1
|
Sellés-Baiget S, Ambjørn SM, Carli A, Hendriks IA, Gallina I, Davey NE, Benedict B, Zarantonello A, Gadi SA, Meeusen B, Hertz EPT, Slappendel L, Semlow D, Sturla S, Nielsen ML, Nilsson J, Miller TCR, Duxin JP. Catalytic and noncatalytic functions of DNA polymerase κ in translesion DNA synthesis. Nat Struct Mol Biol 2025; 32:300-314. [PMID: 39300172 PMCID: PMC11832425 DOI: 10.1038/s41594-024-01395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Translesion DNA synthesis (TLS) is a cellular process that enables the bypass of DNA lesions encountered during DNA replication and is emerging as a primary target of chemotherapy. Among vertebrate DNA polymerases, polymerase κ (Polκ) has the distinctive ability to bypass minor groove DNA adducts in vitro. However, Polκ is also required for cells to overcome major groove DNA adducts but the basis of this requirement is unclear. Here, we combine CRISPR base-editor screening technology in human cells with TLS analysis of defined DNA lesions in Xenopus egg extracts to unravel the functions and regulations of Polκ during lesion bypass. Strikingly, we show that Polκ has two main functions during TLS, which are differentially regulated by Rev1 binding. On the one hand, Polκ is essential to replicate across a minor groove DNA lesion in a process that depends on PCNA ubiquitylation but is independent of Rev1. On the other hand, through its cooperative interaction with Rev1 and ubiquitylated PCNA, Polκ appears to stabilize the Rev1-Polζ extension complex on DNA to allow extension past major groove DNA lesions and abasic sites, in a process that is independent of Polκ's catalytic activity. Together, our work identifies catalytic and noncatalytic functions of Polκ in TLS and reveals important regulatory mechanisms underlying the unique domain architecture present at the C-terminal end of Y-family TLS polymerases.
Collapse
Affiliation(s)
- Selene Sellés-Baiget
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Sara M Ambjørn
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Alberto Carli
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivo A Hendriks
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Irene Gallina
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Bente Benedict
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alessandra Zarantonello
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sampath A Gadi
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bob Meeusen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Emil P T Hertz
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Laura Slappendel
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Daniel Semlow
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shana Sturla
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Michael L Nielsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Thomas C R Miller
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julien P Duxin
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Søgaard CK, Otterlei M. Targeting proliferating cell nuclear antigen (PCNA) for cancer therapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:209-246. [PMID: 39034053 DOI: 10.1016/bs.apha.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Proliferating cell nuclear antigen (PCNA) is an essential scaffold protein in many cellular processes. It is best known for its role as a DNA sliding clamp and processivity factor during DNA replication, which has been extensively reviewed by others. However, the importance of PCNA extends beyond its DNA-associated functions in DNA replication, chromatin remodelling, DNA repair and DNA damage tolerance (DDT), as new non-canonical roles of PCNA in the cytosol have recently been identified. These include roles in the regulation of immune evasion, apoptosis, metabolism, and cellular signalling. The diverse roles of PCNA are largely mediated by its myriad protein interactions, and its centrality to cellular processes makes PCNA a valid therapeutic anticancer target. PCNA is expressed in all cells and plays an essential role in normal cellular homeostasis; therefore, the main challenge in targeting PCNA is to selectively kill cancer cells while avoiding unacceptable toxicity to healthy cells. This chapter focuses on the stress-related roles of PCNA, and how targeting these PCNA roles can be exploited in cancer therapy.
Collapse
Affiliation(s)
- Caroline K Søgaard
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway; APIM Therapeutics A/S, Trondheim, Norway.
| |
Collapse
|
3
|
Gorgun FM, Widen SG, Tyler DS, Englander EW. Enhanced Antitumor Response to Immune Checkpoint Blockade Exerted by Cisplatin-Induced Mutagenesis in a Murine Melanoma Model. Front Oncol 2021; 11:701968. [PMID: 34295826 PMCID: PMC8290318 DOI: 10.3389/fonc.2021.701968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Sequencing data from different types of cancers including melanomas demonstrate that tumors with high mutational loads are more likely to respond to immune checkpoint blockade (ICB) therapies. We have previously shown that low-dose intratumoral injection of the chemotherapeutic DNA damaging drug cisplatin activates intrinsic mutagenic DNA damage tolerance pathway, and when combined with ICB regimen leads to tumor regression in the mouse YUMM1.7 melanoma model. We now report that tumors generated with an in vitro cisplatin-mutagenized YUMM1.7 clone (YUMM1.7-CM) regress in response to ICB, while an identical ICB regimen alone fails to suppress growth of tumors generated with the parental YUMM1.7 cells. Regressing YUMM1.7-CM tumors show greater infiltration of CD8 T lymphocytes, higher granzyme B expression, and higher tumoral cell death. Similarly, ex-vivo, immune cells isolated from YUMM1.7-CM tumors-draining lymph nodes (TDLNs) co-incubated with cultured YUMM1.7-CM cells, eliminate the tumor cells more efficiently than immune cells isolated from TDLNs of YUMM1.7 tumor-bearing mice. Collectively, our findings show that in vitro induced cisplatin mutations potentiate the antitumor immune response and ICB efficacy, akin to tumor regression achieved in the parental YUMM1.7 model by ICB administered in conjunction with intratumoral cisplatin injection. Hence, our data uphold the role of tumoral mutation burden in improving immune surveillance and response to ICB, suggesting a path for expanding the range of patients benefiting from ICB therapy.
Collapse
Affiliation(s)
- Falih M Gorgun
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, United States
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Douglas S Tyler
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, United States
| | - Ella W Englander
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
4
|
Patel SM, Dash RC, Hadden MK. Translesion synthesis inhibitors as a new class of cancer chemotherapeutics. Expert Opin Investig Drugs 2021; 30:13-24. [PMID: 33179552 PMCID: PMC7832080 DOI: 10.1080/13543784.2021.1850692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/10/2020] [Indexed: 10/23/2022]
Abstract
Introduction: Translesion synthesis (TLS) is a DNA damage tolerance mechanism that replaces the replicative DNA polymerase with a specialized, low-fidelity TLS DNA polymerase that can copy past DNA lesions during active replication. Recent studies have demonstrated a primary role for TLS in replicating past DNA lesions induced by first-line genotoxic agents, resulting in decreased efficacy and acquired chemoresistance. With this in mind, targeting TLS as a combination strategy with first-line genotoxic agents has emerged as a promising approach to develop a new class of anti-cancer adjuvant agents. Areas covered: In this review, we provide a brief background on TLS and its role in cancer. We also discuss the identification and development of inhibitors that target various TLS DNA polymerases or key protein-protein interactions (PPIs) in the TLS machinery. Expert opinion: TLS inhibitors have demonstrated initial promise; however, their continued study is essential to more fully understand the clinical potential of this emerging class of anti-cancer chemotherapeutics. It will be important to determine whether a specific protein involved in TLS is an optimal target. In addition, an expanded understanding of what current genotoxic chemotherapies synergize with TLS inhibitors will guide the clinical strategies for devising combination therapies.
Collapse
Affiliation(s)
- Seema M Patel
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, CT, United States
| | - Radha Charan Dash
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, CT, United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut , Storrs, CT, United States
| |
Collapse
|
5
|
Temprine K, Campbell NR, Huang R, Langdon EM, Simon-Vermot T, Mehta K, Clapp A, Chipman M, White RM. Regulation of the error-prone DNA polymerase Polκ by oncogenic signaling and its contribution to drug resistance. Sci Signal 2020; 13:13/629/eaau1453. [PMID: 32345725 DOI: 10.1126/scisignal.aau1453] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The DNA polymerase Polκ plays a key role in translesion synthesis, an error-prone replication mechanism. Polκ is overexpressed in various tumor types. Here, we found that melanoma and lung and breast cancer cells experiencing stress from oncogene inhibition up-regulated the expression of Polκ and shifted its localization from the cytoplasm to the nucleus. This effect was phenocopied by inhibition of the kinase mTOR, by induction of ER stress, or by glucose deprivation. In unstressed cells, Polκ is continually transported out of the nucleus by exportin-1. Inhibiting exportin-1 or overexpressing Polκ increased the abundance of nuclear-localized Polκ, particularly in response to the BRAFV600E-targeted inhibitor vemurafenib, which decreased the cytotoxicity of the drug in BRAFV600E melanoma cells. These observations were analogous to how Escherichia coli encountering cell stress and nutrient deprivation can up-regulate and activate DinB/pol IV, the bacterial ortholog of Polκ, to induce mutagenesis that enables stress tolerance or escape. However, we found that the increased expression of Polκ was not excessively mutagenic, indicating that noncatalytic or other functions of Polκ could mediate its role in stress responses in mammalian cells. Repressing the expression or nuclear localization of Polκ might prevent drug resistance in some cancer cells.
Collapse
Affiliation(s)
- Kelsey Temprine
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nathaniel R Campbell
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Tri-Institutional M.D./Ph.D. Program, Weill Cornell Medical College, New York, NY 10065, USA
| | - Richard Huang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Erin M Langdon
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Theresa Simon-Vermot
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Krisha Mehta
- Division of General Internal Medicine, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | - Mollie Chipman
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Richard M White
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
6
|
Abstract
DNA contains information that must be safeguarded, but also accessed for transcription and replication. To perform replication, eukaryotic cells use the B-family DNA polymerase enzymes Polδ and Polɛ, which are optimized for accuracy, speed, and processivity. The molecular basis of these high-performance characteristics causes these replicative polymerases to fail at sites of DNA damage (lesions), which would lead to genomic instability and cell death. To avoid this, cells possess additional DNA polymerases such as the Y-family of polymerases and the B-family member Polζ that can replicate over sites of DNA damage in a process called translesion synthesis (TLS). While able to replicate over DNA lesions, the TLS polymerases exhibit low-fidelity on undamaged DNA and, consequently, must be prevented from replicating DNA under normal circumstances and recruited only when necessary. The replicative bypass of most types of DNA lesions requires the consecutive action of these specialized TLS polymerases assembled into a dynamic multiprotein complex called the Rev1/Polζ mutasome. To this end, posttranslational modifications and a network of protein-protein interactions mediated by accessory domains/subunits of the TLS polymerases control the assembly and rearrangements of the Rev1/Polζ mutasome and recruitment of TLS proteins to sites of DNA damage. This chapter focuses on the structures and interactions that control these processes underlying the function of the Rev1/Polζ mutasome, as well as the development of small molecule inhibitors of the Rev1/Polζ-dependent TLS holding promise as a potential anticancer therapy.
Collapse
Affiliation(s)
- Alessandro A Rizzo
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, United States
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, United States.
| |
Collapse
|
7
|
Robinson M, Shah P, Cui YH, He YY. The Role of Dynamic m 6 A RNA Methylation in Photobiology. Photochem Photobiol 2018; 95:95-104. [PMID: 29729018 DOI: 10.1111/php.12930] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023]
Abstract
N6 -methyladenosine (m6 A) is the most abundant internal RNA modification among numerous post-transcriptional modifications identified in eukaryotic mRNA. m6 A modification of RNA is catalyzed by the "writer" m6 A methyltransferase enzyme complex, consisting of METTL3, METTL14, WTAP and KIAA1429. The m6 A modification is reversible and can be removed by "eraser" m6 A demethylase enzymes, namely, FTO and ALKBH5. The biological function of m6 A modification on RNA is carried out by RNA-binding effector proteins called "readers." Varied functions of the reader proteins regulate mRNA metabolism by affecting stability, translation, splicing or nuclear export. The epitranscriptomic gene regulation by m6 A RNA methylation regulates various pathways, which contribute to basic cellular processes essential for cell maintenance, development and cell fate, and affect response to external stimuli and stressors. In this review, we summarize the recent advances in the regulation and function of m6 A RNA methylation, with a focus on UV-induced DNA damage response and the circadian clock machinery. Insights into the mechanisms of m6 A RNA regulation and post-transcriptional regulatory function in these biological processes may facilitate the development of new preventive and therapeutic strategies for various diseases related to dysregulation of UV damage response and circadian rhythm.
Collapse
Affiliation(s)
- Myles Robinson
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL.,Pritzker School of Medicine, University of Chicago, Chicago, IL
| | - Palak Shah
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
| | - Yan-Hong Cui
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
| |
Collapse
|
8
|
The translesion DNA polymerases Pol ζ and Rev1 are activated independently of PCNA ubiquitination upon UV radiation in mutants of DNA polymerase δ. PLoS Genet 2017; 13:e1007119. [PMID: 29281621 PMCID: PMC5760103 DOI: 10.1371/journal.pgen.1007119] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/09/2018] [Accepted: 11/20/2017] [Indexed: 02/07/2023] Open
Abstract
Replicative DNA polymerases cannot insert efficiently nucleotides at sites of base lesions. This function is taken over by specialized translesion DNA synthesis (TLS) polymerases to allow DNA replication completion in the presence of DNA damage. In eukaryotes, Rad6- and Rad18-mediated PCNA ubiquitination at lysine 164 promotes recruitment of TLS polymerases, allowing cells to efficiently cope with DNA damage. However, several studies showed that TLS polymerases can be recruited also in the absence of PCNA ubiquitination. We hypothesized that the stability of the interactions between DNA polymerase δ (Pol δ) subunits and/or between Pol δ and PCNA at the primer/template junction is a crucial factor to determine the requirement of PCNA ubiquitination. To test this hypothesis, we used a structural mutant of Pol δ in which the interaction between Pol3 and Pol31 is inhibited. We found that in yeast, rad18Δ-associated UV hypersensitivity is suppressed by pol3-ct, a mutant allele of the POL3 gene that encodes the catalytic subunit of replicative Pol δ. pol3-ct suppressor effect was specifically dependent on the Rev1 and Pol ζ TLS polymerases. This result strongly suggests that TLS polymerases could rely much less on PCNA ubiquitination when Pol δ interaction with PCNA is partially compromised by mutations. In agreement with this model, we found that the pol3-FI allele suppressed rad18Δ-associated UV sensitivity as observed for pol3-ct. This POL3 allele carries mutations within a putative PCNA Interacting Peptide (PIP) motif. We then provided molecular and genetic evidence that this motif could contribute to Pol δ-PCNA interaction indirectly, although it is not a bona fide PIP. Overall, our results suggest that the primary role of PCNA ubiquitination is to allow TLS polymerases to outcompete Pol δ for PCNA access upon DNA damage. Replicative DNA polymerases have the essential role of replicating genomic DNA during the S phase of each cell cycle. DNA replication occurs smoothly and accurately if the DNA to be replicated is undamaged. Conversely, replicative DNA polymerases stall abruptly when they encounter a damaged base on their template. In this case, alternative specialized DNA polymerases are recruited to insert nucleotides at sites of base lesions. However, these translesion polymerases are not processive and they are poorly accurate. Therefore, they need to be tightly regulated. This is achieved by the covalent binding of the small ubiquitin peptide to the polymerase cofactor PCNA that subsequently triggers the recruitment of translesion polymerases at sites of DNA damage. Yet, recruitment of translesion polymerases independently of PCNA ubiquitination also has been documented, although the underlying mechanism is not known. Moreover, this observation makes more difficult to understand the exact role of PCNA ubiquitination. Here, we present strong genetic evidence in Saccharomyces cerevisiae implying that the replicative DNA polymerase δ (Pol δ) prevents the recruitment of the translesion polymerases Pol ζ and Rev1 following UV irradiation unless PCNA is ubiquitinated. Thus, the primary role of PCNA ubiquitination would be to allow translesion polymerases to outcompete Pol δ upon DNA damage. In addition, our results led us to propose that translesion polymerases could be recruited independently of PCNA ubiquitination when Pol δ association with PCNA is challenged, for instance at difficult-to-replicate loci.
Collapse
|
9
|
Kaufmann T, Grishkovskaya I, Polyansky AA, Kostrhon S, Kukolj E, Olek KM, Herbert S, Beltzung E, Mechtler K, Peterbauer T, Gotzmann J, Zhang L, Hartl M, Zagrovic B, Elsayad K, Djinovic-Carugo K, Slade D. A novel non-canonical PIP-box mediates PARG interaction with PCNA. Nucleic Acids Res 2017; 45:9741-9759. [PMID: 28934471 PMCID: PMC5766153 DOI: 10.1093/nar/gkx604] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/04/2017] [Indexed: 02/07/2023] Open
Abstract
Poly(ADP-ribose) glycohydrolase (PARG) regulates cellular poly(ADP-ribose) (PAR) levels by rapidly cleaving glycosidic bonds between ADP-ribose units. PARG interacts with proliferating cell nuclear antigen (PCNA) and is strongly recruited to DNA damage sites in a PAR- and PCNA-dependent fashion. Here we identified PARG acetylation site K409 that is essential for its interaction with PCNA, its localization within replication foci and its recruitment to DNA damage sites. We found K409 to be part of a non-canonical PIP-box within the PARG disordered regulatory region. The previously identified putative N-terminal PIP-box does not bind PCNA directly but contributes to PARG localization within replication foci. X-ray structure and MD simulations reveal that the PARG non-canonical PIP-box binds PCNA in a manner similar to other canonical PIP-boxes and may represent a new type of PIP-box. While the binding of previously described PIP-boxes is based on hydrophobic interactions, PARG PIP-box binds PCNA via both stabilizing hydrophobic and fine-tuning electrostatic interactions. Our data explain the mechanism of PARG–PCNA interaction through a new PARG PIP-box that exhibits non-canonical sequence properties but a canonical mode of PCNA binding.
Collapse
Affiliation(s)
- Tanja Kaufmann
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Irina Grishkovskaya
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Anton A Polyansky
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Sebastian Kostrhon
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Eva Kukolj
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Karin M Olek
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Sebastien Herbert
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Etienne Beltzung
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Karl Mechtler
- Institute of Molecular Pathology, Vienna Biocenter (VBC), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Thomas Peterbauer
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Josef Gotzmann
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Lijuan Zhang
- VBCF-Advanced Microscopy, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Markus Hartl
- Mass Spectrometry Facility, Max F. Perutz Laboratories, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Bojan Zagrovic
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Kareem Elsayad
- VBCF-Advanced Microscopy, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Kristina Djinovic-Carugo
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Campus Vienna Biocenter 5, 1030 Vienna, Austria.,Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecčna pot 113, 1000 Ljubljana, Slovenia
| | - Dea Slade
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| |
Collapse
|
10
|
Translesion Synthesis DNA Polymerase Kappa Is Indispensable for DNA Repair Synthesis in Cisplatin Exposed Dorsal Root Ganglion Neurons. Mol Neurobiol 2017; 55:2506-2515. [PMID: 28391554 DOI: 10.1007/s12035-017-0507-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
In the peripheral nervous system (PNS) in the absence of tight blood barrier, neurons are at increased risk of DNA damage, yet the question of how effectively PNS neurons manage DNA damage remains largely unanswered. Genotoxins in systemic circulation include chemotherapeutic drugs that reach peripheral neurons and damage their DNA. Because neurotoxicity of platinum-based class of chemotherapeutic drugs has been implicated in PNS neuropathies, we utilized an in vitro model of Dorsal Root Ganglia (DRGs) to investigate how peripheral neurons respond to cisplatin that forms intra- and interstrand crosslinks with their DNA. Our data revealed strong transcriptional upregulation of the translesion synthesis DNA polymerase kappa (Pol κ), while expression of other DNA polymerases remained unchanged. DNA Pol κ is involved in bypass synthesis of diverse DNA lesions and considered a vital player in cellular survival under injurious conditions. To assess the impact of Pol κ deficiency on cisplatin-exposed DRG neurons, Pol κ levels were reduced using siRNA. Pol κ targeting siRNA diminished the cisplatin-induced nuclear Pol κ immunoreactivity in DRG neurons and decreased the extent of cisplatin-induced DNA repair synthesis, as reflected in reduced incorporation of thymidine analog into nuclear DNA. Moreover, Pol κ depletion exacerbated global transcriptional suppression induced by cisplatin in DRG neurons. Collectively, these findings provide the first evidence for critical role of Pol κ in DNA damage response in the nervous system and call attention to implications of polymorphisms that modify Pol κ activity, on maintenance of genomic integrity and neuronal function in exogenously challenged PNS.
Collapse
|
11
|
Kim JK, Yeom M, Hong JK, Song I, Lee YS, Guengerich FP, Choi JY. Six Germline Genetic Variations Impair the Translesion Synthesis Activity of Human DNA Polymerase κ. Chem Res Toxicol 2016; 29:1741-1754. [PMID: 27603496 DOI: 10.1021/acs.chemrestox.6b00244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
DNA polymerase (pol) κ efficiently catalyzes error-free translesion DNA synthesis (TLS) opposite bulky N2-guanyl lesions induced by carcinogens such as polycyclic aromatic hydrocarbons. We investigated the biochemical effects of nine human nonsynonymous germline POLK variations on the TLS properties of pol κ, utilizing recombinant pol κ (residues 1-526) enzymes and DNA templates containing an N2-CH2(9-anthracenyl)G (N2-AnthG), 8-oxo-7,8-dihydroguanine (8-oxoG), O6-methyl(Me)G, or an abasic site. In steady-state kinetic analyses, the R246X, R298H, T473A, and R512W variants displayed 7- to 18-fold decreases in kcat/Km for dCTP insertion opposite G and N2-AnthG, with 2- to 3-fold decreases in DNA binding affinity, compared to that of the wild-type, and further showed 5- to 190-fold decreases in kcat/Km for next-base extension from C paired with N2-AnthG. The A471V variant showed 2- to 4-fold decreases in kcat/Km for correct nucleotide insertion opposite and beyond G (or N2-AnthG) compared to that of the wild-type. These five hypoactive variants also showed similar patterns of attenuation of TLS activity opposite 8-oxoG, O6-MeG, and abasic lesions. By contrast, the T44M variant exhibited 7- to 11-fold decreases in kcat/Km for dCTP insertion opposite N2-AnthG and O6-MeG (as well as for dATP insertion opposite an abasic site) but not opposite both G and 8-oxoG, nor beyond N2-AnthG, compared to that of the wild-type. These results suggest that the R246X, R298H, T473A, R512W, and A471V variants cause a general catalytic impairment of pol κ opposite G and all four lesions, whereas the T44M variant induces opposite lesion-dependent catalytic impairment, i.e., only opposite O6-MeG, abasic, and bulky N2-G lesions but not opposite G and 8-oxoG, in pol κ, which might indicate that these hypoactive pol κ variants are genetic factors in modifying individual susceptibility to genotoxic carcinogens in certain subsets of populations.
Collapse
Affiliation(s)
- Jae-Kwon Kim
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine , Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Mina Yeom
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine , Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jin-Kyung Hong
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine , Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Insil Song
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine , Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Young-Sam Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology , Daegu 42988, Republic of Korea
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | - Jeong-Yun Choi
- Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine , Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
12
|
Bostian ACL, Eoff RL. Aberrant Kynurenine Signaling Modulates DNA Replication Stress Factors and Promotes Genomic Instability in Gliomas. Chem Res Toxicol 2016; 29:1369-80. [PMID: 27482758 DOI: 10.1021/acs.chemrestox.6b00255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metabolism of the essential amino acid L-tryptophan (TRP) is implicated in a number of neurological conditions including depression, neurodegenerative diseases, and cancer. The TRP catabolite kynurenine (KYN) has recently emerged as an important neuroactive factor in brain tumor pathogenesis, with additional studies implicating KYN in other types of cancer. Often highlighted as a modulator of the immune response and a contributor to immune escape for malignant tumors, it is well-known that KYN has effects on the production of the coenzyme nicotinamide adenine dinucleotide (NAD(+)), which can have a direct impact on DNA repair, replication, cell division, redox signaling, and mitochondrial function. Additional effects of KYN signaling are imparted through its role as an endogenous agonist for the aryl hydrocarbon receptor (AhR), and it is largely through activation of the AhR that KYN appears to mediate malignant progression in gliomas. We have recently reported on the ability of KYN signaling to modulate expression of human DNA polymerase kappa (hpol κ), a translesion enzyme involved in bypass of bulky DNA lesions and activation of the replication stress response. Given the impact of KYN on NAD(+) production, AhR signaling, and translesion DNA synthesis, it follows that dysregulation of KYN signaling in cancer may promote malignancy through alterations in the level of endogenous DNA damage and replication stress. In this perspective, we discuss the connections between KYN signaling, DNA damage tolerance, and genomic instability, as they relate to cancer.
Collapse
Affiliation(s)
- April C L Bostian
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , 4301 W. Markham Street, Little Rock, Arkansas 72205-7199, United States
| | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , 4301 W. Markham Street, Little Rock, Arkansas 72205-7199, United States
| |
Collapse
|
13
|
Korzhnev DM, Hadden MK. Targeting the Translesion Synthesis Pathway for the Development of Anti-Cancer Chemotherapeutics. J Med Chem 2016; 59:9321-9336. [PMID: 27362876 DOI: 10.1021/acs.jmedchem.6b00596] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human cells possess tightly controlled mechanisms to rescue DNA replication following DNA damage caused by environmental and endogenous carcinogens using a set of low-fidelity translesion synthesis (TLS) DNA polymerases. These polymerases can copy over replication blocking DNA lesions while temporarily leaving them unrepaired, preventing cell death at the expense of increasing mutation rates and contributing to the onset and progression of cancer. In addition, TLS has been implicated as a major cellular mechanism promoting acquired resistance to genotoxic chemotherapy. Owing to its central role in mutagenesis and cell survival after DNA damage, inhibition of the TLS pathway has emerged as a potential target for the development of anticancer agents. This review will recap our current understanding of the structure and regulation of DNA polymerase complexes that mediate TLS and describe how this knowledge is beginning to translate into the development of small molecule TLS inhibitors.
Collapse
Affiliation(s)
- Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center , Farmington, Connecticut 06030, United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut , 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269, United States
| |
Collapse
|
14
|
Kanemaru Y, Suzuki T, Niimi N, Grúz P, Matsumoto K, Adachi N, Honma M, Nohmi T. Catalytic and non-catalytic roles of DNA polymerase κ in the protection of human cells against genotoxic stresses. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:650-62. [PMID: 26031400 DOI: 10.1002/em.21961] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/13/2015] [Accepted: 05/26/2015] [Indexed: 05/07/2023]
Abstract
DNA polymerase κ (Pol κ) is a specialized DNA polymerase involved in translesion DNA synthesis. Although its bypass activities across lesions are well characterized in biochemistry, its cellular protective roles against genotoxic insults are still elusive. To better understand the in vivo protective roles, we have established a human cell line deficient in the expression of Pol κ (KO) and another expressing catalytically dead Pol κ (CD), to examine the cytotoxic sensitivity to 11 genotoxins including ultraviolet C light (UV). These cell lines were established in a genetic background of Nalm-6-MSH+, a human lymphoblastic cell line that has high efficiency for gene targeting, and functional p53 and mismatch repair activities. We classified the genotoxins into four groups. Group 1 includes benzo[a]pyrene diolepoxide, mitomycin C, and bleomycin, where the sensitivity was equally higher in KO and CD than in the cell line expressing wild-type Pol κ (WT). Group 2 includes hydrogen peroxide and menadione, where hypersensitivity was observed only in KO. Group 3 includes methyl methanesulfonate and ethyl methanesulfonate, where hypersensitivity was observed only in CD. Group 4 includes UV and three chemicals, where the chemicals exhibited similar cytotoxicity to all three cell lines. The results suggest that Pol κ not only protects cells from genotoxic DNA lesions via DNA polymerase activities, but also contributes to genome integrity by acting as a non-catalytic protein against oxidative damage caused by hydrogen peroxide and menadione. The non-catalytic roles of Pol κ in protection against oxidative damage by hydrogen peroxide are discussed.
Collapse
Affiliation(s)
- Yuki Kanemaru
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
- Division of Toxicology, Department of Pharmacology Toxicology and Therapeutics, Showa University School of Pharmacy, Shinagawa-Ku, Tokyo, 142-0064, Japan
| | - Tetsuya Suzuki
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Naoko Niimi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Petr Grúz
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Kyomu Matsumoto
- Toxicology Division, The Institute of Environmental Toxicology, Joso-Shi, Ibaraki, 303-0043, Japan
| | - Noritaka Adachi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, 236-0027, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
| | - Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Setagaya-Ku, Tokyo, 158-8501, Japan
| |
Collapse
|
15
|
Masuda Y, Kanao R, Kaji K, Ohmori H, Hanaoka F, Masutani C. Different types of interaction between PCNA and PIP boxes contribute to distinct cellular functions of Y-family DNA polymerases. Nucleic Acids Res 2015; 43:7898-910. [PMID: 26170230 PMCID: PMC4652755 DOI: 10.1093/nar/gkv712] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/01/2015] [Indexed: 11/29/2022] Open
Abstract
Translesion DNA synthesis (TLS) by the Y-family DNA polymerases Polη, Polι and Polκ, mediated via interaction with proliferating cell nuclear antigen (PCNA), is a crucial pathway that protects human cells against DNA damage. We report that Polη has three PCNA-interacting protein (PIP) boxes (PIP1, 2, 3) that contribute differentially to two distinct functions, stimulation of DNA synthesis and promotion of PCNA ubiquitination. The latter function is strongly associated with formation of nuclear Polη foci, which co-localize with PCNA. We also show that Polκ has two functionally distinct PIP boxes, like Polη, whereas Polι has a single PIP box involved in stimulation of DNA synthesis. All three polymerases were additionally stimulated by mono-ubiquitinated PCNA in vitro. The three PIP boxes and a ubiquitin-binding zinc-finger of Polη exert redundant and additive effects in vivo via distinct molecular mechanisms. These findings provide an integrated picture of the orchestration of TLS polymerases.
Collapse
Affiliation(s)
- Yuji Masuda
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan Department of Toxicogenomics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Rie Kanao
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kentaro Kaji
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Haruo Ohmori
- Department of Gene Information, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8517, Japan Department of Life Science, Graduate School of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Fumio Hanaoka
- Department of Life Science, Graduate School of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Chikahide Masutani
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
16
|
Million-Weaver S, Samadpour AN, Moreno-Habel DA, Nugent P, Brittnacher MJ, Weiss E, Hayden HS, Miller SI, Liachko I, Merrikh H. An underlying mechanism for the increased mutagenesis of lagging-strand genes in Bacillus subtilis. Proc Natl Acad Sci U S A 2015; 112:E1096-105. [PMID: 25713353 PMCID: PMC4364195 DOI: 10.1073/pnas.1416651112] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously reported that lagging-strand genes accumulate mutations faster than those encoded on the leading strand in Bacillus subtilis. Although we proposed that orientation-specific encounters between replication and transcription underlie this phenomenon, the mechanism leading to the increased mutagenesis of lagging-strand genes remained unknown. Here, we report that the transcription-dependent and orientation-specific differences in mutation rates of genes require the B. subtilis Y-family polymerase, PolY1 (yqjH). We find that without PolY1, association of the replicative helicase, DnaC, and the recombination protein, RecA, with lagging-strand genes increases in a transcription-dependent manner. These data suggest that PolY1 promotes efficient replisome progression through lagging-strand genes, thereby reducing potentially detrimental breaks and single-stranded DNA at these loci. Y-family polymerases can alleviate potential obstacles to replisome progression by facilitating DNA lesion bypass, extension of D-loops, or excision repair. We find that the nucleotide excision repair (NER) proteins UvrA, UvrB, and UvrC, but not RecA, are required for transcription-dependent asymmetry in mutation rates of genes in the two orientations. Furthermore, we find that the transcription-coupling repair factor Mfd functions in the same pathway as PolY1 and is also required for increased mutagenesis of lagging-strand genes. Experimental and SNP analyses of B. subtilis genomes show mutational footprints consistent with these findings. We propose that the interplay between replication and transcription increases lesion susceptibility of, specifically, lagging-strand genes, activating an Mfd-dependent error-prone NER mechanism. We propose that this process, at least partially, underlies the accelerated evolution of lagging-strand genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ivan Liachko
- Genome Sciences, University of Washington, Seattle, WA 98195
| | | |
Collapse
|
17
|
Ahmed-Seghir S, Pouvelle C, Despras E, Cordonnier A, Sarasin A, Kannouche PL. Aberrant C-terminal domain of polymerase η targets the functional enzyme to the proteosomal degradation pathway. DNA Repair (Amst) 2015; 29:154-65. [PMID: 25766642 DOI: 10.1016/j.dnarep.2015.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/14/2015] [Accepted: 02/16/2015] [Indexed: 12/22/2022]
Abstract
Xeroderma pigmentosum variant (XP-V) is a rare genetic disease, characterized by sunlight sensitivity and predisposition to cutaneous malignancies. XP-V is caused by a deficiency in DNA polymerase eta (Polη) that plays a pivotal role in translesion synthesis by bypassing UV-induced pyrimidine dimers. Previously we identified a new Polη variant containing two missense mutations, one mutation within the bipartite NLS (T692A) and a second mutation on the stop codon (X714W) leading to a longer protein with an extra 8 amino acids (721 instead of 713 AA). First biochemical analysis revealed that this Polη missense variant was barely detectable by western blot. As this mutant is extremely unstable and is nearly undetectable, a definitive measure of its functional deficit in cells has not been explored. Here we report the molecular and cellular characterization of this missense variant. In cell free extracts, the extra 8 amino acids in the C-terminal of Polη(721) only slightly reduce the bypass efficiency through CPD lesions. In vivo, Polη(721) accumulates in replication factories and interacts with mUb-PCNA albeit at lower level than Polη(wt). XP-V cells overexpressing Polη(721) were only slightly UV-sensitive. Altogether, our data strongly suggest that Polη(721) is functional and that the patient displays a XP-V phenotype because the mutant protein is excessively unstable. We then investigated the molecular mechanisms involved in this excessive proteolysis. We showed that Polη(721) is degraded by the proteasome in an ubiquitin-dependent manner and that this proteolysis is independent of the E3 ligases, CRL4(cdt2) and Pirh2, reported to promote Polη degradation. We then demonstrated that the extra 8 amino acids of Polη(721) do not act as a degron but rather induce a conformational change of the Polη C-terminus exposing its bipartite NLS as well as a sequence close to its UBZ to the ubiquitin/proteasome system. Interestingly we showed that the clinically approved proteasome inhibitor, Bortezomib restores the levels of Polη(721) suggesting that this might be a therapeutic approach to preventing tumor development in certain XP-V patients harboring missense mutations.
Collapse
Affiliation(s)
- Sana Ahmed-Seghir
- Université Paris-Sud, CNRS-UMR8200, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Villejuif, France
| | - Caroline Pouvelle
- Université Paris-Sud, CNRS-UMR8200, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Villejuif, France
| | - Emmanuelle Despras
- Université Paris-Sud, CNRS-UMR8200, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Villejuif, France
| | | | - Alain Sarasin
- Université Paris-Sud, CNRS-UMR8200, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Villejuif, France
| | - Patricia L Kannouche
- Université Paris-Sud, CNRS-UMR8200, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy, Villejuif, France.
| |
Collapse
|
18
|
Wit N, Buoninfante OA, van den Berk PCM, Jansen JG, Hogenbirk MA, de Wind N, Jacobs H. Roles of PCNA ubiquitination and TLS polymerases κ and η in the bypass of methyl methanesulfonate-induced DNA damage. Nucleic Acids Res 2014; 43:282-94. [PMID: 25505145 PMCID: PMC4288191 DOI: 10.1093/nar/gku1301] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (Pcna(K164R)) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage.
Collapse
Affiliation(s)
- Niek Wit
- Division of Biological Stress Responses, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Paul C M van den Berk
- Division of Biological Stress Responses, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jacob G Jansen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marc A Hogenbirk
- Division of Biological Stress Responses, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Niels de Wind
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Heinz Jacobs
- Division of Biological Stress Responses, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Pillaire MJ, Bétous R, Hoffmann JS. Role of DNA polymerase κ in the maintenance of genomic stability. Mol Cell Oncol 2014; 1:e29902. [PMID: 27308312 PMCID: PMC4905163 DOI: 10.4161/mco.29902] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 12/28/2022]
Abstract
To ensure high cell viability and genomic stability, cells have evolved two major mechanisms to deal with the constant challenge of DNA replication fork arrest during S phase of the cell cycle: (1) induction of the ataxia telangiectasia and Rad3-related (ATR) replication checkpoint mechanism, and (2) activation of a pathway that bypasses DNA damage and DNA with abnormal structure and is mediated by translesion synthesis (TLS) Y-family DNA polymerases. This review focuses on how DNA polymerase kappa (Pol κ), one of the most highly conserved TLS DNA polymerases, is involved in each of these pathways and thereby coordinates them to choreograph the response to a stalled replication fork. We also describe how loss of Pol κ regulation, which occurs frequently in human cancers, affects genomic stability and contributes to cancer development.
Collapse
Affiliation(s)
- Marie-Jeanne Pillaire
- Labellisée Ligue contre le Cancer 2013; INSERM Unit 1037; CNRS ERL 5294; Cancer Research Center of Toulouse; CHU Purpan; Toulouse, France; Université Paul Sabatier; University of Toulouse III; Toulouse, France
| | - Rémy Bétous
- Labellisée Ligue contre le Cancer 2013; INSERM Unit 1037; CNRS ERL 5294; Cancer Research Center of Toulouse; CHU Purpan; Toulouse, France; Université Paul Sabatier; University of Toulouse III; Toulouse, France
| | - Jean-Sébastien Hoffmann
- Labellisée Ligue contre le Cancer 2013; INSERM Unit 1037; CNRS ERL 5294; Cancer Research Center of Toulouse; CHU Purpan; Toulouse, France; Université Paul Sabatier; University of Toulouse III; Toulouse, France
| |
Collapse
|
20
|
Wallace HA, Merkle JA, Yu MC, Berg TG, Lee E, Bosco G, Lee LA. TRIP/NOPO E3 ubiquitin ligase promotes ubiquitylation of DNA polymerase η. Development 2014; 141:1332-41. [PMID: 24553286 DOI: 10.1242/dev.101196] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We previously identified a Drosophila maternal effect-lethal mutant named 'no poles' (nopo). Embryos from nopo females undergo mitotic arrest with barrel-shaped, acentrosomal spindles during the rapid cycles of syncytial embryogenesis because of activation of a Chk2-mediated DNA checkpoint. NOPO is the Drosophila homolog of human TNF receptor associated factor (TRAF)-interacting protein (TRIP), which has been implicated in TNF signaling. NOPO and TRIP contain RING domains closely resembling those of known E3 ubiquitin ligases. We herein sought to elucidate the mechanism by which TRIP/NOPO promotes genomic stability by performing a yeast two-hybrid screen to identify potential substrates/interactors. We identified members of the Y-family of DNA polymerases that facilitate replicative bypass of damaged DNA (translesion synthesis) as TRIP interactors. We show that TRIP and NOPO co-immunoprecipitate with human and Drosophila Polη, respectively, from cultured cells. We generated a null mutation in Drosophila Polη (dPolη) and found that dPolη-derived embryos have increased sensitivity to ultraviolet irradiation and exhibit nopo-like mitotic spindle defects. dPolη and nopo interact genetically in that overexpression of dPolη in hypomorphic nopo-derived embryos suppresses nopo phenotypes. We observed enhanced ubiquitylation of Polη by TRIP and NOPO E3 ligases in human cells and Drosophila embryos, respectively, and show that TRIP promotes hPolη localization to nuclear foci in human cells. We present a model in which TRIP/NOPO ubiquitylates Polη to positively regulate its activity in translesion synthesis.
Collapse
Affiliation(s)
- Heather A Wallace
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, U-4225 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8240, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Yang K, Weinacht CP, Zhuang Z. Regulatory role of ubiquitin in eukaryotic DNA translesion synthesis. Biochemistry 2013; 52:3217-28. [PMID: 23634825 DOI: 10.1021/bi400194r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although often associated with proteasome-mediated protein degradation, ubiquitin plays essential nondegradative roles in a myriad of cellular processes, including chromatin dynamics, membrane trafficking, innate immunity, and DNA damage response. The recent progress in understanding DNA translesion synthesis (TLS), an important branch of DNA damage response, has largely been stimulated by the finding that ubiquitination of an essential nuclear protein, proliferating cell nuclear antigen (PCNA), controls precisely how eukaryotic cells respond to DNA damage. Despite the remarkable activity of the TLS polymerases in synthesizing past the damaged nucleotides, they are intrinsically error-prone on the normal DNA template. Therefore, a stringent regulation of the TLS polymerases is essential for the faithful replication of the DNA genome. Here we review the structure and function of the Y-family TLS polymerases and their interactions with ubiquitin and monoubiquitinated PCNA (Ub-PCNA). Driven by the need for monoubiquitinated PCNA in a sufficient quantity and purity, researchers developed both chemical and enzymatic methods for PCNA monoubiquitination, which have propelled our understanding of the structure of Ub-PCNA by X-ray crystallography and small-angle X-ray scattering. Together with studies using a reconstituted polymerase switching assay, these investigations revealed a surprising conformational flexibility of ubiquitin as a modifier on PCNA. Although the molecular details of TLS in cells still need to be deciphered, two working models, polymerase switching and postreplicative gap filling, have been proposed and tested in both in vitro and cellular systems. Evidence for both models is discussed herein. Compared to PCNA monoubiquitination, polyubiquitination of PCNA in DNA damage response is much less well understood and will be the subject of a future investigation. Given the close connection of DNA damage response and anticancer therapy, an in-depth understanding of the eukaryotic translesion synthesis and its regulation by ubiquitin will likely provide new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Kun Yang
- Department of Chemistry and Biochemistry, 214A Drake Hall, University of Delaware , Newark, Delaware 19716, United States
| | | | | |
Collapse
|
22
|
Parsons JL, Nicolay NH, Sharma RA. Biological and therapeutic relevance of nonreplicative DNA polymerases to cancer. Antioxid Redox Signal 2013; 18:851-73. [PMID: 22794079 PMCID: PMC3557440 DOI: 10.1089/ars.2011.4203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Apart from surgical approaches, the treatment of cancer remains largely underpinned by radiotherapy and pharmacological agents that cause damage to cellular DNA, which ultimately causes cancer cell death. DNA polymerases, which are involved in the repair of cellular DNA damage, are therefore potential targets for inhibitors for improving the efficacy of cancer therapy. They can be divided, according to their main function, into two groups, namely replicative and nonreplicative enzymes. At least 15 different DNA polymerases, including their homologs, have been discovered to date, which vary considerably in processivity and fidelity. Many of the nonreplicative (specialized) DNA polymerases replicate DNA in an error-prone fashion, and they have been shown to participate in multiple DNA damage repair and tolerance pathways, which are often aberrant in cancer cells. Alterations in DNA repair pathways involving DNA polymerases have been linked with cancer survival and with treatment response to radiotherapy or to classes of cytotoxic drugs routinely used for cancer treatment, particularly cisplatin, oxaliplatin, etoposide, and bleomycin. Indeed, there are extensive preclinical data to suggest that DNA polymerase inhibition may prove to be a useful approach for increasing the effectiveness of therapies in patients with cancer. Furthermore, specialized DNA polymerases warrant examination of their potential use as clinical biomarkers to select for particular cancer therapies, to individualize treatment for patients.
Collapse
Affiliation(s)
- Jason L Parsons
- Cancer Research UK-Medical Research Council, Oncology Department, Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
23
|
Sharma S, Helchowski CM, Canman CE. The roles of DNA polymerase ζ and the Y family DNA polymerases in promoting or preventing genome instability. Mutat Res 2012. [PMID: 23195997 DOI: 10.1016/j.mrfmmm.2012.11.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer cells display numerous abnormal characteristics which are initiated and maintained by elevated mutation rates and genome instability. Chromosomal DNA is continuously surveyed for the presence of damage or blocked replication forks by the DNA Damage Response (DDR) network. The DDR is complex and includes activation of cell cycle checkpoints, DNA repair, gene transcription, and induction of apoptosis. Duplicating a damaged genome is associated with elevated risks to fork collapse and genome instability. Therefore, the DNA damage tolerance (DDT) pathway is also employed to enhance survival and involves the recruitment of translesion DNA synthesis (TLS) polymerases to sites of replication fork blockade or single stranded DNA gaps left after the completion of replication in order to restore DNA to its double stranded form before mitosis. TLS polymerases are specialized for inserting nucleotides opposite DNA adducts, abasic sites, or DNA crosslinks. By definition, the DDT pathway is not involved in the actual repair of damaged DNA, but provides a mechanism to tolerate DNA lesions during replication thereby increasing survival and lessening the chance for genome instability. However this may be associated with increased mutagenesis. In this review, we will describe the specialized functions of Y family polymerases (Rev1, Polη, Polι and Polκ) and DNA polymerase ζ in lesion bypass, mutagenesis, and prevention of genome instability, the latter due to newly appreciated roles in DNA repair. The recently described role of the Fanconi anemia pathway in regulating Rev1 and Polζ-dependent TLS is also discussed in terms of their involvement in TLS, interstrand crosslink repair, and homologous recombination.
Collapse
Affiliation(s)
- Shilpy Sharma
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Corey M Helchowski
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Christine E Canman
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
24
|
Abstract
The maintenance of genome stability is critical for survival, and its failure is often associated with tumorigenesis. The Fanconi anemia (FA) pathway is essential for the repair of DNA interstrand cross-links (ICLs), and a germline defect in the pathway results in FA, a cancer predisposition syndrome driven by genome instability. Central to this pathway is the monoubiquitination of FANCD2, which coordinates multiple DNA repair activities required for the resolution of ICLs. Recent studies have demonstrated how the FA pathway coordinates three critical DNA repair processes, including nucleolytic incision, translesion DNA synthesis (TLS), and homologous recombination (HR). Here, we review recent advances in our understanding of the downstream ICL repair steps initiated by ubiquitin-mediated FA pathway activation.
Collapse
|
25
|
Centore RC, Yazinski SA, Tse A, Zou L. Spartan/C1orf124, a reader of PCNA ubiquitylation and a regulator of UV-induced DNA damage response. Mol Cell 2012; 46:625-35. [PMID: 22681887 DOI: 10.1016/j.molcel.2012.05.020] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 04/06/2012] [Accepted: 05/10/2012] [Indexed: 10/28/2022]
Abstract
PCNA is a key component of DNA replication and repair machineries. DNA damage-induced PCNA ubiquitylation serves as a molecular mark to orchestrate postreplication repair. Here, we have identified and characterized Spartan, a protein that specifically recognizes ubiquitylated PCNA and plays an important role in cellular resistance to UV radiation. In vitro, Spartan engages ubiquitylated PCNA via both a PIP box and a UBZ domain. In cells, Spartan is recruited to sites of UV damage in a manner dependent upon the PIP box, the UBZ domain, and PCNA ubiquitylation. Furthermore, Spartan colocalizes and interacts with Rad18, the E3 ubiquitin ligase that modifies PCNA. Surprisingly, while Spartan is recruited by ubiquitylated PCNA, knockdown of Spartan compromised chromatin association of Rad18, monoubiquitylation of PCNA, and localization of Pol η to UV damage. Thus, as a "reader" of ubiquitylated PCNA, Spartan promotes an unexpected feed-forward loop to enhance PCNA ubiquitylation and translesion DNA synthesis.
Collapse
Affiliation(s)
- Richard C Centore
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
26
|
Lehmann AR. DNA repair, DNA replication and human disorders: a personal journey. DNA Repair (Amst) 2012; 11:328-34. [PMID: 22570876 DOI: 10.1016/j.dnarep.2011.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Alan R Lehmann
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, UK.
| |
Collapse
|
27
|
Williams HL, Gottesman ME, Gautier J. Replication-independent repair of DNA interstrand crosslinks. Mol Cell 2012; 47:140-7. [PMID: 22658724 DOI: 10.1016/j.molcel.2012.05.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/19/2012] [Accepted: 04/17/2012] [Indexed: 12/24/2022]
Abstract
DNA interstrand crosslinks (ICLs) are cytotoxic lesions that covalently link opposite strands of the DNA helix and block DNA unwinding. ICLs are repaired during and outside S phase, and replication-independent ICL repair (RIR) is critical to maintain genomic integrity and to allow transcription in nondividing or slowly dividing cells. Here, we show that the Y family DNA polymerase kappa (Pol κ) is essential for RIR of a site-specific ICL lesion in Xenopus egg extracts, and that both its catalytic activity and UBZ domains are required for this function. We also demonstrate a requirement for PCNA and its modification on lysine 164. Finally, we show that Pol κ participates in ICL repair in mammalian cells, particularly in G0. Our results identify key components of the RIR pathway and begin to unravel its mechanism.
Collapse
Affiliation(s)
- Hannah L Williams
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
28
|
Dysregulation of DNA polymerase κ recruitment to replication forks results in genomic instability. EMBO J 2011; 31:908-18. [PMID: 22157819 DOI: 10.1038/emboj.2011.457] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 11/18/2011] [Indexed: 11/08/2022] Open
Abstract
Translesion synthesis polymerases (TLS Pols) are required to tolerate DNA lesions that would otherwise cause replication arrest and cell death. Aberrant expression of these specialized Pols may be responsible for increased mutagenesis and loss of genome integrity in human cancers. The molecular events that control the usage of TLS Pols in non-pathological conditions remain largely unknown. Here, we show that aberrant recruitment of TLS Polκ to replication forks results in genomic instability and can be mediated through the loss of the deubiquitinase USP1. Moreover, artificial tethering of Polκ to proliferating cell nuclear antigen (PCNA) circumvents the need for its ubiquitin-binding domain in the promotion of genomic instability. Finally, we show that the loss of USP1 leads to a dramatic reduction of replication fork speed in a Polκ-dependent manner. We propose a mechanism whereby reversible ubiquitination of PCNA can prevent spurious TLS Pol recruitment and regulate replication fork speed to ensure the maintenance of genome integrity.
Collapse
|
29
|
Knobel PA, Marti TM. Translesion DNA synthesis in the context of cancer research. Cancer Cell Int 2011; 11:39. [PMID: 22047021 PMCID: PMC3224763 DOI: 10.1186/1475-2867-11-39] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/02/2011] [Indexed: 11/17/2022] Open
Abstract
During cell division, replication of the genomic DNA is performed by high-fidelity DNA polymerases but these error-free enzymes can not synthesize across damaged DNA. Specialized DNA polymerases, so called DNA translesion synthesis polymerases (TLS polymerases), can replicate damaged DNA thereby avoiding replication fork breakdown and subsequent chromosomal instability. We focus on the involvement of mammalian TLS polymerases in DNA damage tolerance mechanisms. In detail, we review the discovery of TLS polymerases and describe the molecular features of all the mammalian TLS polymerases identified so far. We give a short overview of the mechanisms that regulate the selectivity and activity of TLS polymerases. In addition, we summarize the current knowledge how different types of DNA damage, relevant either for the induction or treatment of cancer, are bypassed by TLS polymerases. Finally, we elucidate the relevance of TLS polymerases in the context of cancer therapy.
Collapse
Affiliation(s)
- Philip A Knobel
- Laboratory of Molecular Oncology, Clinic and Polyclinic of Oncology, University Hospital Zürich, Häldeliweg 4, CH-8044 Zürich, Switzerland.
| | | |
Collapse
|
30
|
Sharma NM, Kochenova OV, Shcherbakova PV. The non-canonical protein binding site at the monomer-monomer interface of yeast proliferating cell nuclear antigen (PCNA) regulates the Rev1-PCNA interaction and Polζ/Rev1-dependent translesion DNA synthesis. J Biol Chem 2011; 286:33557-66. [PMID: 21799021 DOI: 10.1074/jbc.m110.206680] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Rev1 and DNA polymerase ζ (Polζ) are involved in the tolerance of DNA damage by translesion synthesis (TLS). The proliferating cell nuclear antigen (PCNA), the auxiliary factor of nuclear DNA polymerases, plays an important role in regulating the access of TLS polymerases to the primer terminus. Both Rev1 and Polζ lack the conserved hydrophobic motif that is used by many proteins for the interaction with PCNA at its interdomain connector loop. We have previously reported that the interaction of yeast Polζ with PCNA occurs at an unusual site near the monomer-monomer interface of the trimeric PCNA. Using GST pull-down assays, PCNA-coupled affinity beads pull-down and gel filtration chromatography, we show that the same region is required for the physical interaction of PCNA with the polymerase-associated domain (PAD) of Rev1. The interaction is disrupted by the pol30-113 mutation that results in a double amino acid substitution at the monomer-monomer interface of PCNA. Genetic analysis of the epistatic relationship of the pol30-113 mutation with an array of DNA repair and damage tolerance mutations indicated that PCNA-113 is specifically defective in the Rev1/Polζ-dependent TLS pathway. Taken together, the data suggest that Polζ and Rev1 are unique among PCNA-interacting proteins in using the novel binding site near the intermolecular interface of PCNA. The new mode of Rev1-PCNA binding described here suggests a mechanism by which Rev1 adopts a catalytically inactive configuration at the replication fork.
Collapse
Affiliation(s)
- Neeru M Sharma
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | |
Collapse
|
31
|
Andersen PL, Xu F, Ziola B, McGregor WG, Xiao W. Sequential assembly of translesion DNA polymerases at UV-induced DNA damage sites. Mol Biol Cell 2011; 22:2373-83. [PMID: 21551069 PMCID: PMC3128538 DOI: 10.1091/mbc.e10-12-0938] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Three endogenous translesion DNA polymerases are sequentially assembled to the stalled
replication site in the form of UV-induced nuclear foci. Detailed supporting evidence is given for the polymerase switch model. In response to DNA damage such as from UV irradiation, mammalian Y-family translesion synthesis (TLS) polymerases Polη and Rev1 colocalize with proliferating cell nuclear antigen at nuclear foci, presumably representing stalled replication sites. However, it is unclear whether the localization of one polymerase is dependent on another. Furthermore, there is no report on the in vivo characterization of the Rev3 catalytic subunit of the B-family TLS polymerase Polζ. Here we describe the detection of endogenous human Polη, Rev1, and Rev3 by immunocytochemistry using existing or newly created antibodies, as well as various means of inhibiting their expression, which allows us to examine the dynamics of endogenous TLS polymerases in response to UV irradiation. It is found that Rev1 and Polη are independently recruited to the nuclear foci, whereas the Rev3 nuclear focus formation requires Rev1 but not Polη. In contrast, neither Rev1 nor Polη recruitment requires Rev3. To further support these conclusions, we find that simultaneous suppression of Polη and Rev3 results in an additive cellular sensitivity to UV irradiation. These observations suggest a cooperative and sequential assembly of TLS polymerases in response to DNA damage. They also support and extend the current polymerase switch model.
Collapse
Affiliation(s)
- Parker L Andersen
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, S7N 5E5, Canada
| | | | | | | | | |
Collapse
|
32
|
Yang K, Moldovan GL, D'Andrea AD. RAD18-dependent recruitment of SNM1A to DNA repair complexes by a ubiquitin-binding zinc finger. J Biol Chem 2010; 285:19085-91. [PMID: 20385554 DOI: 10.1074/jbc.m109.100032] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SNM1A is a member of the SNM1 family of nucleases required for cellular processing of interstrand DNA crosslinks (ICLs). Little is known about the molecular function of SNM1A, in terms of its recruitment to ICL lesions or its DNA damage processing activity. Here we show that SNM1A contains a functional PIP box (PCNA-interacting protein box) and a UBZ (ubiquitin binding zinc finger), required for assembly of SNM1A into nuclear focus. Moreover, RAD18-dependent monoubiquitination of PCNA is required for Mitomycin C and Ultraviolet Light inducible SNM1A nuclear focus assembly. Taken together, our results identify a novel RAD18-PCNA(Ub)-SNM1A pathway required for nuclear focus formation and ICL resistance.
Collapse
Affiliation(s)
- Kailin Yang
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
33
|
Ogi T, Limsirichaikul S, Overmeer RM, Volker M, Takenaka K, Cloney R, Nakazawa Y, Niimi A, Miki Y, Jaspers NG, Mullenders LHF, Yamashita S, Fousteri MI, Lehmann AR. Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Mol Cell 2010; 37:714-27. [PMID: 20227374 DOI: 10.1016/j.molcel.2010.02.009] [Citation(s) in RCA: 293] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 09/25/2009] [Accepted: 12/21/2009] [Indexed: 10/19/2022]
Abstract
Nucleotide excision repair (NER) is the most versatile DNA repair system that deals with the major UV photoproducts in DNA, as well as many other DNA adducts. The early steps of NER are well understood, whereas the later steps of repair synthesis and ligation are not. In particular, which polymerases are definitely involved in repair synthesis and how they are recruited to the damaged sites has not yet been established. We report that, in human fibroblasts, approximately half of the repair synthesis requires both pol kappa and pol delta, and both polymerases can be recovered in the same repair complexes. Pol kappa is recruited to repair sites by ubiquitinated PCNA and XRCC1 and pol delta by the classical replication factor complex RFC1-RFC, together with a polymerase accessory factor, p66, and unmodified PCNA. The remaining repair synthesis is dependent on pol epsilon, recruitment of which is dependent on the alternative clamp loader CTF18-RFC.
Collapse
Affiliation(s)
- Tomoo Ogi
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bienko M, Green CM, Sabbioneda S, Crosetto N, Matic I, Hibbert RG, Begovic T, Niimi A, Mann M, Lehmann AR, Dikic I. Regulation of translesion synthesis DNA polymerase eta by monoubiquitination. Mol Cell 2010; 37:396-407. [PMID: 20159558 DOI: 10.1016/j.molcel.2009.12.039] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 09/03/2009] [Accepted: 12/08/2009] [Indexed: 01/12/2023]
Abstract
DNA polymerase eta is a Y family polymerase involved in translesion synthesis (TLS). Its action is initiated by simultaneous interaction between the PIP box in pol eta and PCNA and between the UBZ in pol eta and monoubiquitin attached to PCNA. Whereas monoubiquitination of PCNA is required for its interaction with pol eta during TLS, we now show that monoubiquitination of pol eta inhibits this interaction, preventing its functions in undamaged cells. Identification of monoubiquitination sites within pol eta nuclear localization signal (NLS) led to the discovery that pol eta NLS directly contacts PCNA, forming an extended pol eta-PCNA interaction surface. We name this the PCNA-interacting region (PIR) and show that its monoubiquitination is downregulated by various DNA-damaging agents. We propose that this mechanism ensures optimal availability of nonubiquitinated, TLS-competent pol eta after DNA damage. Our work shows how monoubiquitination can either positively or negatively regulate the assembly of a protein complex, depending on which substrates are targeted by ubiquitin.
Collapse
Affiliation(s)
- Marzena Bienko
- Institute of Biochemistry II, Goethe University Medical School, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ohmori H, Hanafusa T, Ohashi E, Vaziri C. Separate roles of structured and unstructured regions of Y-family DNA polymerases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2009; 78:99-146. [PMID: 20663485 PMCID: PMC3103052 DOI: 10.1016/s1876-1623(08)78004-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
All organisms have multiple DNA polymerases specialized for translesion DNA synthesis (TLS) on damaged DNA templates. Mammalian TLS DNA polymerases include Pol eta, Pol iota, Pol kappa, and Rev1 (all classified as "Y-family" members) and Pol zeta (a "B-family" member). Y-family DNA polymerases have highly structured catalytic domains; however, some of these proteins adopt different structures when bound to DNA (such as archaeal Dpo4 and human Pol kappa), while others maintain similar structures independently of DNA binding (such as archaeal Dbh and Saccharomyces cerevisiae Pol eta). DNA binding-induced structural conversions of TLS polymerases depend on flexible regions present within the catalytic domains. In contrast, noncatalytic regions of Y-family proteins, which contain multiple domains and motifs for interactions with other proteins, are predicted to be mostly unstructured, except for short regions corresponding to ubiquitin-binding domains. In this review we discuss how the organization of structured and unstructured regions in TLS polymerases is relevant to their regulation and function during lesion bypass.
Collapse
Affiliation(s)
- Haruo Ohmori
- Institute For Virus Research, Kyoto University, 53 Shogoin-Kawaracho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomo Hanafusa
- Institute For Virus Research, Kyoto University, 53 Shogoin-Kawaracho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Eiji Ohashi
- Department of Biology, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | - Cyrus Vaziri
- Department of Pathology, University of North Carolina, 614 Brinkhous-Bullitt Building, Chapel Hill, NC 27599-7525, USA
| |
Collapse
|
36
|
Two fundamentally distinct PCNA interaction peptides contribute to chromatin assembly factor 1 function. Mol Cell Biol 2009; 29:6353-65. [PMID: 19822659 DOI: 10.1128/mcb.01051-09] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Chromatin assembly factor 1 (CAF-1) deposits histones H3 and H4 rapidly behind replication forks through an interaction with the proliferating cell nuclear antigen (PCNA), a DNA polymerase processivity factor that also binds to a number of replication enzymes and other proteins that act on nascent DNA. The mechanisms that enable CAF-1 and other PCNA-binding proteins to function harmoniously at the replication fork are poorly understood. Here we report that the large subunit of human CAF-1 (p150) contains two distinct PCNA interaction peptides (PIPs). The N-terminal PIP binds strongly to PCNA in vitro but, surprisingly, is dispensable for nucleosome assembly and only makes a modest contribution to targeting p150 to DNA replication foci in vivo. In contrast, the internal PIP (PIP2) lacks one of the highly conserved residues of canonical PIPs and binds weakly to PCNA. Surprisingly, PIP2 is essential for nucleosome assembly during DNA replication in vitro and plays a major role in targeting p150 to sites of DNA replication. Unlike canonical PIPs, such as that of p21, the two p150 PIPs are capable of preferentially inhibiting nucleosome assembly, rather than DNA synthesis, suggesting that intrinsic features of these peptides are part of the mechanism that enables CAF-1 to function behind replication forks without interfering with other PCNA-mediated processes.
Collapse
|
37
|
Guo C, Kosarek-Stancel JN, Tang TS, Friedberg EC. Y-family DNA polymerases in mammalian cells. Cell Mol Life Sci 2009; 66:2363-81. [PMID: 19367366 PMCID: PMC11115694 DOI: 10.1007/s00018-009-0024-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/05/2009] [Accepted: 03/23/2009] [Indexed: 11/26/2022]
Abstract
Eukaryotic genomes are replicated with high fidelity to assure the faithful transmission of genetic information from one generation to the next. The accuracy of replication relies heavily on the ability of replicative DNA polymerases to efficiently select correct nucleotides for the polymerization reaction and, using their intrinsic exonuclease activities, to excise mistakenly incorporated nucleotides. Cells also possess a variety of specialized DNA polymerases that, by a process called translesion DNA synthesis (TLS), help overcome replication blocks when unrepaired DNA lesions stall the replication machinery. This review considers the properties of the Y-family (a subset of specialized DNA polymerases) and their roles in modulating spontaneous and genotoxic-induced mutations in mammals. We also review recent insights into the molecular mechanisms that regulate PCNA monoubiquitination and DNA polymerase switching during TLS and discuss the potential of using Y-family DNA polymerases as novel targets for cancer prevention and therapy.
Collapse
Affiliation(s)
- Caixia Guo
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9072, USA.
| | | | | | | |
Collapse
|
38
|
Waters LS, Minesinger BK, Wiltrout ME, D'Souza S, Woodruff RV, Walker GC. Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol Mol Biol Rev 2009; 73:134-54. [PMID: 19258535 PMCID: PMC2650891 DOI: 10.1128/mmbr.00034-08] [Citation(s) in RCA: 457] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DNA repair and DNA damage tolerance machineries are crucial to overcome the vast array of DNA damage that a cell encounters during its lifetime. In this review, we summarize the current state of knowledge about the eukaryotic DNA damage tolerance pathway translesion synthesis (TLS), a process in which specialized DNA polymerases replicate across from DNA lesions. TLS aids in resistance to DNA damage, presumably by restarting stalled replication forks or filling in gaps that remain in the genome due to the presence of DNA lesions. One consequence of this process is the potential risk of introducing mutations. Given the role of these translesion polymerases in mutagenesis, we discuss the significant regulatory mechanisms that control the five known eukaryotic translesion polymerases: Rev1, Pol zeta, Pol kappa, Pol eta, and Pol iota.
Collapse
Affiliation(s)
- Lauren S Waters
- Department of Biology, Massachusetts Institute of Technology, Building 68, Room 653, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
39
|
Hishiki A, Hashimoto H, Hanafusa T, Kamei K, Ohashi E, Shimizu T, Ohmori H, Sato M. Structural basis for novel interactions between human translesion synthesis polymerases and proliferating cell nuclear antigen. J Biol Chem 2009; 284:10552-60. [PMID: 19208623 DOI: 10.1074/jbc.m809745200] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Translesion synthesis (TLS) is a DNA damage tolerance mechanism that allows continued DNA synthesis, even in the presence of damaged DNA templates. Mammals have multiple DNA polymerases specialized for TLS, including Poleta, Poliota, and Polkappa. These enzymes show preferential bypass for different lesions. Proliferating cell nuclear antigen (PCNA), which functions as a sliding clamp for the replicative polymerase Poldelta, also interacts with the three TLS polymerases. Although many PCNA-binding proteins have a highly conserved sequence termed the PCNA-interacting protein box (PIP-box), Poleta, Poliota, and Polkappa have a noncanonical PIP-box sequence. In response to DNA damage, Lys-164 of PCNA undergoes ubiquitination by the RAD6-RAD18 complex, and the ubiquitination is considered to facilitate TLS. Consistent with this, these three TLS polymerases have one or two ubiquitin binding domains and are recruited to replication forks via interactions with ubiquitinated PCNA involving the noncanonical PIP-box and ubiquitin binding domain. However, it is unclear how these TLS polymerases interact with PCNA. To address the structural basis for interactions between different TLS polymerases and PCNA, we determined crystal structures of PCNA bound to peptides containing the noncanonical PIP-box of these polymerases. We show that the three PIP-box peptides interact with PCNA in different ways, both from one another and from canonical PIP-box peptides. Especially, the PIP-box of Poliota adopts a novel structure. Furthermore, these structures enable us to speculate how these TLS polymerases interact with Lys-164-monoubiquitinated PCNA. Our results will provide clues to understanding the mechanism of preferential recruitment of TLS polymerases to the stalled forks.
Collapse
Affiliation(s)
- Asami Hishiki
- International Graduate School of Arts and Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ohashi E, Hanafusa T, Kamei K, Song I, Tomida J, Hashimoto H, Vaziri C, Ohmori H. Identification of a novel REV1-interacting motif necessary for DNA polymerase kappa function. Genes Cells 2009; 14:101-11. [PMID: 19170759 PMCID: PMC3103050 DOI: 10.1111/j.1365-2443.2008.01255.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
When a replicative DNA polymerase (Pol) is stalled by damaged DNA, a "polymerase switch" recruits specialized translesion synthesis (TLS) DNA polymerase(s) to sites of damage. Mammalian cells have several TLS DNA polymerases, including the four Y-family enzymes (Poleta, Poliota, Polkappa and REV1) that share multiple primary sequence motifs, but show preferential bypass of different DNA lesions. REV1 interacts with Poleta, Poliota, and Polkappa and therefore appears to play a central role during TLS in vivo. Here we have investigated the molecular basis for interactions between REV1 and Polkappa. We have identified novel REV1-interacting regions (RIRs) present in Polkappa, Poliota and Poleta. Within the RIRs, the presence of two consecutive phenylalanines (FF) is essential for REV1-binding. The consensus sequence for REV1-binding is denoted by x-x-x-F-F-y-y-y-y (x, no specific residue and y, no specific residue but not proline). Our results identify structural requirements that are necessary for FF-flanking residues to confer interactions with REV1. A Polkappa mutant lacking REV1-binding activity did not complement the genotoxin-sensitivity of Polk-null mouse embryonic fibroblast cells, thereby demonstrating that the REV1-interaction is essential for Polkappa function in vivo.
Collapse
Affiliation(s)
- Eiji Ohashi
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Tomo Hanafusa
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Keijiro Kamei
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Ihnyoung Song
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Junya Tomida
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroshi Hashimoto
- International Graduate School of Arts and Sciences, Yokohama City University, Yokohama 230-0046, Japan
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Haruo Ohmori
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
41
|
Takenaka K, Miki Y. Introduction and characterization of a polymerase-dead point mutation into the POLK gene in vertebrates. FEBS Lett 2009; 583:661-4. [PMID: 19166845 DOI: 10.1016/j.febslet.2008.12.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 12/21/2008] [Accepted: 12/24/2008] [Indexed: 11/28/2022]
Abstract
The chicken DT40 cell line is widely used for gene knock-outs. We attempted to introduce a polymerase-dead point mutation into Polkappa, a polymerase for translesion DNA synthesis, taking advantage of the highly efficient targeted integration in DT40 cells. The resulting cells (REV3(-/-)POLK(/)(pol-dead)) proliferated with the same kinetics as the parental REV3(-/-) cells. Though the mock-treated REV3(-/-)POLK(/)(mock) cells showed the same sensitivity as the parental REV3(-/-) cells to methyl methanesulfonate, the REV3(-/-)POLK(/)(pol-dead) cells demonstrated the same sensitivity as the REV3(-/-)POLK(/-) double knock-out cells. This implies that the presence of the polymerase-dead Polkappa does not interfere with other polymerases repairing monoalkylation damage.
Collapse
Affiliation(s)
- Katsuya Takenaka
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, 113-8510 Tokyo, Japan
| | | |
Collapse
|
42
|
Budzowska M, Kanaar R. Mechanisms of dealing with DNA damage-induced replication problems. Cell Biochem Biophys 2008; 53:17-31. [PMID: 19034694 DOI: 10.1007/s12013-008-9039-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2008] [Indexed: 12/31/2022]
Abstract
During every S phase, cells need to duplicate their genomes so that both daughter cells inherit complete copies of genetic information. Given the large size of mammalian genomes and the required precision of DNA replication, genome duplication requires highly fine-tuned corrective and quality control processes. A major threat to the accuracy and efficiency of DNA synthesis is the presence of DNA lesions, caused by both endogenous and exogenous damaging agents. Replicative DNA polymerases, which carry out the bulk of DNA synthesis, evolved to do their job extremely precisely and efficiently. However, they are unable to use damaged DNA as a template and, consequently, are stopped at most DNA lesions. Failure to restart such stalled replication forks can result in major chromosomal aberrations and lead to cell dysfunction or death. Therefore, a well-coordinated response to replication perturbation is essential for cell survival and fitness. Here we review how this response involves activating checkpoint signaling and the use of specialized pathways promoting replication restart. Checkpoint signaling adjusts cell cycle progression to the emergency situation and thus gives cells more time to deal with the damage. Replication restart is mediated by two pathways. Homologous recombination uses homologous DNA sequence to repair or bypass the lesion and is therefore mainly error free. Error-prone translesion synthesis employs specialized, low fidelity polymerases to bypass the damage.
Collapse
Affiliation(s)
- Magda Budzowska
- Department of Cell Biology & Genetics, Cancer Genomics Center, Rotterdam, The Netherlands
| | | |
Collapse
|
43
|
Soria G, Speroni J, Podhajcer OL, Prives C, Gottifredi V. p21 differentially regulates DNA replication and DNA-repair-associated processes after UV irradiation. J Cell Sci 2008; 121:3271-82. [PMID: 18782865 DOI: 10.1242/jcs.027730] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although p21 upregulation is required to block cell-cycle progression following many types of genotoxic insult, UV irradiation triggers p21 proteolysis. The significance of the increased p21 turnover is unclear and might be associated with DNA repair. While the role of p21 in nucleotide excision repair (NER) remains controversial, recent reports have explored its effect on translesion DNA synthesis (TLS), a process that avoids replication blockage during S phase. Herein, we analyze the effect of p21 on different PCNA-driven processes including DNA replication, NER and TLS. Whereas only the CDK-binding domain of p21 is required for cell-cycle arrest in unstressed cells, neither the CDK-binding nor the PCNA-binding domain of p21 is able to block early and late steps of NER. Intriguingly, through its PCNA-binding domain, p21 inhibits the interaction of the TLS polymerase, pol eta (pol eta), with PCNA and impairs the assembly of pol eta foci after UV. Moreover, this obstruction correlates with accumulation of phosphorylated H2AX and increased apoptosis. By showing that p21 is a negative regulator of PCNA-pol eta interaction, our data unveil a link between efficient TLS and UV-induced degradation of p21.
Collapse
Affiliation(s)
- Gaston Soria
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
44
|
Abstract
The replication of damaged DNA templates by translesion synthesis (TLS) is associated with mutagenesis and carcinogenesis. This perspective discusses the different levels at which TLS may be controlled and proposes a model for TLS of severely helix-distorting DNA lesions that includes a decisive role for the Rad9-Hus1-Rad1 DNA-damage-signaling clamp. The dual involvement of this clamp in both DNA-damage signaling and TLS may have profound implications in determining cellular responses to DNA damage.
Collapse
|
45
|
Godoy VG, Jarosz DF, Simon SM, Abyzov A, Ilyin V, Walker GC. UmuD and RecA directly modulate the mutagenic potential of the Y family DNA polymerase DinB. Mol Cell 2007; 28:1058-70. [PMID: 18158902 PMCID: PMC2265384 DOI: 10.1016/j.molcel.2007.10.025] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 07/23/2007] [Accepted: 10/18/2007] [Indexed: 11/25/2022]
Abstract
DinB is the only translesion Y family DNA polymerase conserved among bacteria, archaea, and eukaryotes. DinB and its orthologs possess a specialized lesion bypass function but also display potentially deleterious -1 frameshift mutagenic phenotypes when overproduced. We show that the DNA damage-inducible proteins UmuD(2) and RecA act in concert to modulate this mutagenic activity. Structural modeling suggests that the relatively open active site of DinB is enclosed by interaction with these proteins, thereby preventing the template bulging responsible for -1 frameshift mutagenesis. Intriguingly, residues that define the UmuD(2)-interacting surface on DinB statistically covary throughout evolution, suggesting a driving force for the maintenance of a regulatory protein-protein interaction at this site. Together, these observations indicate that proteins like RecA and UmuD(2) may be responsible for managing the mutagenic potential of DinB orthologs throughout evolution.
Collapse
Affiliation(s)
- Veronica G. Godoy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Northeastern University, Boston, MA 02115
| | - Daniel F. Jarosz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Sharotka M. Simon
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Alexej Abyzov
- Department of Biology, Northeastern University, Boston, MA 02115
| | - Valentin Ilyin
- Department of Biology, Northeastern University, Boston, MA 02115
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
46
|
Guo C, Tang TS, Bienko M, Dikic I, Friedberg EC. Requirements for the interaction of mouse Polkappa with ubiquitin and its biological significance. J Biol Chem 2007; 283:4658-64. [PMID: 18162470 DOI: 10.1074/jbc.m709275200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polkappa protein is a eukaryotic member of the DinB/Polkappa branch of the Y-family DNA polymerases, which are involved in the tolerance of DNA damage by replicative bypass. Despite universal conservation through evolution, the precise role(s) of Polkappa in this process has remained unknown. Here we report that mouse Polkappa can physically interact with ubiquitin by yeast two-hybrid screening, glutathione S-transferase pulldown, and immunoprecipitation methods. The association of Polkappa with ubiquitin requires the ubiquitin-binding motifs located at the C terminus of Polkappa. In addition, Polkappa binds with monoubiquitinated proliferating cell nuclear antigen (PCNA) more robustly than with non-ubiquitinated PCNA. The ubiquitin-binding motifs mediate the enhanced association between monoubiquitinated PCNA and Polkappa. The ubiquitin-binding motifs are also required for Polkappa to form nuclear foci after UV radiation. However, the ubiquitin-binding motifs do not affect Polkappa half-life. Finally, we have examined levels of Polkappa expression following the exposure of mouse cells to benzo[a]pyrene-dihydrodiol epoxide or UVB radiation.
Collapse
Affiliation(s)
- Caixia Guo
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9072, USA
| | | | | | | | | |
Collapse
|
47
|
Hile SE, Eckert KA. DNA polymerase kappa produces interrupted mutations and displays polar pausing within mononucleotide microsatellite sequences. Nucleic Acids Res 2007; 36:688-96. [PMID: 18079151 PMCID: PMC2241860 DOI: 10.1093/nar/gkm1089] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Microsatellites are ubiquitously present in eukaryotic genomes and are implicated as positive factors in evolution. At the nucleotide level, microsatellites undergo slippage events that alter allele length and base changes that interrupt the repetitive tract. We examined DNA polymerase errors within a [T]11 microsatellite using an in vitro assay that preferentially detects mutations other than unit changes. We observed that human DNA polymerase kappa (Pol κ) inserts dGMP and dCMP within the [T]11 mononucleotide repeat, producing an interrupted 12-bp allele. Polymerase β produced such interruptions at a lower frequency. These data demonstrate that DNA polymerases are capable of directly producing base interruptions within microsatellites. At the molecular level, expanded microsatellites have been implicated in DNA replication fork stalling. Using an in vitro primer extension assay, we observed sequence-specific synthesis termination by DNA polymerases within mononucleotides. Quantitatively, intense, polar pausing was observed for both pol κ and polymerase α-primase within a [T]11 allele. A mechanism is proposed in which pausing results from DNA bending within the duplex stem of the nascent DNA. Our data support the concept of a microsatellite life-cycle, and are consistent with the models in which DNA sequence or secondary structures contributes to non-uniform rates of replication fork progression.
Collapse
Affiliation(s)
- Suzanne E Hile
- Department of Pathology, Gittlen Cancer Research Foundation, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | |
Collapse
|
48
|
Yang W, Woodgate R. What a difference a decade makes: insights into translesion DNA synthesis. Proc Natl Acad Sci U S A 2007; 104:15591-8. [PMID: 17898175 PMCID: PMC2000391 DOI: 10.1073/pnas.0704219104] [Citation(s) in RCA: 292] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Living organisms are continually under attack from a vast array of DNA-damaging agents that imperils their genomic integrity. As a consequence, cells possess an army of enzymes to repair their damaged chromosomes. However, DNA lesions often persist and pose a considerable threat to survival, because they can block the cell's replicase and its ability to complete genome duplication. It has been clear for many years that cells must possess a mechanism whereby the DNA lesion could be tolerated and physically bypassed. Yet it was only within the past decade that specialized DNA polymerases for "translesion DNA synthesis" or "TLS" were identified and characterized. Many of the TLS enzymes belong to the recently described "Y-family" of DNA polymerases. By possessing a spacious preformed active site, these enzymes can physically accommodate a variety of DNA lesions and facilitate their bypass. Flexible DNA-binding domains and a variable binding pocket for the replicating base pair further allow these TLS polymerases to select specific lesions to bypass and favor distinct non-Watson-Crick base pairs. Consequently, TLS polymerases tend to exhibit much lower fidelity than the cell's replicase when copying normal DNA, which results in a dramatic increase in mutagenesis. Occasionally this can be beneficial, but it often speeds the onset of cancer in humans. Cells use both transcriptional and posttranslational regulation to keep these low-fidelity polymerases under strict control and limit their access to a replication fork. Our perspective focuses on the mechanistic insights into TLS by the Y-family polymerases, how they are regulated, and their effects on genomic (in)stability that have been described in the past decade.
Collapse
Affiliation(s)
- Wei Yang
- National Institute of Diabetes and Digestive and Kidney Diseases and Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
49
|
Bish RA, Myers MP. Werner helicase-interacting protein 1 binds polyubiquitin via its zinc finger domain. J Biol Chem 2007; 282:23184-93. [PMID: 17550899 DOI: 10.1074/jbc.m701042200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA repair is regulated on many levels by ubiquitination. In order to identify novel connections between DNA repair pathways and ubiquitin signaling, we used mass spectrometry to identify proteins that interact with lysine 6-linked polyubiquitin chains. From this proteomic screen, we identified the DNA repair protein WRNIP1 (Werner helicase-interacting protein 1), along with nucleosome assembly protein 1, as novel ubiquitin-interacting proteins. We found that a small zinc finger domain at the N terminus of WRNIP1 is sufficient and necessary for noncovalent ubiquitin binding. This ubiquitin-binding zinc finger (UBZ) domain binds polyubiquitin but not monoubiquitin and appears to show no specificity for polyubiquitin chain linkage. A homologous zinc finger domain in RAD18 also binds polyubiquitin, suggesting a wider role for the UBZ domain in DNA repair. The WRNIP1 ubiquitin-binding function, along with its previously established ATPase activity, suggests that WRNIP1 plays a role in the metabolism of ubiquitinated proteins. Supporting this model, deletion of MGS1, the yeast homolog of WRNIP1, slows the rate of ubiquitin turnover, rendering yeast resistant to cycloheximide. We also find that WRNIP1 is heavily modified with ubiquitin and SUMO, revealing complex layers in the involvement of ubiquitin pathway proteins in the regulation of DNA repair. The novel ubiquitin-binding ability of WRNIP1 sheds light on the role of UBZ domain-containing proteins in postreplication DNA repair.
Collapse
Affiliation(s)
- Rebecca A Bish
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
50
|
Langie SAS, Knaapen AM, Ramaekers CHMA, Theys J, Brun J, Godschalk RWL, van Schooten FJ, Lambin P, Gray DA, Wouters BG, Chiu RK. Formation of lysine 63-linked poly-ubiquitin chains protects human lung cells against benzo[a]pyrene-diol-epoxide-induced mutagenicity. DNA Repair (Amst) 2007; 6:852-62. [PMID: 17395554 DOI: 10.1016/j.dnarep.2007.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 01/30/2007] [Accepted: 02/01/2007] [Indexed: 01/19/2023]
Abstract
Benzo[a]pyrene exerts its mutagenic effects via induction of benzo[a]pyrene-diol-epoxide (BPDE)-DNA adducts. Such helix-distorting adducts are not always successfully repaired prior to DNA replication, which may result in a blocked replication fork. To alleviate this stall, cells utilize DNA damage tolerance systems involving either error-free damage avoidance or error-prone translesion synthesis. Studies in yeast suggest the modification of PCNA by lysine 63-linked poly-ubiquitin (K63-polyUb) chains as a key mediator of the error-free damage avoidance pathway. Recently, we extended this observation to human cells, showing the occurrence of poly-ubiquitination of PCNA in UV-irradiated human cells. In the present study, we hypothesized that disrupting the formation of K63-polyUb chains inhibits damage avoidance and favors error-prone repair involving low-fidelity polymerases (e.g. POLeta), causing increased BPDE-induced mutagenicity. To test this hypothesis, we generated A549 cells expressing either a mutant ubiquitin (K63R-Ub) which blocks further ubiquitination through K63, or the wild type ubiquitin (WT-Ub). We show that PCNA is poly-ubiquitinated in these cells upon BPDE-exposure and that disruption of K63-polyUb chain formation has no effect on BPDE-induced toxicity. In contrast, significantly higher frequencies of BPDE-induced HPRT mutations were observed in K63R-Ub expressing cells, of which the majority (74%) was G-->T transversion. BPDE treatment caused an enhanced recruitment of POLeta to the replication machinery of the K63R-Ub expressing cells, where it co-localized with PCNA. Suppression of POLeta expression by using siRNA resulted in a 50% reduction of BPDE-induced mutations in the K63R cells. In conclusion, we demonstrated that formation of K63-polyUb chains protects BPDE-exposed human cells against translesion synthesis-mediated mutagenesis. These findings indicate that K63-polyubiquitination guards against chemical carcinogenesis by preventing mutagenesis and thus contributing to genomic stability.
Collapse
Affiliation(s)
- Sabine A S Langie
- Department of Health Risk Analysis and Toxicology NUTRIM, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|