1
|
D’Andrea G, Deroma G, Miluzio A, Biffo S. The Paradox of Ribosomal Insufficiency Coupled with Increased Cancer: Shifting the Perspective from the Cancer Cell to the Microenvironment. Cancers (Basel) 2024; 16:2392. [PMID: 39001453 PMCID: PMC11240629 DOI: 10.3390/cancers16132392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Ribosomopathies are defined as inherited diseases in which ribosomal factors are mutated. In general, they present multiorgan symptoms. In spite of the fact that in cellular models, ribosomal insufficiency leads to a reduced rate of oncogenic transformation, patients affected by ribosomopathies present a paradoxical increase in cancer incidence. Several hypotheses that explain this paradox have been formulated, mostly on the assumption that altered ribosomes in a stem cell induce compensatory changes that lead to a cancer cell. For instance, the lack of a specific ribosomal protein can lead to the generation of an abnormal ribosome, an oncoribosome, that itself leads to altered translation and increased tumorigenesis. Alternatively, the presence of ribosomal stress may induce compensatory proliferation that in turns selects the loss of tumor suppressors such as p53. However, modern views on cancer have shifted the focus from the cancer cell to the tumor microenvironment. In particular, it is evident that human lymphocytes are able to eliminate mutant cells and contribute to the maintenance of cancer-free tissues. Indeed, many tumors develop in conditions of reduced immune surveillance. In this review, we summarize the current evidence and attempt to explain cancer and ribosomopathies from the perspective of the microenvironment.
Collapse
Affiliation(s)
- Giacomo D’Andrea
- National Institute of Molecular Genetics, INGM Fondazione Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.D.); (G.D.); (A.M.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Giorgia Deroma
- National Institute of Molecular Genetics, INGM Fondazione Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.D.); (G.D.); (A.M.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Annarita Miluzio
- National Institute of Molecular Genetics, INGM Fondazione Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.D.); (G.D.); (A.M.)
| | - Stefano Biffo
- National Institute of Molecular Genetics, INGM Fondazione Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.D.); (G.D.); (A.M.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
2
|
Kumar AV, Kang T, Thakurta TG, Ng C, Rogers AN, Larsen MR, Lapierre LR. Exportin 1 modulates life span by regulating nucleolar dynamics via the autophagy protein LGG-1/GABARAP. SCIENCE ADVANCES 2022; 8:eabj1604. [PMID: 35363528 PMCID: PMC10938577 DOI: 10.1126/sciadv.abj1604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Altered nucleolar and ribosomal dynamics are key hallmarks of aging, but their regulation remains unclear. Building on the knowledge that the conserved nuclear export receptor Exportin 1 (XPO-1/XPO1) modulates proteostasis and life span, we systematically analyzed the impact of nuclear export on protein metabolism. Using transcriptomic and subcellular proteomic analyses in nematodes, we demonstrate that XPO-1 modulates the nucleocytoplasmic distribution of key proteins involved in nucleolar dynamics and ribosome function, including fibrillarin (FIB-1/FBL) and RPL-11 (RPL11). Silencing xpo-1 led to marked reduction in global translation, which was accompanied by decreased nucleolar size and lower fibrillarin levels. A targeted screen of known proteostatic mediators revealed that the autophagy protein LGG-1/GABARAP modulates nucleolar size by regulating RPL-11 levels, linking specific protein degradation to ribosome metabolism. Together, our study reveals that nucleolar size and life span are regulated by LGG-1/GABARAP via ribosome protein surveillance.
Collapse
Affiliation(s)
- Anita V. Kumar
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA
| | - Taewook Kang
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tara G. Thakurta
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA
| | - Celeste Ng
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA
| | - Aric N. Rogers
- MDI Biological Laboratory, 159 Old Bar Harbor Rd., Salisbury Cove, ME 04672, USA
| | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Louis R. Lapierre
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA
| |
Collapse
|
3
|
Lashkevich KA, Dmitriev SE. mRNA Targeting, Transport and Local Translation in Eukaryotic Cells: From the Classical View to a Diversity of New Concepts. Mol Biol 2021; 55:507-537. [PMID: 34092811 PMCID: PMC8164833 DOI: 10.1134/s0026893321030080] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 02/26/2021] [Accepted: 03/12/2021] [Indexed: 12/28/2022]
Abstract
Spatial organization of protein biosynthesis in the eukaryotic cell has been studied for more than fifty years, thus many facts have already been included in textbooks. According to the classical view, mRNA transcripts encoding secreted and transmembrane proteins are translated by ribosomes associated with endoplasmic reticulum membranes, while soluble cytoplasmic proteins are synthesized on free polysomes. However, in the last few years, new data has emerged, revealing selective translation of mRNA on mitochondria and plastids, in proximity to peroxisomes and endosomes, in various granules and at the cytoskeleton (actin network, vimentin intermediate filaments, microtubules and centrosomes). There are also long-standing debates about the possibility of protein synthesis in the nucleus. Localized translation can be determined by targeting signals in the synthesized protein, nucleotide sequences in the mRNA itself, or both. With RNA-binding proteins, many transcripts can be assembled into specific RNA condensates and form RNP particles, which may be transported by molecular motors to the sites of active translation, form granules and provoke liquid-liquid phase separation in the cytoplasm, both under normal conditions and during cell stress. The translation of some mRNAs occurs in specialized "translation factories," assemblysomes, transperons and other structures necessary for the correct folding of proteins, interaction with functional partners and formation of oligomeric complexes. Intracellular localization of mRNA has a significant impact on the efficiency of its translation and presumably determines its response to cellular stress. Compartmentalization of mRNAs and the translation machinery also plays an important role in viral infections. Many viruses provoke the formation of specific intracellular structures, virus factories, for the production of their proteins. Here we review the current concepts of the molecular mechanisms of transport, selective localization and local translation of cellular and viral mRNAs, their effects on protein targeting and topogenesis, and on the regulation of protein biosynthesis in different compartments of the eukaryotic cell. Special attention is paid to new systems biology approaches, providing new cues to the study of localized translation.
Collapse
Affiliation(s)
- Kseniya A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119234 Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Moscow State University, 119234 Moscow, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119234 Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Moscow State University, 119234 Moscow, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
4
|
Panagiotopoulos AA, Polioudaki C, Ntallis SG, Dellis D, Notas G, Panagiotidis CA, Theodoropoulos PA, Castanas E, Kampa M. The sequence [EKRKI(E/R)(K/L/R/S/T)] is a nuclear localization signal for importin 7 binding (NLS7). Biochim Biophys Acta Gen Subj 2021; 1865:129851. [PMID: 33482249 DOI: 10.1016/j.bbagen.2021.129851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Nuclear translocation of large proteins is mediated through specific protein carriers, collectively named karyopherins (importins, exportins and adaptor proteins). Cargo proteins are recognized by importins through specific motifs, known as nuclear localization signals (NLS). However, only the NLS recognized by importin α and transportin (M9 NLS) have been identified so far METHODS: An unsupervised in silico approach was used, followed by experimental validation. RESULTS We identified the sequence EKRKI(E/R)(K/L/R/S/T) as an NLS signal for importin 7 recognition. This sequence was validated in the breast cancer cell line T47D, which expresses importin 7. Finally, we verified that importin 7-mediated nuclear protein transport is affected by cargo protein phosphorylation. CONCLUSIONS The NLS sequence for importin 7 was identified and we propose this approach as an identification method of novel specific NLS sequences for β-karyopherin family members. GENERAL SIGNIFICANCE Elucidating the complex relationships of the nuclear transporters and their cargo proteins may help in laying the foundation for the development of novel therapeutics, targeting specific importins, with an immediate translational impact.
Collapse
Affiliation(s)
| | - Chara Polioudaki
- Laboratory of Biochemistry, School of Medicine, University of Crete, 71013, Greece
| | - Sotirios G Ntallis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | - George Notas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71013, Greece
| | - Christos A Panagiotidis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71013, Greece.
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71013, Greece.
| |
Collapse
|
5
|
Ohanenye IC, Tsopmo A, Ejike CE, Udenigwe CC. Germination as a bioprocess for enhancing the quality and nutritional prospects of legume proteins. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Batugedara G, Lu XM, Saraf A, Sardiu ME, Cort A, Abel S, Prudhomme J, Washburn MP, Florens L, Bunnik EM, Le Roch KG. The chromatin bound proteome of the human malaria parasite. Microb Genom 2020; 6:e000327. [PMID: 32017676 PMCID: PMC7067212 DOI: 10.1099/mgen.0.000327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022] Open
Abstract
Proteins interacting with DNA are fundamental for mediating processes such as gene expression, DNA replication and maintenance of genome integrity. Accumulating evidence suggests that the chromatin of apicomplexan parasites, such as Plasmodium falciparum, is highly organized, and this structure provides an epigenetic mechanism for transcriptional regulation. To investigate how parasite chromatin structure is being regulated, we undertook comparative genomics analysis using 12 distinct eukaryotic genomes. We identified conserved and parasite-specific chromatin-associated domains (CADs) and proteins (CAPs). We then used the chromatin enrichment for proteomics (ChEP) approach to experimentally capture CAPs in P. falciparum. A topological scoring analysis of the proteomics dataset revealed stage-specific enrichments of CADs and CAPs. Finally, we characterized, two candidate CAPs: a conserved homologue of the structural maintenance of chromosome 3 protein and a homologue of the crowded-like nuclei protein, a plant-like protein functionally analogous to animal nuclear lamina proteins. Collectively, our results provide a comprehensive overview of CAPs in apicomplexans, and contribute to our understanding of the complex molecular components regulating chromatin structure and genome architecture in these deadly parasites.
Collapse
Affiliation(s)
- Gayani Batugedara
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Xueqing M. Lu
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Anita Saraf
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Mihaela E. Sardiu
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Anthony Cort
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Jacques Prudhomme
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Michael P. Washburn
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Evelien M. Bunnik
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Karine G. Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
7
|
Abstract
Since the publication of the DRiP (defective ribosomal product) hypothesis in 1996, numerous studies have addressed the contribution of DRiPs to generating viral antigenic peptides for CD8+ T cell immunosurveillance. Here, we review studies characterizing the generation of antigenic peptides from influenza A virus encoded DRiPs, discuss the many remaining mysteries regarding the nature of their co-translational generation, and speculate on where the future might lead.
Collapse
|
8
|
Immunoribosomes: Where's there's fire, there's fire. Mol Immunol 2018; 113:38-42. [PMID: 29361306 DOI: 10.1016/j.molimm.2017.12.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/31/2017] [Indexed: 01/13/2023]
Abstract
The MHC class I antigen presentation pathway enables T cell immunosurveillance of cancer cells, viruses and other intracellular pathogens. Rapidly degraded newly synthesized proteins (DRiPs) are a major source of self-, and particularly, viral antigenic peptides. A number of findings support the idea that a substantial fraction of antigenic peptides are synthesized by "immunoribosomes", a subset of translating ribosomes that generate class I peptides with enhanced efficiency. Here, we review the evidence for the immunoribosome hypothesis.
Collapse
|
9
|
Burke K, Antilla KA, Tirrell DA. A Fluorescence in Situ Hybridization Method To Quantify mRNA Translation by Visualizing Ribosome-mRNA Interactions in Single Cells. ACS CENTRAL SCIENCE 2017; 3:425-433. [PMID: 28573204 PMCID: PMC5445550 DOI: 10.1021/acscentsci.7b00048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Indexed: 05/11/2023]
Abstract
Single-molecule fluorescence in situ hybridization (smFISH) is a simple and widely used method to measure mRNA transcript abundance and localization in single cells. A comparable single-molecule in situ method to measure mRNA translation would enable a more complete understanding of gene regulation. Here we describe a fluorescence assay to detect ribosome interactions with mRNA (FLARIM). The method adapts smFISH to visualize and characterize translation of single molecules of mRNA in fixed cells. To visualize ribosome-mRNA interactions, we use pairs of oligonucleotide probes that bind separately to ribosomes (via rRNA) and to the mRNA of interest, and that produce strong fluorescence signals via the hybridization chain reaction (HCR) when the probes are in close proximity. FLARIM does not require genetic manipulation, is applicable to practically any endogenous mRNA transcript, and provides both spatial and temporal information. We demonstrate that FLARIM is sensitive to changes in ribosome association with mRNA upon inhibition of global translation with puromycin. We also show that FLARIM detects changes in ribosome association with an mRNA whose translation is upregulated in response to increased concentrations of iron.
Collapse
|
10
|
Martins RP, Fåhraeus R. A matter of maturity: The impact of pre-mRNA processing in gene expression and antigen presentation. Int J Biochem Cell Biol 2017; 91:203-211. [PMID: 28549625 DOI: 10.1016/j.biocel.2017.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 12/28/2022]
Abstract
RNA processing plays a pivotal role in the diversification of high eukaryotes transcriptome and proteome. The expression of gene products controlling a variety of cellular and physiological processes depends largely on a complex maturation process undergone by pre-mRNAs to become translation-competent mRNAs. Here we review the different mechanisms involved in the pre-mRNA processing and disclose their impact in the gene regulation process in eukaryotic cells. We describe some viral strategies targeting pre-mRNA processing to control gene expression and host immune response and discuss their relevance as tools for a better understanding of cell biology. Finally, we highlight accumulating evidences toward the occurrence of a translation event coupled to mRNA biogenesis in the nuclear compartment and argue how this is relevant for the production of antigenic peptide substrates for the major histocompatibility complex class I pathway.
Collapse
Affiliation(s)
- Rodrigo Prado Martins
- Équipe Labellisée Ligue Contre le Cancer, Université Paris 7, INSERM UMR 1162, 27 rue Juliette Dodu, 75010 Paris, France.
| | - Robin Fåhraeus
- Équipe Labellisée Ligue Contre le Cancer, Université Paris 7, INSERM UMR 1162, 27 rue Juliette Dodu, 75010 Paris, France; Department of Medical Biosciences, Umeå University, Umeå, Sweden; RECAMO, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|
11
|
Baboo S, Cook PR. "Dark matter" worlds of unstable RNA and protein. Nucleus 2014; 5:281-6. [PMID: 25482115 PMCID: PMC4152340 DOI: 10.4161/nucl.29577] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 12/11/2022] Open
Abstract
Astrophysicists use the term "dark matter" to describe the majority of the matter and/or energy in the universe that is hidden from view, and biologists now apply it to the new families of RNA they are uncovering. We review evidence for an analogous hidden world containing peptides. The critical experiments involved pulse-labeling human cells with tagged amino acids for periods as short as five seconds. Results are extraordinary in two respects: both nucleus and cytoplasm become labeled, and most signals disappear with a half-life of less than one minute. Just as the synthesis of each mature mRNA is regulated by the abortive production of hundreds of shorter transcripts that are quickly degraded, it seems that the synthesis of each full-length protein in the stable proteome is regulated by an apparently wasteful production and degradation of shorter peptides. Some of the nuclear synthesis is probably a byproduct of nuclear ribosomes proofreading newly-made RNA for inappropriately-placed termination codons (a process that triggers "nonsense-mediated decay"). We speculate that some "dark-matter" peptides will play other important roles in the cell.
Collapse
Affiliation(s)
- Sabyasachi Baboo
- Sir William Dunn School of Pathology; University of Oxford; Oxford, UK
| | - Peter R Cook
- Sir William Dunn School of Pathology; University of Oxford; Oxford, UK
| |
Collapse
|
12
|
Gallagher PS, Oeser ML, Abraham AC, Kaganovich D, Gardner RG. Cellular maintenance of nuclear protein homeostasis. Cell Mol Life Sci 2014; 71:1865-79. [PMID: 24305949 PMCID: PMC3999211 DOI: 10.1007/s00018-013-1530-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/04/2013] [Accepted: 11/19/2013] [Indexed: 12/11/2022]
Abstract
The accumulation and aggregation of misfolded proteins is the primary hallmark for more than 45 human degenerative diseases. These devastating disorders include Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis. Over 15 degenerative diseases are associated with the aggregation of misfolded proteins specifically in the nucleus of cells. However, how the cell safeguards the nucleus from misfolded proteins is not entirely clear. In this review, we discuss what is currently known about the cellular mechanisms that maintain protein homeostasis in the nucleus and protect the nucleus from misfolded protein accumulation and aggregation. In particular, we focus on the chaperones found to localize to the nucleus during stress, the ubiquitin-proteasome components enriched in the nucleus, the signaling systems that might be present in the nucleus to coordinate folding and degradation, and the sites of misfolded protein deposition associated with the nucleus.
Collapse
Affiliation(s)
- Pamela S Gallagher
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | | | | | | | | |
Collapse
|
13
|
Antón LC, Yewdell JW. Translating DRiPs: MHC class I immunosurveillance of pathogens and tumors. J Leukoc Biol 2014; 95:551-62. [PMID: 24532645 PMCID: PMC3958739 DOI: 10.1189/jlb.1113599] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 11/24/2022] Open
Abstract
MHC class I molecules display oligopeptides on the cell surface to enable T cell immunosurveillance of intracellular pathogens and tumors. Speed is of the essence in detecting viruses, which can complete a full replication cycle in just hours, whereas tumor detection is typically a finding-the-needle-in-the-haystack exercise. We review current evidence supporting a nonrandom, compartmentalized selection of peptidogenic substrates that focuses on rapidly degraded translation products as a main source of peptide precursors to optimize immunosurveillance of pathogens and tumors.
Collapse
Affiliation(s)
- Luis C Antón
- 1.NIAID, NIH, Bldg. 33, Bethesda, MD 20892, USA.
| | | |
Collapse
|
14
|
Oehring SC, Woodcroft BJ, Moes S, Wetzel J, Dietz O, Pulfer A, Dekiwadia C, Maeser P, Flueck C, Witmer K, Brancucci NMB, Niederwieser I, Jenoe P, Ralph SA, Voss TS. Organellar proteomics reveals hundreds of novel nuclear proteins in the malaria parasite Plasmodium falciparum. Genome Biol 2012. [PMID: 23181666 PMCID: PMC4053738 DOI: 10.1186/gb-2012-13-11-r108] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The post-genomic era of malaria research provided unprecedented insights into the biology of Plasmodium parasites. Due to the large evolutionary distance to model eukaryotes, however, we lack a profound understanding of many processes in Plasmodium biology. One example is the cell nucleus, which controls the parasite genome in a development- and cell cycle-specific manner through mostly unknown mechanisms. To study this important organelle in detail, we conducted an integrative analysis of the P. falciparum nuclear proteome. RESULTS We combined high accuracy mass spectrometry and bioinformatic approaches to present for the first time an experimentally determined core nuclear proteome for P. falciparum. Besides a large number of factors implicated in known nuclear processes, one-third of all detected proteins carry no functional annotation, including many phylum- or genus-specific factors. Importantly, extensive experimental validation using 30 transgenic cell lines confirmed the high specificity of this inventory, and revealed distinct nuclear localization patterns of hitherto uncharacterized proteins. Further, our detailed analysis identified novel protein domains potentially implicated in gene transcription pathways, and sheds important new light on nuclear compartments and processes including regulatory complexes, the nucleolus, nuclear pores, and nuclear import pathways. CONCLUSION Our study provides comprehensive new insight into the biology of the Plasmodium nucleus and will serve as an important platform for dissecting general and parasite-specific nuclear processes in malaria parasites. Moreover, as the first nuclear proteome characterized in any protist organism, it will provide an important resource for studying evolutionary aspects of nuclear biology.
Collapse
|
15
|
Fuerst JA, Sagulenko E. Keys to eukaryality: planctomycetes and ancestral evolution of cellular complexity. Front Microbiol 2012; 3:167. [PMID: 22586422 PMCID: PMC3343278 DOI: 10.3389/fmicb.2012.00167] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 04/13/2012] [Indexed: 12/26/2022] Open
Abstract
Planctomycetes are known to display compartmentalization via internal membranes, thus resembling eukaryotes. Significantly, the planctomycete Gemmata obscuriglobus has not only a nuclear region surrounded by a double-membrane, but is also capable of protein uptake via endocytosis. In order to clearly analyze implications for homology of their characters with eukaryotes, a correct understanding of planctomycete structure is an essential starting point. Here we outline the major features of such structure necessary for assessing the case for or against homology with eukaryote cell complexity. We consider an evolutionary model for cell organization involving reductive evolution of Planctomycetes from a complex proto-eukaryote-like last universal common ancestor, and evaluate alternative models for origins of the unique planctomycete cell plan. Overall, the structural and molecular evidence is not consistent with convergent evolution of eukaryote-like features in a bacterium and favors a homologous relationship of Planctomycetes and eukaryotes.
Collapse
Affiliation(s)
- John A Fuerst
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia, QLD, Australia
| | | |
Collapse
|
16
|
Abstract
Studies in the past several years highlight important features of the messenger RNA (mRNA) export process. For instance, groups of mRNAs acting in the same biochemical processes can be retained or exported in a coordinated manner thereby impacting on specific biochemistries and ultimately on cell physiology. mRNAs can be transported by either bulk export pathways involving NXF1/TAP or more specialized pathways involving chromosome region maintenance 1 (CRM1). Studies on primary tumor specimens indicate that many common and specialized mRNA export factors are dysregulated in cancer including CRM1, eukaryotic translation initiation factor 4E (eIF4E), HuR, nucleoporin 88, REF/Aly, and THO. This positions these pathways as potential therapeutic targets. Recently, specific targeting of the eIF4E-dependent mRNA export pathway in a phase II proof-of-principle trial with ribavirin led to impaired eIF4E-dependent mRNA export correlating with clinical responses including remissions in leukemia patients. Here, we provide an overview of these mRNA export pathways and highlight their relationship to cancer.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada
| | | |
Collapse
|
17
|
de Turris V, Nicholson P, Orozco RZ, Singer RH, Mühlemann O. Cotranscriptional effect of a premature termination codon revealed by live-cell imaging. RNA (NEW YORK, N.Y.) 2011; 17:2094-107. [PMID: 22028363 PMCID: PMC3222123 DOI: 10.1261/rna.02918111] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/30/2011] [Indexed: 05/29/2023]
Abstract
Aberrant mRNAs with premature translation termination codons (PTCs) are recognized and eliminated by the nonsense-mediated mRNA decay (NMD) pathway in eukaryotes. We employed a novel live-cell imaging approach to investigate the kinetics of mRNA synthesis and release at the transcription site of PTC-containing (PTC+) and PTC-free (PTC-) immunoglobulin-μ reporter genes. Fluorescence recovery after photobleaching (FRAP) and photoconversion analyses revealed that PTC+ transcripts are specifically retained at the transcription site. Remarkably, the retained PTC+ transcripts are mainly unspliced, and this RNA retention is dependent upon two important NMD factors, UPF1 and SMG6, since their depletion led to the release of the PTC+ transcripts. Finally, ChIP analysis showed a physical association of UPF1 and SMG6 with both the PTC+ and the PTC- reporter genes in vivo. Collectively, our data support a mechanism for regulation of PTC+ transcripts at the transcription site.
Collapse
Affiliation(s)
| | - Pamela Nicholson
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| | | | | | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
18
|
Yewdell JW. DRiPs solidify: progress in understanding endogenous MHC class I antigen processing. Trends Immunol 2011; 32:548-58. [PMID: 21962745 DOI: 10.1016/j.it.2011.08.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/27/2011] [Accepted: 08/01/2011] [Indexed: 12/19/2022]
Abstract
Defective ribosomal products (DRiPs) are a subset of rapidly degraded polypeptides that provide peptide ligands for major histocompatibility complex (MHC) class I molecules. Here, recent progress in understanding DRiP biogenesis is reviewed. These findings place DRiPs at the center of the MHC class I antigen processing pathway, linking immunosurveillance of viruses and tumors to mechanisms of specialized translation and cellular compartmentalization. DRiPs enable the immune system to rapidly detect alterations in cellular gene expression with great sensitivity.
Collapse
|
19
|
Dolan BP, Knowlton JJ, David A, Bennink JR, Yewdell JW. RNA polymerase II inhibitors dissociate antigenic peptide generation from normal viral protein synthesis: a role for nuclear translation in defective ribosomal product synthesis? THE JOURNAL OF IMMUNOLOGY 2010; 185:6728-33. [PMID: 21048111 DOI: 10.4049/jimmunol.1002543] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Following viral infection, cells rapidly present peptides from newly synthesized viral proteins on MHC class I molecules, likely from rapidly degraded forms of nascent proteins. The nature of these defective ribosomal products (DRiPs) remains largely undefined. Using inhibitors of RNA polymerase II that block influenza A virus neuraminidase (NA) mRNA export from the nucleus and inhibit cytoplasmic NA translation, we demonstrate a surprising disconnect between levels of NA translation and generation of SIINFEKL peptide genetically inserted into the NA stalk. A 33-fold reduction in NA expression is accompanied by only a 5-fold reduction in K(b)-SIINFEKL complex cell-surface expression, resulting in a net 6-fold increase in the overall efficiency of Ag presentation. Although the proteasome inhibitor MG132 completely blocked K(b)-SIINFEKL complex generation, we were unable to biochemically detect a MG132-dependent cohort of NA DRiPs relevant for Ag processing, suggesting that a minute population of DRiPs is a highly efficient source of antigenic peptides. These data support the idea that Ag processing uses compartmentalized translation, perhaps even in the nucleus itself, to increase the efficiency of the generation of class I peptide ligands.
Collapse
Affiliation(s)
- Brian P Dolan
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Nucleolus is the most prominent subnuclear structure, which performs a wide variety of functions in the eukaryotic cellular processes. In order to understand the structural and functional role of the nucleoli in bovine cells, we analyzed the proteomic composition of the bovine nucleoli. The nucleoli were isolated from Madin Darby bovine kidney cells and subjected to proteomic analysis by LC-MS/MS after fractionation by SDS-PAGE and strong cation exchange chromatography. Analysis of the data using the Mascot database search and the GPM database search identified 311 proteins in the bovine nucleoli, which contained 22 proteins previously not identified in the proteomic analysis of human nucleoli. Analysis of the identified proteins using the GoMiner software suggested that the bovine nucleoli contained proteins involved in ribosomal biogenesis, cell cycle control, transcriptional, translational and post-translational regulation, transport, and structural organization.
Collapse
Affiliation(s)
- Amrutlal K. Patel
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Doug Olson
- National Research Council, Plant Biotechnology Institute, University of Saskatchewan, Saskatoon, Canada
| | - Suresh K. Tikoo
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
21
|
Sha Z, Brill LM, Cabrera R, Kleifeld O, Scheliga JS, Glickman MH, Chang EC, Wolf DA. The eIF3 interactome reveals the translasome, a supercomplex linking protein synthesis and degradation machineries. Mol Cell 2009; 36:141-52. [PMID: 19818717 PMCID: PMC2789680 DOI: 10.1016/j.molcel.2009.09.026] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 06/23/2009] [Accepted: 09/11/2009] [Indexed: 01/18/2023]
Abstract
eIF3 promotes translation initiation, but relatively little is known about its full range of activities in the cell. Here, we employed affinity purification and highly sensitive LC-MS/MS to decipher the fission yeast eIF3 interactome, which was found to contain 230 proteins. eIF3 assembles into a large supercomplex, the translasome, which contains elongation factors, tRNA synthetases, 40S and 60S ribosomal proteins, chaperones, and the proteasome. eIF3 also associates with ribosome biogenesis factors and the importins-beta Kap123p and Sal3p. Our genetic data indicated that the binding to both importins-beta is essential for cell growth, and photobleaching experiments revealed a critical role for Sal3p in the nuclear import of one of the translasome constituents, the proteasome. Our data reveal the breadth of the eIF3 interactome and suggest that factors involved in translation initiation, ribosome biogenesis, translation elongation, quality control, and transport are physically linked to facilitate efficient protein synthesis.
Collapse
Affiliation(s)
- Zhe Sha
- 1 Baylor Plaza, Molecular and Cellular Biology Department, Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
| | - Laurence M. Brill
- Burnham Institute for Medical Research, Signal Transduction Program, NCI Cancer Center Proteomics Facility, 10901 North Torrey Pines Road, La Jolla, CA 92037
| | - Rodrigo Cabrera
- 1 Baylor Plaza, Molecular and Cellular Biology Department, Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
| | - Oded Kleifeld
- Department of Biology, Technion - Israel Institute of Technology, 32000 Haifa Israel
| | - Judith S. Scheliga
- Burnham Institute for Medical Research, Signal Transduction Program, NCI Cancer Center Proteomics Facility, 10901 North Torrey Pines Road, La Jolla, CA 92037
| | - Michael H. Glickman
- Department of Biology, Technion - Israel Institute of Technology, 32000 Haifa Israel
| | - Eric C. Chang
- 1 Baylor Plaza, Molecular and Cellular Biology Department, Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
| | - Dieter A. Wolf
- Burnham Institute for Medical Research, Signal Transduction Program, NCI Cancer Center Proteomics Facility, 10901 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
22
|
Pilotte J, Cunningham BA, Edelman GM, Vanderklish PW. Developmentally regulated expression of the cold-inducible RNA-binding motif protein 3 in euthermic rat brain. Brain Res 2009; 1258:12-24. [DOI: 10.1016/j.brainres.2008.12.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 12/10/2008] [Accepted: 12/11/2008] [Indexed: 01/07/2023]
|
23
|
Biology and life-cycle of the microsporidium Kneallhazia solenopsae Knell Allan Hazard 1977 gen. n., comb. n., from the fire ant Solenopsis invicta. Parasitology 2008; 135:903-29. [DOI: 10.1017/s003118200800440x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYThelohania solenopsae is a unique microsporidium with a life-cycle finely tuned to parasitizing fire ant colonies. Unlike other microsporidia of social hymenopterans, T. solenopsae infects all castes and stages of the host. Four distinctive spore types are produced: diplokaryotic spores, which develop only in brood (Type 1 DK spores); octets of octospores within sporophorous vesicles, the most prominent spore type in adults but never occurring in brood; Nosema-like diplokaryotic spores (Type 2 DK spores) developing in adults; and megaspores, which occur occasionally in larvae 4, pupae, and adults of all castes but predominantly infect gonads of alates and germinate in inseminated ovaries of queens. Type 2 DK spores function in autoinfection of adipocytes. Proliferation of diplokaryotic meronts in some cells is followed by karyogamy of diplokarya counterparts and meiosis, thereby switching the diplokaryotic sequence to octospore or megaspore development. Megaspores transmit the pathogen transovarially. From the egg to larvae 4, infection is inapparent and can be detected only by PCR. Type 1 DK spore and megaspore sequences are abruptly triggered in larvae 4, the key stage in intra-colony food distribution via trophallaxis, and presumably the central player in horizontal transmission of spores. Molecular, morphological, ultrastructural and life-cycle data indicate that T. solenopsae must be assigned to a new genus. We propose a new combination, Kneallhazia solenopsae.
Collapse
|
24
|
Horovitz-Fried M, Brutman-Barazani T, Kesten D, Sampson SR. Insulin increases nuclear protein kinase Cdelta in L6 skeletal muscle cells. Endocrinology 2008; 149:1718-27. [PMID: 18162512 DOI: 10.1210/en.2007-1572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein kinase C (PKC) isoforms are involved in the transduction of a number of signals important for the regulation of cell growth, differentiation, apoptosis, and other cellular functions. PKC proteins reside in the cytoplasm in an inactive state translocate to various membranes to become fully activated in the presence of specific cofactors. Recent evidence indicates that PKC isoforms have an important role in the nucleus. We recently showed that insulin rapidly increases PKCdelta RNA and protein. In this study we initially found that insulin induces an increase in PKCdelta protein in the nuclear fraction. We therefore attempted to elucidate the mechanism of the insulin-induced increase in nuclear PKCdelta. Studies were performed on L6 skeletal myoblasts and myotubes. The increase in nuclear PKCdelta appeared to be unique to insulin because it was not induced by other growth factors or rosiglitazone. Inhibition of transcription or translation blocked the insulin-induced increase in nuclear PKCdelta, whereas inhibition of protein import did not. Inhibition of protein export from the nucleus reduced the insulin-induced increase in PKCdelta in the cytoplasm and increased it in the nucleus. The increase in nuclear PKCdelta induced by insulin was reduced but not abrogated by treatment of isolated nuclei by trypsin digestion. Finally, we showed that insulin induced incorporation of (35)S-methionine into nuclear PKCdelta protein; this effect was not blocked by inhibition of nuclear import. Thus, these results suggest that insulin may induce nuclear-associated, or possibly nuclear, translation of PKCdelta protein.
Collapse
|
25
|
Abstract
Most eukaryotic genes are interrupted by non-coding introns that must be accurately removed from pre-messenger RNAs to produce translatable mRNAs. Splicing is guided locally by short conserved sequences, but genes typically contain many potential splice sites, and the mechanisms specifying the correct sites remain poorly understood. In most organisms, short introns recognized by the intron definition mechanism cannot be efficiently predicted solely on the basis of sequence motifs. In multicellular eukaryotes, long introns are recognized through exon definition and most genes produce multiple mRNA variants through alternative splicing. The nonsense-mediated mRNA decay (NMD) pathway may further shape the observed sets of variants by selectively degrading those containing premature termination codons, which are frequently produced in mammals. Here we show that the tiny introns of the ciliate Paramecium tetraurelia are under strong selective pressure to cause premature termination of mRNA translation in the event of intron retention, and that the same bias is observed among the short introns of plants, fungi and animals. By knocking down the two P. tetraurelia genes encoding UPF1, a protein that is crucial in NMD, we show that the intrinsic efficiency of splicing varies widely among introns and that NMD activity can significantly reduce the fraction of unspliced mRNAs. The results suggest that, independently of alternative splicing, species with large intron numbers universally rely on NMD to compensate for suboptimal splicing efficiency and accuracy.
Collapse
|
26
|
Hopper AK, Shaheen HH. A decade of surprises for tRNA nuclear-cytoplasmic dynamics. Trends Cell Biol 2008; 18:98-104. [PMID: 18262788 DOI: 10.1016/j.tcb.2008.01.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 01/07/2008] [Accepted: 01/09/2008] [Indexed: 11/30/2022]
Abstract
The biosynthesis of tRNA was previously thought to occur solely in the nucleus, with tRNA functioning only in the cytoplasm of eukaryotic cells. However, recent publications have reported that pre-tRNA splicing can occur in the cytoplasm, that aminoacylation can occur in the nucleus and that tRNA can travel in a retrograde direction from the cytoplasm to the nucleus. Moreover, the subcellular distribution of tRNA seems to serve unanticipated functions in diverse processes, including response to nutrient availability, DNA repair and HIV replication.
Collapse
Affiliation(s)
- Anita K Hopper
- Department of Molecular Genetics, Ohio State University, 484 West 12th Avenue, Room Riffe 800, Columbus, OH 43210, USA.
| | | |
Collapse
|
27
|
Cammas A, Pileur F, Bonnal S, Lewis SM, Lévêque N, Holcik M, Vagner S. Cytoplasmic relocalization of heterogeneous nuclear ribonucleoprotein A1 controls translation initiation of specific mRNAs. Mol Biol Cell 2007; 18:5048-59. [PMID: 17898077 PMCID: PMC2096577 DOI: 10.1091/mbc.e07-06-0603] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 09/07/2007] [Accepted: 09/14/2007] [Indexed: 01/30/2023] Open
Abstract
Heterogeneous nuclear ribonucleoprotein (hnRNP) A1 is a nucleocytoplasmic shuttling protein that regulates gene expression through its action on mRNA metabolism and translation. The cytoplasmic redistribution of hnRNP A1 is a regulated process during viral infection and cellular stress. Here, we show that hnRNP A1 is an internal ribosome entry site (IRES) trans-acting factor that binds specifically to the 5' untranslated region of both the human rhinovirus-2 and the human apoptotic peptidase activating factor 1 (apaf-1) mRNAs, thereby regulating their translation. Furthermore, the cytoplasmic redistribution of hnRNP A1 after rhinovirus infection leads to enhanced rhinovirus IRES-mediated translation, whereas the cytoplasmic relocalization of hnRNP A1 after UVC irradiation limits the UVC-triggered translational activation of the apaf-1 IRES. Therefore, this study provides a direct demonstration that IRESs behave as translational enhancer elements regulated by specific trans-acting mRNA binding proteins in given physiological conditions. Our data highlight a new way to regulate protein synthesis in eukaryotes through the subcellular relocalization of a nuclear mRNA-binding protein.
Collapse
Affiliation(s)
- Anne Cammas
- *Institut National de la Santé et de la Recherche Médicale U563, Toulouse, F-31000, France
- Institut Claudius Regaud, Toulouse, F-31052, France
- Université Toulouse III Paul Sabatier, Toulouse, F-31000, France
| | - Frédéric Pileur
- *Institut National de la Santé et de la Recherche Médicale U563, Toulouse, F-31000, France
- Institut Claudius Regaud, Toulouse, F-31052, France
- Université Toulouse III Paul Sabatier, Toulouse, F-31000, France
| | - Sophie Bonnal
- *Institut National de la Santé et de la Recherche Médicale U563, Toulouse, F-31000, France
- Institut Claudius Regaud, Toulouse, F-31052, France
- Université Toulouse III Paul Sabatier, Toulouse, F-31000, France
| | - Stephen M. Lewis
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada; and
| | - Nicolas Lévêque
- Laboratoire de Virologie et Pathologie Humaine, Centre National de la Recherche Scientifique FRE 3011, Université Claude Bernard Lyon 1, Faculté de Médecine RTH Laënnec, F-69372 Lyon, France
| | - Martin Holcik
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada; and
| | - Stéphan Vagner
- *Institut National de la Santé et de la Recherche Médicale U563, Toulouse, F-31000, France
- Institut Claudius Regaud, Toulouse, F-31052, France
- Université Toulouse III Paul Sabatier, Toulouse, F-31000, France
| |
Collapse
|
28
|
Singh G, Jakob S, Kleedehn MG, Lykke-Andersen J. Communication with the exon-junction complex and activation of nonsense-mediated decay by human Upf proteins occur in the cytoplasm. Mol Cell 2007; 27:780-92. [PMID: 17803942 DOI: 10.1016/j.molcel.2007.06.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 05/16/2007] [Accepted: 06/21/2007] [Indexed: 10/22/2022]
Abstract
The nonsense-mediated mRNA decay (NMD) pathway rids eukaryotic cells of mRNAs with premature termination codons. There is contradictory evidence as to whether mammalian NMD is a nuclear or a cytoplasmic process. Here, we show evidence that NMD in human cells occurs primarily, if not entirely, in the cytoplasm. Polypeptides designed to inhibit interactions between NMD factors specifically impede NMD when exogenously expressed in the cytoplasm. However, restricting the polypeptides to the nucleus strongly impairs their NMD-inhibitory function, even for those intended to inhibit interactions between the exon-junction complex (EJC) and hUpf3 proteins, which localize primarily in the nucleus. NMD substrates classified based on cell fractionation assays as "nucleus associated" or "cytoplasmic" are all inhibited in the same manner. Furthermore, retention of the NMD factor hUpf1 in the nucleus strongly impairs NMD. These observations suggest that the hUpf complex communicates with the EJC and triggers NMD in the cytoplasm.
Collapse
Affiliation(s)
- Guramrit Singh
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
29
|
Isken O, Maquat LE. Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev 2007; 21:1833-56. [PMID: 17671086 DOI: 10.1101/gad.1566807] [Citation(s) in RCA: 433] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cells routinely make mistakes. Some mistakes are encoded by the genome and may manifest as inherited or acquired diseases. Other mistakes occur because metabolic processes can be intrinsically inefficient or inaccurate. Consequently, cells have developed mechanisms to minimize the damage that would result if mistakes went unchecked. Here, we provide an overview of three quality control mechanisms--nonsense-mediated mRNA decay, nonstop mRNA decay, and no-go mRNA decay. Each surveys mRNAs during translation and degrades those mRNAs that direct aberrant protein synthesis. Along with other types of quality control that occur during the complex processes of mRNA biogenesis, these mRNA surveillance mechanisms help to ensure the integrity of protein-encoding gene expression.
Collapse
Affiliation(s)
- Olaf Isken
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
30
|
Oh N, Kim KM, Cho H, Choe J, Kim YK. Pioneer round of translation occurs during serum starvation. Biochem Biophys Res Commun 2007; 362:145-151. [PMID: 17693387 DOI: 10.1016/j.bbrc.2007.07.169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 07/30/2007] [Indexed: 10/23/2022]
Abstract
The pioneer round of translation plays a role in translation initiation of newly spliced and exon junction complex (EJC)-bound mRNAs. Nuclear cap-binding protein complex CBP80/20 binds to those mRNAs at the 5'-end, recruiting translation initiation complex. As a consequence of the pioneer round of translation, the bound EJCs are dissociated from mRNAs and CBP80/20 is replaced by the cytoplasmic cap-binding protein eIF4E. Steady-state translation directed by eIF4E allows for an immediate and rapid response to changes in physiological conditions. Here, we show that nonsense-mediated mRNA decay (NMD), which restricts only to the pioneer round of translation but not to steady-state translation, efficiently occurs even during serum starvation, in which steady-state translation is drastically abolished. Accordingly, CBP80 remains in the nucleus and processing bodies are unaffected in their abundance and number in serum-starved conditions. These results suggest that mRNAs enter the pioneer round of translation during serum starvation and are targeted for NMD if they contain premature termination codons.
Collapse
Affiliation(s)
- Nara Oh
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Kyoung Mi Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Hana Cho
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Junho Choe
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Yoon Ki Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
31
|
Faro-Trindade I, Cook PR. Transcription factories: structures conserved during differentiation and evolution. Biochem Soc Trans 2007; 34:1133-7. [PMID: 17073768 DOI: 10.1042/bst0341133] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many cellular functions take place in discrete compartments, but our textbooks make little reference to any compartments involved in transcription. We review the evidence that active RNA polymerases and associated factors cluster into 'factories' that carry out many (perhaps all) of the functions required to generate mature transcripts. Clustering ensures high local concentrations and efficient interaction. Then, a gene must associate with the appropriate factory before it can be transcribed. Recent results show that the density and diameter of nucleoplasmic factories remain roughly constant as cells differentiate, despite large changes in the numbers of active polymerases and nucleoplasmic volumes.
Collapse
Affiliation(s)
- I Faro-Trindade
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | |
Collapse
|
32
|
Abstract
The C-terminal repeat domain (CTD), an unusual extension appended to the C terminus of the largest subunit of RNA polymerase II, serves as a flexible binding scaffold for numerous nuclear factors; which factors bind is determined by the phosphorylation patterns on the CTD repeats. Changes in phosphorylation patterns, as polymerase transcribes a gene, are thought to orchestrate the association of different sets of factors with the transcriptase and strongly influence functional organization of the nucleus. In this review we appraise what is known, and what is not known, about patterns of phosphorylation on the CTD of RNA polymerases II at the beginning, the middle, and the end of genes; the proposal that doubly phosphorylated repeats are present on elongating polymerase is explored. We discuss briefly proteins known to associate with the phosphorylated CTD at the beginning and ends of genes; we explore in more detail proteins that are recruited to the body of genes, the diversity of their functions, and the potential consequences of tethering these functions to elongating RNA polymerase II. We also discuss accumulating structural information on phosphoCTD-binding proteins and how it illustrates the variety of binding domains and interaction modes, emphasizing the structural flexibility of the CTD. We end with a number of open questions that highlight the extent of what remains to be learned about the phosphorylation and functions of the CTD.
Collapse
Affiliation(s)
- Hemali P Phatnani
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
33
|
Staub E, Mackowiak S, Vingron M. An inventory of yeast proteins associated with nucleolar and ribosomal components. Genome Biol 2006; 7:R98. [PMID: 17067374 PMCID: PMC1794573 DOI: 10.1186/gb-2006-7-10-r98] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 07/26/2006] [Accepted: 10/26/2006] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Although baker's yeast is a primary model organism for research on eukaryotic ribosome assembly and nucleoli, the list of its proteins that are functionally associated with nucleoli or ribosomes is still incomplete. We trained a naïve Bayesian classifier to predict novel proteins that are associated with yeast nucleoli or ribosomes based on parts lists of nucleoli in model organisms and large-scale protein interaction data sets. Phylogenetic profiling and gene expression analysis were carried out to shed light on evolutionary and regulatory aspects of nucleoli and ribosome assembly. RESULTS We predict that, in addition to 439 known proteins, a further 62 yeast proteins are associated with components of the nucleolus or the ribosome. The complete set comprises a large core of archaeal-type proteins, several bacterial-type proteins, but mostly eukaryote-specific inventions. Expression of nucleolar and ribosomal genes tends to be strongly co-regulated compared to other yeast genes. CONCLUSION The number of proteins associated with nucleolar or ribosomal components in yeast is at least 14% higher than known before. The nucleolus probably evolved from an archaeal-type ribosome maturation machinery by recruitment of several bacterial-type and mostly eukaryote-specific factors. Not only expression of ribosomal protein genes, but also expression of genes encoding the 90S processosome, are strongly co-regulated and both regulatory programs are distinct from each other.
Collapse
Affiliation(s)
- Eike Staub
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sebastian Mackowiak
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
34
|
Kang W, Mukerjee R, Gartner JJ, Hatzigeorgiou AG, Sandri-Goldin RM, Fraser NW. Characterization of a spliced exon product of herpes simplex type-1 latency-associated transcript in productively infected cells. Virology 2006; 356:106-14. [PMID: 16938324 DOI: 10.1016/j.virol.2006.07.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 06/16/2006] [Accepted: 07/21/2006] [Indexed: 11/25/2022]
Abstract
The latency-associated transcripts (LATs) of herpes simplex virus type-1 (HSV-1) are the only viral RNAs accumulating during latent infections in the sensory ganglia of the peripheral nervous system. The major form of LAT that accumulates in latently infected neurons is a 2 kb intron, spliced from a much less abundant 8.3 primary transcript. The spliced exon mRNA has been hard to detect. However, in this study, we have examined the spliced exon RNA in productively infected cells using ribonuclease protection (RPA), and quantitative RT-PCR (q-PCR) assays. We were able to detect the LAT exon RNA in productively infected SY5Y cells (a human neuronal cell line). The level of the LAT exon RNA was found to be approximately 5% that of the 2 kb intron RNA and thus is likely to be relatively unstable. Quantitative RT-PCR (q-PCR) assays were used to examine the LAT exon RNA and its properties. They confirmed that the LAT exon mRNA is present at a very low level in productively infected cells, compared to the levels of other viral transcripts. Furthermore, experiments showed that the LAT exon mRNA is expressed as a true late gene, and appears to be polyadenylated. In SY5Y cells, in contrast to most late viral transcripts, the LAT exon RNA was found to be mainly nuclear localized during the late stage of a productive infection. Interestingly, more LAT exon RNA was found in the cytoplasm in differentiated compared to undifferentiated SY5Y cells, suggesting the nucleocytoplasmic distribution of the LAT exon RNA and its related function may be influenced by the differentiation state of cells.
Collapse
Affiliation(s)
- Wen Kang
- Department of Microbiology, University of Pennsylvania Medical School, 315 Johnson Pavilion, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
35
|
Scholzová E, Malík R, Sevcík J, Kleibl Z. RNA regulation and cancer development. Cancer Lett 2006; 246:12-23. [PMID: 16675105 DOI: 10.1016/j.canlet.2006.03.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 03/20/2006] [Accepted: 03/24/2006] [Indexed: 12/23/2022]
Abstract
Cancer is viewed as a genetic disease. According to the currently accepted model of carcinogenesis, several consequential mutations in oncogenes or tumor suppressor genes are necessary for cancer development. In this model, mutated DNA sequence is transcribed to mRNA that is finally translated into functionally aberrant protein. mRNA is viewed solely as an intermediate between DNA (with 'coding' potential) and protein (with 'executive' function). However, recent findings suggest that (m)RNA is actively regulated by a variety of processes including nonsense-mediated decay, alternative splicing, RNA editing or RNA interference. Moreover, RNA molecules can regulate a variety of cellular functions through interactions with RNA, DNA as well as protein molecules. Although, the precise contribution of RNA molecules by themselves and RNA-regulated processes on cancer development is currently unknown, recent data suggest their important role in carcinogenesis. Here, we summarize recent knowledge on RNA-related processes and discuss their potential role in cancer development.
Collapse
Affiliation(s)
- Eva Scholzová
- First Medical Faculty, Institute of Biochemistry and Experimental Oncology, Charles University, U Nemocnice 5, 128 53 Prague 2, Czech Republic.
| | | | | | | |
Collapse
|
36
|
Maciag K, Altschuler SJ, Slack MD, Krogan NJ, Emili A, Greenblatt JF, Maniatis T, Wu LF. Systems-level analyses identify extensive coupling among gene expression machines. Mol Syst Biol 2006; 2:2006.0003. [PMID: 16738550 PMCID: PMC1681477 DOI: 10.1038/msb4100045] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 12/06/2005] [Indexed: 01/30/2023] Open
Abstract
Here, we develop computational methods to assess and consolidate large, diverse protein interaction data sets, with the objective of identifying proteins involved in the coupling of multicomponent complexes within the yeast gene expression pathway. From among approximately 43 000 total interactions and 2100 proteins, our methods identify known structural complexes, such as the spliceosome and SAGA, and functional modules, such as the DEAD-box helicases, within the interaction network of proteins involved in gene expression. Our process identifies and ranks instances of three distinct, biologically motivated motifs, or patterns of coupling among distinct machineries involved in different subprocesses of gene expression. Our results confirm known coupling among transcription, RNA processing, and export, and predict further coupling with translation and nonsense-mediated decay. We systematically corroborate our analysis with two independent, comprehensive experimental data sets. The methods presented here may be generalized to other biological processes and organisms to generate principled, systems-level network models that provide experimentally testable hypotheses for coupling among biological machines.
Collapse
Affiliation(s)
- Karolina Maciag
- Bauer Center for Genomics Research, Harvard University, Cambridge, MA, USA
| | - Steven J Altschuler
- Department of Pharmacology and Green Comprehensive Center for Molecular, Computational and Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael D Slack
- Department of Pharmacology and Green Comprehensive Center for Molecular, Computational and Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nevan J Krogan
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Emili
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Jack F Greenblatt
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Tom Maniatis
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Lani F Wu
- Department of Pharmacology and Green Comprehensive Center for Molecular, Computational and Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
37
|
Raska I, Shaw PJ, Cmarko D. New Insights into Nucleolar Architecture and Activity. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:177-235. [PMID: 17178467 DOI: 10.1016/s0074-7696(06)55004-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The nucleolus is the most obvious and clearly differentiated nuclear subcompartment. It is where ribosome biogenesis takes place and has been the subject of research over many decades. In recent years progress in our understanding of ribosome biogenesis has been rapid and is accelerating. This review discusses current understanding of how the biochemical processes of ribosome biosynthesis relate to an observable nucleolar structure. Emerging evidence is also described that points to other, unconventional roles for the nucleolus, particularly in the biogenesis of other RNA-containing cellular machinery, and in stress sensing and the control of cellular activity. Striking recent observations show that the nucleolus and its components are highly dynamic, and that the steady state structure observed by microscopical methods must be interpreted as the product of these dynamic processes. We still do not have detailed enough information to understand fully the organization and regulation of the various processes taking place in the nucleolus. However, the present power of light and electron microscopy (EM) techniques means that a description of nucleolar processes at the molecular level is now achievable, and the time is ripe for such an effort.
Collapse
Affiliation(s)
- Ivan Raska
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | | | | |
Collapse
|
38
|
Abstract
The phylum Planctomycetes of the domain Bacteria consists of budding, peptidoglycan-less organisms important for understanding the origins of complex cell organization. Their significance for cell biology lies in their possession of intracellular membrane compartmentation. All planctomycetes share a unique cell plan, in which the cell cytoplasm is divided into compartments by one or more membranes, including a major cell compartment containing the nucleoid. Of special significance is Gemmata obscuriglobus, in which the nucleoid is enveloped in two membranes to form a nuclear body that is analogous to the structure of a eukaryotic nucleus. Planctomycete compartmentation may have functional physiological roles, as in the case of anaerobic ammonium-oxidizing anammox planctomycetes, in which the anammoxosome harbors specialized enzymes and is wrapped in an envelope possessing unique ladderane lipids. Organisms in phyla other than the phylum Planctomycetes may possess compartmentation similar to that of some planctomycetes, as in the case of members of the phylum Poribacteria from marine sponges.
Collapse
Affiliation(s)
- John A Fuerst
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
39
|
Abstract
Newly synthesized transcripts are usually spliced during transcription or immediately thereafter. So pre-mRNA splicing has been presumed to occur exclusively in the cell nucleus. In this issue of Cell, Denis et al. (2005) now report the presence of functional spliceosomes and signal-dependent pre-mRNA splicing in the cytoplasm of platelets.
Collapse
Affiliation(s)
- Eran Meshorer
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
40
|
Gudikote JP, Imam JS, Garcia RF, Wilkinson MF. RNA splicing promotes translation and RNA surveillance. Nat Struct Mol Biol 2005; 12:801-9. [PMID: 16116435 DOI: 10.1038/nsmb980] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 07/19/2005] [Indexed: 11/09/2022]
Abstract
Aberrant mRNAs harboring premature termination codons (PTCs or nonsense codons) are degraded by the nonsense-mediated mRNA decay (NMD) pathway. mRNAs transcribed from genes that naturally acquire PTCs during lymphocyte development are strongly downregulated by PTCs. Here we show that a signal essential for this robust mRNA downregulatory response is efficient RNA splicing. Strong mRNA downregulation can be conferred on a poor NMD substrate by either strengthening its splicing signals or removing its weak introns. Efficient splicing also strongly promotes translation, providing a molecular explanation for enhanced NMD and suggesting that efficient splicing may have evolved to enhance both protein production and RNA surveillance. Our results suggest simple approaches for increasing protein expression from expression vectors and treating human genetic diseases caused by nonsense and frameshift mutations.
Collapse
Affiliation(s)
- Jayanthi P Gudikote
- Department of Immunology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|