1
|
Harding-Fox SL, Cellek S. The role of cyclic adenosine monophosphate (cAMP) in pathophysiology of fibrosis. Drug Discov Today 2025; 30:104368. [PMID: 40318753 DOI: 10.1016/j.drudis.2025.104368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/11/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Fibrosis, the excessive production and disorganised deposition of extracellular matrix proteins, can occur in any organ system, disrupting functionality and causing fatality. The number, efficacy and safety of antifibrotic drugs are incredibly limited. Therapeutics which elevate intracellular cyclic adenosine monophosphate (cAMP) offer a potential solution. In this review, we present the signalling mechanisms involved in fibrosis pathophysiology, how cAMP and its effectors might interact with these pathways, and the current preclinical and clinical efforts in this field. cAMP elevating agents have the potential to be future antifibrotic drug candidates, but further studies are required, particularly to develop tissue specific therapeutics.
Collapse
Affiliation(s)
- Sophie L Harding-Fox
- Fibrosis Research Group, Medical Technology Research Centre, School of Allied Health and Social Care, Faculty of Health, Medicine and Social Care, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK.
| | - Selim Cellek
- Fibrosis Research Group, Medical Technology Research Centre, School of Allied Health and Social Care, Faculty of Health, Medicine and Social Care, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| |
Collapse
|
2
|
Miroshnikova YA, Manet S, Li X, Wickström SA, Faurobert E, Albiges-Rizo C. Calcium signaling mediates a biphasic mechanoadaptive response of endothelial cells to cyclic mechanical stretch. Mol Biol Cell 2021; 32:1724-1736. [PMID: 34081532 PMCID: PMC8684738 DOI: 10.1091/mbc.e21-03-0106] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The vascular system is precisely regulated to adjust blood flow to organismal demand, thereby guaranteeing adequate perfusion under varying physiological conditions. Mechanical forces, such as cyclic circumferential stretch, are among the critical stimuli that dynamically adjust vessel distribution and diameter, but the precise mechanisms of adaptation to changing forces are unclear. We find that endothelial monolayers respond to cyclic stretch by transient remodeling of the vascular endothelial cadherin–based adherens junctions and the associated actomyosin cytoskeleton. Time-resolved proteomic profiling reveals that this remodeling is driven by calcium influx through the mechanosensitive Piezo1 channel, triggering Rho activation to increase actomyosin contraction. As the mechanical stimulus persists, calcium signaling is attenuated through transient down-regulation of Piezo1 protein. At the same time, filamins are phosphorylated to increase monolayer stiffness, allowing mechanoadaptation to restore junctional integrity despite continuing exposure to stretch. Collectively, this study identifies a biphasic response to cyclic stretch, consisting of an initial calcium-driven junctional mechanoresponse, followed by mechanoadaptation facilitated by monolayer stiffening.
Collapse
Affiliation(s)
- Yekaterina A Miroshnikova
- Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38042, France.,INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France.,CNRS UMR 5039, Institute for Advanced Biosciences, F-38700 La Tronche, France.,Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany.,Helsinki Institute of Life Science, University of Helsinki, FI-00014 Helsinki, Finland.,Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland
| | - Sandra Manet
- Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38042, France.,INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France.,CNRS UMR 5039, Institute for Advanced Biosciences, F-38700 La Tronche, France
| | - Xinping Li
- Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - Sara A Wickström
- Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany.,Helsinki Institute of Life Science, University of Helsinki, FI-00014 Helsinki, Finland.,Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland
| | - Eva Faurobert
- Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38042, France.,INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France.,CNRS UMR 5039, Institute for Advanced Biosciences, F-38700 La Tronche, France
| | - Corinne Albiges-Rizo
- Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble 38042, France.,INSERM U1209, Institute for Advanced Biosciences, F-38700 La Tronche, France.,CNRS UMR 5039, Institute for Advanced Biosciences, F-38700 La Tronche, France
| |
Collapse
|
3
|
Erasmus JC, Smolarczyk K, Brezovjakova H, Mohd-Naim NF, Lozano E, Matter K, Braga VMM. Rac1-PAK1 regulation of Rab11 cycling promotes junction destabilization. J Cell Biol 2021; 220:212034. [PMID: 33914026 PMCID: PMC8091128 DOI: 10.1083/jcb.202002114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 09/21/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Rac1 GTPase is hyperactivated in tumors and contributes to malignancy. Rac1 disruption of junctions requires its effector PAK1, but the precise mechanisms are unknown. Here, we show that E-cadherin is internalized via micropinocytosis in a PAK1–dependent manner without catenin dissociation and degradation. In addition to internalization, PAK1 regulates E-cadherin transport by fine-tuning Rab small GTPase function. PAK1 phosphorylates a core Rab regulator, RabGDIβ, but not RabGDIα. Phosphorylated RabGDIβ preferentially associates with Rab5 and Rab11, which is predicted to promote Rab retrieval from membranes. Consistent with this hypothesis, Rab11 is activated by Rac1, and inhibition of Rab11 function partially rescues E-cadherin destabilization. Thus, Rac1 activation reduces surface cadherin levels as a net result of higher bulk flow of membrane uptake that counteracts Rab11-dependent E-cadherin delivery to junctions (recycling and/or exocytosis). This unique small GTPase crosstalk has an impact on Rac1 and PAK1 regulation of membrane remodeling during epithelial dedifferentiation, adhesion, and motility.
Collapse
Affiliation(s)
- Jennifer C Erasmus
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Kasia Smolarczyk
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Helena Brezovjakova
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Noor F Mohd-Naim
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Encarnación Lozano
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Karl Matter
- Institute of Ophthalmology, University College London, London, UK
| | - Vania M M Braga
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
4
|
Ungefroren H, Wellner UF, Keck T, Lehnert H, Marquardt JU. The Small GTPase RAC1B: A Potent Negative Regulator of-and Useful Tool to Study-TGFβ Signaling. Cancers (Basel) 2020; 12:E3475. [PMID: 33266416 PMCID: PMC7700615 DOI: 10.3390/cancers12113475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
RAC1 and its alternatively spliced isoform, RAC1B, are members of the Rho family of GTPases. Both isoforms are involved in the regulation of actin cytoskeleton remodeling, cell motility, cell proliferation, and epithelial-mesenchymal transition (EMT). Compared to RAC1, RAC1B exhibits a number of distinctive features with respect to tissue distribution, downstream signaling and a role in disease conditions like inflammation and cancer. The subcellular locations and interaction partners of RAC1 and RAC1B vary depending on their activation state, which makes RAC1 and RAC1B ideal candidates to establish cross-talk with cancer-associated signaling pathways-for instance, interactions with signaling by transforming growth factor β (TGFβ), a known tumor promoter. Although RAC1 has been found to promote TGFβ-driven tumor progression, recent observations in pancreatic carcinoma cells surprisingly revealed that RAC1B confers anti-oncogenic properties, i.e., through inhibiting TGFβ-induced EMT. Since then, an unexpected array of mechanisms through which RAC1B cross-talks with TGFβ signaling has been demonstrated. However, rather than being uniformly inhibitory, RAC1B interacts with TGFβ signaling in a way that results in the selective blockade of tumor-promoting pathways, while concomitantly allowing tumor-suppressive pathways to proceed. In this review article, we are going to discuss the specific interactions between RAC1B and TGFβ signaling, which occur at multiple levels and include various components such as ligands, receptors, cytosolic mediators, transcription factors, and extracellular inhibitors of TGFβ ligands.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- First Department of Medicine, Campus Lübeck, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany;
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, Campus Kiel, University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Ulrich F. Wellner
- Clinic for Surgery, Campus Lübeck, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany; (U.F.W.); (T.K.)
| | - Tobias Keck
- Clinic for Surgery, Campus Lübeck, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany; (U.F.W.); (T.K.)
| | | | - Jens-Uwe Marquardt
- First Department of Medicine, Campus Lübeck, University Hospital Schleswig-Holstein, D-23538 Lübeck, Germany;
| |
Collapse
|
5
|
Kotelevets L, Chastre E. Rac1 Signaling: From Intestinal Homeostasis to Colorectal Cancer Metastasis. Cancers (Basel) 2020; 12:cancers12030665. [PMID: 32178475 PMCID: PMC7140047 DOI: 10.3390/cancers12030665] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/14/2022] Open
Abstract
The small GTPase Rac1 has been implicated in a variety of dynamic cell biological processes, including cell proliferation, cell survival, cell-cell contacts, epithelial mesenchymal transition (EMT), cell motility, and invasiveness. These processes are orchestrated through the fine tuning of Rac1 activity by upstream cell surface receptors and effectors that regulate the cycling Rac1-GDP (off state)/Rac1-GTP (on state), but also through the tuning of Rac1 accumulation, activity, and subcellular localization by post translational modifications or recruitment into molecular scaffolds. Another level of regulation involves Rac1 transcripts stability and splicing. Downstream, Rac1 initiates a series of signaling networks, including regulatory complex of actin cytoskeleton remodeling, activation of protein kinases (PAKs, MAPKs) and transcription factors (NFkB, Wnt/β-catenin/TCF, STAT3, Snail), production of reactive oxygen species (NADPH oxidase holoenzymes, mitochondrial ROS). Thus, this GTPase, its regulators, and effector systems might be involved at different steps of the neoplastic progression from dysplasia to the metastatic cascade. After briefly placing Rac1 and its effector systems in the more general context of intestinal homeostasis and in wound healing after intestinal injury, the present review mainly focuses on the several levels of Rac1 signaling pathway dysregulation in colorectal carcinogenesis, their biological significance, and their clinical impact.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Institut National de la Santé et de la Recherche Médicale, UMR S 938, Centre de Recherche Saint-Antoine, 75012 Paris, France
- Sorbonne Université, Hôpital Saint-Antoine, Site Bâtiment Kourilsky, 75012 Paris, France
- Correspondence: (L.K.); (E.C.)
| | - Eric Chastre
- Institut National de la Santé et de la Recherche Médicale, UMR S 938, Centre de Recherche Saint-Antoine, 75012 Paris, France
- Sorbonne Université, Hôpital Saint-Antoine, Site Bâtiment Kourilsky, 75012 Paris, France
- Correspondence: (L.K.); (E.C.)
| |
Collapse
|
6
|
Zinn R, Otterbein H, Lehnert H, Ungefroren H. RAC1B: A Guardian of the Epithelial Phenotype and Protector Against Epithelial-Mesenchymal Transition. Cells 2019; 8:cells8121569. [PMID: 31817229 PMCID: PMC6952788 DOI: 10.3390/cells8121569] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/20/2019] [Accepted: 12/03/2019] [Indexed: 12/27/2022] Open
Abstract
The small GTPase Ras-related C3 botulinum toxin substrate 1B (RAC1B) has been shown to potently inhibit transforming growth factor (TGF)-β1-induced cell migration and epithelial-mesenchymal transition (EMT) in pancreatic and breast epithelial cells, but the underlying mechanism has remained obscure. Using a panel of pancreatic ductal adenocarcinoma (PDAC)-derived cell lines of different differentiation stages, we show that RAC1B is more abundantly expressed in well differentiated as opposed to poorly differentiated cells. Interestingly, RNA interference-mediated knockdown of RAC1B decreased expression of the epithelial marker protein E-cadherin, encoded by CDH1, and enhanced its TGF-β1-induced downregulation, whereas ectopic overexpression of RAC1B upregulated CDH1 expression and largely prevented its TGF-β1-induced silencing of CDH1. Conversely, knockdown of RAC1B, or deletion of the RAC1B-specific exon 3b by CRISPR/Cas-mediated genomic editing, enhanced basal and TGF-β1-induced upregulation of mesenchymal markers like Vimentin, and EMT-associated transcription factors such as SNAIL and SLUG. Moreover, we demonstrate that knockout of RAC1B enhanced the cells’ migratory activity and derepressed TGF-β1-induced activation of the mitogen-activated protein kinase ERK2. Pharmacological inhibition of ERK1/2 activation in RAC1B-depleted cells rescued cells from the RAC1B knockdown-induced enhancement of cell migration, TGF-β1-induced downregulation of CDH1, and upregulation of SNAI1. We conclude that RAC1B promotes epithelial gene expression and suppresses mesenchymal gene expression by interfering with TGF-β1-induced MEK-ERK signaling, thereby protecting cells from undergoing EMT and EMT-associated responses like acquisition of cell motility.
Collapse
Affiliation(s)
- Rabea Zinn
- First Department of Medicine, UKSH, Campus Lübeck, 23552 Lübeck, Germany; (R.Z.); (H.O.); (H.L.)
| | - Hannah Otterbein
- First Department of Medicine, UKSH, Campus Lübeck, 23552 Lübeck, Germany; (R.Z.); (H.O.); (H.L.)
| | - Hendrik Lehnert
- First Department of Medicine, UKSH, Campus Lübeck, 23552 Lübeck, Germany; (R.Z.); (H.O.); (H.L.)
| | - Hendrik Ungefroren
- First Department of Medicine, UKSH, Campus Lübeck, 23552 Lübeck, Germany; (R.Z.); (H.O.); (H.L.)
- Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Correspondence: ; Tel.: +49-451-3101-7866
| |
Collapse
|
7
|
Brezovjakova H, Tomlinson C, Mohd Naim N, Swiatlowska P, Erasmus JC, Huveneers S, Gorelik J, Bruche S, Braga VM. Junction Mapper is a novel computer vision tool to decipher cell-cell contact phenotypes. eLife 2019; 8:45413. [PMID: 31793877 PMCID: PMC7034980 DOI: 10.7554/elife.45413] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022] Open
Abstract
Stable cell–cell contacts underpin tissue architecture and organization. Quantification of junctions of mammalian epithelia requires laborious manual measurements that are a major roadblock for mechanistic studies. We designed Junction Mapper as an open access, semi-automated software that defines the status of adhesiveness via the simultaneous measurement of pre-defined parameters at cell–cell contacts. It identifies contacting interfaces and corners with minimal user input and quantifies length, area and intensity of junction markers. Its ability to measure fragmented junctions is unique. Importantly, junctions that considerably deviate from the contiguous staining and straight contact phenotype seen in epithelia are also successfully quantified (i.e. cardiomyocytes or endothelia). Distinct phenotypes of junction disruption can be clearly differentiated among various oncogenes, depletion of actin regulators or stimulation with other agents. Junction Mapper is thus a powerful, unbiased and highly applicable software for profiling cell–cell adhesion phenotypes and facilitate studies on junction dynamics in health and disease.
Collapse
Affiliation(s)
- Helena Brezovjakova
- National Heart and Lung Institute, National Institutes of Health, London, United Kingdom
| | - Chris Tomlinson
- Bioinformatics Data Science Group, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Noor Mohd Naim
- National Heart and Lung Institute, National Institutes of Health, London, United Kingdom
| | - Pamela Swiatlowska
- National Heart and Lung Institute, National Institutes of Health, London, United Kingdom
| | - Jennifer C Erasmus
- National Heart and Lung Institute, National Institutes of Health, London, United Kingdom
| | - Stephan Huveneers
- Department Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Julia Gorelik
- National Heart and Lung Institute, National Institutes of Health, London, United Kingdom
| | - Susann Bruche
- National Heart and Lung Institute, National Institutes of Health, London, United Kingdom
| | - Vania Mm Braga
- National Heart and Lung Institute, National Institutes of Health, London, United Kingdom
| |
Collapse
|
8
|
Melzer C, Hass R, Lehnert H, Ungefroren H. RAC1B: A Rho GTPase with Versatile Functions in Malignant Transformation and Tumor Progression. Cells 2019; 8:21. [PMID: 30621237 PMCID: PMC6356296 DOI: 10.3390/cells8010021] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023] Open
Abstract
RAC1B is an alternatively spliced isoform of the monomeric GTPase RAC1. It differs from RAC1 by a 19 amino acid in frame insertion, termed exon 3b, resulting in an accelerated GDP/GTP-exchange and an impaired GTP-hydrolysis. Although RAC1B has been ascribed several protumorigenic functions such as cell cycle progression and apoptosis resistance, its role in malignant transformation, and other functions driving tumor progression like epithelial-mesenchymal transition, migration/invasion and metastasis are less clear. Insertion of exon 3b endows RAC1B with specific biochemical properties that, when compared to RAC1, encompass both loss-of-functions and gain-of-functions with respect to the type of upstream activators, downstream targets, and binding partners. In its extreme, this may result in RAC1B and RAC1 acting in an antagonistic fashion in regulating a specific cellular response with RAC1B behaving as an endogenous inhibitor of RAC1. In this review, we strive to provide the reader with a comprehensive overview, rather than critical discussions, on various aspects of RAC1B biology in eukaryotic cells.
Collapse
Affiliation(s)
- Catharina Melzer
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany.
| | - Ralf Hass
- Biochemistry and Tumor Biology Lab, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany.
| | - Hendrik Lehnert
- First Department of Medicine, UKSH, Campus Lübeck, 23538 Lübeck, Germany.
| | - Hendrik Ungefroren
- First Department of Medicine, UKSH, Campus Lübeck, 23538 Lübeck, Germany.
- Department of General and Thoracic Surgery, UKSH, Campus Kiel, 24105 Kiel, Germany.
| |
Collapse
|
9
|
The role of Rac in tumor susceptibility and disease progression: from biochemistry to the clinic. Biochem Soc Trans 2018; 46:1003-1012. [PMID: 30065108 DOI: 10.1042/bst20170519] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/16/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022]
Abstract
The family of Rho GTPases are involved in the dynamic control of cytoskeleton reorganization and other fundamental cellular functions, including growth, motility, and survival. Rac1, one of the best characterized Rho GTPases, is an established effector of receptors and an important node in signaling networks crucial for tumorigenesis and metastasis. Rac1 hyperactivation is common in human cancer and could be the consequence of overexpression, abnormal upstream inputs, deregulated degradation, and/or anomalous intracellular localization. More recently, cancer-associated gain-of-function mutations in Rac1 have been identified which contribute to tumor phenotypes and confer resistance to targeted therapies. Deregulated expression/activity of Rac guanine nucleotide exchange factors responsible for Rac activation has been largely associated with a metastatic phenotype and drug resistance. Translating our extensive knowledge in Rac pathway biochemistry into a clinical setting still remains a major challenge; nonetheless, remarkable opportunities for cancer therapeutics arise from promising lead compounds targeting Rac and its effectors.
Collapse
|
10
|
Niit M, Arulanandam R, Cass J, Geletu M, Hoskin V, Côté G, Gunning P, Elliott B, Raptis L. Regulation of HC11 mouse breast epithelial cell differentiation by the E-cadherin/Rac axis. Exp Cell Res 2017; 361:112-125. [PMID: 29031557 DOI: 10.1016/j.yexcr.2017.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/29/2017] [Accepted: 10/08/2017] [Indexed: 10/18/2022]
Abstract
It was previously demonstrated that differentiation of some established breast epithelial cell lines requires confluence and stimulation with hydrocortisone, insulin and prolactin inducers. We and others previously demonstrated that E-cadherin engagement, which is favored under conditions of confluence, increases the levels and activity of the Rac small GTPase. To investigate the functional relationship between the transforming ability of Rac and its role as an integral component of the differentiative E-cadherin signaling pathway, we introduced a mutationally activated form of Rac, RacV12, into the mouse breast epithelium-derived cell line, HC11. Our results demonstrate that the strength of the Rac signal is key for the outcome of the differentiation process; cRac1 is critically required for differentiation, and at low levels, mutationally activated RacV12 is able to increase differentiation, presumably reinforcing the E-cadherin/Rac differentiative signal. However, high RacV12 expression blocked differentiation concomitant with E-cadherin downregulation, while inducing neoplastic transformation. Therefore, the intensity of the Rac signal is a central determinant in the balance between cell proliferation vs differentiation, two fundamentally opposed processes, a finding which could also have important therapeutic implications.
Collapse
Affiliation(s)
- Maximilian Niit
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6; Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada K7L3N6
| | - Rozanne Arulanandam
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6; Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada K1H 8L6
| | - Jamaica Cass
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Mulu Geletu
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6; Department of Chemical and Physical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Victoria Hoskin
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada K7L3N6
| | - Graham Côté
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Patrick Gunning
- Department of Chemical and Physical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Bruce Elliott
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada K7L3N6
| | - Leda Raptis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6; Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada K7L3N6.
| |
Collapse
|
11
|
Li Y, Ke Q, Shao Y, Zhu G, Li Y, Geng N, Jin F, Li F. GATA1 induces epithelial-mesenchymal transition in breast cancer cells through PAK5 oncogenic signaling. Oncotarget 2015; 6:4345-56. [PMID: 25726523 PMCID: PMC4414194 DOI: 10.18632/oncotarget.2999] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/21/2014] [Indexed: 11/25/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a key process in tumor metastatic cascade that is characterized by the loss of cell-cell junctions, resulting in the acquisition of migratory and invasive properties. E-cadherin is a major component of intercellular junctions and the reduction or loss of its expression is a hallmark of EMT. Transcription factor GATA1 has a critical anti-apoptotic role in breast cancer, but its function for metastasis has not been investigated. Here, we found that GATA1, as a novel E-cadherin repressor, promotes EMT in breast cancer cells. GATA1 binds to E-cadherin promoter, down-regulates E-cadherin expression, disrupts intercellular junction and promotes metastasis of breast cancer cell in vivo. Moreover, GATA1 is a new substrate of p21-activated kinase 5 (PAK5), which is phosphorylated on serine 161 and 187 (S161 and S187). GATA1 recruits HDAC3/4 to E-cadherin promoter, which is reduced by GATA1 S161A S187A mutant. These data indicate that phosphorylated GATA1 recruits more HDAC3/4 to promote transcriptional repression of E-cadherin, leading to the EMT of breast cancer cells. Our findings provide insights into the novel function of GATA1, contributing to a better understanding of the EMT, indicating that GATA1 and its phosphorylation may play an important role in the metastasis of breast cancer.
Collapse
Affiliation(s)
- Yang Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Qiang Ke
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yangguang Shao
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Ge Zhu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yanshu Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Nanxi Geng
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Feng Jin
- Department of Breast Surgery, Department of Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
12
|
Sosa-García B, Vázquez-Rivera V, González-Flores JN, Engel BE, Cress WD, Santiago-Cardona PG. The Retinoblastoma Tumor Suppressor Transcriptionally Represses Pak1 in Osteoblasts. PLoS One 2015; 10:e0142406. [PMID: 26555075 PMCID: PMC4640669 DOI: 10.1371/journal.pone.0142406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/21/2015] [Indexed: 12/26/2022] Open
Abstract
We previously characterized the retinoblastoma tumor suppressor protein (Rb) as a regulator of adherens junction assembly and cell-to-cell adhesion in osteoblasts. This is a novel function since Rb is predominantly known as a cell cycle repressor. Herein, we characterized the molecular mechanisms by which Rb performs this function, hypothesizing that Rb controls the activity of known regulators of adherens junction assembly. We found that Rb represses the expression of the p21-activated protein kinase (Pak1), an effector of the small Rho GTPase Rac1. Rac1 is a well-known regulator of adherens junction assembly whose increased activity in cancer is linked to perturbations of intercellular adhesion. Using nuclear run-on and luciferase reporter transcription assays, we found that Pak1 repression by Rb is transcriptional, without affecting Pak1 mRNA and protein stability. Pak1 promoter bioinformatics showed multiple E2F1 binding sites within 155 base pairs of the transcriptional start site, and a Pak1-promoter region containing these E2F sites is susceptible to transcriptional inhibition by Rb. Chromatin immunoprecipitations showed that an Rb-E2F complex binds to the region of the Pak1 promoter containing the E2F1 binding sites, suggesting that Pak1 is an E2F target and that the repressive effect of Rb on Pak1 involves blocking the trans-activating capacity of E2F. A bioinformatics analysis showed elevated Pak1 expression in several solid tumors relative to adjacent normal tissue, with both Pak1 and E2F increased relative to normal tissue in breast cancer, supporting a cancer etiology for Pak1 up-regulation. Therefore, we propose that by repressing Pak1 expression, Rb prevents Rac1 hyperactivity usually associated with cancer and related to cytoskeletal derangements that disrupt cell adhesion, consequently enhancing cancer cell migratory capacity. This de-regulation of cell adhesion due to Rb loss could be part of the molecular events associated with cancer progression and metastasis.
Collapse
Affiliation(s)
- Bernadette Sosa-García
- Department of Basic Sciences, Biochemistry Division, Ponce Health Science University, Ponce, Puerto Rico
| | - Viviana Vázquez-Rivera
- Department of Basic Sciences, Biochemistry Division, Ponce Health Science University, Ponce, Puerto Rico
| | | | - Brienne E. Engel
- Molecular Oncology and Thoracic Oncology Departments, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States of America
| | - W. Douglas Cress
- Molecular Oncology and Thoracic Oncology Departments, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States of America
| | - Pedro G. Santiago-Cardona
- Department of Basic Sciences, Biochemistry Division, Ponce Health Science University, Ponce, Puerto Rico
- * E-mail:
| |
Collapse
|
13
|
Flores-Benitez D, Knust E. Crumbs is an essential regulator of cytoskeletal dynamics and cell-cell adhesion during dorsal closure in Drosophila. eLife 2015; 4. [PMID: 26544546 PMCID: PMC4718732 DOI: 10.7554/elife.07398] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 11/06/2015] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily conserved Crumbs protein is required for epithelial polarity and morphogenesis. Here we identify a novel role of Crumbs as a negative regulator of actomyosin dynamics during dorsal closure in the Drosophila embryo. Embryos carrying a mutation in the FERM (protein 4.1/ezrin/radixin/moesin) domain-binding motif of Crumbs die due to an overactive actomyosin network associated with disrupted adherens junctions. This phenotype is restricted to the amnioserosa and does not affect other embryonic epithelia. This function of Crumbs requires DMoesin, the Rho1-GTPase, class-I p21-activated kinases and the Arp2/3 complex. Data presented here point to a critical role of Crumbs in regulating actomyosin dynamics, cell junctions and morphogenesis. DOI:http://dx.doi.org/10.7554/eLife.07398.001 A layer of epithelial cells covers the body surface of animals. Epithelial cells have a property known as polarity; this means that they have two different poles, one of which is in contact with the environment. Midway through embryonic development, the Drosophila embryo is covered by two kinds of epithelial sheets; the epidermis on the front, the belly and the sides of the embryo, and the amnioserosa on the back. In the second half of embryonic development, the amnioserosa is brought into the embryo in a process called dorsal closure, while the epidermis expands around the back of the embryo to encompass it. One of the major activities driving dorsal closure is the contraction of amnioserosa cells. This contraction depends on the highly dynamic activity of the protein network that helps give cells their shape, known as the actomyosin cytoskeleton. One major question in the field is how changes in the actomyosin cytoskeleton are controlled as tissues take shape (a process known as “morphogenesis”) and how the integrity of epithelial tissues is maintained during these processes. A key regulator of epidermal and amnioserosa polarity is an evolutionarily conserved protein called Crumbs. The epithelial tissues of mutant embryos that do not produce Crumbs lose polarity and integrity, and the embryos fail to develop properly. Flores-Benitez and Knust have now studied the role of Crumbs in the morphogenesis of the amnioserosa during dorsal closure. This revealed that fly embryos that produce a mutant Crumbs protein that cannot interact with a protein called Moesin (which links the cell membrane and the actomyosin cytoskeleton) are unable to complete dorsal closure. Detailed analyses showed that this failure of dorsal closure is due to the over-activity of the actomyosin cytoskeleton in the amnioserosa. This results in increased and uncoordinated contractions of the cells, and is accompanied by defects in cell-cell adhesion that ultimately cause the amnioserosa to lose integrity. Flores-Benitez and Knust’s genetic analyses further showed that several different signalling systems participate in this process. Flores-Benitez and Knust’s results reveal an unexpected role of Crumbs in coordinating polarity, actomyosin activity and cell-cell adhesion. Further work is now needed to understand the molecular mechanisms and interactions that enable Crumbs to coordinate these processes; in particular, to unravel how Crumbs influences the periodic contractions that drive changes in cell shape. It will also be important to investigate whether Crumbs is involved in similar mechanisms that operate in other developmental events in which actomyosin oscillations have been linked to tissue morphogenesis. DOI:http://dx.doi.org/10.7554/eLife.07398.002
Collapse
Affiliation(s)
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
14
|
Suppression of Nkx3.2 by phosphatidylinositol-3-kinase signaling regulates cartilage development by modulating chondrocyte hypertrophy. Cell Signal 2015; 27:2389-400. [PMID: 26363466 DOI: 10.1016/j.cellsig.2015.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/07/2015] [Indexed: 01/04/2023]
Abstract
Phosphatidylinositol-3-kinase (PI3K) is a key regulator of diverse biological processes including cell proliferation, migration, survival, and differentiation. While a role of PI3K in chondrocyte differentiation has been suggested, its precise mechanisms of action are poorly understood. Here we show that PI3K signaling can down-regulate Nkx3.2 at both mRNA and protein levels in various chondrocyte cultures in vitro. In addition, we have intriguingly found that p85β, not p85α, is specifically employed as a regulatory subunit for PI3K-mediated Nkx3.2 suppression. Furthermore, we found that regulation of Nkx3.2 by PI3K requires Rac1-PAK1, but not Akt, signaling downstream of PI3K. Finally, using embryonic limb bud cultures, ex vivo long bone cultures, and p85β knockout mice, we demonstrated that PI3K-mediated suppression of Nkx3.2 in chondrocytes plays a role in the control of cartilage hypertrophy during skeletal development in vertebrates.
Collapse
|
15
|
Abstract
Signaling via the Rho GTPases provides crucial regulation of numerous cell polarization events, including apicobasal (AB) polarity, polarized cell migration, polarized cell division and neuronal polarity. Here we review the relationships between the Rho family GTPases and epithelial AB polarization events, focusing on the 3 best-characterized members: Rho, Rac and Cdc42. We discuss a multitude of processes that are important for AB polarization, including lumen formation, apical membrane specification, cell-cell junction assembly and maintenance, as well as tissue polarity. Our discussions aim to highlight the immensely complex regulatory mechanisms that encompass Rho GTPase signaling during AB polarization. More specifically, in this review we discuss several emerging common themes, that include: 1) the need for Rho GTPase activities to be carefully balanced in both a spatial and temporal manner through a multitude of mechanisms; 2) the existence of signaling feedback loops and crosstalk to create robust cellular responses; and 3) the frequent multifunctionality that exists among AB polarity regulators. Regarding this latter theme, we provide further discussion of the potential plasticity of the cell polarity machinery and as a result the possible implications for human disease.
Collapse
Key Words
- AB, Apicobasal
- AJ, Adherens junction
- Amot, Angiomotin
- Arp2/3, Actin-related protein-2/3
- Baz, Bazooka
- C. elegans, Caenorhabditis elegans
- CA, Constitutively-active
- CD2AP, CD2-associated protein
- Caco2, Human colon carcinoma
- Cdc42
- Cora, Coracle
- Crb, Crumbs
- DN, Dominant-negative
- Dia1, Diaphanous-related formin 1
- Dlg, Discs large
- Drosophila, Drosophila melanogaster
- Dys-β, Dystrobrevin-β
- ECM, Extracellular matrix
- Ect2, Epithelial cell transforming sequence 2 oncogene
- Eya1, Eyes absent 1
- F-actin, Filamentous actin
- FRET, Fluorescence resonance energy transfer
- GAP, GTPase-activating protein
- GDI, Guanine nucleotide dissociation inhibitor
- GEF, Guanine nucleotide exchange factor
- GTPases
- JACOP, Junction-associated coiled-coiled protein
- JAM, Junctional adhesion molecule
- LKB1, Liver kinase B1
- Lgl, Lethal giant larvae
- MDCK, Madin-Darby canine kidney
- MTOC, Microtubule-organizing center
- NrxIV, Neurexin IV
- Pals1, Protein associated with Lin-7 1
- Par, Partitioning-defective
- Patj, Pals1-associated TJ protein
- ROCK, Rho-associated kinase
- Rac
- Rho
- Rich1, RhoGAP interacting with CIP4 homologues
- S. cerevisiae, Saccharomyces cerevisiae
- S. pombe, Schizosaccharomyces pombe
- SH3BP1, SH3-domain binding protein 1
- Scrib, Scribble
- Std, Stardust
- TEM4, Tumor endothelial marker 4
- TJ, Tight junction
- Tiam1, T-cell lymphoma invasion and metastasis-inducing protein 1
- WASp, Wiskott-aldrich syndrome protein
- Yrt, Yurt
- ZA, zonula adherens
- ZO, Zonula occludens
- aPKC, Atypical Protein Kinase C
- apicobasal
- epithelia
- junction
- par
- polarity
- α-cat, Alpha-catenin
- β-cat, Beta-Catenin
- β2-syn, Beta-2-syntrophin
Collapse
Affiliation(s)
- Natalie Ann Mack
- a School of Life Sciences; Queens Medical Center ; University of Nottingham ; Nottingham , UK
| | | |
Collapse
|
16
|
Parrini MC. Untangling the complexity of PAK1 dynamics: The future challenge. CELLULAR LOGISTICS 2014; 2:78-83. [PMID: 23125950 PMCID: PMC3485744 DOI: 10.4161/cl.19817] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PAK1 kinase is a crucial regulator of a variety of cellular processes, such as motility, cell division, gene transcription and apoptosis. Its deregulation is involved in several pathologies, including cancer, viral infection and neurodegenerative diseases. Due to this strong implication in human health, the complex network of signaling pathways centered on PAK1 is a subject of intensive investigations. This review summarizes the present knowledge on the multiple PAK1 intracellular localizations and on its shuttling between different compartments. The dynamics of PAK1 localization and activation are finely tuned by the cell and it is this tight control that underlies the capacity of PAK1 to participate in the regulation of many fundamental cell functions. Recently, PAK1 biosensors have been developed to visualize PAK1 activation in live cells. These new imaging tools should be of great help to better understand PAK1 biology and to conceive strategies for efficient and specific PAK1 inhibitors.
Collapse
Affiliation(s)
- Maria Carla Parrini
- Institut Curie; Centre de Recherche; Paris, France; Inserm U830; Paris, France
| |
Collapse
|
17
|
Abstract
Dormant carcinoma cancer cells showing epithelial characteristics can be activated to dissipate into the surrounding tissue or organs through epithelial-mesenchymal transition (EMT). However, the molecular details underlying the activation of dormant cancer cells have been less explored. In this study, we examined the molecular pathway to activate dormant breast cancer cells. Rho-associated kinase (ROCK) inhibition disrupted cell junction, promoted cell proliferation and migration / invasion in both two-dimensional and three-dimensional substrates. The disintegration of cell junction upon ROCK inhibition, coupled with the loss of E-cadherin and b-catenin from the cell membrane, was associated with the activation of Rac1 upon ROCK inhibition. Migration / invasion also increased upon ROCK inhibition. However, the activation of MCF-7 cells upon ROCK inhibition was not associated with the up-regulation of typical EMT markers, such as snail and slug. Based on these results, we suggest the potential risk for dormant cancer cells to dissipate through non-typical EMT when ROCK activity is down-regulated.
Collapse
Affiliation(s)
- Seungwon Yang
- Laboratory for the Study of Molecular Biointerfaces, Department of Oral Histology and Developmental Biology, Program of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Man Kim
- Laboratory for the Study of Molecular Biointerfaces, Department of Oral Histology and Developmental Biology, Program of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
18
|
Fram S, King H, Sacks DB, Wells CM. A PAK6-IQGAP1 complex promotes disassembly of cell-cell adhesions. Cell Mol Life Sci 2013; 71:2759-73. [PMID: 24352566 PMCID: PMC4059965 DOI: 10.1007/s00018-013-1528-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 10/30/2013] [Accepted: 11/18/2013] [Indexed: 12/04/2022]
Abstract
p-21 activated 6 (PAK6), first identified as interacting with the androgen receptor (AR), is over-expressed in multiple cancer tissues and has been linked to the progression of prostate cancer, however little is known about PAK6 function in the absence of AR signaling. We report here that PAK6 is specifically required for carcinoma cell–cell dissociation downstream of hepatocyte growth factor (HGF) for both DU145 prostate cancer and HT29 colon cancer cells. Moreover, PAK6 overexpression can drive cells to escape from adhesive colonies in the absence of stimulation. We have localized PAK6 to cell–cell junctions and have detected a direct interaction between the kinase domain of PAK6 and the junctional protein IQGAP1. Co-expression of IQGAP1 and PAK6 increases cell colony escape and leads to elevated PAK6 activation. Further studies have identified a PAK6/E-cadherin/IQGAP1 complex downstream of HGF. Moreover, we find that β-catenin is also localized with PAK6 in cell–cell junctions and is a novel PAK6 substrate. We propose a unique role for PAK6, independent of AR signaling, where PAK6 drives junction disassembly during HGF-driven cell–cell dissociation via an IQGAP1/E-cadherin complex that leads to the phosphorylation of β-catenin and the disruption of cell–cell adhesions.
Collapse
Affiliation(s)
- Sally Fram
- Division of Cancer Studies, King's College London, New Hunts House, Guys Campus, London, SE1 1UL, UK
| | | | | | | |
Collapse
|
19
|
Katz E, Sims AH, Sproul D, Caldwell H, Dixon MJ, Meehan RR, Harrison DJ. Targeting of Rac GTPases blocks the spread of intact human breast cancer. Oncotarget 2013; 3:608-19. [PMID: 22689141 PMCID: PMC3442288 DOI: 10.18632/oncotarget.520] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
High expression of Rac small GTPases in invasive breast ductal carcinoma is associated with poor prognosis, but its therapeutic value in human cancers is not clear. The aim of the current study was to determine the response of human primary breast cancers to Rac-based drug treatments ex vivo. Three-dimensional organotypic cultures were used to assess candidate therapeutic avenues in invasive breast cancers. Uniquely, in these primary cultures, the tumour is not disaggregated, with both epithelial and mesenchymal components maintained within a three-dimensional matrix of type I collagen. EHT 1864, a small molecule inhibitor of Rac GTPases, prevents spread of breast cancers in this setting, and also reduces proliferation at the invading edge. Rac1+ epithelial cells in breast tumours also contain high levels of the phosphorylated form of the transcription factor STAT3. The small molecule Stattic inhibits activation of STAT3 and induces effects similar to those seen with EHT 1864. Pan-Rac inhibition of proliferation precedes down-regulation of STAT3 activity, defining it as the last step in Rac activation during human breast cancer invasion. Our data highlights the potential use of Rac and STAT3 inhibition in treatment of invasive human breast cancer and the benefit of studying novel cancer treatments using three-dimensional primary tumour tissue explant cultures.
Collapse
Affiliation(s)
- Elad Katz
- Breakthrough Breast Cancer Research Unit, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
20
|
Okoshi R, Shu CL, Ihara S, Fukui Y. Scattering of MCF7 cells by heregulin ß-1 depends on the MEK and p38 MAP kinase pathway. PLoS One 2013; 8:e53298. [PMID: 23308187 PMCID: PMC3538754 DOI: 10.1371/journal.pone.0053298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/30/2012] [Indexed: 12/29/2022] Open
Abstract
Heregulin (HRG) β1 signaling promotes scattering of MCF7 cells by inducing breakdown of adherens and tight junctions. Here, we show that stimulation with HRG-β1 causes the F-actin backbone of junctions to destabilize prior to the loss of adherent proteins and scattering of the cells. The adherent proteins dissociate and translocate from cell–cell junctions to the cytosol. Moreover, using inhibitors we show that the MEK1 pathway is required for the disappearance of F-actin from junctions and p38 MAP kinase activity is essential for scattering of the cells. Upon treatment with a p38 MAP kinase inhibitor, adherens junction complexes immediately reassemble, most likely in the cytoplasm, and move to the plasma membrane in cells dissociated by HRG-β1 stimulation. Subsequently, tight junction complexes form, most likely in the cytoplasm, and move to the plasma membrane. Thus, the p38 MAP kinase inhibitor causes a re-aggregation of scattered cells, even in the presence of HRG-β1. These results suggest that p38 MAP kinase signaling to adherens junction proteins regulates cell aggregation, providing a novel understanding of the regulation of cell–cell adhesion.
Collapse
Affiliation(s)
- Rintaro Okoshi
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, Republic of China
| | - Chung-Li Shu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, Republic of China
| | - Sayoko Ihara
- Division of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Yasuhisa Fukui
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, Republic of China
- Laboratory of Signal Transduction, Hoshi University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
21
|
Yasuda T, Fukuda M. Slp2-a controls renal epithelial cell size through regulation of Rap–ezrin signaling independently of Rab27. J Cell Sci 2013; 127:557-70. [DOI: 10.1242/jcs.134056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Slp2-a is a Rab27 effector protein that regulates transport of Rab27-bearing vesicles/organelles via its N-terminal Rab27-binding domain and a phospholipid-binding C2A domain. Here we demonstrate a Rab27-independent function of Slp2-a in the control of renal cell size via a previously uncharacterized C2B domain. We found that by recruiting Rap1GAPs to the plasma membrane of MDCK II cells via the C2B domain Slp2-a inactivates Rap signaling and modulates the size of the cells. Functional ablation of Slp2-a resulted in an increase in the size of MDCK II cells. Drosophila Slp bitesize was found to compensate for the function of Slp2-a in MDCK II cells, thereby indicating that the mechanism of the cell size control by Slps has been evolutionarily conserved. Interestingly, blockade of the activity of ezrin, a downstream target of Rap, with the glucosylceramide synthase inhibitor miglustat effectively inhibited cell spreading of Slp2-a-knockdown cells. We also discovered aberrant expression of Slp2-a and increased activity of ezrin in pcy mice, a model of polycystic kidney disease that is characterized by renal cell spreading. Our findings indicate that Slp2-a controls renal cell size through regulation of Rap–ezrin signaling independently of Rab27.
Collapse
|
22
|
Khare V, Lyakhovich A, Dammann K, Lang M, Borgmann M, Tichy B, Pospisilova S, Luciani G, Campregher C, Evstatiev R, Pflueger M, Hundsberger H, Gasche C. Mesalamine modulates intercellular adhesion through inhibition of p-21 activated kinase-1. Biochem Pharmacol 2012; 85:234-44. [PMID: 23146664 PMCID: PMC3557386 DOI: 10.1016/j.bcp.2012.10.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 10/31/2012] [Accepted: 10/31/2012] [Indexed: 12/29/2022]
Abstract
Mesalamine (5-ASA) is widely used for the treatment of ulcerative colitis, a remitting condition characterized by chronic inflammation of the colon. Knowledge about the molecular and cellular targets of 5-ASA is limited and a clear understanding of its activity in intestinal homeostasis and interference with neoplastic progression is lacking. We sought to identify molecular pathways interfered by 5-ASA, using CRC cell lines with different genetic background. Microarray was performed for gene expression profile of 5-ASA-treated and untreated cells (HCT116 and HT29). Filtering and analysis of data identified three oncogenic pathways interfered by 5-ASA: MAPK/ERK pathway, cell adhesion and β-catenin/Wnt signaling. PAK1 emerged as a consensus target of 5-ASA, orchestrating these pathways. We further investigated the effect of 5-ASA on cell adhesion. 5-ASA increased cell adhesion which was measured by cell adhesion assay and transcellular-resistance measurement. Moreover, 5-ASA treatment restored membranous expression of adhesion molecules E-cadherin and β-catenin. Role of PAK1 as a mediator of mesalamine activity was validated in vitro and in vivo. Inhibition of PAK1 by RNA interference also increased cell adhesion. PAK1 expression was elevated in APCmin polyps and 5-ASA treatment reduced its expression. Our data demonstrates novel pharmacological mechanism of mesalamine in modulation of cell adhesion and role of PAK1 in APCmin polyposis. We propose that inhibition of PAK1 expression by 5-ASA can impede with neoplastic progression in colorectal carcinogenesis. The mechanism of PAK1 inhibition and induction of membranous translocation of adhesion proteins by 5-ASA might be independent of its known anti-inflammatory action.
Collapse
Affiliation(s)
- Vineeta Khare
- Medical University of Vienna, Department of Internal Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Vienna, Austria
| | - Alex Lyakhovich
- Medical University of Vienna, Department of Internal Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Vienna, Austria
| | - Kyle Dammann
- Medical University of Vienna, Department of Internal Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Vienna, Austria
| | - Michaela Lang
- Medical University of Vienna, Department of Internal Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Vienna, Austria
| | - Melanie Borgmann
- Medical University of Vienna, Department of Internal Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Vienna, Austria
| | - Boris Tichy
- Center of Molecular Biology and Gene Therapy, Department of Internal Medicine, University Hospital and Faculty of Medicine, Masaryk University and Central European Institute of Technology, Brno, Czech Republic
| | - Sarka Pospisilova
- Center of Molecular Biology and Gene Therapy, Department of Internal Medicine, University Hospital and Faculty of Medicine, Masaryk University and Central European Institute of Technology, Brno, Czech Republic
| | - Gloria Luciani
- Medical University of Vienna, Department of Internal Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Vienna, Austria
| | - Christoph Campregher
- Medical University of Vienna, Department of Internal Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Vienna, Austria
| | - Rayko Evstatiev
- Medical University of Vienna, Department of Internal Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Vienna, Austria
| | | | | | - Christoph Gasche
- Medical University of Vienna, Department of Internal Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Vienna, Austria
- Corresponding author at: Division of Gastroenterology and Hepatology, Medical University of Vienna, Währinger Gür 18 20A 1090 Vienna, Austria. Tel.: +43 404004764; fax: +43 404004724.
| |
Collapse
|
23
|
Leve F, Morgado-Díaz JA. Rho GTPase signaling in the development of colorectal cancer. J Cell Biochem 2012; 113:2549-59. [PMID: 22467564 DOI: 10.1002/jcb.24153] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The involvement of Rho GTPases in major aspects of cancer development, such as cell proliferation, apoptosis, cell polarity, adhesion, migration, and invasion, have recently been attracting increasing attention. In this review, we have summarized the current findings in the literature, and we discuss the participation of the Rho GTPase members RhoA, Rac1, and Cdc42 in the development of colorectal cancer, the second most lethal neoplasia worldwide. First, we present an overview of the mechanisms of Rho GTPase regulation and the impact that regulator proteins exert on GTPase signaling. Second, we focus on the participation of Rho GTPases as modulators of colorectal cancer development. Third, we emphasize the involvement of activation and expression alterations of Rho GTPases in events associated with cancer progression, such as loss of cell-cell adhesion, proliferation, migration, and invasion. Finally, we highlight the potential use of novel anticancer drugs targeting specific components of the Rho GTPase signaling pathway with antineoplastic activity in this cancer type.
Collapse
Affiliation(s)
- Fernanda Leve
- Grupo de Biologia Estrutural, Divisão de Biologia Celular, Centro de Pesquisas, Instituto Nacional de Câncer-INCa, Rio de Janeiro 2231050, Brazil
| | | |
Collapse
|
24
|
Qian Y, Zhang N, Chen S, Chu S, Feng A, Liu H. PI3K, Rac1 and pPAK1 are overexpressed in extramammary Paget's disease. J Cutan Pathol 2012; 39:1010-5. [PMID: 22845716 DOI: 10.1111/j.1600-0560.2012.01973.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 04/16/2012] [Accepted: 05/23/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND Phosphatidylinositol 3-kinase (PI3K), Ras-related C3 botulinum toxin substrate 1 (Rac1) and P21-activated protein kinase 1 (PAK1) appear to play important roles in the pathogenesis of several tumors, but their expressions in extramammary Paget's disease (EMPD) have not been investigated yet. OBJECTIVES To investigate the potential contribution of the PI3K, Rac1 and PAK1 to the development of EMPD. METHODS Thirty-five paraffin-embedded EMPD specimens were subjected to immunohistochemical staining for PI3K (85α), Rac1 and pPAK1. RESULTS All the 35 primary EMPD specimens, including 20 non-invasive EMPD, 13 invasive EMPD and 2 metastatic lymph nodes, showed cytoplasm overexpression of PI3K (85α), Rac1 and pPAK1. The expression (% positive cells) of PI3K(85α), Rac1 and pPAK1 (90.1 ± 8.6, 91.4 ± 9.5 and 89.6 ± 10.8% ) in EMPD were significantly higher than in apocrine glands of normal skin ( 20.1 ± 11.9, 29.8 ± 8.9, 41.1 ± 13.4%), and the expression in invasive EMPD with lymph node metastasis (98.2 ± 1.7, 98.8 ± 0.7 and 98.4 ± 0.9%) are significantly higher than in invasive EMPD without lymph node metastasis (94.1 ± 2.6, 96.5 ± 1.7 and 95.3 ± 1.1%) and non-invasive EMPD (85.2 ± 8.4, 87.1 ± 9.9 and 83.1 ± 10.6%). There were significant positive correlations of the expression levels between PI3K (85α) and Rac1, as well as between Rac1 and pPAK1 in EMPD. CONCLUSIONS These results indicate that PI3K, Rac1 and PAK1 may play important roles in the pathogenesis of EMPD.
Collapse
Affiliation(s)
- Yue Qian
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
25
|
Regulation of adherens junctions by Rho GTPases and p120-catenin. Arch Biochem Biophys 2012; 524:48-55. [PMID: 22583808 DOI: 10.1016/j.abb.2012.04.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/10/2012] [Accepted: 04/23/2012] [Indexed: 01/05/2023]
Abstract
The molecular mechanisms leading to tumor progression and acquisition of a metastatic phenotype are highly complex and only partially understood. The spatiotemporal regulation of E-cadherin-mediated adherens junctions is essential for normal epithelia function and tissue integrity. Perturbation of the E-cadherin complex assembly is a key event in epithelial-mesenchymal transition and is directed by a huge number of mechanisms that differ greatly with regard to cell types and tissues. The reduction in intercellular adhesion interferes with tissue integrity and allows cancer cells to disseminate from the primary tumor thereby initiating cancer metastasis. In the present review we will summarize the current findings about the influence of Rho GTPases on the formation and maintenance of adherens junction and will then proceed to discuss the involvement of p120-catenin on cell-cell adhesion and tumor cell migration.
Collapse
|
26
|
Abstract
Rac1b, an alternative splice form of Rac1, has been previously shown to be upregulated in colon and breast cancer cells, suggesting an oncogenic role for Rac1b in these cancers. Our analysis of NSCLC tumor and matched normal tissue samples indicates Rac1b is upregulated in a significant fraction of lung tumors in correlation with mutational status of K-ras. To directly assess the oncogenic potential of Rac1b in vivo, we employed a mouse model of lung adenocarcinoma, in which the expression of Rac1b can be conditionally activated specifically in the lung. While expression of Rac1b alone is insufficient to drive tumor initiation, the expression of Rac1b synergizes with an oncogenic allele of K-ras resulting in increased cellular proliferation and accelerated tumor growth. Finally, we show that in contrast to our previous findings demonstrating a requirement for Rac1 in K-ras-driven cell proliferation, Rac1b is not required in this context. Given the partially overlapping spectrum of downstream effectors regulated by Rac1 and Rac1b, our findings further delineate the signaling pathways downstream of Rac1 that are required for K-ras driven tumorigenesis.
Collapse
|
27
|
Abstract
Cadherins and catenins are the central cell-cell adhesion molecules in adherens junctions (AJs). This chapter reviews the knowledge concerning the role of cadherins and catenins in epithelial cancer and examines the published literature demonstrating the changes in the expression and function of these proteins in human cancer and the association of these changes with patient outcomes. The chapter also covers the mechanistic studies aiming at uncovering the significance of changes in cadherin and catenin expression in cancer and potential molecular mechanisms responsible for the causal role of AJs in cancer initiation and progression.
Collapse
Affiliation(s)
- Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA,
| |
Collapse
|
28
|
Nola S, Daigaku R, Smolarczyk K, Carstens M, Martin-Martin B, Longmore G, Bailly M, Braga VMM. Ajuba is required for Rac activation and maintenance of E-cadherin adhesion. ACTA ACUST UNITED AC 2011; 195:855-71. [PMID: 22105346 PMCID: PMC3257575 DOI: 10.1083/jcb.201107162] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A Rac–PAK1–Ajuba feedback loop stabilizes cadherin complexes via coordination of spatiotemporal signaling with actin remodeling at cell–cell contacts. Maintenance of stable E-cadherin–dependent adhesion is essential for epithelial function. The small GTPase Rac is activated by initial cadherin clustering, but the precise mechanisms underlying Rac-dependent junction stabilization are not well understood. Ajuba, a LIM domain protein, colocalizes with cadherins, yet Ajuba function at junctions is unknown. We show that, in Ajuba-depleted cells, Rac activation and actin accumulation at cadherin receptors was impaired, and junctions did not sustain mechanical stress. The Rac effector PAK1 was also transiently activated upon cell–cell adhesion and directly phosphorylated Ajuba (Thr172). Interestingly, similar to Ajuba depletion, blocking PAK1 activation perturbed junction maintenance and actin recruitment. Expression of phosphomimetic Ajuba rescued the effects of PAK1 inhibition. Ajuba bound directly to Rac·GDP or Rac·GTP, but phosphorylated Ajuba interacted preferentially with active Rac. Rather than facilitating Rac recruitment to junctions, Ajuba modulated Rac dynamics at contacts depending on its phosphorylation status. Thus, a Rac–PAK1–Ajuba feedback loop integrates spatiotemporal signaling with actin remodeling at cell–cell contacts and stabilizes preassembled cadherin complexes.
Collapse
Affiliation(s)
- Sébastien Nola
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Mack NA, Whalley HJ, Castillo-Lluva S, Malliri A. The diverse roles of Rac signaling in tumorigenesis. Cell Cycle 2011; 10:1571-81. [PMID: 21478669 PMCID: PMC3127158 DOI: 10.4161/cc.10.10.15612] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 03/24/2011] [Indexed: 01/20/2023] Open
Abstract
Rac is a member of the Rho family of small GTPases, which act as molecular switches to control a wide array of cellular functions. In particular, Rac signaling has been implicated in the control of cell-cell adhesions, cell-matrix adhesions, cell migration, cell cycle progression and cellular transformation. As a result of its functional diversity, Rac signaling can influence several aspects of tumorigenesis. Consistent with this, in vivo evidence that Rac signaling contributes to tumorigenesis is continuously emerging. Additionally, our understanding of the mechanisms by which Rac signaling is regulated is rapidly expanding and consequently adds to the complexity of how Rac signaling could be modulated during tumorigenesis. Here we review the numerous biological functions and regulatory mechanisms of Rac signaling and discuss how they could influence the different stages of tumorigenesis.
Collapse
|
30
|
Yano T, Yamazaki Y, Adachi M, Okawa K, Fort P, Uji M, Tsukita S, Tsukita S. Tara up-regulates E-cadherin transcription by binding to the Trio RhoGEF and inhibiting Rac signaling. ACTA ACUST UNITED AC 2011; 193:319-32. [PMID: 21482718 PMCID: PMC3080255 DOI: 10.1083/jcb.201009100] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The spatiotemporal regulation of E-cadherin expression is important during body plan development and carcinogenesis. We found that Tara (Trio-associated repeat on actin) is enriched in cadherin-based adherens junctions (AJs), and its knockdown in MDCK cells (Tara-KD cells) significantly decreases the expression of E-cadherin. Tara-KD activates Rac1 through the Trio RhoGEF, which binds to E-cadherin and subsequently increases the phosphorylation of p38 and Tbx3, a transcriptional E-cadherin repressor. Accordingly, the decrease in E-cadherin expression is abrogated by ITX3 and SB203580 (specific inhibitors of Trio RhoGEF and p38MAPK, respectively), and by dephosphomimetic Tbx3. Despite the decreased E-cadherin expression, the Tara-KD cells do not undergo an epithelial-mesenchymal transition and remain as an epithelial cell sheet, presumably due to the concomitant up-regulation of cadherin-6. Tara-KD reduces the actin-belt density in the circumferential ring, and the cells form flattened cysts, suggesting that Tara functions to modulate epithelial cell sheet formation and integrity by up-regulating E-cadherin transcription.
Collapse
Affiliation(s)
- Tomoki Yano
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Rac1 modulation of the apical domain is negatively regulated by β (Heavy)-spectrin. Mech Dev 2010; 128:116-28. [PMID: 21111816 DOI: 10.1016/j.mod.2010.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/17/2010] [Accepted: 11/18/2010] [Indexed: 12/21/2022]
Abstract
Epithelial polarity and morphogenesis require the careful coordination of signaling and cytoskeletal elements. In this paper, we describe multiple genetic interactions between the apical cytoskeletal protein β(H) and Rac1 signaling in Drosophila: activation of Rac1 signaling by expression of the exchange factor Trio, is strongly enhanced by reducing β(H) levels, and such reductions in β(H) levels alone are shown to cause an increase in GTP-Rac1 levels. In contrast, co-expression of a C-terminal fragment of β(H) (βH33) suppresses the Trio expression phenotype. In addition, sustained expression of βH33 alone in the eye induces a strong dominant phenotype that is similar to the expression of dominant negative Rac1(N17), and this phenotype is also suppressed by the co-expression of Trio or by knockdown of RacGAP50C. We further demonstrate that a loss-of-function allele in pak, a Rac1 effector and negative regulator of β(H)' dominantly suppresses larval lethality arising loss-of-function karst (β(H)) alleles. Furthermore, expression of constitutively active Pak(myr) in the larval salivary gland induces expansion of the apical membrane and destabilization of the apical polarity determinants Crumbs and aPKC. These effects resemble a Rac1 activation phenotype and are suppressed by βH33. Together, our data suggest that apical proteins including β(H) are negatively regulated by Rac1 activation, but that Rac1 signaling is also suppressed by β(H) through its C-terminal domain. Such a system would be bistable with either Rac1 or β(H) predominant. We suggest a model for apical domain maintenance wherein Rac1 down-regulation of β(H) (via Pak) is opposed by β(H)-mediated down-regulation of Rac1 signaling.
Collapse
|
32
|
Pirraglia C, Walters J, Myat MM. Pak1 control of E-cadherin endocytosis regulates salivary gland lumen size and shape. Development 2010; 137:4177-89. [PMID: 21068057 DOI: 10.1242/dev.048827] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Generating and maintaining proper lumen size and shape in tubular organs is essential for organ function. Here, we demonstrate a novel role for p21-activated kinase 1 (Pak1) in defining the size and shape of the Drosophila embryonic salivary gland lumen by regulating the size and elongation of the apical domain of individual cells. Pak1 mediates these effects by decreasing and increasing E-cadherin levels at the adherens junctions and basolateral membrane, respectively, through Rab5- and Dynamin-dependent endocytosis. We also demonstrate that Cdc42 and Merlin act together with Pak1 to control lumen size. A role for Pak1 in E-cadherin endocytosis is supported by our studies of constitutively active Pak1, which induces the formation of multiple intercellular lumens in the salivary gland in a manner dependent on Rab5, Dynamin and Merlin. These studies demonstrate a novel and crucial role for Pak1 and E-cadherin endocytosis in determining lumen size and shape, and also identify a mechanism for multiple lumen formation, a poorly understood process that occurs in normal embryonic development and pathological conditions.
Collapse
Affiliation(s)
- Carolyn Pirraglia
- BCMB Program of Weill Graduate School of Medical Sciences at Cornell University, New York, NY 10065, USA
| | | | | |
Collapse
|
33
|
p21-Activated kinases are required for transformation in a cell-based model of neurofibromatosis type 2. PLoS One 2010; 5:e13791. [PMID: 21072183 PMCID: PMC2970553 DOI: 10.1371/journal.pone.0013791] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 10/11/2010] [Indexed: 12/25/2022] Open
Abstract
Background NF2 is an autosomal dominant disease characterized by development of bilateral vestibular schwannomas and other benign tumors in central nervous system. Loss of the NF2 gene product, Merlin, leads to aberrant Schwann cell proliferation, motility, and survival, but the mechanisms by which this tumor suppressor functions remain unclear. One well-defined target of Merlin is the group I family of p21-activated kinases, which are allosterically inhibited by Merlin and which, when activated, stimulate cell cycle progression, motility, and increased survival. Here, we examine the effect of Pak inhibition on cells with diminished Merlin function. Methodology/Principal Findings Using a specific peptide inhibitor of group I Paks, we show that loss of Pak activity restores normal cell movement in cells lacking Merlin function. In addition, xenografts of such cells form fewer and smaller tumors than do cells without Pak inhibition. However, in tumors, loss of Pak activity does not reduce Erk or Akt activity, two signaling proteins that are thought to mediate Pak function in growth factor pathways. Conclusions/Significance These results suggest that Pak functions in novel signaling pathways in NF2, and may serve as a useful therapeutic target in this disease.
Collapse
|
34
|
Funakoshi S, Kong J, Crissey MA, Dang L, Dang D, Lynch JP. Intestine-specific transcription factor Cdx2 induces E-cadherin function by enhancing the trafficking of E-cadherin to the cell membrane. Am J Physiol Gastrointest Liver Physiol 2010; 299:G1054-67. [PMID: 20671195 PMCID: PMC2993167 DOI: 10.1152/ajpgi.00297.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cdx2 is an intestine-specific transcription factor required for normal intestinal epithelium development. Cdx2 regulates the expression of intestine-specific genes and induces cell adhesion and columnar morphogenesis. Cdx2 also has tumor-suppressor properties, including the reduction of colon cancer cell proliferation and cell invasion, the latter due to its effects on cell adhesion. E-cadherin is a cell adhesion protein required for adherens junction formation and the establishment of intestinal cell polarity. The objective of this study was to elucidate the mechanism by which Cdx2 regulates E-cadherin function. Two colon cancer cell lines were identified in which Cdx2 expression was associated with increased cell-cell adhesion and diminished cell migration. In both cell lines, Cdx2 did not directly alter E-cadherin levels but increased its trafficking to the cell membrane compartment. Cdx2 enhanced this trafficking by altering receptor tyrosine kinase (RTK) activity. Cdx2 expression diminished phosphorylated Abl and phosphorylated Rac levels, which are downstream effectors of RTKs. Specific chemical inhibition or short interfering RNA (shRNA) knockdown of c-Abl kinase phenocopied Cdx2's cell-cell adhesion effects. In Colo 205 cells, Cdx2 reduced PDGF receptor and IGF-I receptor activation. This was mediated by caveolin-1, which was induced by Cdx2. Targeted shRNA knockdown of caveolin-1 restored PDGF receptor and reversed E-cadherin membrane trafficking, despite Cdx2 expression. We conclude that Cdx2 regulates E-cadherin function indirectly by disrupting RTK activity and enhancing E-cadherin trafficking to the cell membrane compartment. This novel mechanism advances Cdx2's prodifferentiation and antitumor properties and suggests that Cdx2 may broadly regulate RTK activity in normal intestinal epithelium by modulating membrane trafficking of proteins.
Collapse
Affiliation(s)
- Shinsuke Funakoshi
- 1Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;
| | - Jianping Kong
- 1Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;
| | - Mary Ann Crissey
- 1Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;
| | - Long Dang
- 2Division of Hematology/Oncology, Department of Internal Medicine, University of Florida, Gainesville, Florida; and
| | - Duyen Dang
- 3Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - John P. Lynch
- 1Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;
| |
Collapse
|
35
|
Espejo R, Rengifo-Cam W, Schaller MD, Evers BM, Sastry SK. PTP-PEST controls motility, adherens junction assembly, and Rho GTPase activity in colon cancer cells. Am J Physiol Cell Physiol 2010; 299:C454-63. [PMID: 20519451 DOI: 10.1152/ajpcell.00148.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An important step in carcinoma progression is loss of cell-cell adhesion leading to increased invasion and metastasis. We show here that the protein tyrosine phosphatase, PTP-PEST, is a critical regulator of cell-cell junction integrity and epithelial cell motility. Using colon carcinoma cells, we show that the expression level of PTP-PEST regulates cell motility. Either transient small interfering RNA or stable short hairpin RNA knockdown of PTP-PEST enhances haptotactic and chemotactic migration of KM12C colon carcinoma cells. Furthermore, KM12C cells with stably knocked down PTP-PEST exhibit a mesenchymal-like phenotype with prominent membrane ruffles and lamellae. In contrast, ectopic expression of PTP-PEST in KM20 or DLD-1 cells, which lack detectable endogenous PTP-PEST expression, suppresses haptotactic migration. Importantly, we find that PTP-PEST localizes in adherens junctions. Concomitant with enhanced motility, stable knockdown of PTP-PEST causes a disruption of cell-cell junctions. These effects are due to a defect in junctional assembly and not to a loss of E-cadherin expression. Adherens junction assembly is impaired following calcium switch in KM12C cells with stably knocked down PTP-PEST and is accompanied by an increase in the activity of Rac1 and a suppression of RhoA activity in response to cadherin engagement. Taken together, these results suggest that PTP-PEST functions as a suppressor of epithelial cell motility by controlling Rho GTPase activity and the assembly of adherens junctions.
Collapse
Affiliation(s)
- Rosario Espejo
- Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555-1074, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
Proto-oncogenes encode signaling molecular switches regulating cellular homeostasis in metazoans, and can be converted to oncogenes by gain-of-function mutations. To address the molecular basis for development of the regulatory system of proto-oncogenes during evolution, we screened for ancestral proto-oncogenes from the unicellular choanoflagellate Monosiga ovata by monitoring their transforming activities, and isolated a Pak gene ortholog encoding a serine/threonine kinase as a 'primitive oncogene'. We also cloned Pak orthologs from fungi and the multicellular sponge Ephydatia fluviatilis, and compared their regulatory features with that of M. ovata Pak (MoPak). MoPak is constitutively active and induces cell transformation in mammalian fibroblasts, although the Pak orthologs from multicellular animals are strictly regulated. Analyses of Pak mutants revealed that structural alteration of the auto-inhibitory domain (AID) of MoPak confers higher constitutive kinase activity, as well as greater binding ability to Rho family GTPases than the multicellular Paks, and this structural alteration is responsible for cell transformation and disruption of multicellular tissue organization. These results show that maturation of AID function was required for the development of the strict regulatory system of the Pak proto-oncogene, and suggest a potential link between the establishment of the regulatory system of proto-oncogenes and metazoan evolution.
Collapse
|
37
|
Orlichenko L, Geyer R, Yanagisawa M, Khauv D, Radisky ES, Anastasiadis PZ, Radisky DC. The 19-amino acid insertion in the tumor-associated splice isoform Rac1b confers specific binding to p120 catenin. J Biol Chem 2010; 285:19153-61. [PMID: 20395297 DOI: 10.1074/jbc.m109.099382] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Rac1b splice isoform contains a 19-amino acid insertion not found in Rac1; this insertion leads to decreased GTPase activity and reduced affinity for GDP, resulting in the intracellular predominance of GTP-bound Rac1b. Here, using co-precipitation and proteomic methods, we find that Rac1b does not bind to many common regulators of Rho family GTPases but that it does display enhanced binding to SmgGDS, RACK1, and p120 catenin (p120(ctn)), proteins involved in cell-cell adhesion, motility, and transcriptional regulation. We use molecular modeling and structure analysis approaches to determine that the interaction between Rac1b and p120(ctn) is dependent upon protein regions that are predicted to be unstructured in the absence of molecular complex formation, suggesting that the interaction between these two proteins involves coupled folding and binding. We also find that directed cell movement initiated by Rac1b is dependent upon p120. These results define a distinct binding functionality of Rac1b and provide insight into how the distinct phenotypic program activated by this protein may be implemented through molecular recognition of effectors distinct from those of Rac1.
Collapse
Affiliation(s)
- Lidiya Orlichenko
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida 32224, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Tay HG, Ng YW, Manser E. A vertebrate-specific Chp-PAK-PIX pathway maintains E-cadherin at adherens junctions during zebrafish epiboly. PLoS One 2010; 5:e10125. [PMID: 20405038 PMCID: PMC2853574 DOI: 10.1371/journal.pone.0010125] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 03/13/2010] [Indexed: 11/25/2022] Open
Abstract
Background In early vertebrate development, embryonic tissues modulate cell adhesiveness and acto-myosin contractility to correctly orchestrate the complex processes of gastrulation. E-cadherin (E-cadh) is the earliest expressed cadherin and is needed in the mesendodermal progenitors for efficient migration [1], [2]. Regulatory mechanisms involving directed E-cadh trafficking have been invoked downstream of Wnt11/5 signaling [3]. This non-canonical Wnt pathway regulates RhoA-ROK/DAAM1 to control the acto-myosin network. However, in this context nothing is known of the intracellular signals that participate in the correct localization of E-cadh, other than a need for Rab5c signaling [3]. Methodology/Principal Findings By studying loss of Chp induced by morpholino-oligonucleotide injection in zebrafish, we find that the vertebrate atypical Rho-GTPase Chp is essential for the proper disposition of cells in the early embryo. The underlying defect is not leading edge F-actin assembly (prominent in the cells of the envelope layer), but rather the failure to localize E-cadh and β-catenin at the adherens junctions. Loss of Chp results in delayed epiboly that can be rescued by mRNA co-injection, and phenocopies zebrafish E-cadh mutants [4], [5]. This new signaling pathway involves activation of an effector kinase PAK, and involvement of the adaptor PAK-interacting exchange factor PIX. Loss of signaling by any of the three components results in similar underlying defects, which is most prominent in the epithelial-like envelope layer. Conclusions/Significance Our current study uncovers a developmental pathway involving Chp/PAK/PIX signaling, which helps co-ordinate E-cadh disposition to promote proper cell adhesiveness, and coordinate movements of the three major cell layers in epiboly. Our data shows that without Chp signaling, E-cadh shifts to intracellular vesicles rather than the adhesive contacts needed for directed cell movement. These events may mirror the requirement for PAK2 signaling essential for the proper formation of the blood-brain barrier [6], [7].
Collapse
Affiliation(s)
- Hwee Goon Tay
- RGS (Rho GTPases in Stem Cells) Group, Institute of Medical Biology (IMB), Singapore, Singapore
| | - Yuen Wai Ng
- sGSK (Small G-Protein Signaling and Kinases) Group, Institute of Molecular and Cell Biology (IMCB), Neuroscience Research Partnership, Singapore, Singapore
| | - Ed Manser
- RGS (Rho GTPases in Stem Cells) Group, Institute of Medical Biology (IMB), Singapore, Singapore
- sGSK (Small G-Protein Signaling and Kinases) Group, Institute of Molecular and Cell Biology (IMCB), Neuroscience Research Partnership, Singapore, Singapore
- * E-mail:
| |
Collapse
|
39
|
Liu F, Jia L, Thompson-Baine AM, Puglise JM, ter Beest MBA, Zegers MMP. Cadherins and Pak1 control contact inhibition of proliferation by Pak1-betaPIX-GIT complex-dependent regulation of cell-matrix signaling. Mol Cell Biol 2010; 30:1971-83. [PMID: 20154149 PMCID: PMC2849475 DOI: 10.1128/mcb.01247-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 10/16/2009] [Accepted: 01/21/2010] [Indexed: 11/20/2022] Open
Abstract
It is crucial for organ homeostasis that epithelia have effective mechanisms to restrict motility and cell proliferation in order to maintain tissue architecture. On the other hand, epithelial cells need to rapidly and transiently acquire a more mesenchymal phenotype, with high levels of cell motility and proliferation, in order to repair epithelia upon injury. Cross talk between cell-cell and cell-matrix signaling is crucial for regulating these transitions. The Pak1-betaPIX-GIT complex is an effector complex downstream of the small GTPase Rac1. We previously showed that translocation of this complex from cell-matrix to cell-cell adhesion sites was required for the establishment of contact inhibition of proliferation. In this study, we provide evidence that this translocation depends on cadherin function. Cadherins do not recruit the complex by direct interaction. Rather, we found that inhibition of the normal function of cadherin or Pak1 leads to defects in focal adhesion turnover and to increased signaling by phosphatidylinositol 3-kinase. We propose that cadherins are involved in regulation of contact inhibition by controlling the function of the Pak1-betaPIX-GIT complex at focal contacts.
Collapse
Affiliation(s)
- Fengming Liu
- Department of Surgery, University of Chicago, 5841 S. Maryland Avenue, Chicago, Illinois 60637, Department of Surgery, University of Cincinnati Medical Center, Cincinnati, Ohio 45267
| | - Liwei Jia
- Department of Surgery, University of Chicago, 5841 S. Maryland Avenue, Chicago, Illinois 60637, Department of Surgery, University of Cincinnati Medical Center, Cincinnati, Ohio 45267
| | - Ann-Marie Thompson-Baine
- Department of Surgery, University of Chicago, 5841 S. Maryland Avenue, Chicago, Illinois 60637, Department of Surgery, University of Cincinnati Medical Center, Cincinnati, Ohio 45267
| | - Jason M. Puglise
- Department of Surgery, University of Chicago, 5841 S. Maryland Avenue, Chicago, Illinois 60637, Department of Surgery, University of Cincinnati Medical Center, Cincinnati, Ohio 45267
| | - Martin B. A. ter Beest
- Department of Surgery, University of Chicago, 5841 S. Maryland Avenue, Chicago, Illinois 60637, Department of Surgery, University of Cincinnati Medical Center, Cincinnati, Ohio 45267
| | - Mirjam M. P. Zegers
- Department of Surgery, University of Chicago, 5841 S. Maryland Avenue, Chicago, Illinois 60637, Department of Surgery, University of Cincinnati Medical Center, Cincinnati, Ohio 45267
| |
Collapse
|
40
|
Suh HN, Han HJ. Laminin regulates mouse embryonic stem cell migration: involvement of Epac1/Rap1 and Rac1/cdc42. Am J Physiol Cell Physiol 2010; 298:C1159-69. [PMID: 20089929 DOI: 10.1152/ajpcell.00496.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Laminin is the first extracellular matrix (ECM) component to be expressed in the developing mammalian embryo. However, the roles of laminin or the related signal pathways are not well known in mouse embryonic stem cells (mESCs). Presently, we examined the effect of laminin on mESC migration. Laminin (10 microg/ml) decreased cell aggregation, whereas migration was increased. Laminin bound alpha6beta1 integrin and laminin receptor 1 (LR1), decreasing their mRNA levels. Laminin increased focal adhesion kinase (FAK) and paxillin phosphorylation, cAMP intracellular concentration, and the protein levels of exchange factor directly activated by cAMP (Epac1) and Rap1. These increases were completely blocked by alpha6beta1 integrin and LR1 neutralizing antibody, indicating that laminin-bound LR1 assists laminin-induced alpha6beta1 integrin activity and initiates signal. As a downstream signal molecule, laminin activated small G protein such as Rac1/cdc42 and its effector protein p21-activated kinase (PAK). Subsequently, laminin stimulated E-cadherin complex disruption. Inhibition of each pathway such as those for alpha6beta1 integrin and LR1, FAK, Rap1, and PAK1 blocked laminin-induced migration. We conclude that laminin binds both alpha6beta1 integrin and LR1 and induces signaling FAK/paxillin and cAMP/Epac1/Rap1. These signaling merge at Rac1/cdc42 subsequently activate PAK1. Activated PAK1 enhances E-cadherin complex disruption and finally increases mESCs migration.
Collapse
Affiliation(s)
- Han Na Suh
- Dept. of Veterinary Physiology, Chonnam National Univ., Gwangju, Korea
| | | |
Collapse
|
41
|
Hage B, Meinel K, Baum I, Giehl K, Menke A. Rac1 activation inhibits E-cadherin-mediated adherens junctions via binding to IQGAP1 in pancreatic carcinoma cells. Cell Commun Signal 2009; 7:23. [PMID: 19737400 PMCID: PMC2745413 DOI: 10.1186/1478-811x-7-23] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 09/08/2009] [Indexed: 12/31/2022] Open
Abstract
Background Monomeric GTPases of the Rho family control a variety of cellular functions including actin cytoskeleton organisation, cell migration and cell adhesion. Defects in these regulatory processes are involved in tumour progression and metastasis. The development of metastatic carcinoma is accompanied by deregulation of adherens junctions, which are composed of E-cadherin/β- and α-catenin complexes. Results Here, we show that the activity of the monomeric GTPase Rac1 contributes to inhibition of E-cadherin-mediated cell-cell adhesion in pancreatic carcinoma cells. Stable expression of constitutively active Rac1(V12) reduced the amount of E-cadherin on protein level in PANC-1 pancreatic carcinoma cells, whereas expression of dominant negative Rac1(N17) resulted in an increased amount of E-cadherin. Extraction of proteins associated with the actin cytoskeleton as well as coimmunoprecipitation analyses demonstrated markedly decreased amounts of E-cadherin/catenin complexes in Rac1(V12)-expressing cells, but increased amounts of functional E-cadherin/catenin complexes in cells expressing Rac1(N17). Cell aggregation and migration assays revealed, that cells containing less E-cadherin due to expression of Rac1(V12), exhibited reduced cell-cell adhesion and increased cell motility. The Rac/Cdc42 effector protein IQGAP1 has been implicated in regulating cell-cell adhesion. Coimmunoprecipitation studies showed a decrease in the association between IQGAP1 and β-catenin in Rac1(V12)-expressing PANC-1 cells and an association of IQGAP1 with Rac1(V12). Elevated association of IQGAP1 with the E-cadherin adhesion complex via β-catenin correlated with increased intercellular adhesion of PANC-1 cells. Conclusion These results indicate that active Rac1 destabilises E-cadherin-mediated cell-cell adhesion in pancreatic carcinoma cells by interacting with IQGAP1 which is associated with a disassembly of E-cadherin-mediated adherens junctions. Inhibition of Rac1 activity induced increased E-cadherin-mediated cellular adhesion.
Collapse
Affiliation(s)
- Beatrix Hage
- Internal Medicine I, University Hospital Ulm, University of Ulm, Ulm, Germany.
| | | | | | | | | |
Collapse
|
42
|
Bright MD, Garner AP, Ridley AJ. PAK1 and PAK2 have different roles in HGF-induced morphological responses. Cell Signal 2009; 21:1738-47. [PMID: 19628037 DOI: 10.1016/j.cellsig.2009.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 07/13/2009] [Indexed: 01/11/2023]
Abstract
Hepatocyte growth factor (HGF) stimulates dissociation of epithelial cells (scattering) and cell migration. Several Rho GTPases are required for HGF-induced scattering. PAK1 and PAK2 are members of the p21-activated kinase (PAK) family of serine/threonine kinases, and are activated by the Rho GTPases Rac and Cdc42. Here we investigate the contributions of PAK1 and PAK2 to HGF-induced motile response. HGF stimulates phosphorylation of PAK1 and PAK2. Knockdown of PAK1 inhibits HGF-stimulated migration and loss of cell-cell junctions in DU145 prostate carcinoma cells, whereas knockdown of PAK2 enhances loss of cell-cell junctions and increases lamellipodium extension but does not affect migration speed. On the other hand, in PC3 prostate carcinoma cells, which lack cell-cell junctions, knockdown of PAK1 or PAK2 reduces HGF-stimulated migration. PAK2 knockdown increases phosphorylation of PAK1, indicating that PAK2 provides a negative feedback on PAK1. We hypothesise that PAK2 acts in part via PAK1 to regulate HGF-induced scattering.
Collapse
Affiliation(s)
- Michael D Bright
- King's College London, Randall Division of Cell and Molecular Biophysics, Guy's Campus, London, SE1 1UL, UK
| | | | | |
Collapse
|
43
|
Liu Y, Wang Y, Zhang Y, Miao Y, Zhao Y, Zhang PX, Jiang GY, Zhang JY, Han Y, Lin XY, Yang LH, Li QC, Zhao C, Wang EH. Abnormal expression of p120-catenin, E-cadherin, and small GTPases is significantly associated with malignant phenotype of human lung cancer. Lung Cancer 2009; 63:375-82. [PMID: 19162367 DOI: 10.1016/j.lungcan.2008.12.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 11/10/2008] [Accepted: 12/09/2008] [Indexed: 10/21/2022]
Abstract
Studies on a variety of cell lines have shown that p120-catenin can directly regulate the stability of E-cadherin complexes and control the activity of small GTPases to influence cell adhesion. Despite this data, clinical studies of human solid tumors have not been reported to investigate these protein interactions. To explore the correlation between p120-catenin, E-cadherin, and small GTPases in human lung cancer, we examined the expression patterns of p120-catenin, E-cadherin, RhoA, Cdc42, and Rac1, and their prognostic significance in 138 patients with non-small cell lung cancer (NSCLC). While normal bronchial epithelium showed strong membrane expression of p120-catenin and E-cadherin, lung cancer tissues had reduced membrane expression and ectopic cytoplasmic expression of p120-catenin and E-cadherin. Expression of RhoA, Cdc42, and Rac1 was also found to be higher in tumor tissue than in normal lung tissue. A correlation between abnormal p120-catenin, E-cadherin expression, and overexpression of specific small GTPases was also associated with poor differentiation, high TNM stage, and lymph node metastasis in NSCLC patients. We also used an in vitro model to evaluate their expression, and to determine whether protein expression correlated with the invasive capacity of lung cancer cell lines. Consistent with our in vivo data, abnormal expression of p120-catenin and E-cadherin with overexpression of specific small GTPases were significantly associated with the high metastatic capacity of BE1 cells. Based on our results, we conclude that abnormal p120-catenin expression correlates with abnormal E-cadherin expression and specific small GTPase overexpression, which contribute to the malignancy-related to NSCLC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|