1
|
Huang CM, Shen YL, Ho CL, Chen TE, Hsia HY, Songyang Z, Chen LY. C-Terminal Extended Domain-Independent Telomere Maintenance: Modeling the Function of TIN2 Isoforms in Mus musculus. Int J Mol Sci 2025; 26:2414. [PMID: 40141057 PMCID: PMC11941968 DOI: 10.3390/ijms26062414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
TIN2 (TERF1 interacting nuclear factor 2) is a telomeric shelterin complex component, essential for telomere protection and early embryonic development in mammals. In humans, TIN2 isoforms arise from alternative splicing, but their specific roles in vivo remain unclear. Here, we explore TIN2 isoform functions in the laboratory mouse Mus musculus. Our comparative analysis of TIN2 protein sequences reveals that mouse TIN2 (TINF2) closely resembles the human TIN2L isoform, both of which harbor a C-terminal extended domain (CTED) absent from the human TIN2 small (TIN2S) isoform. To further characterize the functions of TIN2 isoforms, we generated a Tinf2 LD (long-form deficiency) allele in M. musculus encoding a short form of TINF2 lacking the CTED. Mice heterozygous or homozygous for this Tinf2 LD allele were viable, fertile, and showed no tissue abnormalities. Furthermore, protein product of Tinf2 LD allele localized to telomeres and maintained telomere integrity in mouse embryonic fibroblasts, demonstrating that the CTED is dispensable for telomere protection and normal development in mice. These findings indicate functional redundancy among TIN2 isoforms and underscore the utility of the Tinf2 LD model for uncovering isoform-specific mechanisms of telomere regulation.
Collapse
Affiliation(s)
- Chiao-Ming Huang
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; (Y.-L.S.); (C.-L.H.); (T.-E.C.); (H.-Y.H.)
| | - Yi-Ling Shen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; (Y.-L.S.); (C.-L.H.); (T.-E.C.); (H.-Y.H.)
| | - Chia-Lo Ho
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; (Y.-L.S.); (C.-L.H.); (T.-E.C.); (H.-Y.H.)
| | - Tzeng-Erh Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; (Y.-L.S.); (C.-L.H.); (T.-E.C.); (H.-Y.H.)
| | - Hsuan-Yu Hsia
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; (Y.-L.S.); (C.-L.H.); (T.-E.C.); (H.-Y.H.)
| | - Zhou Songyang
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510275, China;
| | - Liuh-Yow Chen
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan; (Y.-L.S.); (C.-L.H.); (T.-E.C.); (H.-Y.H.)
| |
Collapse
|
2
|
Özkan H, Öztürk DG, Korkmaz G. Transcriptional Factor Repertoire of Breast Cancer in 3D Cell Culture Models. Cancers (Basel) 2022; 14:cancers14041023. [PMID: 35205770 PMCID: PMC8870600 DOI: 10.3390/cancers14041023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Knowledge of the transcriptional regulation of breast cancer tumorigenesis is largely based on studies performed in two-dimensional (2D) monolayer culture models, which lack tissue architecture and therefore fail to represent tumor heterogeneity. However, three-dimensional (3D) cell culture models are better at mimicking in vivo tumor microenvironment, which is critical in regulating cellular behavior. Hence, 3D cell culture models hold great promise for translational breast cancer research. Abstract Intratumor heterogeneity of breast cancer is driven by extrinsic factors from the tumor microenvironment (TME) as well as tumor cell–intrinsic parameters including genetic, epigenetic, and transcriptomic traits. The extracellular matrix (ECM), a major structural component of the TME, impacts every stage of tumorigenesis by providing necessary biochemical and biomechanical cues that are major regulators of cell shape/architecture, stiffness, cell proliferation, survival, invasion, and migration. Moreover, ECM and tissue architecture have a profound impact on chromatin structure, thereby altering gene expression. Considering the significant contribution of ECM to cellular behavior, a large body of work underlined that traditional two-dimensional (2D) cultures depriving cell–cell and cell–ECM interactions as well as spatial cellular distribution and organization of solid tumors fail to recapitulate in vivo properties of tumor cells residing in the complex TME. Thus, three-dimensional (3D) culture models are increasingly employed in cancer research, as these culture systems better mimic the physiological microenvironment and shape the cellular responses according to the microenvironmental cues that will regulate critical cell functions such as cell shape/architecture, survival, proliferation, differentiation, and drug response as well as gene expression. Therefore, 3D cell culture models that better resemble the patient transcriptome are critical in defining physiologically relevant transcriptional changes. This review will present the transcriptional factor (TF) repertoire of breast cancer in 3D culture models in the context of mammary tissue architecture, epithelial-to-mesenchymal transition and metastasis, cell death mechanisms, cancer therapy resistance and differential drug response, and stemness and will discuss the impact of culture dimensionality on breast cancer research.
Collapse
Affiliation(s)
- Hande Özkan
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Deniz Gülfem Öztürk
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
- Correspondence: (D.G.Ö.); (G.K.)
| | - Gozde Korkmaz
- School of Medicine, Koç University, Istanbul 34450, Turkey;
- Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
- Correspondence: (D.G.Ö.); (G.K.)
| |
Collapse
|
3
|
Robinson NJ, Miyagi M, Scarborough JA, Scott JG, Taylor DJ, Schiemann WP. SLX4IP promotes RAP1 SUMOylation by PIAS1 to coordinate telomere maintenance through NF-κB and Notch signaling. Sci Signal 2021; 14:eabe9613. [PMID: 34187905 PMCID: PMC8353884 DOI: 10.1126/scisignal.abe9613] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The maintenance of telomere length supports repetitive cell division and therefore plays a central role in cancer development and progression. Telomeres are extended by either the enzyme telomerase or the alternative lengthening of telomeres (ALT) pathway. Here, we found that the telomere-associated protein SLX4IP dictates telomere proteome composition by recruiting and activating the E3 SUMO ligase PIAS1 to the SLX4 complex. PIAS1 SUMOylated the telomere-binding protein RAP1, which disrupted its interaction with the telomere-binding protein TRF2 and facilitated its nucleocytoplasmic shuttling. In the cytosol, RAP1 bound to IκB kinase (IKK), resulting in activation of the transcription factor NF-κB and its induction of Jagged-1 expression, which promoted Notch signaling and the institution of ALT. This axis could be targeted therapeutically in ALT-driven cancers and in tumor cells that develop resistance to antitelomerase therapies. Our results illuminate the mechanisms underlying SLX4IP-dependent telomere plasticity and demonstrate the role of telomere proteins in directly coordinating intracellular signaling and telomere maintenance dynamics.
Collapse
Affiliation(s)
- Nathaniel J Robinson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jessica A Scarborough
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jacob G Scott
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
4
|
Khattar E, Maung KZY, Chew CL, Ghosh A, Mok MMH, Lee P, Zhang J, Chor WHJ, Cildir G, Wang CQ, Mohd-Ismail NK, Chin DWL, Lee SC, Yang H, Shin YJ, Nam DH, Chen L, Kumar AP, Deng LW, Ikawa M, Gunaratne J, Osato M, Tergaonkar V. Rap1 regulates hematopoietic stem cell survival and affects oncogenesis and response to chemotherapy. Nat Commun 2019; 10:5349. [PMID: 31836706 PMCID: PMC6911077 DOI: 10.1038/s41467-019-13082-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/14/2019] [Indexed: 11/09/2022] Open
Abstract
Increased levels and non-telomeric roles have been reported for shelterin proteins, including RAP1 in cancers. Herein using Rap1 null mice, we provide the genetic evidence that mammalian Rap1 plays a major role in hematopoietic stem cell survival, oncogenesis and response to chemotherapy. Strikingly, this function of RAP1 is independent of its association with the telomere or with its known partner TRF2. We show that RAP1 interacts with many members of the DNA damage response (DDR) pathway. RAP1 depleted cells show reduced interaction between XRCC4/DNA Ligase IV and DNA-PK, and are impaired in DNA Ligase IV recruitment to damaged chromatin for efficient repair. Consistent with its role in DNA damage repair, RAP1 loss decreases double-strand break repair via NHEJ in vivo, and consequently reduces B cell class switch recombination. Finally, we discover that RAP1 levels are predictive of the success of chemotherapy in breast and colon cancer.
Collapse
Affiliation(s)
- Ekta Khattar
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Kyaw Ze Ya Maung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Chen Li Chew
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Arkasubhra Ghosh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Michelle Meng Huang Mok
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Pei Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jun Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, 210023, Nanjing, P.R. China
| | - Wei Hong Jeff Chor
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Gökhan Cildir
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chelsia Qiuxia Wang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Nur Khairiah Mohd-Ismail
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Desmond Wai Loon Chin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Soo Chin Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yong-Jae Shin
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, Republic of Korea
| | - Liming Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, 210023, Nanjing, P.R. China
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Lih Wen Deng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
- Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore.
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Barbero Barcenilla B, Shippen DE. Back to the future: The intimate and evolving connection between telomere-related factors and genotoxic stress. J Biol Chem 2019; 294:14803-14813. [PMID: 31434740 DOI: 10.1074/jbc.aw119.008145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The conversion of circular genomes to linear chromosomes during molecular evolution required the invention of telomeres. This entailed the acquisition of factors necessary to fulfill two new requirements: the need to fully replicate terminal DNA sequences and the ability to distinguish chromosome ends from damaged DNA. Here we consider the multifaceted functions of factors recruited to perpetuate and stabilize telomeres. We discuss recent theories for how telomere factors evolved from existing cellular machineries and examine their engagement in nontelomeric functions such as DNA repair, replication, and transcriptional regulation. We highlight the remarkable versatility of protection of telomeres 1 (POT1) proteins that was fueled by gene duplication and divergence events that occurred independently across several eukaryotic lineages. Finally, we consider the relationship between oxidative stress and telomeres and the enigmatic role of telomere-associated proteins in mitochondria. These findings point to an evolving and intimate connection between telomeres and cellular physiology and the strong drive to maintain chromosome integrity.
Collapse
Affiliation(s)
- Borja Barbero Barcenilla
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| |
Collapse
|
6
|
Lee SY, Bissell MJ. A Functionally Robust Phenotypic Screen that Identifies Drug Resistance-associated Genes Using 3D Cell Culture. Bio Protoc 2018; 8:e3083. [PMID: 30687772 DOI: 10.21769/bioprotoc.3083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug resistance is a major obstacle in cancer treatment: A case in point is the failure of cancer patients to respond to tyrosine kinase inhibitors (TKI) of EGFR, a receptor that is highly expressed in many cancers. Identification of the targets and delineation of mechanisms of drug resistance remain major challenges. Traditional pharmacological assays of drug resistance measure the response of tumor cells using cell proliferation or cell death as readouts. These assays performed using traditional plastic tissue culture plates (2D) do not translate to in vivo realities. Here, we describe a genetic screen based on phenotypic changes that can be completed over a period of 1-1½ months using functional endpoints in physiologically relevant 3D culture models. This phenotype-based assay could lead to the discovery of previously unknown therapeutic targets and could explain the source of the resistance and relapse. As a proof of principle, we performed our 3D culture assay with a small cDNA library in that yielded five unknown intermediates in EGFR and PI3K signaling pathways. Here, we describe the screening method and the characterization of one of the five molecules, but this approach could be easily expanded for a high-throughput screening to identify or evaluate many more unknown intermediates in oncogenic signaling pathways.
Collapse
Affiliation(s)
- Sun-Young Lee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mina J Bissell
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
7
|
Maya-Mendoza A, Bartek J, Jackson DA, Streuli CH. Cellular microenvironment controls the nuclear architecture of breast epithelia through β1-integrin. Cell Cycle 2016; 15:345-56. [PMID: 26818565 PMCID: PMC4943696 DOI: 10.1080/15384101.2015.1121354] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Defects in nuclear architecture occur in a variety of diseases, however the fundamental mechanisms that control the internal structure of nuclei are poorly defined. Here we reveal that the cellular microenvironment has a profound influence on the global internal organization of nuclei in breast epithelia. A 3D microenvironment induces a prolonged but reversible form of cell cycle arrest that features many of the classical markers of cell senescence. This unique form of arrest is dependent on signaling from the external microenvironment through β1-integrins. It is concomitant with alterations in nuclear architecture that characterize the withdrawal from cell proliferation. Unexpectedly, following prolonged cell cycle arrest in 3D, the senescence-like state and associated reprogramming of nuclear architecture are freely reversible on altering the dimensionality of the cellular microenvironment. Breast epithelia can therefore maintain a proliferative plasticity that correlates with nuclear remodelling. However, the changes in nuclear architecture are cell lineage-specific and do not occur in fibroblasts, and moreover they are overcome in breast cancer cells.
Collapse
Affiliation(s)
- Apolinar Maya-Mendoza
- a Faculty of Life Sciences and Wellcome Trust Center for Cell-Matrix Research, University of Manchester , Manchester , United Kingdom.,b Department of Genome Integrity , Danish Cancer Society Research Center , Copenhagen , Denmark
| | - Jiri Bartek
- b Department of Genome Integrity , Danish Cancer Society Research Center , Copenhagen , Denmark.,c Science for Life Laboratory, Division of Translational Medicine and Chemical Biology , Department of Medical Biochemistry and Biophysics, Karolinska Institute , Stockholm , Sweden
| | - Dean A Jackson
- a Faculty of Life Sciences and Wellcome Trust Center for Cell-Matrix Research, University of Manchester , Manchester , United Kingdom
| | - Charles H Streuli
- a Faculty of Life Sciences and Wellcome Trust Center for Cell-Matrix Research, University of Manchester , Manchester , United Kingdom
| |
Collapse
|
8
|
Vidi PA, Bissell MJ, Lelièvre SA. Three-dimensional culture of human breast epithelial cells: the how and the why. Methods Mol Biol 2013; 945:193-219. [PMID: 23097109 DOI: 10.1007/978-1-62703-125-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Organs are made of the organized assembly of different cell types that contribute to the architecture necessary for functional differentiation. In those with exocrine function, such as the breast, cell-cell and cell-extracellular matrix (ECM) interactions establish mechanistic constraints and a complex biochemical signaling network essential for differentiation and homeostasis of the glandular epithelium. Such knowledge has been elegantly acquired for the mammary gland by placing epithelial cells under three-dimensional (3D) culture conditions.Three-dimensional cell culture aims at recapitulating normal and pathological tissue architectures, hence providing physiologically relevant models to study normal development and disease. The specific architecture of the breast epithelium consists of glandular structures (acini) connected to a branched ductal system. A single layer of basoapically polarized luminal cells delineates ductal or acinar lumena at the apical pole. Luminal cells make contact with myoepithelial cells and, in certain areas at the basal pole, also with basement membrane (BM) components. In this chapter, we describe how this exquisite organization as well as stages of disorganization pertaining to cancer progression can be reproduced in 3D cultures. Advantages and limitations of different culture settings are discussed. Technical designs for induction of phenotypic modulations, biochemical analyses, and state-of-the-art imaging are presented. We also explain how signaling is regulated differently in 3D cultures compared to traditional two-dimensional (2D) cultures. We believe that using 3D cultures is an indispensable method to unravel the intricacies of human mammary functions and would best serve the fight against breast cancer.
Collapse
Affiliation(s)
- Pierre-Alexandre Vidi
- Department of Basic Medical Sciences and Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | | | | |
Collapse
|
9
|
Vidi PA, Bissell MJ, Lelièvre SA. Three-dimensional culture of human breast epithelial cells: the how and the why. Methods Mol Biol 2012; 945:193-219. [PMID: 23097109 DOI: 10.1007/978-1-62703-125-7_13] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Organs are made of the organized assembly of different cell types that contribute to the architecture necessary for functional differentiation. In those with exocrine function, such as the breast, cell-cell and cell-extracellular matrix (ECM) interactions establish mechanistic constraints and a complex biochemical signaling network essential for differentiation and homeostasis of the glandular epithelium. Such knowledge has been elegantly acquired for the mammary gland by placing epithelial cells under three-dimensional (3D) culture conditions.Three-dimensional cell culture aims at recapitulating normal and pathological tissue architectures, hence providing physiologically relevant models to study normal development and disease. The specific architecture of the breast epithelium consists of glandular structures (acini) connected to a branched ductal system. A single layer of basoapically polarized luminal cells delineates ductal or acinar lumena at the apical pole. Luminal cells make contact with myoepithelial cells and, in certain areas at the basal pole, also with basement membrane (BM) components. In this chapter, we describe how this exquisite organization as well as stages of disorganization pertaining to cancer progression can be reproduced in 3D cultures. Advantages and limitations of different culture settings are discussed. Technical designs for induction of phenotypic modulations, biochemical analyses, and state-of-the-art imaging are presented. We also explain how signaling is regulated differently in 3D cultures compared to traditional two-dimensional (2D) cultures. We believe that using 3D cultures is an indispensable method to unravel the intricacies of human mammary functions and would best serve the fight against breast cancer.
Collapse
Affiliation(s)
- Pierre-Alexandre Vidi
- Department of Basic Medical Sciences and Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | | | | |
Collapse
|
10
|
Yang D, He Q, Kim H, Ma W, Songyang Z. TIN2 protein dyskeratosis congenita missense mutants are defective in association with telomerase. J Biol Chem 2011; 286:23022-30. [PMID: 21536674 PMCID: PMC3123070 DOI: 10.1074/jbc.m111.225870] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/29/2011] [Indexed: 12/18/2022] Open
Abstract
Dyskeratosis congenita (DC) is a progressive and heterogeneous congenital disorder that affects multiple systems and is characterized by bone marrow failure and a triad of abnormal skin pigmentation, nail dystrophy, and oral leukoplakia. One common feature for all DC patients is abnormally short telomeres and defects in telomere biology. Most of the known DC mutations have been found to affect core components of the telomerase holoenzyme. Recently, multiple mutations in the gene encoding the telomeric protein TIN2 have been identified in DC patients with intact telomerase genes, but the molecular mechanisms underlying TIN2 mutation-mediated DC remain unknown. Here, we demonstrate that ectopic expression of TIN2 with DC missense mutations in human cells led to accelerated telomere shortening, similar to the telomere phenotypes found in DC patients. However, this telomere shortening was not accompanied by changes in total telomerase activity, localization of TIN2, or telomere end protection status. Interestingly, we found TIN2 to participate in the TPP1-dependent recruitment of telomerase activity. Furthermore, DC mutations in TIN2 led to its decreased ability to associate with TERC and telomerase activity. Taken together, our data suggest that TIN2 mutations in DC may compromise the telomere recruitment of telomerase, leading to telomere shortening and the associated pathogenesis.
Collapse
Affiliation(s)
- Dong Yang
- the Verna and Mars McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Quanyuan He
- the Verna and Mars McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Hyeung Kim
- the Verna and Mars McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Wenbin Ma
- From the State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou 510275, China and
- the Verna and Mars McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Zhou Songyang
- From the State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou 510275, China and
- the Verna and Mars McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
11
|
Transcriptional activation of TINF2, a gene encoding the telomere-associated protein TIN2, by Sp1 and NF-κB factors. PLoS One 2011; 6:e21333. [PMID: 21731707 PMCID: PMC3121743 DOI: 10.1371/journal.pone.0021333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 05/28/2011] [Indexed: 11/19/2022] Open
Abstract
The expression of the telomere-associated protein TIN2 has been shown to be essential for early embryonic development in mice and for development of a variety of human malignancies. Recently, germ-line mutations in TINF2, which encodes for the TIN2 protein, have been identified in a number of patients with bone-marrow failure syndromes. Yet, the molecular mechanisms that regulate TINF2 expression are largely unknown. To elucidate the mechanisms involved in human TINF2 regulation, we cloned a 2.7 kb genomic DNA fragment containing the putative promoter region and, through deletion analysis, identified a 406 bp region that functions as a minimal promoter. This promoter proximal region is predicted to contain several putative Sp1 and NF-κB binding sites based on bioinformatic analysis. Direct binding of the Sp1 and NF-κB transcription factors to the TIN2 promoter sequence was demonstrated by electrophoretic mobility shift assay (EMSA) and/or chromatin immunoprecipitation (ChIP) assays. Transfection of a plasmid carrying the Sp1 transcription factor into Sp-deficient SL2 cells strongly activated TIN2 promoter-driven luciferase reporter expression. Similarly, the NF-κB molecules p50 and p65 were found to strongly activate luciferase expression in NF-κB knockout MEFs. Mutating the predicted transcription factor binding sites effectively reduced TIN2 promoter activity. Various known chemical inhibitors of Sp1 and NF-κB could also strongly inhibit TIN2 transcriptional activity. Collectively, our results demonstrate the important roles that Sp1 and NF-κB play in regulating the expression of the human telomere-binding protein TIN2, which can shed important light on its possible role in causing various forms of human diseases and cancers.
Collapse
|
12
|
Xu R, Spencer VA, Groesser DL, Bissell MJ. Laminin regulates PI3K basal localization and activation to sustain STAT5 activation. Cell Cycle 2010; 9:4315-22. [PMID: 20980837 DOI: 10.4161/cc.9.21.13578] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Extracellular matrix (ECM) is a key regulator of tissue morphogenesis and functional differentiation in the mammary gland. We showed recently that laminin-111 (LN1) together with prolactin induces β-casein expression in mammary epithelial cells (MECs) by sustaining STAT5 activation. Others have shown that Rac1 is required for integrin-mediated STAT5 activation, but molecules upstream of Rac1 remain to be elucidated. Here, we show that exposure to three-dimensional (3D) laminin-rich ECM (LrECM) gels changes the localization of phosphoinositide 3-kinase (PI3K) in MECs from diffuse to basal accompanied with the activation of PI3K-Rac1 signaling pathway. We show by co-immunoprecipitation that Rac1 associates with STAT5, and that LrECM treatment enhances this interaction. Blocking PI3K with LY294002 inhibits LrECM-dependent Rac1 activation, attenuates sustained STAT5 phosphorylation and blocks β-casein gene transcription. These results indicate that PI3K is a key mediator of the LN1-induced signaling cascade which controls the activity of transcription factors essential for tissue-specific gene expression.
Collapse
Affiliation(s)
- Ren Xu
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, USA.
| | | | | | | |
Collapse
|
13
|
Lee OH, Kim H, He Q, Baek HJ, Yang D, Chen LY, Liang J, Chae HK, Safari A, Liu D, Songyang Z. Genome-wide YFP fluorescence complementation screen identifies new regulators for telomere signaling in human cells. Mol Cell Proteomics 2010; 10:M110.001628. [PMID: 21044950 DOI: 10.1074/mcp.m110.001628] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Detection of low-affinity or transient interactions can be a bottleneck in our understanding of signaling networks. To address this problem, we developed an arrayed screening strategy based on protein complementation to systematically investigate protein-protein interactions in live human cells, and performed a large-scale screen for regulators of telomeres. Maintenance of vertebrate telomeres requires the concerted action of members of the Telomere Interactome, built upon the six core telomeric proteins TRF1, TRF2, RAP1, TIN2, TPP1, and POT1. Of the ∼12,000 human proteins examined, we identified over 300 proteins that associated with the six core telomeric proteins. The majority of the identified proteins have not been previously linked to telomere biology, including regulators of post-translational modifications such as protein kinases and ubiquitin E3 ligases. Results from this study shed light on the molecular niche that is fundamental to telomere regulation in humans, and provide a valuable tool to investigate signaling pathways in mammalian cells.
Collapse
Affiliation(s)
- Ok-Hee Lee
- Severance Hospital Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University Health System, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Andrey P, Kiêu K, Kress C, Lehmann G, Tirichine L, Liu Z, Biot E, Adenot PG, Hue-Beauvais C, Houba-Hérin N, Duranthon V, Devinoy E, Beaujean N, Gaudin V, Maurin Y, Debey P. Statistical analysis of 3D images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei. PLoS Comput Biol 2010; 6:e1000853. [PMID: 20628576 PMCID: PMC2900307 DOI: 10.1371/journal.pcbi.1000853] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 06/03/2010] [Indexed: 12/16/2022] Open
Abstract
In eukaryotes, the interphase nucleus is organized in morphologically and/or functionally distinct nuclear "compartments". Numerous studies highlight functional relationships between the spatial organization of the nucleus and gene regulation. This raises the question of whether nuclear organization principles exist and, if so, whether they are identical in the animal and plant kingdoms. We addressed this issue through the investigation of the three-dimensional distribution of the centromeres and chromocenters. We investigated five very diverse populations of interphase nuclei at different differentiation stages in their physiological environment, belonging to rabbit embryos at the 8-cell and blastocyst stages, differentiated rabbit mammary epithelial cells during lactation, and differentiated cells of Arabidopsis thaliana plantlets. We developed new tools based on the processing of confocal images and a new statistical approach based on G- and F- distance functions used in spatial statistics. Our original computational scheme takes into account both size and shape variability by comparing, for each nucleus, the observed distribution against a reference distribution estimated by Monte-Carlo sampling over the same nucleus. This implicit normalization allowed similar data processing and extraction of rules in the five differentiated nuclei populations of the three studied biological systems, despite differences in chromosome number, genome organization and heterochromatin content. We showed that centromeres/chromocenters form significantly more regularly spaced patterns than expected under a completely random situation, suggesting that repulsive constraints or spatial inhomogeneities underlay the spatial organization of heterochromatic compartments. The proposed technique should be useful for identifying further spatial features in a wide range of cell types.
Collapse
Affiliation(s)
- Philippe Andrey
- INRA, UMR1197 Neurobiologie de l'Olfaction et de la Prise Alimentaire, Jouy-en-Josas, France
- Université Paris-Sud 11, UMR 1197, Orsay, France
- IFR144 Neuro-Sud Paris, France
- UPMC, Université Paris 06, France
| | - Kiên Kiêu
- INRA, UR341, Mathématiques et Informatique Appliquées, Jouy-en-Josas, France
| | - Clémence Kress
- INRA, UR1196 Génomique et Physiologie de la Lactation, Jouy-en-Josas, France
| | - Gaëtan Lehmann
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Leïla Tirichine
- INRA, Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, Versailles, France
| | - Zichuan Liu
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Eric Biot
- INRA, UMR1197 Neurobiologie de l'Olfaction et de la Prise Alimentaire, Jouy-en-Josas, France
- Université Paris-Sud 11, UMR 1197, Orsay, France
- IFR144 Neuro-Sud Paris, France
- INRA, Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, Versailles, France
| | - Pierre-Gaël Adenot
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Cathy Hue-Beauvais
- INRA, UR1196 Génomique et Physiologie de la Lactation, Jouy-en-Josas, France
| | - Nicole Houba-Hérin
- INRA, Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, Versailles, France
| | - Véronique Duranthon
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Eve Devinoy
- INRA, UR1196 Génomique et Physiologie de la Lactation, Jouy-en-Josas, France
| | - Nathalie Beaujean
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Valérie Gaudin
- INRA, Institut J.-P. Bourgin, UMR1318 INRA-AgroParisTech, Versailles, France
| | - Yves Maurin
- INRA, UMR1197 Neurobiologie de l'Olfaction et de la Prise Alimentaire, Jouy-en-Josas, France
- Université Paris-Sud 11, UMR 1197, Orsay, France
- IFR144 Neuro-Sud Paris, France
| | - Pascale Debey
- INRA, UMR1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| |
Collapse
|
15
|
Kress C, Ballester M, Devinoy E, Rijnkels M. Epigenetic modifications in 3D: nuclear organization of the differentiating mammary epithelial cell. J Mammary Gland Biol Neoplasia 2010; 15:73-83. [PMID: 20143138 DOI: 10.1007/s10911-010-9169-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 01/21/2010] [Indexed: 10/19/2022] Open
Abstract
During the development of tissues, complex programs take place to reach terminally differentiated states with specific gene expression profiles. Epigenetic regulations such as histone modifications and chromatin condensation have been implicated in the short and long-term control of transcription. It has recently been shown that the 3D spatial organization of chromosomes in the nucleus also plays a role in genome function. Indeed, the eukaryotic interphase nucleus contains sub-domains that are characterized by their enrichment in specific factors such as RNA Polymerase II, splicing machineries or heterochromatin proteins which render portions of the genome differentially permissive to gene expression. The positioning of individual genes relative to these sub-domains is thought to participate in the control of gene expression as an epigenetic mechanism acting in the nuclear space. Here, we review what is known about the sub-nuclear organization of mammary epithelial cells in connection with gene expression and epigenetics. Throughout differentiation, global changes in nuclear architecture occur, notably with respect to heterochromatin distribution. The positions of mammary-specific genes relative to nuclear sub-compartments varies in response to hormonal stimulation. The contribution of tissue architecture to cell differentiation in the mammary gland is also seen at the level of nuclear organization, which is sensitive to microenvironmental stimuli such as extracellular matrix signaling. In addition, alterations in nuclear organization are concomitant with immortalization and carcinogenesis. Thus, the fate of cells appears to be controlled by complex pathways connecting external signal integration, gene expression, epigenetic modifications and chromatin organization in the nucleus.
Collapse
Affiliation(s)
- Clémence Kress
- UR1196 Génomique et Physiologie de la Lactation, INRA, Domaine de Vilvert, F-78352, Jouy-en-Josas, France.
| | | | | | | |
Collapse
|
16
|
Spencer VA, Xu R, Bissell MJ. Gene expression in the third dimension: the ECM-nucleus connection. J Mammary Gland Biol Neoplasia 2010; 15:65-71. [PMID: 20107877 PMCID: PMC2912292 DOI: 10.1007/s10911-010-9163-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 01/05/2010] [Indexed: 12/25/2022] Open
Abstract
Decades ago, we and others proposed that the dynamic interplay between a cell and its surrounding environment dictates cell phenotype and tissue structure. Whereas much has been discovered about the effects of extracellular matrix molecules on cell growth and tissue-specific gene expression, the nuclear mechanisms through which these molecules promote these physiological events remain unknown. Using mammary epithelial cells as a model, the purpose of this review is to discuss how the extracellular matrix influences nuclear structure and function in a three-dimensional context to promote epithelial morphogenesis and function in the mammary gland.
Collapse
|
17
|
Gu GX, Shi XL, Hang HL, Ding YT. Bromodeoxyuridine labeling of swine adipose-derived stem cells in vitro. Shijie Huaren Xiaohua Zazhi 2010; 18:14-19. [DOI: 10.11569/wcjd.v18.i1.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the optimal dosage and treatment duration of bromodeoxyuridine (BrdU) for labeling of porcine adipose-derived stem cells (ADSCs) in vitro and explore the feasibility of using BrdU as a tracer to label stem cells.
METHODS: ADSCs were isolated from swine fat tissue by type I collagenase digestion and purified by differential adhesion. ADSCs at passage 3 were labeled with BrdU at different concentrations (10, 15, 20, 25 and 30 μmol/L). The labeling rates were determined by immunofluorescence at 12, 24, 48, 72 and 96 h after incubation with BrdU to find the optimal labeling parameters. The impact of BrdU on the growth of ADSCs was examined by trypan blue exclusion, methyl thiazoly tetrazolium (MTT) assay and cell apoptosis assay. ADSCs at passage 3 were labeled with BrdU using the optimal labeling parameters and then cultured and passaged in essential medium without BrdU. The labeling rates in ADSCs between 4-8 passages were determined to observe the attenuation of BrdU incorporation.
RESULTS: The majority of primary ADSCs were fusiform in shape. After BrdU labeling, the nuclei of ADSCs showed red fluorescence. With the increase in labeling concentration and duration, the BrdU labeling rate gradually increased. After labeling with 20 μmol/L BrdU for 48 hours, the labeling rate exceeded 90%. The labeling rate decreased with increased passages, declining to 40% after 5 passages. MTT assay, trypan blue exclusion and cell apoptosis assay showed that BrdU labeling had no significant impact on the growth of ADSCs.
CONCLUSION: The optimal labeling dosage and duration of BrdU are 20 μmol/L and 48 hours, respectively. The BrdU-labeling method achieves a high labeling rate, has little impact on the growth of ADSCs and can therefore be used for dynamic observation of the survival, growth and differentiation of implanted ADSCs.
Collapse
|
18
|
Gaudin V, Andrey P, Devinoy E, Kress C, Kieu K, Beaujean N, Maurin Y, Debey P. Modeling the 3D functional architecture of the nucleus in animal and plant kingdoms. C R Biol 2009; 332:937-46. [PMID: 19909917 DOI: 10.1016/j.crvi.2009.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Compartmentalization is one of the fundamental principles which underly nuclear function. Numerous studies describe complex and sometimes conflicting relationships between nuclear gene positioning and transcription regulation. Therefore the question is whether topological landmarks and/or organization principles exist to describe the nuclear architecture and, if existing, whether these principles are identical in the animal and plant kingdoms. In the frame of an agroBI-INRA program on nuclear architecture, we set up a multidisciplinary approach combining biological studies, spatial statistics and 3D modeling to investigate spatial organization of a nuclear compartment in both plant and animal cells in their physiological contexts. In this article, we review the questions addressed in this program and the methodology of our work.
Collapse
Affiliation(s)
- Valérie Gaudin
- Laboratoire de biologie cellulaire, UR501, IJPB, route de Saint-Cyr, INRA, 78026 Versailles, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Spencer VA, Xu R, Bissell MJ. Extracellular matrix, nuclear and chromatin structure, and gene expression in normal tissues and malignant tumors: a work in progress. Adv Cancer Res 2009; 97:275-94. [PMID: 17419950 PMCID: PMC2912285 DOI: 10.1016/s0065-230x(06)97012-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Almost three decades ago, we presented a model where the extracellular matrix (ECM) was postulated to influence gene expression and tissue-specificity through the action of ECM receptors and the cytoskeleton. This hypothesis implied that ECM molecules could signal to the nucleus and that the unit of function in higher organisms was not the cell alone, but the cell plus its microenvironment. We now know that ECM invokes changes in tissue and organ architecture and that tissue, cell, nuclear, and chromatin structure are changed profoundly as a result of and during malignant progression. Whereas some evidence has been generated for a link between ECM-induced alterations in tissue architecture and changes in both nuclear and chromatin organization, the manner by which these changes actively induce or repress gene expression in normal and malignant cells is a topic in need of further attention. Here, we will discuss some key findings that may provide insights into mechanisms through which ECM could influence gene transcription and how tumor cells acquire the ability to overcome these levels of control.
Collapse
Affiliation(s)
- Virginia A Spencer
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | |
Collapse
|
20
|
Xu R, Boudreau A, Bissell MJ. Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev 2009; 28:167-76. [PMID: 19160017 DOI: 10.1007/s10555-008-9178-z] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mammary gland development, functional differentiation, and homeostasis are orchestrated and sustained by a balance of biochemical and biophysical cues from the organ's microenvironment. The three-dimensional microenvironment of the mammary gland, predominantly 'encoded' by a collaboration between the extracellular matrix (ECM), hormones, and growth factors, sends signals from ECM receptors through the cytoskeletal intracellular matrix to nuclear and chromatin structures resulting in gene expression; the ECM in turn is regulated and remodeled by signals from the nucleus. In this chapter, we discuss how coordinated ECM deposition and remodeling is necessary for mammary gland development, how the ECM provides structural and biochemical cues necessary for tissue-specific function, and the role of the cytoskeleton in mediating the extra--to intracellular dialogue occurring between the nucleus and the microenvironment. When operating normally, the cytoskeletal-mediated dynamic and reciprocal integration of tissue architecture and function directs mammary gland development, tissue polarity, and ultimately, tissue-specific gene expression. Cancer occurs when these dynamic interactions go awry for an extended time.
Collapse
Affiliation(s)
- Ren Xu
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 977-225A, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
21
|
Jiang WQ, Zhong ZH, Nguyen A, Henson JD, Toouli CD, Braithwaite AW, Reddel RR. Induction of alternative lengthening of telomeres-associated PML bodies by p53/p21 requires HP1 proteins. ACTA ACUST UNITED AC 2009; 185:797-810. [PMID: 19468068 PMCID: PMC2711592 DOI: 10.1083/jcb.200810084] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Alternative lengthening of telomeres (ALT) is a recombination-mediated process that maintains telomeres in telomerase-negative cancer cells. In asynchronously dividing ALT-positive cell populations, a small fraction of the cells have ALT-associated promyelocytic leukemia nuclear bodies (APBs), which contain (TTAGGG)n DNA and telomere-binding proteins. We found that restoring p53 function in ALT cells caused p21 up-regulation, growth arrest/senescence, and a large increase in cells containing APBs. Knockdown of p21 significantly reduced p53-mediated induction of APBs. Moreover, we found that heterochromatin protein 1 (HP1) is present in APBs, and knockdown of HP1α and/or HP1γ prevented p53-mediated APB induction, which suggests that HP1-mediated chromatin compaction is required for APB formation. Therefore, although the presence of APBs in a cell line or tumor is an excellent qualitative marker for ALT, the association of APBs with growth arrest/senescence and with “closed” telomeric chromatin, which is likely to repress recombination, suggests there is no simple correlation between ALT activity level and the number of APBs or APB-positive cells.
Collapse
Affiliation(s)
- Wei-Qin Jiang
- Cancer Research Unit, Children's Medical Research Institute, Westmead 2145, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
22
|
Cooley C, Baird KM, Faure V, Wenner T, Stewart JL, Modino S, Slijepcevic P, Farr CJ, Morrison CG. Trf1 is not required for proliferation or functional telomere maintenance in chicken DT40 cells. Mol Biol Cell 2009; 20:2563-71. [PMID: 19321665 DOI: 10.1091/mbc.e08-10-1019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The telomere end-protection complex prevents the ends of linear eukaryotic chromosomes from degradation or inappropriate DNA repair. The homodimeric double-stranded DNA-binding protein, Trf1, is a component of this complex and is essential for mouse embryonic development. To define the requirement for Trf1 in somatic cells, we deleted Trf1 in chicken DT40 cells by gene targeting. Trf1-deficient cells proliferated as rapidly as control cells and showed telomeric localization of Trf2, Rap1, and Pot1. Telomeric G-strand overhang lengths were increased in late-passage Trf1-deficient cells, although telomere lengths were unaffected by Trf1 deficiency, as determined by denaturing Southern and quantitative FISH analysis. Although we observed some clonal variation in terminal telomere fragment lengths, this did not correlate with cellular Trf1 levels. Trf1 was not required for telomere seeding, indicating that de novo telomere formation can proceed without Trf1. The Pin2 isoform and a novel exon 4, 5-deleted isoform localized to telomeres in Trf1-deficient cells. Trf1-deficient cells were sensitive to DNA damage induced by ionizing radiation. Our data demonstrate that chicken DT40 B cells do not require Trf1 for functional telomere structure and suggest that Trf1 may have additional, nontelomeric roles involved in maintaining genome stability.
Collapse
Affiliation(s)
- Carol Cooley
- Centre for Chromosome Biology, National University of Ireland Galway, Department of Biochemistry and NCBES, Galway, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kaminker PG, Kim SH, Desprez PY, Campisi J. A novel form of the telomere-associated protein TIN2 localizes to the nuclear matrix. Cell Cycle 2009; 8:931-9. [PMID: 19229133 PMCID: PMC2751576 DOI: 10.4161/cc.8.6.7941] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Telomeres are specialized heterochromatin at the ends of linear chromosomes. Telomeres are crucial for maintaining genome stability and play important roles in cellular senescence and tumor biology. Six core proteins-TRF1, TRF2, TIN2, POT1, TPP1 and Rap1 (termed the telosome or shelterin complex)-regulate telomere structure and function. One of these proteins, TIN2, regulates telomere length and structure indirectly by interacting with TRF1, TRF2 and TPP1, but no direct function has been attributed to TIN2. Here we present evidence for a TIN2 isoform (TIN2L) that differs from the originally described TIN2 isoform (TIN2S) in two ways: TIN2L contains an additional 97 amino acids, and TIN2L associates strongly with the nuclear matrix. Stringent salt and detergent conditions failed to extract TIN2L from the nuclear matrix, despite removing other telomere components, including TIN2S. In human mammary epithelial cells, each isoform showed a distinct nuclear distribution both as a function of cell cycle position and telomere length. Our results suggest a dual role for TIN2 in mediating the function of the shelterin complex and tethering telomeres to the nuclear matrix.
Collapse
Affiliation(s)
- Patrick G. Kaminker
- Buck Institute for Age Research; Novato, California USA
- Life Sciences Division; Lawrence Berkeley National Laboratory; Berkeley, California USA
| | - Sahn-Ho Kim
- Life Sciences Division; Lawrence Berkeley National Laboratory; Berkeley, California USA
| | - Pierre-Yves Desprez
- Buck Institute for Age Research; Novato, California USA
- California Pacific Medical Center; Cancer Research Institute; San Francisco, California USA
| | - Judith Campisi
- Buck Institute for Age Research; Novato, California USA
- Life Sciences Division; Lawrence Berkeley National Laboratory; Berkeley, California USA
| |
Collapse
|
24
|
Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 2009; 6:2853-68. [PMID: 19053174 PMCID: PMC2592359 DOI: 10.1371/journal.pbio.0060301] [Citation(s) in RCA: 2956] [Impact Index Per Article: 184.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 10/22/2008] [Indexed: 11/18/2022] Open
Abstract
Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial–mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment. Cells with damaged DNA are at risk of becoming cancerous tumors. Although “cellular senescence” can suppress tumor formation from damaged cells by blocking the cell division that underlies cancer growth, it has also been implicated in promoting cancer and other age-related diseases. To understand how this might happen, we measured proteins that senescent human cells secrete into their local environment and found many factors associated with inflammation and cancer development. Different types of cells secrete a common set of proteins when they senesce. This senescence-associated secretory phenotype (SASP) occurs not only in cultured cells, but also in vivo in response to DNA-damaging chemotherapy. Normal cells that acquire a highly active mutant version of the RAS protein, which is known to contribute to tumor growth, undergo cellular senescence, and develop a very intense SASP, with higher levels of proteins secreted. Likewise, the SASP is more intense when cells lose the functions of the tumor suppressor p53. Senescent cells promote the growth and aggressiveness of nearby precancerous or cancer cells, and cells with a more intense SASP do so more efficiently. Our findings support the idea that cellular senescence can be both beneficial, in preventing damaged cells from dividing, and deleterious, by having effects on neighboring cells; this balance of effects is predicted by an evolutionary theory of aging. By controlling how damaged cells modify their surrounding tissue environment, a tumor suppressor gene can restrain, and an oncogene can promote, the development of cancer.
Collapse
Affiliation(s)
- Jean-Philippe Coppé
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Christopher K Patil
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Francis Rodier
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Buck Institute for Age Research, Novato, California, United States of America
| | - Yu Sun
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Denise P Muñoz
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Buck Institute for Age Research, Novato, California, United States of America
| | - Joshua Goldstein
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Pierre-Yves Desprez
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- California Pacific Medical Center Research Institute, San Francisco, California, United States of America
| | - Judith Campisi
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Buck Institute for Age Research, Novato, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Fernandez-Gonzalez R, Illa-Bochaca I, Welm BE, Fleisch MC, Werb Z, Ortiz-de-Solorzano C, Barcellos-Hoff MH. Mapping mammary gland architecture using multi-scale in situ analysis. Integr Biol (Camb) 2009; 1:80-9. [PMID: 20023794 PMCID: PMC2847439 DOI: 10.1039/b816933k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have built a novel computational microscopy platform that integrates image acquisition, storage, processing and analysis to study cell populations in situ. This platform allows high-content studies where multiple features are measured and linked at multiple scales. We used this approach to study the cellular composition and architecture of the mouse mammary gland by quantitatively tracking the distribution and type, position, proliferative state, and hormone receptor status of epithelial cells that incorporated bromodeoxyuridine while undergoing DNA synthesis during puberty and retained this label in the adult gland as a function of tissue structure. Immunofluorescence was used to identify label-retaining cells, as well as epithelial cells expressing the proteins progesterone receptor and P63. Only 3.6% of luminal cells were label-retaining cells, the majority of which did not express the progesterone receptor. Multi-scale in situ analysis revealed that luminal label-retaining cells have a distinct nuclear morphology, are enriched 3.4-fold in large ducts, and are distributed asymmetrically across the tissue. We postulated that LRC enriched in the ventral mammary gland represent progenitor cells. Epithelial cells isolated from the ventral versus the dorsal portion of the gland were enriched for the putative stem cell markers CD24 and CD49f as measured by fluorescence activated cell sorting. Thus, quantitative analysis of the cellular composition of the mammary epithelium across spatial scales identified a previously unrecognized architecture in which the ventral-most, large ducts contain a reservoir of undifferentiated, putative stem cells.
Collapse
Affiliation(s)
- Rodrigo Fernandez-Gonzalez
- Department of Cancer Biology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Joint Graduate Group in Bioengineering, University of California, San Francisco/Berkeley, Berkeley, CA 94720, USA
| | - Irineu Illa-Bochaca
- Department of Cancer Biology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Bryan E. Welm
- Department of Anatomy and the Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Markus C. Fleisch
- Department of Cancer Biology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zena Werb
- Department of Anatomy and the Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Carlos Ortiz-de-Solorzano
- Morphology and Imaging Group and Cancer Imaging Laboratory, Center for Applied Medical Research, University of Navarre, Pamplona, 31008 Navarre, Spain
| | - Mary Helen Barcellos-Hoff
- Department of Cancer Biology, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
26
|
Abstract
The telosome/shelterin protein complex bound to telomeres is essential for maintenance of telomere structure and telomere signaling functions. The telomeres that cap the ends of eukaryotic chromosomes serve a dual role in protecting the chromosome ends and in intracellular signaling for regulating cell proliferation. A complex of six telomere-associated proteins has been identified - the telosome or shelterin complex - that is crucial for both the maintenance of telomere structure and its signaling functions.
Collapse
Affiliation(s)
- Huawei Xin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
27
|
Faure V, Wenner T, Cooley C, Bourke E, Farr CJ, Takeda S, Morrison CG. Ku70 prevents genome instability resulting from heterozygosity of the telomerase RNA component in a vertebrate tumour line. DNA Repair (Amst) 2008; 7:713-24. [DOI: 10.1016/j.dnarep.2008.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
|
28
|
Meaburn KJ, Misteli T. Locus-specific and activity-independent gene repositioning during early tumorigenesis. ACTA ACUST UNITED AC 2008; 180:39-50. [PMID: 18195100 PMCID: PMC2213600 DOI: 10.1083/jcb.200708204] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mammalian genome is highly organized within the cell nucleus. The nuclear position of many genes and genomic regions changes during physiological processes such as proliferation, differentiation, and disease. It is unclear whether disease-associated positioning changes occur specifically or are part of more global genome reorganization events. Here, we have analyzed the spatial position of a defined set of cancer-associated genes in an established mammary epithelial three-dimensional cell culture model of the early stages of breast cancer. We find that the genome is globally reorganized during normal and tumorigenic epithelial differentiation. Systematic mapping of changes in spatial positioning of cancer-associated genes reveals gene-specific positioning behavior and we identify several genes that are specifically repositioned during tumorigenesis. Alterations of spatial positioning patterns during differentiation and tumorigenesis were unrelated to gene activity. Our results demonstrate the existence of activity-independent genome repositioning events in the early stages of tumor formation.
Collapse
Affiliation(s)
- Karen J Meaburn
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
29
|
Abstract
Telomere shortening occurs concomitant with organismal aging, and it is accelerated in the context of human diseases associated with mutations in telomerase, such as some cases of dyskeratosis congenita, idiopathic pulmonary fibrosis and aplastic anemia. People with these diseases, as well as Terc-deficient mice, show decreased lifespan coincidental with a premature loss of tissue renewal, which suggests that telomerase is rate-limiting for tissue homeostasis and organismal survival. These findings have gained special relevance as they suggest that telomerase activity and telomere length can directly affect the ability of stem cells to regenerate tissues. If this is true, stem cell dysfunction provoked by telomere shortening may be one of the mechanisms responsible for organismal aging in both humans and mice. Here, we will review the current evidence linking telomere shortening to aging and stem cell dysfunction.
Collapse
Affiliation(s)
- Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, 3 Melchor Fernandez Almagro, 28019 Madrid, Spain.
| |
Collapse
|
30
|
Abstract
Telomeres are among the most important structures in eukaryotic cells. Creating the physical ends of linear chromosomes, they play a crucial role in maintaining genome stability, control of cell division, cell growth and senescence. In vertebrates, telomeres consist of G-rich repetitive DNA sequences (TTAGGG)n and specific proteins, creating a specialized structure called the telosome that through mutual interactions with many other factors in the cell give rise to dynamic regulation of chromosome maintenance. In this review, we survey the structural and mechanistic aspects of telomere length regulation and how these processes lead to alterations in normal and immortal cell growth.
Collapse
Affiliation(s)
- M Matulić
- Ruder Bosković Institute, Department of Molecular Biology, Zagreb, Croatia
| | | | | |
Collapse
|
31
|
Ottaviani A, Gilson E, Magdinier F. Telomeric position effect: from the yeast paradigm to human pathologies? Biochimie 2007; 90:93-107. [PMID: 17868970 DOI: 10.1016/j.biochi.2007.07.022] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 07/25/2007] [Indexed: 01/28/2023]
Abstract
Alteration of the epigenome is associated with a wide range of human diseases. Therefore, deciphering the pathways that regulate the epigenetic modulation of gene expression is a major milestone for the understanding of diverse biological mechanisms and subsequently human pathologies. Although often evoked, little is known on the implication of telomeric position effect, a silencing mechanism combining telomere architecture and classical heterochromatin features, in human cells. Nevertheless, this particular silencing mechanism has been investigated in different organisms and several ingredients are likely conserved during evolution. Subtelomeres are highly dynamic regions near the end of the chromosomes that are prone to recombination and may buffer or facilitate the spreading of silencing that emanates from the telomere. Therefore, the composition and integrity of these regions also concur to the propensity of telomeres to regulate the expression, replication and recombination of adjacent regions. Here we describe the similarities and disparities that exist among the different species at chromosome ends with regard to telomeric silencing regulation with a special accent on its implication in numerous human pathologies.
Collapse
Affiliation(s)
- Alexandre Ottaviani
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS UMR5239, Ecole Normale Supérieure de Lyon, UCBL1, IFR128, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | |
Collapse
|
32
|
Le Beyec J, Xu R, Lee SY, Nelson CM, Rizki A, Alcaraz J, Bissell MJ. Cell shape regulates global histone acetylation in human mammary epithelial cells. Exp Cell Res 2007; 313:3066-75. [PMID: 17524393 PMCID: PMC2040058 DOI: 10.1016/j.yexcr.2007.04.022] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 04/12/2007] [Accepted: 04/16/2007] [Indexed: 01/13/2023]
Abstract
Extracellular matrix (ECM) regulates cell morphology and gene expression in vivo; these relationships are maintained in three-dimensional (3D) cultures of mammary epithelial cells. In the presence of laminin-rich ECM (lrECM), mammary epithelial cells round up and undergo global histone deacetylation, a process critical for their functional differentiation. However, it remains unclear whether lrECM-dependent cell rounding and global histone deacetylation are indeed part of a common physical-biochemical pathway. Using 3D cultures as well as nonadhesive and micropatterned substrata, here we showed that the cell 'rounding' caused by lrECM was sufficient to induce deacetylation of histones H3 and H4 in the absence of biochemical cues. Microarray and confocal analysis demonstrated that this deacetylation in 3D culture is associated with a global increase in chromatin condensation and a reduction in gene expression. Whereas cells cultured on plastic substrata formed prominent stress fibers, cells grown in 3D lrECM or on micropatterns lacked these structures. Disruption of the actin cytoskeleton with cytochalasin D phenocopied the lrECM-induced cell rounding and histone deacetylation. These results reveal a novel link between ECM-controlled cell shape and chromatin structure and suggest that this link is mediated by changes in the actin cytoskeleton.
Collapse
|
33
|
Chandramouly G, Abad PC, Knowles DW, Lelièvre SA. The control of tissue architecture over nuclear organization is crucial for epithelial cell fate. J Cell Sci 2007; 120:1596-606. [PMID: 17405811 DOI: 10.1242/jcs.03439] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The remodeling of nuclear organization during differentiation and the dramatic alteration of nuclear organization associated with cancer development are well documented. However, the importance of tissue architecture in the control of nuclear organization remains to be determined. Differentiation of mammary epithelial cells into functional tissue structures, in three-dimensional culture, is characterized by a specific tissue architecture (i.e. a basoapical polarity axis), cell cycle exit and maintenance of cell survival. Here we show that induction of partial differentiation (i.e. basal polarity only, cell cycle exit and cell survival) by epigenetic mechanisms in malignant breast cells is sufficient to restore features of differentiation-specific nuclear organization, including perinucleolar heterochromatin, large splicing factor speckles, and distinct nuclear mitotic apparatus protein (NuMA) foci. Upon alteration of nuclear organization using an antibody against NuMA, differentiated non-neoplastic cells undergo apoptosis, whereas partially differentiated malignant cells enter the cell cycle. Non-neoplastic cells cultured under conditions that prevent the establishment of apical polarity also enter the cell cycle upon NuMA antibody treatment. These findings demonstrate that the differentiation status rather than the non-neoplastic or neoplastic origin of cells controls nuclear organization and suggest a link between nuclear organization and epigenetic mechanisms dictated by tissue architecture for the control of cell behavior.
Collapse
Affiliation(s)
- Gurushankar Chandramouly
- Department of Basic Medical Sciences and Cancer Center, Purdue University, 625 Harrison Street, West Lafayette, IN 47907-2026, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Increasing evidence indicates that chromatin modifications are important regulators of mammalian telomeres. Telomeres provide well studied paradigms of heterochromatin formation in yeast and flies, and recent studies have shown that mammalian telomeres and subtelomeric regions are also enriched in epigenetic marks that are characteristic of heterochromatin. Furthermore, the abrogation of master epigenetic regulators, such as histone methyltransferases and DNA methyltransferases, correlates with loss of telomere-length control, and telomere shortening to a critical length affects the epigenetic status of telomeres and subtelomeres. These links between epigenetic status and telomere-length regulation provide important new avenues for understanding processes such as cancer development and ageing, which are characterized by telomere-length defects.
Collapse
Affiliation(s)
- María A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Programme, Spanish National Cancer Centre (CNIO), 3 Melchor Fernández Almagro, Madrid E-28029, Spain.
| |
Collapse
|
35
|
Abad PC, Lewis J, Mian IS, Knowles DW, Sturgis J, Badve S, Xie J, Lelièvre SA. NuMA influences higher order chromatin organization in human mammary epithelium. Mol Biol Cell 2006; 18:348-61. [PMID: 17108325 PMCID: PMC1783787 DOI: 10.1091/mbc.e06-06-0551] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The coiled-coil protein NuMA is an important contributor to mitotic spindle formation and stabilization. A potential role for NuMA in nuclear organization or gene regulation is suggested by the observations that its pattern of nuclear distribution depends upon cell phenotype and that it interacts and/or colocalizes with transcription factors. To date, the precise contribution of NuMA to nuclear function remains unclear. Previously, we observed that antibody-induced alteration of NuMA distribution in growth-arrested and differentiated mammary epithelial structures (acini) in three-dimensional culture triggers the loss of acinar differentiation. Here, we show that in mammary epithelial cells, NuMA is present in both the nuclear matrix and chromatin compartments. Expression of a portion of the C terminus of NuMA that shares sequence similarity with the chromatin regulator HPC2 is sufficient to inhibit acinar differentiation and results in the redistribution of NuMA, chromatin markers acetyl-H4 and H4K20m, and regions of deoxyribonuclease I-sensitive chromatin compared with control cells. Short-term alteration of NuMA distribution with anti-NuMA C-terminus antibodies in live acinar cells indicates that changes in NuMA and chromatin organization precede loss of acinar differentiation. These findings suggest that NuMA has a role in mammary epithelial differentiation by influencing the organization of chromatin.
Collapse
Affiliation(s)
- Patricia C. Abad
- *Department of Basic Medical Sciences and Cancer Center, Purdue University, West Lafayette, IN 47907-2026
| | - Jason Lewis
- *Department of Basic Medical Sciences and Cancer Center, Purdue University, West Lafayette, IN 47907-2026
| | - I. Saira Mian
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8268
| | - David W. Knowles
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8268
| | - Jennifer Sturgis
- *Department of Basic Medical Sciences and Cancer Center, Purdue University, West Lafayette, IN 47907-2026
| | - Sunil Badve
- Indiana University School of Medicine, Indianapolis, IN 46202-5280; and
| | - Jun Xie
- Department of Statistics, Purdue University, West Lafayette, IN 47907-2067
| | - Sophie A. Lelièvre
- *Department of Basic Medical Sciences and Cancer Center, Purdue University, West Lafayette, IN 47907-2026
| |
Collapse
|
36
|
Baird DM, Farr CJ. The organization and function of chromosomes. EMBO Rep 2006; 7:372-6. [PMID: 16547463 PMCID: PMC1456904 DOI: 10.1038/sj.embor.7400661] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 02/14/2006] [Indexed: 12/23/2022] Open
Affiliation(s)
- Duncan M Baird
- Department of Pathology, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Christine J Farr
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
- Tel: +44 (0)1223 333 972; Fax: +44 (0)1223 333 992; E-mail:
| |
Collapse
|
37
|
Lewis CM, Herbert BS, Bu D, Halloway S, Beck A, Shadeo A, Zhang C, Ashfaq R, Shay JW, Euhus DM. Telomerase immortalization of human mammary epithelial cells derived from a BRCA2 mutation carrier. Breast Cancer Res Treat 2006; 99:103-15. [PMID: 16541310 DOI: 10.1007/s10549-006-9189-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 02/05/2006] [Indexed: 12/13/2022]
Abstract
A novel human mammary epithelial cell line, HME348, was established from benign breast tissue from a 44-year-old germ-line BRCA2 mutation carrier with a history of stage 1 breast cancer. Mutation analysis showed that the patient had a known 6872del4 BRCA2 heterozygous mutation. The human mammary epithelial cells passaged in culture exhibited cellular replicative aging as evidenced by telomere shortening, lack of telomerase activity, and senescence. Ectopic expression of telomerase (hTERT) reconstituted telomerase activity in these cells and led to the immortalization of the cells. When grown on glass, the majority of immortalized HME348 cells expressed ESA and p63 with a small population also expressing EMA. In three-dimensional Matrigel culture, HME348 cells formed complex branching acini structures that expressed luminal (EMA, CK18) and myoepithelial (p63, CALLA, CK14) markers. Three clones derived from this culture were also p63(+)/ESA(+)/EMA(+/-) on glass but formed similar acinar structures with both luminal and myoepithelial cell differentiation in Matrigel confirming the mammary progenitor nature of these cells. Additionally, the experimentally immortalized HME348 cells formed acini in cleared mammary fat pads in vivo. As this is the first report establishing and characterizing a benign human mammary epithelial cell line derived from a BRCA2 patient without the use of viral oncogenes, these cells may be useful for the study of BRCA2 function in breast morphogenesis and carcinogenesis.
Collapse
Affiliation(s)
- Cheryl M Lewis
- Hamon Center for Therapeutic Oncology Research and Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Telomere length and telomerase activity are important factors in the pathobiology of human disease. Age-related diseases and premature ageing syndromes are characterized by short telomeres, which can compromise cell viability, whereas tumour cells can prevent telomere loss by aberrantly upregulating telomerase. Altered functioning of both telomerase and telomere-interacting proteins is present in some human premature ageing syndromes and in cancer, and recent findings indicate that alterations that affect telomeres at the level of chromatin structure might also have a role in human disease. These findings have inspired a number of potential therapeutic strategies that are based on telomerase and telomeres.
Collapse
Affiliation(s)
- Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), 28029 Madrid, Spain.
| |
Collapse
|