1
|
Longmate WM. The epidermal integrin-mediated secretome regulates the skin microenvironment during tumorigenesis and repair. Matrix Biol 2024; 134:175-183. [PMID: 39491760 PMCID: PMC11585437 DOI: 10.1016/j.matbio.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Integrins are cellular transmembrane receptors that physically connect the cytoskeleton with the extracellular matrix. As such, they are positioned to mediate cellular responses to microenvironmental cues. Importantly, integrins also regulate their own microenvironment through secreted factors, also known as the integrin-mediated secretome. Epidermal integrins, or integrins expressed by keratinocytes of the skin epidermis, regulate the cutaneous microenvironment through the contribution of matrix components, via proteolytic matrix remodeling, or by mediating factors like cytokines and growth factors that can promote support for nearby but distinct cells of the stroma, such as immune cells, endothelial cells, and fibroblasts. This role for integrins is enhanced during both pathological and repair tissue remodeling processes, such as tumor growth and progression and wound healing. This review will discuss examples of how the epithelial integrin-mediated secretome can regulate the tissue microenvironment. Although different epithelial integrins in various contexts will be explored, emphasis will be given to epidermal integrins that regulate the secretome during wound healing and cutaneous tumor progression. Epidermal integrin α3β1 is of particular focus as well, since this integrin has been revealed as a key regulator of the keratinocyte secretome.
Collapse
Affiliation(s)
- Whitney M Longmate
- Department of Surgery, Albany Medical College, Albany, NY 12208, USA; Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
2
|
Miskin RP, DiPersio CM. Roles for epithelial integrin α3β1 in regulation of the microenvironment during normal and pathological tissue remodeling. Am J Physiol Cell Physiol 2024; 326:C1308-C1319. [PMID: 38497112 PMCID: PMC11371326 DOI: 10.1152/ajpcell.00128.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Integrin receptors for the extracellular matrix activate intracellular signaling pathways that are critical for tissue development, homeostasis, and regeneration/repair, and their loss or dysregulation contributes to many developmental defects and tissue pathologies. This review will focus on tissue remodeling roles for integrin α3β1, a receptor for laminins found in the basement membranes (BMs) that underlie epithelial cell layers. As a paradigm, we will discuss literature that supports a role for α3β1 in promoting ability of epidermal keratinocytes to modify their tissue microenvironment during skin development, wound healing, or tumorigenesis. Preclinical and clinical studies have shown that this role depends largely on ability of α3β1 to govern the keratinocyte's repertoire of secreted proteins, or the "secretome," including 1) matrix proteins and proteases involved in matrix remodeling and 2) paracrine-acting growth factors/cytokines that stimulate other cells with important tissue remodeling functions (e.g., endothelial cells, fibroblasts, inflammatory cells). Moreover, α3β1 signaling controls gene expression that helps epithelial cells carry out these functions, including genes that encode secreted matrix proteins, proteases, growth factors, or cytokines. We will review what is known about α3β1-dependent gene regulation through both transcription and posttranscriptional mRNA stability. Regarding the latter, we will discuss examples of α3β1-dependent alternative splicing (AS) or alternative polyadenylation (APA) that prevents inclusion of cis-acting mRNA sequences that would otherwise target the transcript for degradation via nonsense-mediated decay or destabilizing AU-rich elements (AREs) in the 3'-untranslated region (3'-UTR). Finally, we will discuss prospects and anticipated challenges of exploiting α3β1 as a clinical target for the treatment of cancer or wound healing.
Collapse
Affiliation(s)
| | - C Michael DiPersio
- Department of Surgery, Albany Medical College, Albany, New York, United States
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States
| |
Collapse
|
3
|
Longmate WM, Norton E, Duarte GA, Wu L, DiPersio MR, Lamar JM, DiPersio CM. Keratinocyte integrin α3β1 induces expression of the macrophage stimulating factor, CSF-1, through a YAP/TEAD-dependent mechanism. Matrix Biol 2024; 127:48-56. [PMID: 38340968 PMCID: PMC10923166 DOI: 10.1016/j.matbio.2024.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/11/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The development of wound therapy targeting integrins is hampered by inadequate understanding of integrin function in cutaneous wound healing and the wound microenvironment. Following cutaneous injury, keratinocytes migrate to restore the skin barrier, and macrophages aid in debris clearance. Thus, both keratinocytes and macrophages are critical to the coordination of tissue repair. Keratinocyte integrins have been shown to participate in this coordinated effort by regulating secreted factors, some of which crosstalk to distinct cells in the wound microenvironment. Epidermal integrin α3β1 is a receptor for laminin-332 in the cutaneous basement membrane. Here we show that wounds deficient in epidermal α3β1 express less epidermal-derived macrophage colony-stimulating factor 1 (CSF-1), the primary macrophage-stimulating growth factor. α3β1-deficient wounds also have fewer wound-proximal macrophages, suggesting that keratinocyte α3β1 may stimulate wound macrophages through the regulation of CSF-1. Indeed, using a set of immortalized keratinocytes, we demonstrate that keratinocyte-derived CSF-1 supports macrophage growth, and that α3β1 regulates Csf1 expression through Src-dependent stimulation of Yes-associated protein (YAP)-Transcriptional enhanced associate domain (TEAD)-mediated transcription. Consistently, α3β1-deficient wounds in vivo display a substantially reduced number of keratinocytes with YAP-positive nuclei. Overall, our current findings identify a novel role for epidermal integrin α3β1 in regulating the cutaneous wound microenvironment by mediating paracrine crosstalk from keratinocytes to wound macrophages, implicating α3β1 as a potential target of wound therapy.
Collapse
Affiliation(s)
- Whitney M Longmate
- Department of Surgery, Albany Medical College, Albany, NY 12208, USA; Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Emily Norton
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Giesse Albeche Duarte
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Lei Wu
- Department of Surgery, Albany Medical College, Albany, NY 12208, USA
| | - Mathieu R DiPersio
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - John M Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - C Michael DiPersio
- Department of Surgery, Albany Medical College, Albany, NY 12208, USA; Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
4
|
Ren WX, Guo H, Lin SY, Chen SY, Long YY, Xu LY, Wu D, Cao YL, Qu J, Yang BL, Xu HP, Li H, Yu YL, Zhang AY, Wang S, Zhang YC, Zhou KS, Chen ZC, Li QB. Targeting cytohesin-1 suppresses acute myeloid leukemia progression and overcomes resistance to ABT-199. Acta Pharmacol Sin 2024; 45:180-192. [PMID: 37644132 PMCID: PMC10770340 DOI: 10.1038/s41401-023-01142-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023]
Abstract
Adhesion molecules play essential roles in the homeostatic regulation and malignant transformation of hematopoietic cells. The dysregulated expression of adhesion molecules in leukemic cells accelerates disease progression and the development of drug resistance. Thus, targeting adhesion molecules represents an attractive anti-leukemic therapeutic strategy. In this study, we investigated the prognostic role and functional significance of cytohesin-1 (CYTH1) in acute myeloid leukemia (AML). Analysis of AML patient data from the GEPIA and BloodSpot databases revealed that CYTH1 was significantly overexpressed in AML and independently correlated with prognosis. Functional assays using AML cell lines and an AML xenograft mouse model confirmed that CYTH1 depletion significantly inhibited the adhesion, migration, homing, and engraftment of leukemic cells, delaying disease progression and prolonging animal survival. The CYTH1 inhibitor SecinH3 exerted in vitro and in vivo anti-leukemic effects by disrupting leukemic adhesion and survival programs. In line with the CYTH1 knockdown results, targeting CYTH1 by SecinH3 suppressed integrin-associated adhesion signaling by reducing ITGB2 expression. SecinH3 treatment efficiently induced the apoptosis and inhibited the growth of a panel of AML cell lines (MOLM-13, MV4-11 and THP-1) with mixed-lineage leukemia gene rearrangement, partly by reducing the expression of the anti-apoptotic protein MCL1. Moreover, we showed that SecinH3 synergized with the BCL2-selective inhibitor ABT-199 (venetoclax) to inhibit the proliferation and promote the apoptosis of ABT-199-resistant leukemic cells. Taken together, our results not only shed light on the role of CYTH1 in cell-adhesion-mediated leukemogenesis but also propose a novel combination treatment strategy for AML.
Collapse
Affiliation(s)
- Wen-Xiang Ren
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hao Guo
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450000, China
| | - Sheng-Yan Lin
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Si-Yi Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yao-Ying Long
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liu-Yue Xu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Di Wu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu-Lin Cao
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiao Qu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bian-Lei Yang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong-Pei Xu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - He Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ya-Li Yu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - An-Yuan Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shan Wang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi-Cheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ke-Shu Zhou
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450000, China.
| | - Zhi-Chao Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Qiu-Bai Li
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Engineering Research Center for Application of Extracellular Vesicles, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
5
|
Contribution of Endothelial Laminin-Binding Integrins to Cellular Processes Associated with Angiogenesis. Cells 2022; 11:cells11050816. [PMID: 35269439 PMCID: PMC8909174 DOI: 10.3390/cells11050816] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Endothelial cells engage extracellular matrix and basement membrane components through integrin-mediated adhesion to promote angiogenesis. Angiogenesis involves the sprouting of endothelial cells from pre-existing vessels, their migration into surrounding tissue, the upregulation of angiogenesis-associated genes, and the formation of new endothelial tubes. To determine whether the endothelial laminin-binding integrins, α6β4, and α3β1 contribute to these processes, we employed RNAi technology in organotypic angiogenesis assays, as well in migration assays, in vitro. The endothelial depletion of either α6β4 or α3β1 inhibited endothelial sprouting, indicating that these integrins have non-redundant roles in this process. Interestingly, these phenotypes were accompanied by overlapping and distinct changes in the expression of angiogenesis-associated genes. Lastly, depletion of α6β4, but not α3β1, inhibited migration. Taken together, these results suggest that laminin-binding integrins regulate processes associated with angiogenesis by distinct and overlapping mechanisms.
Collapse
|
6
|
Tong Y, Bao C, Xu YQ, Tao L, Zhou Y, Zhuang L, Meng Y, Zhang H, Xue J, Wang W, Zhang L, Pan Q, Shao Z, Hu T, Guo Q, Xue Q, Lu H, Luo Y. The β3/5 Integrin-MMP9 Axis Regulates Pulmonary Inflammatory Response and Endothelial Leakage in Acute Lung Injury. J Inflamm Res 2021; 14:5079-5094. [PMID: 34675589 PMCID: PMC8502060 DOI: 10.2147/jir.s331939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Background Acute lung injury (ALI) is a severe respiratory disease with high rates of morbidity and mortality. Many mediators regarding endogenous or exogenous are involved in the pathophysiology of ALI. Here, we have uncovered the involvement of integrins and matrix metalloproteinases, as critical determinants of excessive inflammation and endothelial permeability, in the regulation of ALI. Methods Inflammatory cytokines were measured by quantitative real-time PCR for mRNA levels and ELISA for secretion levels. Endothelial permeability assay was detected by the passage of rhodamine B isothiocyanate-dextran. Mice lung permeability was assayed by Evans blue albumin (EBA). Western blot was used for protein level measurements. The intracellular reactive oxygen species (ROS) were evaluated using a cell-permeable probe, DCFH-DA. Intratracheal injection of lipopolysaccharide (LPS) into mice was conducted to establish the lung injury model. Results Exogenous MMP-9 significantly aggravated the inflammatory response and permeability in mouse pulmonary microvascular endothelial cells (PMVECs) treated by LPS, whereas knockdown of MMP-9 exhibited the opposite phenotypes. Knockdown of integrin β3 or β5 in LPS-treated PMVECs significantly downregulated MMP-9 expression and decreased inflammatory response and permeability in the presence or absence of exogenous MMP-9. Additionally, the interaction of MMP-9 and integrin β5 was impaired by a ROS scavenger, which further decreased the pro-inflammatory cytokines production and endothelial leakage in PMVECs subjected to co-treatment (LPS with exogenous MMP-9). In vivo studies, exogenous MMP-9 treatment or knockdown β3 integrin significantly decreased survival in ALI mice. Notably, knockdown of β5 integrin alone had no remarkable effect on survival, but which combined with anti-MMP-9 treatment significantly improved the survival by ameliorating excessive lung inflammation and permeability in ALI mice. Conclusion These findings support the β3/5 integrin-MMP-9 axis as an endogenous signal that could play a pivotal role in regulating inflammatory response and alveolar-capillary permeability in ALI.
Collapse
Affiliation(s)
- Yao Tong
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Chengrong Bao
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Yi-Qiong Xu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Lei Tao
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Yao Zhou
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Lei Zhuang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Ying Meng
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Hui Zhang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Jingjing Xue
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Weijun Wang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Lele Zhang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Qingbo Pan
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Zhenzhen Shao
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Tianran Hu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Qian Guo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Qingsheng Xue
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Han Lu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| |
Collapse
|
7
|
Chen H, Luo T, He S, Sa G. Regulatory mechanism of oral mucosal rete peg formation. J Mol Histol 2021; 52:859-868. [PMID: 34463917 DOI: 10.1007/s10735-021-10016-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/26/2021] [Indexed: 01/17/2023]
Abstract
Rete pegs are finger-like structures that are formed during the development and wound healing process of the skin and oral mucosa, and they provide better mechanical resistance and nutritional supply between the epithelium and dermis. An increasing number of studies have shown that rete pegs have physiological functions, such as resisting bacterial invasion, body fluid loss, and other harmful changes, which indicate that rete pegs are important structures in natural skin and oral mucosa. Although a great deal of progress has been made in scaffold materials and construction methods for tissue-engineered skin and oral mucosa in recent years, construction of the oral mucosa with functional rete pegs remains a major challenge. In this review, we summarized current research on the progress on formation of rete pegs in human oral mucosa as well as its molecular basis and regulatory mechanism, which might provide new ideas for functional construction of tissue-engineered skin and oral mucosa.
Collapse
Affiliation(s)
- Heng Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China
| | - Tianhao Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, People's Republic of China
| | - Sangang He
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei, China.
| | - Guoliang Sa
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, Hubei, China.
| |
Collapse
|
8
|
Cytoskeleton Response to Ionizing Radiation: A Brief Review on Adhesion and Migration Effects. Biomedicines 2021; 9:biomedicines9091102. [PMID: 34572287 PMCID: PMC8465203 DOI: 10.3390/biomedicines9091102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
The cytoskeleton is involved in several biological processes, including adhesion, motility, and intracellular transport. Alterations in the cytoskeletal components (actin filaments, intermediate filaments, and microtubules) are strictly correlated to several diseases, such as cancer. Furthermore, alterations in the cytoskeletal structure can lead to anomalies in cells’ properties and increase their invasiveness. This review aims to analyse several studies which have examined the alteration of the cell cytoskeleton induced by ionizing radiations. In particular, the radiation effects on the actin cytoskeleton, cell adhesion, and migration have been considered to gain a deeper knowledge of the biophysical properties of the cell. In fact, the results found in the analysed works can not only aid in developing new diagnostic tools but also improve the current cancer treatments.
Collapse
|
9
|
Ten Bosch GJA, Bolk J, 't Hart BA, Laman JD. Multiple sclerosis is linked to MAPK ERK overactivity in microglia. J Mol Med (Berl) 2021; 99:1033-1042. [PMID: 33948692 PMCID: PMC8313465 DOI: 10.1007/s00109-021-02080-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022]
Abstract
Reassessment of published observations in patients with multiple sclerosis (MS) suggests a microglial malfunction due to inappropriate (over)activity of the mitogen-activated protein kinase pathway ERK (MAPKERK). These observations regard biochemistry as well as epigenetics, and all indicate involvement of this pathway. Recent preclinical research on neurodegeneration already pointed towards a role of MAPK pathways, in particular MAPKERK. This is important as microglia with overactive MAPK have been identified to disturb local oligodendrocytes which can lead to locoregional demyelination, hallmark of MS. This constitutes a new concept on pathophysiology of MS, besides the prevailing view, i.e., autoimmunity. Acknowledged risk factors for MS, such as EBV infection, hypovitaminosis D, and smoking, all downregulate MAPKERK negative feedback phosphatases that normally regulate MAPKERK activity. Consequently, these factors may contribute to inappropriate MAPKERK overactivity, and thereby to neurodegeneration. Also, MAPKERK overactivity in microglia, as a factor in the pathophysiology of MS, could explain ongoing neurodegeneration in MS patients despite optimized immunosuppressive or immunomodulatory treatment. Currently, for these patients with progressive disease, no effective treatment exists. In such refractory MS, targeting the cause of overactive MAPKERK in microglia merits further investigation as this phenomenon may imply a novel treatment approach.
Collapse
Affiliation(s)
- George J A Ten Bosch
- Department of Medical Oncology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Jolande Bolk
- Department of Anesthesiology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Bert A 't Hart
- Department Anatomy and Neuroscience, Amsterdam University Medical Center (VUmc), Amsterdam, The Netherlands.,Department Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, The Netherlands
| | - Jon D Laman
- Department Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Longmate WM, Miskin RP, Van De Water L, DiPersio CM. Epidermal Integrin α3β1 Regulates Tumor-Derived Proteases BMP-1, Matrix Metalloprotease-9, and Matrix Metalloprotease-3. JID INNOVATIONS : SKIN SCIENCE FROM MOLECULES TO POPULATION HEALTH 2021; 1:100017. [PMID: 34909716 PMCID: PMC8659409 DOI: 10.1016/j.xjidi.2021.100017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 10/28/2022]
Abstract
As the major cell surface receptors for the extracellular matrix, integrins regulate adhesion and migration and have been shown to drive tumor growth and progression. Previous studies showed that mice lacking integrin α3β1 in the epidermis fail to form skin tumors during two-step chemical tumorigenesis, indicating a protumorigenic role for α3β1. Furthermore, genetic ablation of α3β1 in established skin tumors caused their rapid regression, indicating an essential role in the maintenance of tumor growth. In this study, analysis of immortalized keratinocyte lines and their conditioned media support a role for α3β1 in regulating the expression of several extracellular proteases of the keratinocyte secretome, namely BMP-1, matrix metalloprotease (MMP)-9, and MMP-3. Moreover, immunofluorescence revealed reduced levels of each protease in α3β1-deficient tumors, and RNA in situ hybridization showed that their expression was correspondingly reduced in α3β1-deficient tumor cells in vivo. Bioinformatic analysis confirmed that the expression of BMP1, MMP9, and MMP3 genes correlate with the expression of ITGA3 (gene encoding the integrin α3 subunit) in human squamous cell carcinoma and that high ITGA3 and MMP3 associate with poor survival outcome in these patients. Overall, our findings identify α3β1 as a regulator of several proteases within the secretome of epidermal tumors and as a potential therapeutic target.
Collapse
Key Words
- CM, conditioned medium
- ECM, extracellular matrix
- IMK, immortalized mouse keratinocyte
- ISH, in situ hybridization
- KC, keratinocyte
- MK, mouse keratinocyte
- MMP, matrix metalloprotease
- SCC, squamous cell carcinoma
- TME, tumor microenvironment
- TMK, transformed mouse keratinocyte
Collapse
Affiliation(s)
| | - Rakshitha Pandulal Miskin
- The Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Livingston Van De Water
- Department of Surgery, Albany Medical College, Albany, New York, USA,The Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - C. Michael DiPersio
- Department of Surgery, Albany Medical College, Albany, New York, USA,Department of Molecular and Cellular Physiology (MCP), Albany Medical College, Albany, New York, USA,Correspondence: C. Michael DiPersio, Department of Surgery, Albany Medical College, Mail Code 8, Room MR-421, 47 New Scotland Avenue, Albany, New York 12208-3479, USA.
| |
Collapse
|
11
|
Park ES, Kim S, Huang S, Yoo JY, Körbelin J, Lee TJ, Kaur B, Dash PK, Chen PR, Kim E. Selective Endothelial Hyperactivation of Oncogenic KRAS Induces Brain Arteriovenous Malformations in Mice. Ann Neurol 2021; 89:926-941. [PMID: 33675084 DOI: 10.1002/ana.26059] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Brain arteriovenous malformations (bAVMs) are a leading cause of hemorrhagic stroke and neurological deficits in children and young adults, however, no pharmacological intervention is available to treat these patients. Although more than 95% of bAVMs are sporadic without family history, the pathogenesis of sporadic bAVMs is largely unknown, which may account for the lack of therapeutic options. KRAS mutations are frequently observed in cancer, and a recent unprecedented finding of these mutations in human sporadic bAVMs offers a new direction in the bAVM research. Using a novel adeno-associated virus targeting brain endothelium (AAV-BR1), the current study tested if endothelial KRASG12V mutation induces sporadic bAVMs in mice. METHODS Five-week-old mice were systemically injected with either AAV-BR1-GFP or -KRASG12V . At 8 weeks after the AAV injection, bAVM formation and characteristics were addressed by histological and molecular analyses. The effect of MEK/ERK inhibition on KRASG12V -induced bAVMs was determined by treatment of trametinib, a US Food and Drug Administration (FDA)-approved MEK/ERK inhibitor. RESULTS The viral-mediated KRASG12V overexpression induced bAVMs, which were composed of a tangled nidus mirroring the distinctive morphology of human bAVMs. The bAVMs were accompanied by focal angiogenesis, intracerebral hemorrhages, altered vascular constituents, neuroinflammation, and impaired sensory/cognitive/motor functions. Finally, we confirmed that bAVM growth was inhibited by trametinib treatment. INTERPRETATION Our innovative approach using AAV-BR1 confirms that KRAS mutations promote bAVM development via the MEK/ERK pathway, and provides a novel preclinical mouse model of bAVMs which will be useful to develop a therapeutic strategy for patients with bAVM. ANN NEUROL 2021;89:926-941.
Collapse
Affiliation(s)
- Eun S Park
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Sehee Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Shuning Huang
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Ji Young Yoo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Jakob Körbelin
- II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tae Jin Lee
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Balveen Kaur
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Peng R Chen
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| | - Eunhee Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX
| |
Collapse
|
12
|
Integrin α3β1 Promotes Invasive and Metastatic Properties of Breast Cancer Cells through Induction of the Brn-2 Transcription Factor. Cancers (Basel) 2021; 13:cancers13030480. [PMID: 33513758 PMCID: PMC7866210 DOI: 10.3390/cancers13030480] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Metastatic triple-negative breast cancer (TNBC) is highly lethal with limited therapy options. Integrin α3β1 is a cell surface receptor that interacts with the extracellular matrix and facilitates communication between tumor cells and their microenvironment. α3β1 is implicated in breast cancer progression and metastasis, so understanding mechanisms by which α3β1 promotes invasion and metastasis will facilitate the development of this integrin as a potential therapeutic target. Here we identify a novel role for α3β1 in promoting the expression of the transcription factor Brain-2 (Brn-2) in triple-negative breast cancer cells. We further report that Brn-2 promotes invasion and metastasis and partially restores invasion to cells in which expression of α3β1 has been suppressed. Bioinformatic analysis of patient datasets revealed a positive correlation between the expression of the genes encoding the integrin α3 subunit and Brn-2. In summary, our work identifies α3β1-mediated induction of Brn-2 as a mechanism that regulates invasive and metastatic properties of breast cancer cells. Abstract In the current study, we demonstrate that integrin α3β1 promotes invasive and metastatic traits of triple-negative breast cancer (TNBC) cells through induction of the transcription factor, Brain-2 (Brn-2). We show that RNAi-mediated suppression of α3β1 in MDA-MB-231 cells caused reduced expression of Brn-2 mRNA and protein and reduced activity of the BRN2 gene promoter. In addition, RNAi-targeting of Brn-2 in MDA-MB-231 cells decreased invasion in vitro and lung colonization in vivo, and exogenous Brn-2 expression partially restored invasion to cells in which α3β1 was suppressed. α3β1 promoted phosphorylation of Akt in MDA-MB-231 cells, and treatment of these cells with a pharmacological Akt inhibitor (MK-2206) reduced both Brn-2 expression and cell invasion, indicating that α3β1-Akt signaling contributes to Brn-2 induction. Analysis of RNAseq data from patients with invasive breast carcinoma revealed that high BRN2 expression correlates with poor survival. Moreover, high BRN2 expression positively correlates with high ITGA3 expression in basal-like breast cancer, which is consistent with our experimental findings that α3β1 induces Brn-2 in TNBC cells. Together, our study demonstrates a pro-invasive/pro-metastatic role for Brn-2 in breast cancer cells and identifies a role for integrin α3β1 in regulating Brn-2 expression, thereby revealing a novel mechanism of integrin-dependent breast cancer cell invasion.
Collapse
|
13
|
Xu H, Pumiglia K, LaFlamme SE. Laminin-511 and α6 integrins regulate the expression of CXCR4 to promote endothelial morphogenesis. J Cell Sci 2020; 133:jcs246595. [PMID: 32409567 DOI: 10.1242/jcs.246595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/11/2020] [Indexed: 12/25/2022] Open
Abstract
During angiogenesis, endothelial cells engage components of the extracellular matrix through integrin-mediated adhesion. Endothelial expression of laminin-411 and laminin-511 is known to promote vessel stability. However, little is known about the contribution of these laminins to endothelial morphogenesis. We used two organotypic cell culture angiogenesis assays, in conjunction with RNAi approaches, to demonstrate that depletion of either the α4 chain of laminin-411 (LAMA4) or the α5 chain of laminin-511 (LAMA5) from endothelial cells inhibits sprouting and tube formation. Depletion of α6 (ITGA6) integrins resulted in similar phenotypes. Gene expression analysis indicated that loss of either laminin-511 or α6 integrins inhibited the expression of CXCR4, a gene previously associated with angiogenic endothelial cells. Pharmacological or RNAi-dependent inhibition of CXCR4 suppressed endothelial sprouting and morphogenesis. Importantly, expression of recombinant CXCR4 rescued endothelial morphogenesis when α6 integrin expression was inhibited. Additionally, the depletion of α6 integrins from established tubes resulted in the loss of tube integrity and laminin-511. Taken together, our results indicate that α6 integrins and laminin-511 can promote endothelial morphogenesis by regulating the expression of CXCR4 and suggest that the α6-dependent deposition of laminin-511 protects the integrity of established endothelial tubes.
Collapse
Affiliation(s)
- Hao Xu
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany NY 12208, USA
| | - Kevin Pumiglia
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany NY 12208, USA
| | - Susan E LaFlamme
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany NY 12208, USA
| |
Collapse
|
14
|
Fetz AE, Radic MZ, Bowlin GL. Neutrophils in Biomaterial-Guided Tissue Regeneration: Matrix Reprogramming for Angiogenesis. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:95-106. [PMID: 32299302 DOI: 10.1089/ten.teb.2020.0028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biomaterial-guided in situ tissue regeneration uses biomaterials to stimulate and guide the body's endogenous, regenerative processes to drive functional tissue repair and regeneration. To be successful, cell migration into the biomaterials is essential, which requires angiogenesis to maintain cell viability. Neutrophils, the first cells responding to an implanted biomaterial, are now known to play an integral part in angiogenesis in multiple tissues and exhibit considerable potential for driving angiogenesis in the context of tissue regeneration. In terms of biomaterial-guided in situ tissue regeneration, harnessing the proangiogenic potential of the neutrophil through its robust secretion of matrix metalloproteinase 9 (MMP-9) may provide a mechanism to improve biomaterial performance by initiating matrix reprogramming. This review will discuss neutrophils as matrix reprogrammers and what is currently known about their ability to create a microenvironment that is more conducive for angiogenesis and tissue regeneration through the secretion of MMP-9. It will first review a set of ground-breaking studies in tumor biology and then present an overview of what is currently known about neutrophils and MMP-9 in biomaterial vascularization. Finally, it will conclude with potential strategies and considerations to engage neutrophils in biomaterial-guided angiogenesis and in situ tissue regeneration. Impact statement This review draws attention to a highly neglected topic in tissue engineering, the role of neutrophils in biomaterial-guided tissue regeneration and angiogenesis. Moreover, it highlights their abundant secretion of matrix metalloproteinase 9 (MMP-9) for matrix reprogramming, a topic with great potential yet to be vetted in the literature. It presents strategies and considerations for designing the next generation of immunomodulatory biomaterials. While there is literature discussing the overall role of neutrophils in angiogenesis, there are a limited number of review articles focused on this highly relevant topic in the context of biomaterial integration and tissue regeneration, making this a necessary and impactful article.
Collapse
Affiliation(s)
- Allison E Fetz
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA
| | - Marko Z Radic
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|
15
|
Longmate WM, Varney S, Power D, Miskin RP, Anderson KE, DeFreest L, Van De Water L, DiPersio CM. Integrin α3β1 on Tumor Keratinocytes Is Essential to Maintain Tumor Growth and Promotes a Tumor-Supportive Keratinocyte Secretome. J Invest Dermatol 2020; 141:142-151.e6. [PMID: 32454065 DOI: 10.1016/j.jid.2020.05.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/08/2020] [Accepted: 05/01/2020] [Indexed: 02/01/2023]
Abstract
The development of integrin-targeted cancer therapies is hindered by incomplete understanding of integrin function in tumor cells and the tumor microenvironment. Previous studies showed that mice with epidermis-specific deletion of the α3 integrin subunit fail to form skin tumors during two-step chemical tumorigenesis, indicating a protumorigenic role for integrin α3β1. Here, we generated mice with tamoxifen-inducible, epidermis-specific α3 knockout to determine the role of α3β1 in the maintenance of established tumor cells and/or the associated stroma. Genetic ablation of α3 in established skin tumors caused their rapid regression, indicating that α3β1 is essential to maintain tumor growth. Although reduced proliferation and increased apoptosis were observed in α3β1-deficient tumor cells, these changes followed a robust increase in stromal apoptosis. Furthermore, macrophages and fibulin-2 levels were reduced in stroma following α3 deletion from tumor cells. Mass spectrometric analysis of conditioned medium from immortalized keratinocytes showed that α3β1 regulates a substantial fraction of the keratinocyte secretome, including fibulin-2 and macrophage CSF1; RNA in situ hybridization showed that expression of these two genes was reduced in tumor keratinocytes in vivo. Our findings identify α3β1 as a regulator of the keratinocyte secretome and skin tumor microenvironment and as a potential therapeutic target.
Collapse
Affiliation(s)
| | - Scott Varney
- Department of Surgery Albany Medical College, Albany, New York, USA
| | - Derek Power
- Department of Surgery Albany Medical College, Albany, New York, USA
| | | | - Karl E Anderson
- Department of Surgery Albany Medical College, Albany, New York, USA
| | - Lori DeFreest
- Department of Surgery Albany Medical College, Albany, New York, USA
| | - Livingston Van De Water
- Department of Surgery Albany Medical College, Albany, New York, USA; Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - C Michael DiPersio
- Department of Surgery Albany Medical College, Albany, New York, USA; Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA.
| |
Collapse
|
16
|
Du Q, Wang W, Liu T, Shang C, Huang J, Liao Y, Qin S, Chen Y, Liu P, Liu J, Yao S. High Expression of Integrin α3 Predicts Poor Prognosis and Promotes Tumor Metastasis and Angiogenesis by Activating the c-Src/Extracellular Signal-Regulated Protein Kinase/Focal Adhesion Kinase Signaling Pathway in Cervical Cancer. Front Oncol 2020; 10:36. [PMID: 32117712 PMCID: PMC7033469 DOI: 10.3389/fonc.2020.00036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Cervical cancer remains a leading cause of death in women due to metastasis to distant tissues and organs. Integrins are involved in cancer metastasis. However, whether integrin α3 participates in cervical cancer metastasis is under investigation. In this study, we explored the effect and detailed mechanism through which integrin α3 regulates cervical cell migration, invasion, and angiogenesis. Methods: First, we explored the mRNA and protein expression levels of integrin α3 in cervical cancer cell lines and tissue samples obtained from patients. After knocking down the expression of integrin α3 using shRNA, the proliferation, migration, and invasion of cervical cancer cells, as well as the possible signaling pathways involved, were investigated in vitro. In addition, tube formation, proliferation, and migration of human umbilical vein endothelial cells were tested to identify their effect on angiogenesis. Zebrafish tumor migration and nude mouse lung metastasis models were utilized for the in vivo analysis. Results: We examined samples from 142 patients with cervical cancer and 20 normal cervixes. Integrin α3 was highly expressed in patients and predicted poor overall survival and disease-free survival. In SiHa cells, treatment with integrin α3 shRNA induced the phosphorylation of protein focal adhesion kinase and enhanced focal adhesion. These events were mediated by the activation of c-Src and extracellular signal-regulated protein kinase cascades. Consequently, integrin α3 increased the migratory ability of SiHa cells. In addition, knockdown of integrin α3 decreased the tube formation, proliferation, and migration of human umbilical vein endothelial cells, as well as the levels of matrix metalloproteinase-9, indicating its effect on angiogenesis. Stable transfection with integrin α3 shRNA reduced the migratory ability of SiHa cells in the zebrafish model and diminished lung metastasis in the xenograft mouse model. Conclusion: Integrin α3 recruits the c-Src/extracellular signal-regulated protein kinase cascade, leading to phosphorylation of focal adhesion kinase. Moreover, it regulates focal adhesion, endowing cervical cancer cells with potentiated migratory and invasive ability, and promotes angiogenesis via matrix metalloproteinase-9. Our findings may shed light on the mechanism involved in cervical cancer metastasis and highlight integrin α3 as a candidate prognostic biomarker and therapeutic target in patients with cervical cancer.
Collapse
Affiliation(s)
- Qiqiao Du
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tianyu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunliang Shang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Jiaming Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuandong Liao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuhang Qin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yili Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Pan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junxiu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
DiPersio CM, Van De Water L. Integrin Regulation of CAF Differentiation and Function. Cancers (Basel) 2019; 11:cancers11050715. [PMID: 31137641 PMCID: PMC6563118 DOI: 10.3390/cancers11050715] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/14/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
Extensive remodeling of the extracellular matrix, together with paracrine communication between tumor cells and stromal cells, contribute to an “activated” tumor microenvironment that supports malignant growth and progression. These stromal cells include inflammatory cells, endothelial cells, and cancer-associated fibroblasts (CAFs). Integrins are expressed on all tumor and stromal cell types where they regulate both cell adhesion and bidirectional signal transduction across the cell membrane. In this capacity, integrins control pro-tumorigenic cell autonomous functions such as growth and survival, as well as paracrine crosstalk between tumor cells and stromal cells. The myofibroblast-like properties of cancer-associated fibroblasts (CAFs), such as robust contractility and extracellular matrix (ECM) deposition, allow them to generate both chemical and mechanical signals that support invasive tumor growth. In this review, we discuss the roles of integrins in regulating the ability of CAFs to generate and respond to extracellular cues in the tumor microenvironment. Since functions of specific integrins in CAFs are only beginning to emerge, we take advantage of a more extensive literature on how integrins regulate wound myofibroblast differentiation and function, as some of these integrin functions are likely to extrapolate to CAFs within the tumor microenvironment. In addition, we discuss the roles that integrins play in controlling paracrine signals that emanate from epithelial/tumor cells to stimulate fibroblasts/CAFs.
Collapse
|
18
|
Barchitta M, Maugeri A, Favara G, Magnano San Lio R, Evola G, Agodi A, Basile G. Nutrition and Wound Healing: An Overview Focusing on the Beneficial Effects of Curcumin. Int J Mol Sci 2019; 20:1119. [PMID: 30841550 PMCID: PMC6429075 DOI: 10.3390/ijms20051119] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Wound healing implicates several biological and molecular events, such as coagulation, inflammation, migration-proliferation, and remodeling. Here, we provide an overview of the effects of malnutrition and specific nutrients on this process, focusing on the beneficial effects of curcumin. We have summarized that protein loss may negatively affect the whole immune process, while adequate intake of carbohydrates is necessary for fibroblast migration during the proliferative phase. Beyond micronutrients, arginine and glutamine, vitamin A, B, C, and D, zinc, and iron are essential for inflammatory process and synthesis of collagen. Notably, anti-inflammatory and antioxidant properties of curcumin might reduce the expression of tumor necrosis factor alpha (TNF-α) and interleukin-1 (IL-1) and restore the imbalance between reactive oxygen species (ROS) production and antioxidant activity. Since curcumin induces apoptosis of inflammatory cells during the early phase of wound healing, it could also accelerate the healing process by shortening the inflammatory phase. Moreover, curcumin might facilitate collagen synthesis, fibroblasts migration, and differentiation. Although curcumin could be considered as a wound healing agent, especially if topically administered, further research in wound patients is recommended to achieve appropriate nutritional approaches for wound management.
Collapse
Affiliation(s)
- Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S. Sofia 87, 95123 Catania, Italy.
| | - Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S. Sofia 87, 95123 Catania, Italy.
| | - Giuliana Favara
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S. Sofia 87, 95123 Catania, Italy.
| | - Roberta Magnano San Lio
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S. Sofia 87, 95123 Catania, Italy.
| | - Giuseppe Evola
- General and Emergency Surgery Department, Garibaldi Hospital, Piazza Santa Maria di Gesù, 95100 Catania, Italy.
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S. Sofia 87, 95123 Catania, Italy.
| | - Guido Basile
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via Plebiscito 628, 95124 Catania, Italy.
| |
Collapse
|
19
|
Muscella A, Cossa LG, Vetrugno C, Antonaci G, Marsigliante S. Adenosine diphosphate regulates MMP2 and MMP9 activity in malignant mesothelioma cells. Ann N Y Acad Sci 2018; 1431:72-84. [PMID: 29984433 DOI: 10.1111/nyas.13922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/22/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
Although an association between cancer progression and matrix metalloproteinase (MMP) 2 and MPP9 expression has been known, the expression, nuclear localization, and physiologically controlled activation of these two MMPs have not been investigated in malignant mesothelioma cells. We examined the expression and intracellular localization of MMP2/9 in ZL55 malignant mesothelioma cells, as well as their regulation by ADP. Using real-time PCR, we showed that activation of the P2Y1 receptor by ADP increased the expression of MMP2/9 mRNAs; MMP2/9 collected from conditioned media also showed an increase in activity; and ADP induced the nuclear localization of MMP2/9. The effects of ADP on transcription of the MMPs were due to activation of c-Src, Akt, and NF-κB, while ERK1/2 phosphorylation was needed for the increase in enzymatic activity and the regulation of nuclear import. We also showed that the nuclear localization of MMP2/9 induced by ADP causes the cleavage and inactivation of poly-ADP-ribose polymerase-1. These findings may help to elucidate the mechanisms regulating MMP2/9 activation in ZL55 human epithelioid mesothelioma cells, and perhaps other cells. Therapeutic approaches that promote ADP accumulation in a tumor environment may constitute an effective means to induce anticancer activity.
Collapse
Affiliation(s)
- Antonella Muscella
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Luca Giulio Cossa
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Carla Vetrugno
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Giovanna Antonaci
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Santo Marsigliante
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| |
Collapse
|
20
|
Brilha S, Chong DLW, Khawaja AA, Ong CWM, Guppy NJ, Porter JC, Friedland JS. Integrin α2β1 Expression Regulates Matrix Metalloproteinase-1-Dependent Bronchial Epithelial Repair in Pulmonary Tuberculosis. Front Immunol 2018; 9:1348. [PMID: 29988449 PMCID: PMC6024194 DOI: 10.3389/fimmu.2018.01348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/31/2018] [Indexed: 11/22/2022] Open
Abstract
Pulmonary tuberculosis (TB) is caused by inhalation of Mycobacterium tuberculosis, which damages the bronchial epithelial barrier to establish local infection. Matrix metalloproteinase-1 plays a crucial role in the immunopathology of TB, causing breakdown of type I collagen and cavitation, but this collagenase is also potentially involved in bronchial epithelial repair. We hypothesized that the extracellular matrix (ECM) modulates M. tuberculosis-driven matrix metalloproteinase-1 expression by human bronchial epithelial cells (HBECs), regulating respiratory epithelial cell migration and repair. Medium from monocytes stimulated with M. tuberculosis induced collagenase activity in bronchial epithelial cells, which was reduced by ~87% when cells were cultured on a type I collagen matrix. Matrix metalloproteinase-1 had a focal localization, which is consistent with cell migration, and overall secretion decreased by 32% on type I collagen. There were no associated changes in the specific tissue inhibitors of metalloproteinases. Decreased matrix metalloproteinase-1 secretion was due to ligand-binding to the α2β1 integrin and was dependent on the actin cytoskeleton. In lung biopsies, samples from patients with pulmonary TB, integrin α2β1 is highly expressed on the bronchial epithelium. Areas of lung with disrupted collagen matrix showed an increase in matrix metalloproteinases-1 expression compared with areas where collagen was comparable to control lung. Type I collagen matrix increased respiratory epithelial cell migration in a wound-healing assay, and this too was matrix metalloproteinase-dependent, since it was blocked by the matrix metalloproteinase inhibitor GM6001. In summary, we report a novel mechanism by which α2β1-mediated signals from the ECM modulate matrix metalloproteinase-1 secretion by HBECs, regulating their migration and epithelial repair in TB.
Collapse
Affiliation(s)
- Sara Brilha
- Infectious Diseases and Immunity, Imperial College London, London, United Kingdom.,Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| | - Deborah L W Chong
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| | - Akif A Khawaja
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| | - Catherine W M Ong
- Infectious Diseases and Immunity, Imperial College London, London, United Kingdom.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Naomi J Guppy
- UCL Advanced Diagnostics, University College London, London, United Kingdom
| | - Joanna C Porter
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| | - Jon S Friedland
- Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
| |
Collapse
|
21
|
Longmate WM, Lyons SP, DeFreest L, Van De Water L, DiPersio CM. Opposing Roles of Epidermal Integrins α3β1 and α9β1 in Regulation of mTLD/BMP-1-Mediated Laminin-γ2 Processing during Wound Healing. J Invest Dermatol 2018; 138:444-451. [PMID: 28923241 PMCID: PMC5794664 DOI: 10.1016/j.jid.2017.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 11/27/2022]
Abstract
Proteolytic processing of the laminin-γ2 chain is a hallmark of basement membrane maturation in the skin. Integrin α3β1, a major receptor for epidermal adhesion to laminin-332, is critical for proper basement membrane organization during skin development and wound healing. Previously, we identified a role for α3β1 in promoting the processing of laminin-γ2 in cultured keratinocytes in vitro and in wound epidermis in vivo. In this study we identify the Bmp1 gene, which encodes variants of the mTLD/BMP-1 metalloproteases, as a critical regulator of α3β1-dependent laminin-γ2 processing, thereby expanding the role of this integrin in controlling the secretion by the epidermis of factors that modulate the tissue microenvironment. Because our previous studies identified another epidermal integrin, α9β1, as a suppressive regulator of α3β1-dependent wound angiogenesis, we investigated whether α9β1 has a similar cross-suppressive effect on the ability of α3β1 to promote basement membrane organization. Here, we show that, rather than a cross-suppressive role, α9β1 has an opposing role in basement membrane assembly/maturation through reduced laminin-γ2 processing via mTLD/BMP-1. Although α3β1 promotes this process during wound healing, α9β1 has an inhibitory role, suggesting that regulation of basement membrane assembly requires a complex interplay between these distinct epidermal integrins.
Collapse
Affiliation(s)
- Whitney M Longmate
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Scott P Lyons
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - Lori DeFreest
- Department of Surgery, Albany Medical College, Albany, New York, USA
| | - Livingston Van De Water
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA; Department of Surgery, Albany Medical College, Albany, New York, USA
| | - C Michael DiPersio
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA; Department of Surgery, Albany Medical College, Albany, New York, USA.
| |
Collapse
|
22
|
Alaseem A, Alhazzani K, Dondapati P, Alobid S, Bishayee A, Rathinavelu A. Matrix Metalloproteinases: A challenging paradigm of cancer management. Semin Cancer Biol 2017; 56:100-115. [PMID: 29155240 DOI: 10.1016/j.semcancer.2017.11.008] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) are members of zinc-dependent endopeptidases implicated in a variety of physiological and pathological processes. Over the decades, MMPs have been studied for their role in cancer progression, migration, and metastasis. As a result, accumulated evidence of MMPs incriminating role has made them an attractive therapeutic target. Early generations of broad-spectrum MMP inhibitors exhibited potent inhibitory activities, which subsequently led to clinical trials. Unexpectedly, these trials failed to meet the desired goals, mainly due to the lack of efficacy, poor oral bioavailability, and toxicity. In this review, we discuss the regulatory role of MMPs in cancer progression, current strategies in targeting MMPs for cancer treatment including prodrug design and tumor imaging, and therapeutic value of MMPs as biomarkers in breast, lung, and prostate cancers.
Collapse
Affiliation(s)
- Ali Alaseem
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Khalid Alhazzani
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Priya Dondapati
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Saad Alobid
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Appu Rathinavelu
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
23
|
Longmate WM, Lyons SP, Chittur SV, Pumiglia KM, Van De Water L, DiPersio CM. Suppression of integrin α3β1 by α9β1 in the epidermis controls the paracrine resolution of wound angiogenesis. J Cell Biol 2017; 216:1473-1488. [PMID: 28416479 PMCID: PMC5412555 DOI: 10.1083/jcb.201510042] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/10/2017] [Accepted: 03/14/2017] [Indexed: 12/02/2022] Open
Abstract
The development of novel therapies to promote wound healing is hindered by our poor understanding of how different integrins function together in the epidermis. Longmate et al. show that cross-suppression by integrins within the epidermis controls paracrine signals that regulate wound angiogenesis. Integrin α9β1 suppresses the proangiogenic functions of α3β1 during late-stage wound healing, leading to the normalization of blood vessel density in the wound bed. Development of wound therapies is hindered by poor understanding of combinatorial integrin function in the epidermis. In this study, we generated mice with epidermis-specific deletion of α3β1, α9β1, or both integrins as well as keratinocyte lines expressing these integrin combinations. Consistent with proangiogenic roles for α3β1, α3-null keratinocytes showed reduced paracrine stimulation of endothelial cell migration and survival, and wounds of epidermis-specific α3 knockout mice displayed impaired angiogenesis. Interestingly, α9β1 in keratinocytes suppressed α3β1-mediated stimulation of endothelial cells, and wounds of epidermis-specific α9 knockout mice displayed delayed vascular normalization and reduced endothelial apoptosis, indicating that α9β1 cross-suppresses α3β1 proangiogenic functions. Moreover, α9β1 inhibited α3β1 signaling downstream of focal adhesion kinase (FAK) autoactivation at the point of Src-mediated phosphorylation of FAK Y861/Y925. Finally, α9β1 cross-suppressed many α3β1-dependent genes, including the gene that encodes MMP-9, which we implicated as a regulator of integrin-dependent cross talk to endothelial cells. Our findings identify a novel physiological context for combinatorial integrin signaling, laying the foundation for therapeutic strategies that manipulate α9β1 and/or α3β1 during wound healing.
Collapse
Affiliation(s)
- Whitney M Longmate
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208
| | - Scott P Lyons
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208
| | - Sridar V Chittur
- Center for Functional Genomics, University at Albany, Rensselaer, NY 12144
| | - Kevin M Pumiglia
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208
| | - Livingston Van De Water
- Department of Surgery, Albany Medical College, Albany, NY 12208.,Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208
| | - C Michael DiPersio
- Department of Surgery, Albany Medical College, Albany, NY 12208 .,Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208
| |
Collapse
|
24
|
The opposing roles of laminin-binding integrins in cancer. Matrix Biol 2017; 57-58:213-243. [DOI: 10.1016/j.matbio.2016.08.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/02/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023]
|
25
|
Iwanabe Y, Masaki C, Tamura A, Tsuka S, Mukaibo T, Kondo Y, Hosokawa R. The effect of low-intensity pulsed ultrasound on wound healing using scratch assay in epithelial cells. J Prosthodont Res 2016; 60:308-314. [DOI: 10.1016/j.jpor.2016.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/07/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
|
26
|
Yu SM, Kim SJ. 5-Azacytidine regulates matrix metalloproteinase-9 expression, and the migration and invasion of human fibrosarcoma HT1080 cells via PI3-kinase and ERK1/2 pathways. Int J Oncol 2016; 49:1241-7. [DOI: 10.3892/ijo.2016.3612] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/21/2016] [Indexed: 11/06/2022] Open
|
27
|
Integrin-mediated regulation of epidermal wound functions. Cell Tissue Res 2016; 365:467-82. [PMID: 27351421 DOI: 10.1007/s00441-016-2446-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/02/2016] [Indexed: 01/14/2023]
Abstract
During cutaneous wound healing, keratinocyte proliferation and migration are critical for re-epithelialization. In addition the epidermis secretes growth factors, cytokines, proteases, and matricellular proteins into the wound microenvironment that modify the extracellular matrix and stimulate other wound cells that control the inflammatory response, promote angiogenesis and facilitate tissue contraction and remodeling. Wound keratinocytes express at least seven different integrins-the major cell adhesion receptors for the extracellular matrix-that collectively control essential cell-autonomous functions to ensure proper re-epithelialization, including migration, proliferation, survival and basement membrane assembly. Moreover, it has become evident in recent years that some integrins can regulate paracrine signals from wound epidermis that stimulate other wound cells involved in angiogenesis, contraction and inflammation. Importantly, it is likely that abnormal integrin expression or function in the epidermis contributes to wound pathologies such as over-exuberant healing (e.g., hypertrophic scar formation) or diminished healing (e.g., chronic wounds). In this review, we discuss current knowledge of integrin function in the epidermis, which implicates them as attractive therapeutic targets to promote wound healing or treat wound pathologies. We also discuss challenges that arise from the complex roles that multiple integrins play in wound epidermis, which may be regulated through extracellular matrix remodeling that determines ligand availability. Indeed, understanding how different integrin functions are temporally coordinated in wound epidermis and which integrin functions go awry in pathological wounds, will be important to determine how best to target them clinically to achieve maximum therapeutic benefit. Graphical abstract In addition to their well-characterized roles in keratinocyte adhesion, migration and wound re-epithelialization, epidermal integrins play important roles in modifying the wound microenvironment by regulating the expression and secretion of growth factors, extracellular proteases, and matricellular proteins that stimulate other wound cells, including vascular endothelial cells and fibroblasts/myofibroblasts.
Collapse
|
28
|
Alteration of Pituitary Tumor Transforming Gene-1 Regulates Trophoblast Invasion via the Integrin/Rho-Family Signaling Pathway. PLoS One 2016; 11:e0149371. [PMID: 26900962 PMCID: PMC4764760 DOI: 10.1371/journal.pone.0149371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/01/2016] [Indexed: 11/23/2022] Open
Abstract
Trophoblast invasion ability is an important factor in early implantation and placental development. Recently, pituitary tumor transforming gene 1 (PTTG1) was shown to be involved in invasion and proliferation of cancer. However, the role of PTTG1 in trophoblast invasion remains unknown. Thus, in this study we analyzed PTTG1 expression in trophoblasts and its effect on trophoblast invasion activity and determined the mechanism through which PTTG1 regulates trophoblast invasion. Trophoblast proliferation and invasion abilities, regardless of PTTG1 expression, were analyzed by quantitative real-time polymerase chain reaction, fluorescence-activated cell sorting analysis, invasion assay, western blot, and zymography after treatment with small interfering RNA against PTTG1 (siPTTG1). Additionally, integrin/Rho-family signaling in trophoblasts by PTTG1 alteration was analyzed. Furthermore, the effect of PTTG1 on trophoblast invasion was evaluated by microRNA (miRNA) mimic and inhibitor treatment. Trophoblast invasion was significantly reduced through decreased matrix metalloproteinase (MMP)-2 and MMP-9 expression when PTTG1 expression was inhibited by siPTTG1 (p < 0.05). Furthermore, knockdown of PTTG1 increased expression of integrin alpha 4 (ITGA4), ITGA5, and integrin beta 1 (ITGB1); otherwise, RhoA expression was significantly decreased (p < 0.05). Treatment of miRNA-186-5p mimic and inhibitor controlled trophoblast invasion ability by altering PTTG1 and MMP expression. PTTG1 can control trophoblast invasion ability via regulation of MMP expression through integrin/Rho-family signaling. In addition, PTTG1 expression and its function were regulated by miRNA-186-5p. These results help in understanding the mechanism through which PTTG1 regulates trophoblast invasion and thereby implantation and placental development.
Collapse
|
29
|
Sai XB, Makiyama T, Sakane H, Horii Y, Hiraishi H, Shirataki H. TSG101, a tumor susceptibility gene, bidirectionally modulates cell invasion through regulating MMP-9 mRNA expression. BMC Cancer 2015; 15:933. [PMID: 26608825 PMCID: PMC4660656 DOI: 10.1186/s12885-015-1942-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/19/2015] [Indexed: 11/23/2022] Open
Abstract
Background Tumor susceptibility gene 101 (TSG101) was initially identified in fibroblasts as a tumor suppressor gene but subsequent studies show that TSG101 also functions as a tumor-enhancing gene in some epithelial tumor cells. Although previous studies have unraveled diverse biological functions of TSG101, the precise mechanism by which TSG101 is involved in carcinogenesis and tumor progression in a bidirectional and multifaceted manner remains unclear. Methods To reveal the mechanism underlying bidirectional modulation of cell invasion by TSG101, we used RNA interference to examine whether TSG101 depletion bidirectionally modulated matrix metalloproteinase (MMP)-9 expression in different cell types. Results TSG101 depletion promoted cell invasion of HT1080 cells but contrarily reduced cell invasion of HeLaS3 cells. In HT1080 cells, TSG101 depletion increased both baseline and phorbol 12-myristate 13-acetate (PMA)-induced MMP-9 secretion through enhancing MMP-9 mRNA expression, but did not affect the expression or activation of MMP-2. In contrast, TSG101 depletion decreased PMA-induced MMP-9 secretion through reducing MMP-9 mRNA expression in HeLaS3 cells. TSG101 depletion had little impact on the signaling pathways required for the activation of transcription of MMP-9 or MMP-9 mRNA stability in either cell line. Conclusion TSG101 bidirectionally modulates cell invasion through regulating MMP-9 mRNA expression in different cell types. Our results provide a mechanistic context for the role of TSG101 in cell invasion as a multifaceted gene. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1942-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xu Bin Sai
- Department of Molecular and Cell Biology, Graduate School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu-cho, Tochigi, 321-0293, Japan. .,Department of Gastroenterology, Graduate School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu-cho, Tochigi, 321-0293, Japan.
| | - Tomohiko Makiyama
- Department of Molecular and Cell Biology, Graduate School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu-cho, Tochigi, 321-0293, Japan.
| | - Hiroshi Sakane
- Department of Molecular and Cell Biology, Graduate School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu-cho, Tochigi, 321-0293, Japan. .,Present Address: Laboratory of Immunobiology, Faculty of Pharmaceutical Sciences, Fukuyama University, Sanzo Ichibanchi, Gakuencho, Fukuyama, Hiroshima, 729-0292, Japan.
| | - Yukimi Horii
- Department of Molecular and Cell Biology, Graduate School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu-cho, Tochigi, 321-0293, Japan.
| | - Hideyuki Hiraishi
- Department of Gastroenterology, Graduate School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu-cho, Tochigi, 321-0293, Japan.
| | - Hiromichi Shirataki
- Department of Molecular and Cell Biology, Graduate School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu-cho, Tochigi, 321-0293, Japan.
| |
Collapse
|
30
|
Abstract
Transforming growth factor (TGF) β1 activity depends on a complex signalling cascade that controls expression of several genes. Among others, TGFβ1 regulates expression of matrix metalloproteinases (MMPs) through activation of Smads. In the present study, we demonstrate for the first time that the αvβ6 integrin interacts with TGFβ receptor II (TβRII) through the β6 cytoplasmic domain and promotes Smad3 activation in prostate cancer (PrCa) cells. Another related αv integrin, αvβ5, as well as the αvβ6/3 integrin, which contains a chimeric form of β6 with a β3 cytoplasmic domain, do not associate with TβRII and fail to show similar responses. We provide evidence that αvβ6 is required for up-regulation of MMP2 by TGFβ1 through a Smad3-mediated transcriptional programme in PrCa cells. The functional relevance of these results is underscored by the finding that αvβ6 modulates cell migration in an MMP2-dependent manner on an αvβ6-specific ligand, latency-associated peptide (LAP)-TGFβ. Overall, these mechanistic studies establish that expression of a single integrin, αvβ6, is sufficient to promote activation of Smad3, regulation of MMP2 levels and consequent catalytic activity, as well as cell migration. Our study describes a new TGFβ1-αvβ6-MMP2 signalling pathway that, given TGFβ1 pro-metastatic activity, may have profound implications for PrCa therapy.
Collapse
|
31
|
Missan DS, Mitchell K, Subbaram S, DiPersio CM. Integrin α3β1 signaling through MEK/ERK determines alternative polyadenylation of the MMP-9 mRNA transcript in immortalized mouse keratinocytes. PLoS One 2015; 10:e0119539. [PMID: 25751421 PMCID: PMC4353714 DOI: 10.1371/journal.pone.0119539] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/13/2015] [Indexed: 12/15/2022] Open
Abstract
Integrin α3β1 is highly expressed in both normal and tumorigenic epidermal keratinocytes where it regulates genes that control cellular function and extracellular matrix remodeling during normal and pathological tissue remodeling processes, including wound healing and development of squamous cell carcinoma (SCC). Previous studies identified a role for α3β1 in immortalized and transformed keratinocytes in the regulation of genes that promote tumorigenesis, invasion, and pro-angiogenic crosstalk to endothelial cells. One such gene, matrix metalloproteinase-9 (MMP-9), is induced by α3β1 through a post-transcriptional mechanism of enhanced mRNA stability. In the current study, we sought to investigate the mechanism through which α3β1 controls MMP-9 mRNA stability. First, we utilized a luciferase reporter assay to show that AU-rich elements (AREs) residing within the 3’-untranslated region (3’-UTR) of the MMP-9 mRNA renders the transcript unstable in a manner that is independent of α3β1. Next, we cloned a truncated variant of the MMP-9 mRNA which is generated through usage of an alternative, upstream polyadenylation signal and lacks the 3’-UTR region containing the destabilizing AREs. Using an RNase protection assay to distinguish “long” (full-length 3’-UTR) and “short” (truncated 3’-UTR) MMP-9 mRNA variants, we demonstrated that the shorter, more stable mRNA that lacks 3’-UTR AREs was preferentially generated in α3β1-expressing keratinocytes compared with α3β1-deficient (i.e., α3-null) keratinocytes. Moreover, we determined that α3β1-dependent alternative polyadenylation was acquired by immortalized keratinocytes, as primary neonatal keratinocytes did not display α3β1-dependent differences in the long and short transcripts. Finally, pharmacological inhibition of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway in α3β1-expressing keratinocytes caused a shift towards long variant expression, while Raf-1-mediated activation of ERK in α3-null keratinocytes dramatically enhanced short variant expression, indicating a role for ERK/MAPK signaling in α3β1-mediated selection of the proximal polyadenylation site. These findings identify a novel mode of integrin α3β1-mediated gene regulation through alternative polyadenylation.
Collapse
Affiliation(s)
- Dara S. Missan
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - Kara Mitchell
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - Sita Subbaram
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - C. Michael DiPersio
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
32
|
Longmate WM, Monichan R, Chu ML, Tsuda T, Mahoney MG, DiPersio CM. Reduced fibulin-2 contributes to loss of basement membrane integrity and skin blistering in mice lacking integrin α3β1 in the epidermis. J Invest Dermatol 2014; 134:1609-1617. [PMID: 24390135 PMCID: PMC4020984 DOI: 10.1038/jid.2014.10] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 10/23/2013] [Accepted: 11/04/2013] [Indexed: 11/20/2022]
Abstract
Deficient epidermal adhesion is a hallmark of blistering skin disorders and chronic wounds, implicating integrins as potential therapeutic targets. Integrin α3β1, a major receptor in the epidermis for adhesion to laminin-332 (LN-332), has critical roles in basement membrane (BM) organization during skin development. In the current study we identify a role for α3β1 in promoting stability of nascent epidermal BMs through induction of fibulin-2, a matrix-associated protein that binds LN-332. We demonstrate that mice lacking α3β1 in the epidermis display ruptured BM beneath neo-epidermis of wounds, characterized by extensive blistering. This junctional blistering phenocopies defects reported in newborn α3-null mice, as well as in human patients with α3 gene mutations, indicating that the developmental role of α3β1 in BM organization is recapitulated during wound healing. Mice lacking epidermal α3β1 also have reduced fibulin-2 expression, and fibulin-2-null mice display perinatal skin blisters similar to those in α3β1-deficient mice. Interestingly, α3-null wound epidermis or keratinocytes also show impaired processing of the LN-332 γ2 chain, although this defect was independent of reduced fibulin-2 and did not appear to cause blistering. Our findings indicate a role for integrin α3β1 in BM stability through fibulin-2 induction, both in neonatal skin and in adult wounds.
Collapse
Affiliation(s)
- Whitney M Longmate
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA
| | - Ruby Monichan
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA
| | - Mon-Li Chu
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Takeshi Tsuda
- Nemours Biomedical Research and Nemours Cardiac Center, Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA
| | - My G Mahoney
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - C Michael DiPersio
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA.
| |
Collapse
|
33
|
Wang C, Tong X, Yang F. Bioengineered 3D Brain Tumor Model To Elucidate the Effects of Matrix Stiffness on Glioblastoma Cell Behavior Using PEG-Based Hydrogels. Mol Pharm 2014; 11:2115-25. [DOI: 10.1021/mp5000828] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christine Wang
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Xinming Tong
- Department
of Orthopaedic Surgery, Stanford University, Stanford, California 94305, United States
| | - Fan Yang
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Orthopaedic Surgery, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
34
|
Biologically-active laminin-111 fragment that modulates the epithelial-to-mesenchymal transition in embryonic stem cells. Proc Natl Acad Sci U S A 2014; 111:5908-13. [PMID: 24706882 DOI: 10.1073/pnas.1403139111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dynamic interplay between the extracellular matrix and embryonic stem cells (ESCs) constitutes one of the key steps in understanding stem cell differentiation in vitro. Here we report a biologically-active laminin-111 fragment generated by matrix metalloproteinase 2 (MMP2) processing, which is highly up-regulated during differentiation. We show that the β1-chain-derived fragment interacts via α3β1-integrins, thereby triggering the down-regulation of MMP2 in mouse and human ESCs. Additionally, the expression of MMP9 and E-cadherin is up-regulated in mouse ESCs--key players in the epithelial-to-mesenchymal transition. We also demonstrate that the fragment acts through the α3β1-integrin/extracellular matrix metalloproteinase inducer complex. This study reveals a previously unidentified role of laminin-111 in early stem cell differentiation that goes far beyond basement membrane assembly and a mechanism by which an MMP2-cleaved laminin fragment regulates the expression of E-cadherin, MMP2, and MMP9.
Collapse
|
35
|
Missan DS, Chittur SV, DiPersio CM. Regulation of fibulin-2 gene expression by integrin α3β1 contributes to the invasive phenotype of transformed keratinocytes. J Invest Dermatol 2014; 134:2418-2427. [PMID: 24694902 PMCID: PMC4134363 DOI: 10.1038/jid.2014.166] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/18/2014] [Accepted: 02/28/2014] [Indexed: 11/09/2022]
Abstract
The laminin-binding integrin α3β1 is highly expressed in epidermal keratinocytes, where it regulates both cell-autonomous and paracrine functions that promote wound healing and skin tumorigenesis. However, the roles for α3β1 in regulating gene expression programs that control the behaviors of immortalized or transformed keratinocytes remain underexplored. In the current study, we used a microarray approach to identify genes that are regulated by α3β1 in immortalized keratinocytes. α3β1-Responsive genes included several genes that are involved in extracellular matrix proteolysis or remodeling, including fibulin-2 and secreted protein acidic and rich in cysteine. However, α3β1-dependent induction of specific target genes was influenced by the genetic lesion that triggered immortalization, as α3β1-dependent fibulin-2 expression occurred in cells immortalized by either SV40 large T antigen or p53-null mutation, whereas α3β1-dependent expression of secreted protein acidic and rich in cysteine occurred only in the former cells. Interestingly, quantitative PCR arrays did not reveal strong patterns of α3β1-dependent gene expression in freshly isolated primary keratinocytes, suggesting that this regulation is acquired during immortalization. p53-null keratinocytes transformed with oncogenic RasV12 retained α3β1-dependent fibulin-2 expression, and RNAi-mediated knockdown of fibulin-2 in these cells reduced invasion, although not their tumorigenic potential. These findings demonstrate a prominent role for α3β1 in immortalized/transformed keratinocytes in regulating fibulin-2 and other genes that promote matrix remodeling and invasion.
Collapse
Affiliation(s)
- Dara S Missan
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA
| | - Sridar V Chittur
- Center for Functional Genomics, University at Albany, Rensselaer, New York, USA
| | - C Michael DiPersio
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA.
| |
Collapse
|
36
|
Liu WH, Chen YJ, Chien JH, Chang LS. Amsacrine suppresses matrix metalloproteinase-2 (MMP-2)/MMP-9 expression in human leukemia cells. J Cell Physiol 2014; 229:588-98. [PMID: 24122234 DOI: 10.1002/jcp.24481] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 09/27/2013] [Indexed: 11/10/2022]
Abstract
This study explores the suppression mechanism of amsacrine (4-(9-Acridinylamino)-N-(methanesulfonyl)-m-anisidine hydrochloride) on matrix metalloproteinase-2 (MMP-2) and MMP-9 expression in human leukemia cells. Amsacrine attenuated cell invasion with decreased MMP-2/MMP-9 protein expression and mRNA levels in U937, Jurkat, HL-60, K562, KU812, and MEG-01 cells. Moreover, amsacrine reduced both MMP-2/MMP-9 promoter luciferase activity and MMP-2/MMP-9 mRNA stability in leukemia cells. Studies on amsacrine-treated U937 cells revealed that amsacrine-elicited ROS generation induced JNK and p38 MAPK activation but reduced the phospho-ERK level. Amsacrine-induced ERK inactivation and p38 MAPK/JNK activation were demonstrated to suppress MMP-2/MMP-9 promoter luciferase activity and promote MMP-2/MMP-9 mRNA decay, respectively. p38 MAPK/JNK activation led to up-regulation of protein phosphatase 2A catalytic subunit α (PP2Acα) in amsacrine-treated U937 cells. Okadaic acid (PP2A inhibitor) treatment increased MMP-2/MMP-9 mRNA stability in amsacrine-treated cells, whereas PP2Acα over-expression increased MMP-2/MMP-9 mRNA decay. Amsacrine-induced MMP-2/MMP-9 down-regulation was also related to PP2Acα up-regulation on Jurkat, HL-60, K562, KU812, and MEG-01 cells. Collectively, our data indicate that amsacrine induces MMP-2/MMP-9 down-regulation via simultaneous suppression of genetic transcription and mRNA stability in human leukemia cells.
Collapse
Affiliation(s)
- Wen-Hsin Liu
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | | | | | | |
Collapse
|
37
|
Cowburn AS, Alexander LEC, Southwood M, Nizet V, Chilvers ER, Johnson RS. Epidermal deletion of HIF-2α stimulates wound closure. J Invest Dermatol 2014; 134:801-808. [PMID: 24037341 PMCID: PMC3877686 DOI: 10.1038/jid.2013.395] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/28/2013] [Accepted: 08/28/2013] [Indexed: 12/21/2022]
Abstract
Wound closure requires a complex series of micro-environmentally influenced events. A key aspect of wound closure is the migration of keratinocytes across the open wound. It has been found previously that the response to hypoxia via the HIF-1α transcription factor is a key feature of wound closure. The need for hypoxic response is likely due to interrupted wound vasculature, as well as infection, and in this work we investigated the need for a highly related hypoxic response transcription factor, HIF-2α. This factor was deleted tissue specifically in mice, and the resulting mice were found to have an accelerated rate of wound closure. This is correlated with a reduced bacterial load and inflammatory response in these mice. This indicates that manipulating or reducing the HIF-2α response in keratinocytes could be a useful means to accelerate wound healing and tissue repair.
Collapse
Affiliation(s)
- Andrew S Cowburn
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | - Mark Southwood
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Victor Nizet
- Division of Pediatric Pharmacology and Drug Discovery, UCSD School of Medicine, La Jolla, California, USA
| | - Edwin R Chilvers
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Randall S Johnson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
38
|
Longmate WM, DiPersio CM. Integrin Regulation of Epidermal Functions in Wounds. Adv Wound Care (New Rochelle) 2014; 3:229-246. [PMID: 24669359 DOI: 10.1089/wound.2013.0516] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/13/2014] [Indexed: 12/12/2022] Open
Abstract
Significance: Integrins are bidirectional signaling receptors for extracellular matrix that regulate both inside-out signaling that controls keratinocyte-mediated changes to the wound microenvironment and outside-in signaling that controls keratinocyte responses to microenvironmental changes. As such, integrins represent attractive therapeutic targets for treatment of chronic wounds or general promotion of wound healing. Advances in wound management are particularly important as the elderly and diabetic populations within the United States continue to grow. Recent Advances: Although integrins are best known for mediating cell adhesion and migration, integrins in wound epidermis also control cell survival, proliferation, matrix remodeling, and paracrine crosstalk to other cellular compartments of the wound. Importantly, the concept of targeting integrins in the clinic has been established for treatment of certain cancers and other diseases, laying the groundwork for similar exploitation of integrins as targets to treat chronic wounds. Critical Issues: Despite their attractiveness as therapeutic targets, integrins have complex roles in wound healing that are impacted by both their own expression and a highly dynamic wound microenvironment that determines ligand availability. Therefore, identifying relevant integrin ligands in the wound and understanding both distinct and overlapping functions that different integrins play in the epidermis will be critical to determine their precise roles in wound healing. Future Directions: Future research should focus on gaining a thorough understanding of the highly coordinated functions of different integrins in wound epidermis, and on determining which of these functions go awry in pathological wounds. This focus should facilitate development of integrin-targeting therapeutics for treating chronic wounds.
Collapse
Affiliation(s)
- Whitney M. Longmate
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| | - C. Michael DiPersio
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| |
Collapse
|
39
|
Farina AR, Mackay AR. Gelatinase B/MMP-9 in Tumour Pathogenesis and Progression. Cancers (Basel) 2014; 6:240-96. [PMID: 24473089 PMCID: PMC3980597 DOI: 10.3390/cancers6010240] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 12/14/2022] Open
Abstract
Since its original identification as a leukocyte gelatinase/type V collagenase and tumour type IV collagenase, gelatinase B/matrix metalloproteinase (MMP)-9 is now recognised as playing a central role in many aspects of tumour progression. In this review, we relate current concepts concerning the many ways in which gelatinase B/MMP-9 influences tumour biology. Following a brief outline of the gelatinase B/MMP-9 gene and protein, we analyse the role(s) of gelatinase B/MMP-9 in different phases of the tumorigenic process, and compare the importance of gelatinase B/MMP-9 source in the carcinogenic process. What becomes apparent is the importance of inflammatory cell-derived gelatinase B/MMP-9 in tumour promotion, early progression and triggering of the "angiogenic switch", the integral relationship between inflammatory, stromal and tumour components with respect to gelatinase B/MMP-9 production and activation, and the fundamental role for gelatinase B/MMP-9 in the formation and maintenance of tumour stem cell and metastatic niches. It is also apparent that gelatinase B/MMP-9 plays important tumour suppressing functions, producing endogenous angiogenesis inhibitors, promoting inflammatory anti-tumour activity, and inducing apoptosis. The fundamental roles of gelatinase B/MMP-9 in cancer biology underpins the need for specific therapeutic inhibitors of gelatinase B/MMP-9 function, the use of which must take into account and substitute for tumour-suppressing gelatinase B/MMP-9 activity and also limit inhibition of physiological gelatinase B/MMP-9 function.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, Via Vetoio, Coppito 2, L'Aquila 67100, Italy.
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, Via Vetoio, Coppito 2, L'Aquila 67100, Italy.
| |
Collapse
|
40
|
Subbaram S, Lyons SP, Svenson KB, Hammond SL, McCabe LG, Chittur SV, DiPersio CM. Integrin α3β1 controls mRNA splicing that determines Cox-2 mRNA stability in breast cancer cells. J Cell Sci 2014; 127:1179-89. [PMID: 24434582 DOI: 10.1242/jcs.131227] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
It is unknown how cues from the tumor microenvironment can regulate post-transcriptional mechanisms, such as alternative splicing, that control genes that drive malignant growth. The induction of cyclooxygenase 2 (Cox-2) by integrin α3β1 in breast cancer cells can promote tumor progression. We have used RNAi to suppress α3β1 in human MDA-MB-231 breast cancer cells and then investigated changes in global gene expression. Numerous mRNAs, including Cox-2, show altered expression and/or alternative exon usage (AEU) in α3β1-deficient cells. AEU included patterns predicted to render an mRNA susceptible to degradation, such as 3'-UTR variations or retention of elements that target an mRNA for nonsense-mediated decay (NMD). PCR-based analysis of α3β1-deficient cells confirmed changes in Cox-2 mRNA that might target it for NMD, including retention of an intron that harbors premature termination codons and changes within the 3'-UTR. Moreover, Cox-2 mRNA has reduced stability in α3β1-deficient cells, which is partially reversed by knockdown of the essential NMD factor UPF1. Our study identifies α3β1-mediated AEU as a novel paradigm of integrin-dependent gene regulation that has potential for exploitation as a therapeutic target.
Collapse
Affiliation(s)
- Sita Subbaram
- Center for Cell Biology and Cancer Research, Albany Medical College, MC-165, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Xie XY, Yang C, Ren M, Hao SY, Zhu P, Yan L. Inhibition of matrix metalloproteinase 9 expression in rat dermal fibroblasts using small interfering RNA. J Am Podiatr Med Assoc 2013; 102:299-308. [PMID: 22826328 DOI: 10.7547/1020299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) degrade extracellular matrix components. Increased MMP-9 content in diabetic skin contributes to skin vulnerability and refractory foot ulcers. To identify ways to decrease MMP-9 levels in skin, inhibition of MMP-9 expression in dermal fibroblasts using small interfering RNA was investigated in vitro. METHODS A full-thickness wound was created on the midback of streptozotocin-induced diabetic rats; skin biopsies were performed 3 days later. Skin MMP-9 expression was observed by immunohistochemical analysis. Dermal fibroblasts from 1-day-old normal Sprague Dawley rats cultured with high glucose and homocysteine concentrations were transfected with small interfering RNA complexes. Cells were collected 30, 48, and 72 hours after transfection, and reverse transcription-polymerase chain reaction, Western blot analysis, and gelatin zymography for MMP-9 were performed. RESULTS Expression of MMP-9 was increased in diabetic rat skin, especially around wounds. After 30-, 48-, and 72-hour transfection with each MMP-9-specific small interfering RNA, reverse transcription-polymerase chain reaction showed markedly decreased MMP-9 messenger RNA expression, protein abundance, and activity. Of four MMP-9 small interfering RNAs, one sequence had a stable high inhibition rate (>70% at 30 and 48 hours after transfection). CONCLUSIONS Expression of MMP-9 was increased in diabetic rat skin, especially around wounds, and was markedly inhibited after MMP-9 small interfering RNA transfection in vitro (P < .05). These findings may provide new treatments for diabetic skin wounds.
Collapse
Affiliation(s)
- Xiao-Ying Xie
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
42
|
Wong VW, Longaker MT, Gurtner GC. Soft tissue mechanotransduction in wound healing and fibrosis. Semin Cell Dev Biol 2012; 23:981-6. [PMID: 23036529 DOI: 10.1016/j.semcdb.2012.09.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/25/2012] [Indexed: 12/17/2022]
Abstract
Recent evidence suggests that mechanical forces can significantly impact the biologic response to injury. Integrated mechanical and chemical signaling networks have been discovered that enable physical cues to regulate disease processes such as pathologic scar formation. Distinct molecular mechanisms control how tensional forces influence wound healing and fibrosis. Conceptual frameworks to understand cutaneous repair have expanded beyond traditional cell-cytokine models to include dynamic interactions driven by mechanical force and the extracellular matrix. Strategies to manipulate these biomechanical signaling networks have tremendous therapeutic potential to reduce scar formation and promote skin regeneration.
Collapse
Affiliation(s)
- Victor W Wong
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
43
|
Jedryka M, Chrobak A, Chelmonska-Soyta A, Gawron D, Halbersztadt A, Wojnar A, Kornafel J. Matrix metalloproteinase (MMP)-2 and MMP-9 expression in tumor infiltrating CD3 lymphocytes from women with endometrial cancer. Int J Gynecol Cancer 2012; 22:1303-9. [PMID: 22964525 DOI: 10.1097/igc.0b013e318269e27b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE In this study, we hypothesized that not only endothelial malignant cells but also lymphocytes infiltrating tumor epithelium, in patients with endometrial cancer, could be an important source of the gelatinases (matrix metalloproteinase [MMP]-2 and MMP-9) extensive production, which in turn, may facilitate tumor cells infiltration and progression due to the extracellular matrix degradation. MATERIALS AND METHODS First, we isolated lymphocytes from the endometrial carcinoma samples taken from 41 patients who were operated on and from healthy endometrial tissue taken of the same patients after histological verification. Then, we detected the level of CD3-positive cells in endometrial tissues by flow cytometry. Simultaneously, we studied the messenger RNA expression of MMP-2 and MMP-9 in the isolated cells from malignant and unchanged endometrial tissues. Using immunohistochemistry, we compared the protein expression of MMP-2, MMP-9, and CD3 in the studied samples. RESULTS We showed the enhanced abundance of CD3 lymphocytes both by flow cytometry and immunohistochemistry in the samples from malignant tissues. The expression of MMP-9 in the endometrial carcinoma was increased significantly at the protein level but not at the messenger RNA level. We could not observe any differences concerning MMP-2 expression in both methods of detection. CONCLUSIONS CD-3 lymphocytes significantly infiltrate endometrial cancer tissue, but they do not seem to be the source of enhanced metalloproteinases 2 and 9 expression in the tumor environment. Still, owing to the immunohistochemistry staining, we could show the significant increase of MMP-9 protein in the very close vicinity of tumor-infiltrating CD3 lymphocytes. Could it be the result of CD3 lymphocyte action, or is it just the imperfection of the detecting method we used? This remains unclear. Further studies explaining the role of tumor infiltrating lymphocytes in mediating the endometrial cancer milieu are needed.
Collapse
Affiliation(s)
- Marcin Jedryka
- Department of Gynaecological Oncology, Wroclaw Medical University, Wroclaw, Poland.
| | | | | | | | | | | | | |
Collapse
|
44
|
Kligys KR, Wu Y, Hopkinson SB, Kaur S, Platanias LC, Jones JCR. α6β4 integrin, a master regulator of expression of integrins in human keratinocytes. J Biol Chem 2012; 287:17975-84. [PMID: 22493440 DOI: 10.1074/jbc.m111.310458] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three major laminin and collagen-binding integrins in skin (α6β4, α3β1, and α2β1) are involved in keratinocyte adhesion to the dermis and dissemination of skin cells during wound healing and/or tumorigenesis. Knockdown of α6 integrin in keratinocytes not only results in motility defects but also leads to decreased surface expression of the α2, α3, and β4 integrin subunits. Whereas α2 integrin mRNA levels are decreased in α6 integrin knockdown cells, α3 and β4 integrin mRNAs levels are unaffected. Expression of either α6 or α3 integrin in α6 integrin knockdown cells restores α2 integrin mRNA levels. Moreover, re-expression of α6 integrin increases β4 integrin protein at the cell surface, which results in an increase in α3 integrin expression via activation of initiation factor 4E-binding protein 1. Our data indicate that the α6β4 integrin is a master regulator of transcription and translation of other integrin subunits and underscore its pivotal role in wound healing and cancer.
Collapse
Affiliation(s)
- Kristina R Kligys
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
45
|
Yue J, Zhang K, Chen J. Role of integrins in regulating proteases to mediate extracellular matrix remodeling. CANCER MICROENVIRONMENT 2012; 5:275-83. [PMID: 22437309 DOI: 10.1007/s12307-012-0101-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/01/2012] [Indexed: 01/09/2023]
Abstract
The extracellular matrix (ECM) is an extracellular scaffold composed of complex mixtures of proteins that plays a pivotal role in tumor progression. ECM remodeling is crucial for tumor migration and invasion during the process of metastasis. ECM can be remodeled by several processes including synthesis, contraction and proteolytic degradation. In order to cross through the ECM barriers, malignant cells produce a spectrum of extracellular proteinases including matrix metalloproteinases (MMPs), serine proteases (mainly the urokinase plasminogen activator (uPA) system) and cysteine proteases to degrade ECM components. As major adhesion molecules to support cell attachment to ECM, integrins play critical roles in tumor progression by enhancing tumor cell survival, migration and invasion. Previous studies have shown that integrins can regulate the expression and activity of these proteases through different pathways. This review summarizes the roles of MMPs and uPA system in ECM remodeling and discusses the regulatory functions of integrins on these proteases in invasive tumors.
Collapse
Affiliation(s)
- Jiao Yue
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai, 200031, China
| | | | | |
Collapse
|
46
|
Yang G, Li H, Tang G, Wu L, Zhao K, Cao Q, Xu C, Wang R. Increased neointimal formation in cystathionine gamma-lyase deficient mice: role of hydrogen sulfide in α5β1-integrin and matrix metalloproteinase-2 expression in smooth muscle cells. J Mol Cell Cardiol 2011; 52:677-88. [PMID: 22200376 DOI: 10.1016/j.yjmcc.2011.12.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 12/05/2011] [Accepted: 12/10/2011] [Indexed: 01/22/2023]
Abstract
The physiological and pathological roles of hydrogen sulfide (H(2)S) in the regulation of cardiovacular functions have been recognized. Vascular smooth muscle cells (SMCs) express cystathionine gamma-lyase (CSE) and produce significant amount of H(2)S. Although growing evidence demonstated the anti-atherosclerotic effect of H(2)S, less is known about the contribution of the endogenous CSE/H(2)S pathway to the development of vascular remodeling. This study investigated the roles of the CSE/H(2)S pathway on SMC migration and neoimtimal formation by using CSE knockout (KO) mice. SMCs and aortic explants isolated from CSE KO mice exhibited more migration and outgrowth compared with that from wild-type (WT) mice, and exogenously applied NaHS (a H(2)S donor) at 100 μM significantly inhibited SMC migration and outgrowth. SMCs became more elongated and spread in the absence of CSE, and fibronectin significantly stimulated adhesion and migration of SMCs from CSE KO mice (KO-SMCs) in comparison with SMCs from WT mice (WT-SMCs). The expressions of α5- and β1-integrins were significantly higher in KO-SMCs, and functional blocking of α5β1-integrin effectively abrogated KO-SMC migration. CSE deficiency also enhanced matrix metalloproteinase-2 (MMP-2) expression, and the selective blocking of MMP-2 decreased KO-SMC migration. NaHS treatment decreased both the expressions of α5- and β1-integrins and MMP-2. We further found that the expressions of α5- and β1-integrins as well as MMP-2, were stimulated by fibronectin, and that the blockage of α5β1-integrin reduced but overexpression of α5β1-integrin induced MMP-2 expression in both WT-SMCs and KO-SMCs. We also noticed that CSE deficiency in mice led to increased neointima formation in carotid arteries 4 weeks after ligation, which were attenuated by NaHS administration. In conclusion, inhibition of SMC migration by H(2)S may be a novel target for the treatment of vascular occlusive disorder.
Collapse
Affiliation(s)
- Guangdong Yang
- The School of Kinesiology, Lakehead University, Thunder Bay, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhang J, Dong J, Gu H, Yu S, Zhang X, Gou Y, Xu W, Burd A, Huang L, Miyado K, Huang Y, Chan HC. CD9 is critical for cutaneous wound healing through JNK signaling. J Invest Dermatol 2011; 132:226-36. [PMID: 21881583 DOI: 10.1038/jid.2011.268] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cutaneous injury triggers a cascade of signaling events essential for wound re-epithelialization. CD9, a cell-surface protein, has been implicated in a number of cellular processes by coupling to intracellular signaling; however, its exact role in wound healing remains unidentified. We reported that CD9 was downregulated in migrating epidermis, and reelevated to basal level when re-epithelialization was completed. Although low level of CD9 appears to be required for normal wound healing, a significant healing delay was found in CD9-null mice, with wounds gaping wider on day 5 and day 7 post wounding. Further analysis showed that re-epithelialization was adversely affected in CD9-null mice, due to impaired migration of epidermis. Notably, CD9 deficiency caused a persistent enhancement of C-JUN NH2 terminal kinase (JNK) signaling primarily in migrating epidermis with abnormal elevation of matrix metalloproteinase (MMP)-9 detected in CD9-null wounds, leading to excessive degradation of type IV collagen, and thus a defective basement membrane at the wound site. JNK suppression reduced MMP-9 production and therefore ameliorated the healing delay with the appearance of significantly elongated migrating epidermis in CD9-null mice. Our study demonstrated the importance of CD9 in wound re-epithelialization, linking this molecule directly to basement membrane formation and epidermal migration through participating in the regulation of the JNK/MMP-9 pathway.
Collapse
Affiliation(s)
- Jiaping Zhang
- Epithelial Cell Biology Research Center, Key Laboratory for Regenerative Medicine of Ministry of Education of China, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
INTRODUCTION Integrin receptors for cell adhesion to the extracellular matrix have important roles in all stages of cancer progression and metastasis. Since the integrin family was discovered in the early 1980's, many studies have identified critical adhesion and signaling functions for integrins expressed on tumor cells, endothelial cells and other cell types of the tumor microenvironment, in controlling proliferation, survival, migration and angiogenesis. In recent years, the laminin-binding integrin α3β1 has emerged as a potentially promising anti-cancer target on breast cancer cells. AREAS COVERED Studies from the past decade that implicate integrins as promising anti-cancer targets and the development of integrin antagonists as anti-cancer therapeutics. Recent preclinical studies that have identified the laminin-binding integrin α3β1 as an appealing anti-cancer target and the knowledge gaps that must be closed to fully exploit this integrin as a therapeutic target for breast cancer. EXPERT OPINION Although the tumor-promoting functions of α3β1 implicate this integrin as a promising therapeutic target on breast cancer cells, successful exploitation of this integrin as an anti-cancer target will require a better understanding of the molecular mechanisms whereby it regulates specific tumor cell behaviors and the identification of the most appropriate α3β1 functions to antagonize on breast cancer cells.
Collapse
Affiliation(s)
- Sita Subbaram
- Albany Medical College, Center for Cell Biology & Cancer Research, Albany, NY 12208, USA
| | | |
Collapse
|
49
|
MMP-9 silencing regulates hTERT expression via β1 integrin-mediated FAK signaling and induces senescence in glioma xenograft cells. Cell Signal 2011; 23:2065-75. [PMID: 21855630 DOI: 10.1016/j.cellsig.2011.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/01/2011] [Accepted: 08/02/2011] [Indexed: 12/22/2022]
Abstract
In more than 90% of cancers including glioma, telomere elongation reverse transcriptase (hTERT) is overexpressed. In the present study, we sought to explore whether matrix metalloproteinase-9 (MMP-9) shRNA could alter hTERT-mediated proliferation in glioma cells. MMP-9 shRNA induced senescence and apoptosis in glioma cells by inhibiting hTERT expression and telomere activity. MMP-9 silencing decreased oncogenic c-Myc expression (hTERT activator), whereas the expression of the c-Myc antagonist MAD increased drastically (hTERT repressor); both c-Myc and MAD are transcription factors for hTERT. In addition, MMP-9 suppression turns the switch from c-Myc/MAX to MAD/MAX heterodimer binding to the hTERT promoter as determined by chromatin immunoprecipitation assay. We also show that silencing MAD via siRNA restored hTERT expression and inhibited senescence in glioma cells. MMP-9 transcriptional suppression decreased the expression of FAK, phospho FAK and β1 integrin in glioma xenograft cells. Further, MMP-9 suppression decreased the interaction of β1 integrin/FAK and also MMP-9/β1 integrin as confirmed by immunoprecipitation analysis. Studies with either function blocking β1 integrin or FAK shRNA indicate that suppression of MMP-9 decreased β1 integrin-mediated induction of FAK, which led to decreased hTERT expression. Moreover, 4910 and 5310 glioma xenograft tissue sections from mice treated with MMP-9 shRNA showed reduced expression of FAK/c-Myc and elevated MAD levels. Decreased co-localization of β1 integrin and MMP-9 was associated with MMP-9-suppressed tumor sections. Further, immunoprecipitation analysis showed decreased association of proteins involved in telomere end repair in MMP-9 shRNA-treated glioma cells. Elevated levels of p73 and TRAIL and the results of the FACS analysis show induction of apoptosis in MMP-9-silenced glioma cells. Taken together, these data provide new insights into the mechanisms underlying MMP-9-mediated hTERT expression in glioma proliferation.
Collapse
|
50
|
microRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C. EMBO J 2011; 30:1990-2007. [PMID: 21468029 DOI: 10.1038/emboj.2011.102] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 03/09/2011] [Indexed: 12/22/2022] Open
Abstract
Malignant melanoma is fatal in its metastatic stage. It is therefore essential to unravel the molecular mechanisms that govern disease progression to metastasis. MicroRNAs (miRs) are endogenous non-coding RNAs involved in tumourigenesis. Using a melanoma progression model, we identified a novel pathway controlled by miR-214 that coordinates metastatic capability. Pathway components include TFAP2C, homologue of a well-established melanoma tumour suppressor, the adhesion receptor ITGA3 and multiple surface molecules. Modulation of miR-214 influences in vitro tumour cell movement and survival to anoikis as well as extravasation from blood vessels and lung metastasis formation in vivo. Considering that miR-214 is known to be highly expressed in human melanomas, our data suggest a critical role for this miRNA in disease progression and the establishment of distant metastases.
Collapse
|