homeostasis and insulin-stimulated muscle glucose uptake.
Collapse
Affiliation(s)
- Lisbeth L V Møller
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Merna Jaurji
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Kjøbsted
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Giselle A Joseph
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Agnete B Madsen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jonas R Knudsen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Microsystems Laboratory 2, Institute of Microengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Nicoline R Andersen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lykke Sylow
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Chetty AK, Sexton JA, Ha BH, Turk BE, Boggon TJ. Recognition of physiological phosphorylation sites by p21-activated kinase 4. J Struct Biol 2020; 211:107553. [PMID: 32585314 PMCID: PMC7395882 DOI: 10.1016/j.jsb.2020.107553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023]
Abstract
Many serine/threonine protein kinases discriminate between serine and threonine substrates as a filter to control signaling output. Among these, the p21-activated kinase (PAK) group strongly favors phosphorylation of Ser over Thr residues. PAK4, a group II PAK, almost exclusively phosphorylates its substrates on serine residues. The only well documented exception is LIM domain kinase 1 (LIMK1), which is phosphorylated on an activation loop threonine (Thr508) to promote its catalytic activity. To understand the molecular and kinetic basis for PAK4 substrate selectivity we compared its mode of recognition of LIMK1 (Thr508) with that of a known serine substrate, β-catenin (Ser675). We determined X-ray crystal structures of PAK4 in complex with synthetic peptides corresponding to its phosphorylation sites in LIMK1 and β-catenin to 1.9 Å and 2.2 Å resolution, respectively. We found that the PAK4 DFG + 1 residue, a key determinant of phosphoacceptor preference, adopts a sub-optimal orientation when bound to LIMK1 compared to β-catenin. In peptide kinase activity assays, we find that phosphoacceptor identity impacts catalytic efficiency but does not affect the Km value for both phosphorylation sites. Although catalytic efficiency of wild-type LIMK1 and β-catenin are equivalent, T508S mutation of LIMK1 creates a highly efficient substrate. These results suggest suboptimal phosphorylation of LIMK1 as a mechanism for controlling the dynamics of substrate phosphorylation by PAK4.
Collapse
Affiliation(s)
- Ashwin K. Chetty
- Yale College, New Haven, CT 06520, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Joel A. Sexton
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Byung Hak Ha
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Benjamin E. Turk
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.,Yale Cancer Center, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Titus J. Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.,Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.,Yale Cancer Center, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.,To whom correspondence should be addressed
| |
Collapse
|
27
|
Yao D, Li C, Rajoka MSR, He Z, Huang J, Wang J, Zhang J. P21-Activated Kinase 1: Emerging biological functions and potential therapeutic targets in Cancer. Am J Cancer Res 2020; 10:9741-9766. [PMID: 32863957 PMCID: PMC7449905 DOI: 10.7150/thno.46913] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
The p21-Activated kinase 1 (PAK1), a member of serine-threonine kinases family, was initially identified as an interactor of the Rho GTPases RAC1 and CDC42, which affect a wide range of processes associated with cell motility, survival, metabolism, cell cycle, proliferation, transformation, stress, inflammation, and gene expression. Recently, the PAK1 has emerged as a potential therapeutic target in cancer due to its role in many oncogenic signaling pathways. Many PAK1 inhibitors have been developed as potential preclinical agents for cancer therapy. Here, we provide an overview of essential roles that PAK1 plays in cancer, including its structure and autoactivation mechanism, its crucial function from onset to progression to metastasis, metabolism, immune escape and even drug resistance in cancer; endogenous regulators; and cancer-related pathways. We also summarize the reported PAK1 small-molecule inhibitors based on their structure types and their potential application in cancer. In addition, we provide overviews on current progress and future challenges of PAK1 in cancer, hoping to provide new ideas for the diagnosis and treatment of cancer.
Collapse
|
28
|
Prabhakar A, Chow J, Siegel AJ, Cullen PJ. Regulation of intrinsic polarity establishment by a differentiation-type MAPK pathway in S. cerevisiae. J Cell Sci 2020; 133:jcs241513. [PMID: 32079658 PMCID: PMC7174846 DOI: 10.1242/jcs.241513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/12/2020] [Indexed: 01/15/2023] Open
Abstract
All cells establish and maintain an axis of polarity that is critical for cell shape and progression through the cell cycle. A well-studied example of polarity establishment is bud emergence in the yeast Saccharomyces cerevisiae, which is controlled by the Rho GTPase Cdc42p. The prevailing view of bud emergence does not account for regulation by extrinsic cues. Here, we show that the filamentous growth mitogen activated protein kinase (fMAPK) pathway regulates bud emergence under nutrient-limiting conditions. The fMAPK pathway regulated the expression of polarity targets including the gene encoding a direct effector of Cdc42p, Gic2p. The fMAPK pathway also stimulated GTP-Cdc42p levels, which is a critical determinant of polarity establishment. The fMAPK pathway activity was spatially restricted to bud sites and active during the period of the cell cycle leading up to bud emergence. Time-lapse fluorescence microscopy showed that the fMAPK pathway stimulated the rate of bud emergence during filamentous growth. Unregulated activation of the fMAPK pathway induced multiple rounds of symmetry breaking inside the growing bud. Collectively, our findings identify a new regulatory aspect of bud emergence that sensitizes this essential cellular process to external cues.
Collapse
Affiliation(s)
- Aditi Prabhakar
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| | - Jacky Chow
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| | - Alan J Siegel
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
29
|
Clayton NS, Ridley AJ. Targeting Rho GTPase Signaling Networks in Cancer. Front Cell Dev Biol 2020; 8:222. [PMID: 32309283 PMCID: PMC7145979 DOI: 10.3389/fcell.2020.00222] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/16/2020] [Indexed: 12/16/2022] Open
Abstract
As key regulators of cytoskeletal dynamics, Rho GTPases coordinate a wide range of cellular processes, including cell polarity, cell migration, and cell cycle progression. The adoption of a pro-migratory phenotype enables cancer cells to invade the stroma surrounding the primary tumor and move toward and enter blood or lymphatic vessels. Targeting these early events could reduce the progression to metastatic disease, the leading cause of cancer-related deaths. Rho GTPases play a key role in the formation of dynamic actin-rich membrane protrusions and the turnover of cell-cell and cell-extracellular matrix adhesions required for efficient cancer cell invasion. Here, we discuss the roles of Rho GTPases in cancer, their validation as therapeutic targets and the challenges of developing clinically viable Rho GTPase inhibitors. We review other therapeutic targets in the wider Rho GTPase signaling network and focus on the four best characterized effector families: p21-activated kinases (PAKs), Rho-associated protein kinases (ROCKs), atypical protein kinase Cs (aPKCs), and myotonic dystrophy kinase-related Cdc42-binding kinases (MRCKs).
Collapse
Affiliation(s)
- Natasha S Clayton
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Anne J Ridley
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
30
|
Rho GTPase Regulators and Effectors in Autism Spectrum Disorders: Animal Models and Insights for Therapeutics. Cells 2020; 9:cells9040835. [PMID: 32244264 PMCID: PMC7226772 DOI: 10.3390/cells9040835] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
The Rho family GTPases are small G proteins that act as molecular switches shuttling between active and inactive forms. Rho GTPases are regulated by two classes of regulatory proteins, guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Rho GTPases transduce the upstream signals to downstream effectors, thus regulating diverse cellular processes, such as growth, migration, adhesion, and differentiation. In particular, Rho GTPases play essential roles in regulating neuronal morphology and function. Recent evidence suggests that dysfunction of Rho GTPase signaling contributes substantially to the pathogenesis of autism spectrum disorder (ASD). It has been found that 20 genes encoding Rho GTPase regulators and effectors are listed as ASD risk genes by Simons foundation autism research initiative (SFARI). This review summarizes the clinical evidence, protein structure, and protein expression pattern of these 20 genes. Moreover, ASD-related behavioral phenotypes in animal models of these genes are reviewed, and the therapeutic approaches that show successful treatment effects in these animal models are discussed.
Collapse
|
31
|
The dynactin subunit DCTN1 controls osteoclastogenesis via the Cdc42/PAK2 pathway. Exp Mol Med 2020; 52:514-528. [PMID: 32210358 PMCID: PMC7156411 DOI: 10.1038/s12276-020-0406-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 01/11/2023] Open
Abstract
Osteoclasts (OCs), cells specialized for bone resorption, are generated from monocyte/macrophage precursors by a differentiation process governed by RANKL. Here, we show that DCTN1, a key component of the dynactin complex, plays important roles in OC differentiation. The expression of DCTN1 was upregulated by RANKL. The inhibition of DCTN1 expression by gene knockdown suppressed OC formation, bone resorption, and the induction of NFATc1 and c-Fos, critical transcription factors for osteoclastogenesis. More importantly, the activation of Cdc42 by RANKL was inhibited upon DCTN1 silencing. The forced expression of constitutively active Cdc42 restored the OC differentiation of precursors with DCTN1 deletion. In addition, PAK2 was found to be activated by RANKL and to function downstream of Cdc42. The DCTN1-Cdc42 axis also inhibited apoptosis and caspase-3 activation. Furthermore, the anti-osteoclastogenic effect of DCTN1 knockdown was verified in an animal model of bone erosion. Intriguingly, DCTN1 overexpression was also detrimental to OC differentiation, suggesting that DCTN1 should be regulated at the appropriate level for effective osteoclastogenesis. Collectively, our results reveal that DCTN1 participates in the activation of Cdc42/PAK2 signaling and the inhibition of apoptosis during osteoclastogenesis. A critical mechanism for maintaining bone health uncovered by scientists in South Korea could provide insights into bone disease development. Bone remodeling is a lifetime process of bone generation that ensures bones remain healthy. Osteoclasts (OC), cells that break down bone, differentiate from white blood cell populations. Disruption to OC formation and function plays a critical role in bone diseases, yet the regulatory mechanisms in OC generation are unclear. Hong-Hee Kim at Seoul National University and co-workers investigated the role of a protein called DCTN1, which is involved in skeletal assembly processes. The team found that inhibiting DCTN1 suppressed the expression of key proteins needed for OC formation in cell cultures and mouse models. Overexpressing DCTN1 was equally damaging, suggesting the protein plays a key regulatory role.
Collapse
|
32
|
Mierke CT, Puder S, Aermes C, Fischer T, Kunschmann T. Effect of PAK Inhibition on Cell Mechanics Depends on Rac1. Front Cell Dev Biol 2020; 8:13. [PMID: 32047750 PMCID: PMC6997127 DOI: 10.3389/fcell.2020.00013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Besides biochemical and molecular regulation, the migration and invasion of cells is controlled by the environmental mechanics and cellular mechanics. Hence, the mechanical phenotype of cells, such as fibroblasts, seems to be crucial for the migratory capacity in confined 3D extracellular matrices. Recently, we have shown that the migratory and invasive capacity of mouse embryonic fibroblasts depends on the expression of the Rho-GTPase Rac1, similarly it has been demonstrated that the Rho-GTPase Cdc42 affects cell motility. The p21-activated kinase (PAK) is an effector down-stream target of both Rho-GTPases Rac1 and Cdc42, and it can activate via the LIM kinase-1 its down-stream target cofilin and subsequently support the cell migration and invasion through the polymerization of actin filaments. Since Rac1 deficient cells become mechanically softer than controls, we investigated the effect of group I PAKs and PAK1 inhibition on cell mechanics in the presence and absence of Rac1. Therefore, we determined whether mouse embryonic fibroblasts, in which Rac1 was knocked-out, and control cells, displayed cell mechanical alterations after treatment with group I PAKs or PAK1 inhibitors using a magnetic tweezer (adhesive cell state) and an optical cell stretcher (non-adhesive cell state). In fact, we found that group I PAKs and Pak1 inhibition decreased the stiffness and the Young’s modulus of fibroblasts in the presence of Rac1 independent of their adhesive state. However, in the absence of Rac1 the effect was abolished in the adhesive cell state for both inhibitors and in their non-adhesive state, the effect was abolished for the FRAX597 inhibitor, but not for the IPA3 inhibitor. The migration and invasion were additionally reduced by both PAK inhibitors in the presence of Rac1. In the absence of Rac1, only FRAX597 inhibitor reduced their invasiveness, whereas IPA3 had no effect. These findings indicate that group I PAKs and PAK1 inhibition is solely possible in the presence of Rac1 highlighting Rac1/PAK I (PAK1, 2, and 3) as major players in cell mechanics.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| | - Stefanie Puder
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| | - Christian Aermes
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| | - Tony Fischer
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| | - Tom Kunschmann
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
33
|
Wang Y, Zeng C, Li J, Zhou Z, Ju X, Xia S, Li Y, Liu A, Teng H, Zhang K, Shi L, Bi C, Xie W, He X, Jia Z, Jiang Y, Cai T, Wu J, Xia K, Sun ZS. PAK2 Haploinsufficiency Results in Synaptic Cytoskeleton Impairment and Autism-Related Behavior. Cell Rep 2020; 24:2029-2041. [PMID: 30134165 DOI: 10.1016/j.celrep.2018.07.061] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/15/2018] [Accepted: 07/17/2018] [Indexed: 01/24/2023] Open
Abstract
Synaptic cytoskeleton dysfunction represents a common pathogenesis in neurodevelopmental disorders, such as autism spectrum disorder (ASD). The serine/threonine kinase PAK2 is a critical regulator of cytoskeleton dynamics. However, its function within the central nervous system and its role in ASD pathogenesis remain undefined. Here, we found that Pak2 haploinsufficiency resulted in markedly decreased synapse densities, defective long-term potentiation, and autism-related behaviors in mice. Phosphorylation levels of key actin regulators LIMK1 and cofilin, together with their mediated actin polymerization, were reduced in Pak2+/-mice. We identified one de novo PAK2 nonsense mutation that impaired PAK2 function in vitro and in vivo and four de novo copy-number deletions containing PAK2 in large cohorts of patients with ASD. PAK2 deficiency extensively perturbed functional networks associated with ASD by regulating actin cytoskeleton dynamics. Our genetic and functional results demonstrate a critical role of PAK2 in brain development and autism pathogenesis.
Collapse
Affiliation(s)
- Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng Zeng
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jinchen Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zikai Zhou
- Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Xingda Ju
- Department of Psychology, Northeast Normal University, Changchun 130031, China
| | - Shuting Xia
- Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Yuanyuan Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - An Liu
- Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Huajing Teng
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Kun Zhang
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou 325000, China
| | - Leisheng Shi
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou 325000, China
| | - Cheng Bi
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Xie
- Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Xin He
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Zhengping Jia
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Yonghui Jiang
- Deparment of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tao Cai
- Experimental Medicine Section, National Institute of Dental and Craniofacial Research (NIDCR)/NIH, Bethesda, MD 20892, USA
| | - Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou 325000, China
| | - Kun Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China.
| | - Zhong Sheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou 325000, China.
| |
Collapse
|
34
|
Dang Y, Guo Y, Ma X, Chao X, Wang F, Cai L, Yan Z, Xie L, Guo X. Systemic analysis of the expression and prognostic significance of PAKs in breast cancer. Genomics 2020; 112:2433-2444. [PMID: 31987914 DOI: 10.1016/j.ygeno.2020.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/24/2019] [Accepted: 01/23/2020] [Indexed: 12/23/2022]
Abstract
PAKs (p21-activated kinases) are reported to play crucial roles in a variety of cellular processes and participate in the progression of human cancers. However, the expression and prognostic values of PAKs remain poorly explored in breast cancers. In our study, we examined the mRNA and protein expression levels of PAKs and the prognostic value. We also analyzed the interaction network, genetic alteration, and functional enrichment of PAKs. The results showed that the mRNA levels of PAK1, PAK2, PAK4 and PAK6 were significantly up-regulated in breast cancer compared with normal tissues, while the reverse trend for PAK3 and PAK5 was found, furthermore, the proteins expression of PAK1, PAK2 and PAK4 in breast cancer tissues were higher than that in normal breast tissues. Survival analysis revealed breast cancer patients with low mRNA expression of PAK3 and PAK5 showed worse RFS, conversely, elevated PAK4 levels predicted worse RFS. In addition, the breast cancer patients with PAKs genetic alterations correlated with worse OS. These results indicated that PAKs might be promising potential biomarkers for breast cancer.
Collapse
Affiliation(s)
- Yifang Dang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Ying Guo
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Xiaoyu Ma
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Xiaoyu Chao
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Fei Wang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Linghao Cai
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Zhongyi Yan
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Longxiang Xie
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| | - Xiangqian Guo
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
35
|
Gong CC, Li TT, Pei DS. PAK6: a potential anti-cancer target. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000318315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - Dong-Sheng Pei
- Xuzhou Medical University, China; Xuzhou Medical University, China
| |
Collapse
|
36
|
Binder P, Wang S, Radu M, Zin M, Collins L, Khan S, Li Y, Sekeres K, Humphreys N, Swanton E, Reid A, Pu F, Oceandy D, Guan K, Hille SS, Frey N, Müller OJ, Cartwright EJ, Chernoff J, Wang X, Liu W. Pak2 as a Novel Therapeutic Target for Cardioprotective Endoplasmic Reticulum Stress Response. Circ Res 2019; 124:696-711. [PMID: 30620686 PMCID: PMC6407830 DOI: 10.1161/circresaha.118.312829] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Supplemental Digital Content is available in the text. Rationale: Secreted and membrane-bound proteins, which account for 1/3 of all proteins, play critical roles in heart health and disease. The endoplasmic reticulum (ER) is the site for synthesis, folding, and quality control of these proteins. Loss of ER homeostasis and function underlies the pathogenesis of many forms of heart disease. Objective: To investigate mechanisms responsible for regulating cardiac ER function, and to explore therapeutic potentials of strengthening ER function to treat heart disease. Methods and Results: Screening a range of signaling molecules led to the discovery that Pak (p21-activated kinase)2 is a stress-responsive kinase localized in close proximity to the ER membrane in cardiomyocytes. We found that Pak2 cardiac deleted mice (Pak2-CKO) under tunicamycin stress or pressure overload manifested a defective ER response, cardiac dysfunction, and profound cell death. Small chemical chaperone tauroursodeoxycholic acid treatment of Pak2-CKO mice substantiated that Pak2 loss-induced cardiac damage is an ER-dependent pathology. Gene array analysis prompted a detailed mechanistic study, which revealed that Pak2 regulation of protective ER function was via the IRE (inositol-requiring enzyme)-1/XBP (X-box–binding protein)-1–dependent pathway. We further discovered that this regulation was conferred by Pak2 inhibition of PP2A (protein phosphatase 2A) activity. Moreover, IRE-1 activator, Quercetin, and adeno-associated virus serotype-9–delivered XBP-1s were able to relieve ER dysfunction in Pak2-CKO hearts. This provides functional evidence, which supports the mechanism underlying Pak2 regulation of IRE-1/XBP-1s signaling. Therapeutically, inducing Pak2 activation by genetic overexpression or adeno-associated virus serotype-9–based gene delivery was capable of strengthening ER function, improving cardiac performance, and diminishing apoptosis, thus protecting the heart from failure. Conclusions: Our findings uncover a new cardioprotective mechanism, which promotes a protective ER stress response via the modulation of Pak2. This novel therapeutic strategy may present as a promising option for treating cardiac disease and heart failure.
Collapse
Affiliation(s)
- Pablo Binder
- From the Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (P.B., S.W., M.Z., L.C., S.K., Y.L., N.H., E.S., A.R., D.O., E.J.C., X.W., W.L.)
| | - Shunyao Wang
- From the Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (P.B., S.W., M.Z., L.C., S.K., Y.L., N.H., E.S., A.R., D.O., E.J.C., X.W., W.L.)
| | - Maria Radu
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA (M.R., J.C.)
| | - Min Zin
- From the Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (P.B., S.W., M.Z., L.C., S.K., Y.L., N.H., E.S., A.R., D.O., E.J.C., X.W., W.L.)
| | - Lucy Collins
- From the Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (P.B., S.W., M.Z., L.C., S.K., Y.L., N.H., E.S., A.R., D.O., E.J.C., X.W., W.L.)
| | - Saba Khan
- From the Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (P.B., S.W., M.Z., L.C., S.K., Y.L., N.H., E.S., A.R., D.O., E.J.C., X.W., W.L.)
| | - Yatong Li
- From the Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (P.B., S.W., M.Z., L.C., S.K., Y.L., N.H., E.S., A.R., D.O., E.J.C., X.W., W.L.)
| | - Karolina Sekeres
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universitaet Dresden, Germany (K.S., K.G.)
| | - Neil Humphreys
- From the Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (P.B., S.W., M.Z., L.C., S.K., Y.L., N.H., E.S., A.R., D.O., E.J.C., X.W., W.L.)
| | - Eileithyia Swanton
- From the Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (P.B., S.W., M.Z., L.C., S.K., Y.L., N.H., E.S., A.R., D.O., E.J.C., X.W., W.L.)
| | - Adam Reid
- From the Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (P.B., S.W., M.Z., L.C., S.K., Y.L., N.H., E.S., A.R., D.O., E.J.C., X.W., W.L.)
| | - Fay Pu
- Edinburgh University Medical School, United Kingdom (F.P.)
| | - Delvac Oceandy
- From the Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (P.B., S.W., M.Z., L.C., S.K., Y.L., N.H., E.S., A.R., D.O., E.J.C., X.W., W.L.)
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universitaet Dresden, Germany (K.S., K.G.)
| | - Susanne S Hille
- Department of Internal Medicine III, University of Kiel, Germany (S.S.H., N.F., O.J.M.)
| | - Norbert Frey
- Department of Internal Medicine III, University of Kiel, Germany (S.S.H., N.F., O.J.M.)
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Germany (S.S.H., N.F., O.J.M.).,DZHK, German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany (O.J.M.)
| | - Elizabeth J Cartwright
- From the Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (P.B., S.W., M.Z., L.C., S.K., Y.L., N.H., E.S., A.R., D.O., E.J.C., X.W., W.L.)
| | - Jonathan Chernoff
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA (M.R., J.C.)
| | - Xin Wang
- From the Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (P.B., S.W., M.Z., L.C., S.K., Y.L., N.H., E.S., A.R., D.O., E.J.C., X.W., W.L.)
| | - Wei Liu
- From the Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom (P.B., S.W., M.Z., L.C., S.K., Y.L., N.H., E.S., A.R., D.O., E.J.C., X.W., W.L.)
| |
Collapse
|
37
|
Shamloo B, Usluer S. p21 in Cancer Research. Cancers (Basel) 2019; 11:cancers11081178. [PMID: 31416295 PMCID: PMC6721478 DOI: 10.3390/cancers11081178] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022] Open
Abstract
p21 functions as a cell cycle inhibitor and anti-proliferative effector in normal cells, and is dysregulated in some cancers. Earlier observations on p21 knockout models emphasized the role of this protein in cell cycle arrest under the p53 transcription factor activity. Although tumor-suppressor function of p21 is the most studied aspect of this protein in cancer, the role of p21 in phenotypic plasticity and its oncogenic/anti-apoptotic function, depending on p21 subcellular localization and p53 status, have been under scrutiny recently. Basic science and translational studies use precision gene editing to manipulate p21 itself, and proteins that interact with it; these studies have led to regulatory/functional/drug sensitivity discoveries as well as therapeutic approaches in cancer field. In this review, we will focus on targeting p21 in cancer research and its potential in providing novel therapies.
Collapse
Affiliation(s)
- Bahar Shamloo
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| | - Sinem Usluer
- Department of Molecular Biology & Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
38
|
Abstract
Cellular senescence defines an irreversible cell growth arrest state linked to loss of tissue function and aging in mammals. This transition from proliferation to senescence is typically characterized by increased expression of the cell-cycle inhibitor p16INK4a and formation of senescence-associated heterochromatin foci (SAHF). SAHF formation depends on HIRA-mediated nucleosome assembly of histone H3.3, which is regulated by the serine/threonine protein kinase Pak2. However, it is unknown if Pak2 contributes to cellular senescence. Here, we show that depletion of Pak2 delayed oncogene-induced senescence in IMR90 human fibroblasts and oxidative stress-induced senescence of mouse embryonic fibroblasts (MEFs), whereas overexpression of Pak2 accelerated senescence of IMR90 cells. Importantly, depletion of Pak2 in BubR1 progeroid mice attenuated the onset of aging-associated phenotypes and extended life span. Pak2 is required for expression of genes involved in cellular senescence and regulated the deposition of newly synthesized H3.3 onto chromatin in senescent cells. Together, our results demonstrate that Pak2 is an important regulator of cellular senescence and organismal aging, in part through the regulation of gene expression and H3.3 nucleosome assembly.
Collapse
|
39
|
Goyette SR, Schott E, Uwimana A, Nelson DW, Boganski J. Detection of the steroid receptor interacting protein, PAK6, in a neuronal cell line. Heliyon 2019; 5:e01294. [PMID: 30923762 PMCID: PMC6423815 DOI: 10.1016/j.heliyon.2019.e01294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/18/2019] [Accepted: 02/26/2019] [Indexed: 01/31/2023] Open
Abstract
PAK6 is a Group II p21 activated kinase that unlike traditional signal transduction proteins interacts with multiple binding partners including sex-steroid receptors. PAK6 acts as a nodal checkpoint integrating multiple cellular inputs to promote distinct cellular outcomes, some of which are associated with cytoskeletal remodeling. Despite the possibility that PAK6 may couple sex-specific neuronal function and therefore serve as a valuable research, diagnostic and therapeutic target, there is currently no standardized protocol for assessing PAK6 activity in a neuronal cell line. Here, we present a protocol for assessing PAK6 levels in a commonly used neuronal cell line, PC-12. In comparison with other methodology, this approach (1) does not require ex-planted tissue to identify PAK6 in neurons and (2) unlike other protocols which require steroid depleted media for detection of PAK6 in non-neuronal cell lines, such as prostate cancer cell lines, we were easily able to detect PAK6 in PC-12 cells grown in complete, steroid-containing media. Thus the present protocol allows for the efficient detection of native PAK6 in PC-12 cells to expedite targeted basic research of the emerging importance of PAK6 function in the brain as well as to accelerate the identification and isolation of potential therapeutic targets not only in cancerous but brain disease states as well.
Collapse
Affiliation(s)
| | - Eric Schott
- Shields Science Center, Stonehill College, Easton MA, 02357, USA
| | | | - David W Nelson
- Shields Science Center, Stonehill College, Easton MA, 02357, USA
| | - Jacob Boganski
- Shields Science Center, Stonehill College, Easton MA, 02357, USA
| |
Collapse
|
40
|
Kamstra JH, Hurem S, Martin LM, Lindeman LC, Legler J, Oughton D, Salbu B, Brede DA, Lyche JL, Aleström P. Ionizing radiation induces transgenerational effects of DNA methylation in zebrafish. Sci Rep 2018; 8:15373. [PMID: 30337673 PMCID: PMC6193964 DOI: 10.1038/s41598-018-33817-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/06/2018] [Indexed: 01/08/2023] Open
Abstract
Ionizing radiation is known to cause DNA damage, yet the mechanisms underlying potential transgenerational effects of exposure have been scarcely studied. Previously, we observed effects in offspring of zebrafish exposed to gamma radiation during gametogenesis. Here, we hypothesize that these effects are accompanied by changes of DNA methylation possibly inherited by subsequent generations. We assessed DNA methylation in F1 embryos (5.5 hours post fertilization) with whole genome bisulfite sequencing following parental exposure to 8.7 mGy/h for 27 days and found 5658 differentially methylated regions (DMRs). DMRs were predominantly located at known regulatory regions, such as gene promoters and enhancers. Pathway analysis indicated the involvement of DMRs related to similar pathways found with gene expression analysis, such as development, apoptosis and cancers, which could be linked to previous observed developmental defects and genomic instability in the offspring. Follow up of 19 F1 DMRs in F2 and F3 embryos revealed persistent effects up to the F3 generation at 5 regions. These results indicate that ionizing radiation related effects in offspring can be linked to DNA methylation changes that partly can persist over generations. Monitoring DNA methylation could serve as a biomarker to provide an indication of ancestral exposures to ionizing radiation.
Collapse
Affiliation(s)
- Jorke H Kamstra
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway.
| | - Selma Hurem
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway
| | - Leonardo Martin Martin
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway.,University of Camagüey, Faculty of Agropecuary Sciences, Camagüey, 70100, Cuba
| | - Leif C Lindeman
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway.,Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1433, Ås, Norway
| | - Juliette Legler
- Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,Utrecht University, Institute for Risk Assessment Sciences, 3508, TD, Utrecht, The Netherlands
| | - Deborah Oughton
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1433, Ås, Norway
| | - Brit Salbu
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1433, Ås, Norway
| | - Dag Anders Brede
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1433, Ås, Norway
| | - Jan Ludvig Lyche
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway
| | - Peter Aleström
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway
| |
Collapse
|
41
|
Chen S, Fang Y, Xu S, Reis C, Zhang J. Mammalian Sterile20-like Kinases: Signalings and Roles in Central Nervous System. Aging Dis 2018; 9:537-552. [PMID: 29896440 PMCID: PMC5988607 DOI: 10.14336/ad.2017.0702] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/02/2017] [Indexed: 12/25/2022] Open
Abstract
Mammalian Sterile20-like (MST) kinases are located upstream in the mitogen-activated protein kinase pathway, and play an important role in cell proliferation, differentiation, renewal, polarization and migration. Generally, five MST kinases exist in mammalian signal transduction pathways, including MST1, MST2, MST3, MST4 and YSK1. The central nervous system (CNS) is a sophisticated entity that takes charge of information reception, integration and response. Recently, accumulating evidence proposes that MST kinases are critical in the development of disease in different systems involving the CNS. In this review, we summarized the signal transduction pathways and interacting proteins of MST kinases. The potential biological function of each MST kinase and the commonly reported MST-related diseases in the neural system are also reviewed. Further investigation of MST kinases and their interaction with CNS diseases would provide the medical community with new therapeutic targets for human diseases.
Collapse
Affiliation(s)
- Sheng Chen
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuanjian Fang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shenbin Xu
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cesar Reis
- 2Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, California, USA.,3Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,4Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
42
|
Civiero L, Greggio E. PAKs in the brain: Function and dysfunction. Biochim Biophys Acta Mol Basis Dis 2017; 1864:444-453. [PMID: 29129728 DOI: 10.1016/j.bbadis.2017.11.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 12/17/2022]
Abstract
p21-Activated kinases (PAKs) comprise a family of proteins covering a central role in signal transduction. They are downstream effectors of Rho GTPases and can affect a variety of processes in different cell types and tissues by remodeling the cytoskeleton and by promoting gene transcription and cell survival. Given the relevance of cytoskeletal organization in neuronal development as well as synaptic function and the importance of pro-survival signals in controlling neuronal cell fate, accumulating studies investigated the role of PAKs in the nervous system. In this review, we provide a critical overview of the role of PAKs in the nervous system, both in neuronal and non-neuronal cells, and discuss their potential link with neurodegenerative diseases.
Collapse
|
43
|
Niit M, Arulanandam R, Cass J, Geletu M, Hoskin V, Côté G, Gunning P, Elliott B, Raptis L. Regulation of HC11 mouse breast epithelial cell differentiation by the E-cadherin/Rac axis. Exp Cell Res 2017; 361:112-125. [PMID: 29031557 DOI: 10.1016/j.yexcr.2017.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/29/2017] [Accepted: 10/08/2017] [Indexed: 10/18/2022]
Abstract
It was previously demonstrated that differentiation of some established breast epithelial cell lines requires confluence and stimulation with hydrocortisone, insulin and prolactin inducers. We and others previously demonstrated that E-cadherin engagement, which is favored under conditions of confluence, increases the levels and activity of the Rac small GTPase. To investigate the functional relationship between the transforming ability of Rac and its role as an integral component of the differentiative E-cadherin signaling pathway, we introduced a mutationally activated form of Rac, RacV12, into the mouse breast epithelium-derived cell line, HC11. Our results demonstrate that the strength of the Rac signal is key for the outcome of the differentiation process; cRac1 is critically required for differentiation, and at low levels, mutationally activated RacV12 is able to increase differentiation, presumably reinforcing the E-cadherin/Rac differentiative signal. However, high RacV12 expression blocked differentiation concomitant with E-cadherin downregulation, while inducing neoplastic transformation. Therefore, the intensity of the Rac signal is a central determinant in the balance between cell proliferation vs differentiation, two fundamentally opposed processes, a finding which could also have important therapeutic implications.
Collapse
Affiliation(s)
- Maximilian Niit
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6; Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada K7L3N6
| | - Rozanne Arulanandam
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6; Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada K1H 8L6
| | - Jamaica Cass
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Mulu Geletu
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6; Department of Chemical and Physical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Victoria Hoskin
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada K7L3N6
| | - Graham Côté
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Patrick Gunning
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Bruce Elliott
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada K7L3N6
| | - Leda Raptis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6; Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada K7L3N6.
| |
Collapse
|
44
|
Afifiyan N, Tillman B, French BA, Sweeny O, Masouminia M, Samadzadeh S, French SW. The role of Tec kinase signaling pathways in the development of Mallory Denk Bodies in balloon cells in alcoholic hepatitis. Exp Mol Pathol 2017; 103:191-199. [PMID: 28935395 DOI: 10.1016/j.yexmp.2017.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 02/08/2023]
Abstract
Several research strategies have been used to study the pathogenesis of alcoholic hepatitis (AH). These strategies have shown that various signaling pathways are the target of alcohol in liver cells. However, few have provided specific mechanisms associated with Mallory-Denk Bodies (MDBs) formed in Balloon cells in AH. The formation of MDBs in these hepatocytes is an indication that the mechanisms of protein quality control have failed. The MDB is the result of aggregation and accumulation of proteins in the cytoplasm of balloon degenerated liver cells. To understand the mechanisms that failed to degrade and remove proteins in the hepatocyte from patients suffering from alcoholic hepatitis, we investigated the pathways that showed significant up regulation in the AH liver biopsies compared to normal control livers (Liu et al., 2015). Analysis of genomic profiles of AH liver biopsies and control livers by RNA-seq revealed different pathways that were up regulated significantly. In this study, the focus was on Tec kinase signaling pathways and the genes that significantly interrupt this pathway. Quantitative PCR and immunofluorescence staining results, indicated that several genes and proteins are significantly over expressed in the livers of AH patients that affect the Tec kinase signaling to PI3K which leads to activation of Akt and its downstream effectors.
Collapse
Affiliation(s)
- N Afifiyan
- Department of Pathology, Harbor UCLA Medical Center, Los Angeles BioMedical Institute, 1000W. Carson, Torrance, CA 90509, United States
| | - B Tillman
- Department of Pathology, Harbor UCLA Medical Center, Los Angeles BioMedical Institute, 1000W. Carson, Torrance, CA 90509, United States
| | - B A French
- Department of Pathology, Harbor UCLA Medical Center, Los Angeles BioMedical Institute, 1000W. Carson, Torrance, CA 90509, United States
| | - O Sweeny
- Department of Pathology, Harbor UCLA Medical Center, Los Angeles BioMedical Institute, 1000W. Carson, Torrance, CA 90509, United States
| | - M Masouminia
- Department of Pathology, Harbor UCLA Medical Center, Los Angeles BioMedical Institute, 1000W. Carson, Torrance, CA 90509, United States
| | - S Samadzadeh
- Department of Pathology, Harbor UCLA Medical Center, Los Angeles BioMedical Institute, 1000W. Carson, Torrance, CA 90509, United States
| | - S W French
- Department of Pathology, Harbor UCLA Medical Center, Los Angeles BioMedical Institute, 1000W. Carson, Torrance, CA 90509, United States.
| |
Collapse
|
45
|
Dagliyan O, Karginov AV, Yagishita S, Gale ME, Wang H, DerMardirossian C, Wells CM, Dokholyan NV, Kasai H, Hahn KM. Engineering Pak1 Allosteric Switches. ACS Synth Biol 2017; 6:1257-1262. [PMID: 28365983 DOI: 10.1021/acssynbio.6b00359] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
P21-activated kinases (PAKs) are important regulators of cell motility and morphology. It has been challenging to interrogate their functions because cells adapt to genetic manipulation of PAK, and because inhibitors act on multiple PAK isoforms. Here we describe genetically encoded PAK1 analogues that can be selectively activated by the membrane-permeable small molecule rapamycin. An engineered domain inserted away from the active site responds to rapamycin to allosterically control activity of the PAK1 isoform. To examine the mechanism of rapamycin-induced PAK1 activation, we used molecular dynamics with graph theory to predict amino acids involved in allosteric communication with the active site. This analysis revealed allosteric pathways that were exploited to generate kinase switches. Activation of PAK1 resulted in transient cell spreading in metastatic breast cancer cells, and long-term dendritic spine enlargement in mouse hippocampal CA1 neurons.
Collapse
Affiliation(s)
| | - Andrei V. Karginov
- Department
of Pharmacology, University of Illinois at Chicago, Chicago Illinois 60612, United States
| | - Sho Yagishita
- Center
for Disease Biology and Integrative Medicine, The University of Tokyo, Bunko-ku,
Tokyo 113-0033, Japan
| | - Madeline E. Gale
- Division
of Cancer Studies, King’s College London, London SE1 1UL, England, U.K
| | | | - Celine DerMardirossian
- Department
of Cell and Molecular Biology, Scripps Research Institute, La Jolla, California 92037, United States
| | - Claire M. Wells
- Division
of Cancer Studies, King’s College London, London SE1 1UL, England, U.K
| | | | - Haruo Kasai
- Center
for Disease Biology and Integrative Medicine, The University of Tokyo, Bunko-ku,
Tokyo 113-0033, Japan
| | | |
Collapse
|
46
|
Edlinger L, Berger-Becvar A, Menzl I, Hoermann G, Greiner G, Grundschober E, Bago-Horvath Z, Al-Zoughbi W, Hoefler G, Brostjan C, Gille L, Moriggl R, Spittler A, Sexl V, Hoelbl-Kovacic A. Expansion of BCR/ABL1 + cells requires PAK2 but not PAK1. Br J Haematol 2017; 179:229-241. [PMID: 28707321 PMCID: PMC5655792 DOI: 10.1111/bjh.14833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/30/2017] [Indexed: 01/13/2023]
Abstract
The p21‐activated kinases (PAKs) are key nodes in oncogenic signalling pathways controlling growth, survival, and motility of cancer cells. Their activity is increased in many human cancers and is associated with poor prognosis. To date, PAK deregulation has mainly been studied in solid tumours, where PAK1 and PAK4 are the main isoforms deregulated. We show that PAK1 and PAK2 are the critical isoforms in a BCR/ABL1+ haematopoietic malignancy. In suspension, leukaemic cells deficient for PAK1 and PAK2 undergo apoptosis, while the loss of either protein is well tolerated. Transfer of medium conditioned by shPAK2‐ but not shPAK1‐expressing leukaemic cells interferes with endothelial cell growth. We found that leukaemic cells produce exosomes containing PAK2. Transfer of isolated exosomes supports endothelial cell proliferation. In parallel, we found that leukaemic cells explicitly require PAK2 to grow towards an extracellular matrix. PAK2‐deficient cells fail to form colonies in methylcellulose and to induce lymphomas in vivo. PAK2 might therefore be the critical isoform in leukaemic cells by controlling tumour growth in a dual manner: vascularization via exosome‐mediated transfer to endothelial cells and remodelling of the extracellular matrix. This finding suggests that the PAK2 isoform represents a promising target for the treatment of haematological diseases.
Collapse
Affiliation(s)
- Leo Edlinger
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Angelika Berger-Becvar
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ingeborg Menzl
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gregor Hoermann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Georg Greiner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Eva Grundschober
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Zsuzsanna Bago-Horvath
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria.,Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Wael Al-Zoughbi
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gerald Hoefler
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Christine Brostjan
- Department of Surgery, Research Laboratories, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Lars Gille
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreas Spittler
- Core Facility Flow Cytometry & Department of Surgery, Research Laboratories, Medical University of Vienna, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andrea Hoelbl-Kovacic
- Institute of Pharmacology and Toxicology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
47
|
Minz-Dub A, Sharon A. The Botrytis cinerea PAK kinase BcCla4 mediates morphogenesis, growth and cell cycle regulating processes downstream of BcRac. Mol Microbiol 2017; 104:487-498. [PMID: 28164413 DOI: 10.1111/mmi.13642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2017] [Indexed: 12/24/2022]
Abstract
Rac proteins are involved in a variety of cellular processes. Effector proteins that interact with active Rac convey the GTPase-generated signal to downstream developmental cascades and processes. Here we report on the analysis of the main effector and signal cascade downstream of BcRac, the Rac homolog of the grey mold fungus Botrytis cinerea. Several lines of evidence highlighted the p21-activated kinase Cla4 as an important effector of Rac in fungi. Analysis of Δbccla4 strains revealed that the BcCla4 protein was sufficient to mediate all of the examined BcRac-driven processes, including hyphal growth and morphogenesis, conidia production and pathogenicity. In addition, the Δbccla4 strains had altered nuclei content, a phenomenon that was previously observed in Δbcrac isolates, thus connecting the BcRac/BcCla4 module with cell cycle control. Further analyses revealed that BcRac/BcCla4 control mitotic entry through changes in phosphorylation status of the cyclin dependent kinase BcCdk1. The complete cascade includes the kinase BcWee1, which is downstream of BcCla4 and upstream of BcCdk1. These results provide a mechanistic insight on the connection of cell cycle, morphogenesis and pathogenicity in fungi, and position BcCla4 as the most essential effector and central regulator of all of these processes downstream of BcRac.
Collapse
Affiliation(s)
- Anna Minz-Dub
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
48
|
Sun Z, Zhang B, Wang C, Fu T, Li L, Wu Q, Cai Y, Wang J. Forkhead box P3 regulates ARHGAP15 expression and affects migration of glioma cells through the Rac1 signaling pathway. Cancer Sci 2017; 108:61-72. [PMID: 27862679 PMCID: PMC5276829 DOI: 10.1111/cas.13118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/03/2016] [Accepted: 11/05/2016] [Indexed: 12/25/2022] Open
Abstract
Forkhead box P3 (FOXP3) plays a crucial role in the development and function of regulatory T cells and was recently identified as a tumor suppressor in different cancer types. Forkhead box P3 is expressed in normal brain tissues, but is strongly downregulated or absent in glioblastomas. In order to understand the FOXP3 adjustment mechanisms in glioma cells, we performed a DNA microarray in U87 cells overexpressing FOXP3 and validated the differences using quantitative real‐time PCR, Western blot analysis, and immunohistochemistry in vitro and in vivo. We found that FOXP3 can regulate the expression of ARHGAP15. Expression of FOXP3 was also correlated with ARHGAP15 in glioma samples. Overexpression of FOXP3 inhibited glioma cell migration through ARHGAP15 upregulation and Rac1 inactivation. Silencing of FOXP3 promoted migration through ARHGAP15 downregulation and Rac1 activation. ARHGAP15, a GTPase‐activating protein for Rac1, inhibits small GTPase signaling in a dual negative manner. We found that there is a correlation between expression of ARHGAP15 and glioma level. The small GTPase Rac1 plays an important role in cell migration. In addition, we found that FOXP3 regulates expression of epithelial–mesenchymal transition markers E‐cadherin and N‐cadherin, which is important given that epithelial–mesenchymal transition is critically involved in tumor spreading and dissemination. Thus, FOXP3 or ARHGAP15 may serve as a new molecular target for antimetastatic therapies in treating glioma.
Collapse
Affiliation(s)
- Zhen Sun
- The Graduate School, Tianjin Medical University, Tianjin, China
| | - Biao Zhang
- Tianjin Neurosurgery Institute, Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Huanhu Hospital, Tianjin, China
| | - Chen Wang
- Tianjin Neurosurgery Institute, Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Huanhu Hospital, Tianjin, China
| | - Tao Fu
- The Graduate School, Tianjin Medical University, Tianjin, China
| | - Lianling Li
- The Graduate School, Tianjin Medical University, Tianjin, China
| | - Qiaoli Wu
- Tianjin Neurosurgery Institute, Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Huanhu Hospital, Tianjin, China
| | - Ying Cai
- Tianjin Neurosurgery Institute, Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Huanhu Hospital, Tianjin, China
| | - Jinhuan Wang
- Tianjin Neurosurgery Institute, Tianjin Cerebral Vascular and Neural Degenerative Disease Key Laboratory, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
49
|
Kumar R, Sanawar R, Li X, Li F. Structure, biochemistry, and biology of PAK kinases. Gene 2016; 605:20-31. [PMID: 28007610 DOI: 10.1016/j.gene.2016.12.014] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/24/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023]
Abstract
PAKs, p21-activated kinases, play central roles and act as converging junctions for discrete signals elicited on the cell surface and for a number of intracellular signaling cascades. PAKs phosphorylate a vast number of substrates and act by remodeling cytoskeleton, employing scaffolding, and relocating to distinct subcellular compartments. PAKs affect wide range of processes that are crucial to the cell from regulation of cell motility, survival, redox, metabolism, cell cycle, proliferation, transformation, stress, inflammation, to gene expression. Understandably, their dysregulation disrupts cellular homeostasis and severely impacts key cell functions, and many of those are implicated in a number of human diseases including cancers, neurological disorders, and cardiac disorders. Here we provide an overview of the members of the PAK family and their current status. We give special emphasis to PAK1 and PAK4, the prototypes of groups I and II, for their profound roles in cancer, the nervous system, and the heart. We also highlight other family members. We provide our perspective on the current advancements, their growing importance as strategic therapeutic targets, and our vision on the future of PAKs.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA; Cancer Biology Program, Rajiv Gandhi Center of Biotechnology, Thiruvananthapuram 695014, India.
| | - Rahul Sanawar
- Cancer Biology Program, Rajiv Gandhi Center of Biotechnology, Thiruvananthapuram 695014, India
| | - Xiaodong Li
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, China Medical University, Shenyang 110122, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, China Medical University, Shenyang 110122, China.
| |
Collapse
|
50
|
Expression of p21-activated kinases 1 and 3 is altered in the brain of subjects with depression. Neuroscience 2016; 333:331-44. [PMID: 27474226 DOI: 10.1016/j.neuroscience.2016.07.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/13/2016] [Accepted: 07/21/2016] [Indexed: 01/25/2023]
Abstract
The p21-activated kinases (PAKs) of group I are the main effectors for the small Rho GTPases, critically involved in neurodevelopment, plasticity and maturation of the nervous system. Moreover, the neuronal complexity controlled by PAK1/PAK3 signaling determines the postnatal brain size and synaptic properties. Stress induces alterations at the level of structural and functional synaptic plasticity accompanied by reductions in size and activity of the hippocampus and the prefrontal cortex (PFC). These abnormalities are likely to contribute to the pathology of depression and, in part, reflect impaired cytoskeleton remodeling pointing to the role of Rho GTPase signaling. Thus, the present study assessed the expression of the group I PAKs and their activators in the brain of depressed subjects. Using quantitative polymerase chain reaction (qPCR), mRNA levels and coexpression of the group I PAKs: PAK1, PAK2, and PAK3 as well as of their activators: RAC1, CDC42 and ARHGEF7 were examined in postmortem samples from the PFC (n=25) and the hippocampus (n=23) of subjects with depression and compared to control subjects (PFC n=24; hippocampus n=21). Results demonstrated that mRNA levels of PAK1 and PAK3, are significantly reduced in the brain of depressed subjects, with PAK1 being reduced in the PFC and PAK3 in the hippocampus. No differences were observed for the ubiquitously expressed PAK2. Following analysis of gene coexpression demonstrated disruption of coordinated gene expression in the brain of subjects with depression. Abnormalities in mRNA expression of PAK1 and PAK3 as well as their altered coexpression patterns were detected in the brain of subjects with depression.
Collapse
|