1
|
One Raft to Guide Them All, and in Axon Regeneration Inhibit Them. Int J Mol Sci 2021; 22:ijms22095009. [PMID: 34066896 PMCID: PMC8125918 DOI: 10.3390/ijms22095009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Central nervous system damage caused by traumatic injuries, iatrogenicity due to surgical interventions, stroke and neurodegenerative diseases is one of the most prevalent reasons for physical disability worldwide. During development, axons must elongate from the neuronal cell body to contact their precise target cell and establish functional connections. However, the capacity of the adult nervous system to restore its functionality after injury is limited. Given the inefficacy of the nervous system to heal and regenerate after damage, new therapies are under investigation to enhance axonal regeneration. Axon guidance cues and receptors, as well as the molecular machinery activated after nervous system damage, are organized into lipid raft microdomains, a term typically used to describe nanoscale membrane domains enriched in cholesterol and glycosphingolipids that act as signaling platforms for certain transmembrane proteins. Here, we systematically review the most recent findings that link the stability of lipid rafts and their composition with the capacity of axons to regenerate and rebuild functional neural circuits after damage.
Collapse
|
2
|
Guégan JP, Ginestier C, Charafe-Jauffret E, Ducret T, Quignard JF, Vacher P, Legembre P. CD95/Fas and metastatic disease: What does not kill you makes you stronger. Semin Cancer Biol 2020; 60:121-131. [PMID: 31176682 DOI: 10.1016/j.semcancer.2019.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022]
Abstract
CD95 (also known as Fas) is the prototype of death receptors; however, evidence suggests that this receptor mainly implements non-apoptotic signaling pathways such as NF-κB, MAPK, and PI3K that are involved in cell migration, differentiation, survival, and cytokine secretion. At least two different forms of CD95 L exist. The multi-aggregated transmembrane ligand (m-CD95 L) is cleaved by metalloproteases to release a homotrimeric soluble ligand (s-CD95 L). Unlike m-CD95 L, the interaction between s-CD95 L and its receptor CD95 fails to trigger apoptosis, but instead promotes calcium-dependent cell migration, which contributes to the accumulation of inflammatory Th17 cells in damaged organs of lupus patients and favors cancer cell invasiveness. Novel inhibitors targeting the pro-inflammatory roles of CD95/CD95 L may provide attractive therapeutic options for patients with chronic inflammatory disorders or cancer. This review discusses the roles of the CD95/CD95 L pair in cell migration and metastasis.
Collapse
Affiliation(s)
- Jean Philippe Guégan
- CLCC Eugène Marquis, Équipe Ligue Contre Le Cancer, Rennes, France; Université Rennes, INSERM U1242, Rennes, France
| | - Christophe Ginestier
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, Marseille, France
| | - Emmanuelle Charafe-Jauffret
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, Marseille, France
| | - Thomas Ducret
- Université de Bordeaux, Bordeaux, France; Centre de Recherche Cardio Thoracique de Bordeaux, INSERM U1045, Bordeaux, France
| | - Jean-François Quignard
- Université de Bordeaux, Bordeaux, France; Centre de Recherche Cardio Thoracique de Bordeaux, INSERM U1045, Bordeaux, France
| | - Pierre Vacher
- Université de Bordeaux, Bordeaux, France; INSERM U1218, Bordeaux, France
| | - Patrick Legembre
- CLCC Eugène Marquis, Équipe Ligue Contre Le Cancer, Rennes, France; Université Rennes, INSERM U1242, Rennes, France.
| |
Collapse
|
3
|
Guégan JP, Legembre P. Nonapoptotic functions of Fas/CD95 in the immune response. FEBS J 2017; 285:809-827. [PMID: 29032605 DOI: 10.1111/febs.14292] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/26/2017] [Accepted: 10/11/2017] [Indexed: 12/26/2022]
Abstract
CD95 (also known as Fas) is a member of the tumor necrosis factor receptor (TNFR) superfamily. Its cognate ligand, CD95L, is implicated in immune homeostasis and immune surveillance. Mutations in this receptor are associated with a loss of apoptotic signaling and have been detected in an autoimmune disorder called autoimmune lymphoproliferative syndrome (ALPS) type Ia, which shares some clinical features with systemic lupus erythematosus (SLE). In addition, deletions and mutations of CD95 have been described in many cancers, which led researchers to initially classify this receptor as a tumor suppressor. More recent data demonstrate that CD95 engagement evokes nonapoptotic signals that promote inflammation and carcinogenesis. Transmembrane CD95L (m-CD95L) can be cleaved by metalloproteases, releasing a soluble ligand (s-CD95L). Soluble and membrane-bound CD95L show different stoichiometry (homotrimer versus multimer of homotrimers, respectively), which differentially affects CD95-mediated signaling through molecular mechanisms that remain to be elucidated. This review discusses the biological roles of CD95 in light of recent experiments addressing how a death receptor can trigger both apoptotic and nonapoptotic signaling pathways.
Collapse
Affiliation(s)
- Jean-Philippe Guégan
- Centre Eugène Marquis, INSERM U1242-COSS, Equipe Labellisée Ligue Contre Le Cancer, Rennes, France.,Université de Rennes-1, Rennes, France
| | - Patrick Legembre
- Centre Eugène Marquis, INSERM U1242-COSS, Equipe Labellisée Ligue Contre Le Cancer, Rennes, France.,Université de Rennes-1, Rennes, France
| |
Collapse
|
4
|
Le Gallo M, Poissonnier A, Blanco P, Legembre P. CD95/Fas, Non-Apoptotic Signaling Pathways, and Kinases. Front Immunol 2017; 8:1216. [PMID: 29021794 PMCID: PMC5623854 DOI: 10.3389/fimmu.2017.01216] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/14/2017] [Indexed: 12/13/2022] Open
Abstract
Endothelial cells lining new blood vessels that develop during inflammatory disorders or cancers act as doors that either allow or block access to the tumor or inflamed organ. Recent data show that these endothelial cells in cancer tissues and inflamed tissues of lupus patients overexpress CD95L, the biological role of which is a subject of debate. The receptor CD95 (also named Fas or apoptosis antigen 1) belongs to the tumor necrosis factor (TNF) receptor superfamily. Its cognate ligand, CD95L, is implicated in immune homeostasis and immune surveillance. Because mutations of this receptor or its ligand lead to autoimmune disorders such as systemic lupus erythematosus (SLE) and cancers, CD95 and CD95L were initially thought to play a role in immune homeostasis and tumor elimination via apoptotic signaling pathways. However, recent data reveal that CD95 also evokes non-apoptotic signals, promotes inflammation, and contributes to carcinogenesis; therefore, it is difficult to dissect its apoptotic effects from its non-apoptotic effects during pathogenesis of disease. CD95L is cleaved by metalloproteases and so exists in two different forms: a transmembrane form and a soluble ligand (s-CD95L). We recently observed that the soluble ligand is overexpressed in serum from patients with triple-negative breast cancer or SLE, in whom it contributes to disease severity by activating non-apoptotic signaling pathways and promoting either metastatic dissemination or accumulation of certain T cell subsets in damaged organs. Here, we discuss the roles of CD95 in modulating immune functions via induction of mainly non-apoptotic signaling pathways.
Collapse
Affiliation(s)
- Matthieu Le Gallo
- Centre Eugène Marquis, Rennes, France
- Equipe Labellisée Ligue Contre Le Cancer, INSERM U1242 COSS Institut National de la Santé et de la Recherche Médical, Rennes, France
- Université de Rennes-1, Rennes, France
| | - Amanda Poissonnier
- Centre Eugène Marquis, Rennes, France
- Equipe Labellisée Ligue Contre Le Cancer, INSERM U1242 COSS Institut National de la Santé et de la Recherche Médical, Rennes, France
- Université de Rennes-1, Rennes, France
| | - Patrick Blanco
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Université de Bordeaux, Bordeaux, France
- UMR CNRS 5164, Bordeaux, France
| | - Patrick Legembre
- Centre Eugène Marquis, Rennes, France
- Equipe Labellisée Ligue Contre Le Cancer, INSERM U1242 COSS Institut National de la Santé et de la Recherche Médical, Rennes, France
- Université de Rennes-1, Rennes, France
| |
Collapse
|
5
|
Gao L, Gülcüler GS, Golbach L, Block H, Zarbock A, Martin-Villalba A. Endothelial cell-derived CD95 ligand serves as a chemokine in induction of neutrophil slow rolling and adhesion. eLife 2016; 5. [PMID: 27763263 PMCID: PMC5098908 DOI: 10.7554/elife.18542] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/19/2016] [Indexed: 12/31/2022] Open
Abstract
Integrin activation is crucial for the regulation of leukocyte rolling, adhesion and trans-vessel migration during inflammation and occurs by engagement of myeloid cells through factors presented by inflamed vessels. However, endothelial-dependent mechanisms of myeloid cell recruitment are not fully understood. Here we show using an autoperfused flow chamber assay of whole blood neutrophils and intravital microscopy of the inflamed cremaster muscle that CD95 mediates leukocyte slow rolling, adhesion and transmigration upon binding of CD95-ligand (CD95L) that is presented by endothelial cells. In myeloid cells, CD95 triggers activation of Syk-Btk/PLCγ2/Rap1 signaling that ultimately leads to integrin activation. Excitingly, CD95-deficient myeloid cells exhibit impaired bacterial clearance in an animal model of sepsis induced by cecal ligation and puncture (CLP). Our data identify the cellular and molecular mechanisms underlying the chemoattractant effect of endothelial cell-derived CD95L in induction of neutrophil recruitment and support the use of therapeutic inhibition of CD95’s activity in inflammatory diseases. DOI:http://dx.doi.org/10.7554/eLife.18542.001 When tissues are damaged or infected, the body produces an inflammatory response. Neutrophils – a type of white blood cell – play an important part in this response. These cells normally circulate through the bloodstream, and are recruited to the inflamed site by chemical signals sent out by immune cells in the damaged tissue. This causes passing neutrophils to migrate through the wall of the blood vessel to gain access to the inflamed tissue. The neutrophils go through a sequence of steps before they can pass through the blood vessel wall. After initially tethering to the cells that line the blood vessel, the neutrophils experience a period of “slow rolling” across the vessel lining, before tightly adhering to one of the cells. In 2010, researchers determined that a protein on the neutrophil’s surface, known as CD95, helps the cell migrate through blood vessel walls. This protein interacts with a “ligand” molecule on the surface of the cells that line the blood vessel. However, it remains unclear whether CD95 and its ligand play a role in the steps that lead up to the neutrophils migrating through the blood vessel wall. Gao et al. – who include researchers involved in the 2010 study – now show that activating CD95 in neutrophils also triggers the cell’s slow rolling and adhesion. Experiments performed on mouse cells and tissues showed that the cells that line the blood vessels present the CD95 ligand on their surfaces in order to activate CD95 in the neutrophils circulating in the bloodstream. This ultimately leads to neutrophil slow rolling and adhesion. Further experiments in mice showed that this ability of CD95 to recruit neutrophils to inflamed sites was crucial for clearing bacteria in cases of sepsis, where infection causes the immune system to damage the body’s own tissues. Future studies could address whether inhibiting CD95's activity could help to treat diseases that feature uncontrolled white blood cell recruitment, including various cancers and autoimmune diseases. DOI:http://dx.doi.org/10.7554/eLife.18542.002
Collapse
Affiliation(s)
- Liang Gao
- Division of Molecular Neurobiology, German Cancer Research Center, Heidelberg, Germany
| | - Gülce Sila Gülcüler
- Division of Molecular Neurobiology, German Cancer Research Center, Heidelberg, Germany
| | - Lieke Golbach
- Department of Anesthesiology and Critical Care Medicine, University of Münster, Münster, Germany
| | - Helena Block
- Department of Anesthesiology and Critical Care Medicine, University of Münster, Münster, Germany
| | - Alexander Zarbock
- Department of Anesthesiology and Critical Care Medicine, University of Münster, Münster, Germany
| | - Ana Martin-Villalba
- Division of Molecular Neurobiology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
6
|
The cleaved FAS ligand activates the Na(+)/H(+) exchanger NHE1 through Akt/ROCK1 to stimulate cell motility. Sci Rep 2016; 6:28008. [PMID: 27302366 PMCID: PMC4908414 DOI: 10.1038/srep28008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/17/2016] [Indexed: 12/20/2022] Open
Abstract
Transmembrane CD95L (Fas ligand) can be cleaved to release a promigratory soluble ligand, cl-CD95L, which can contribute to chronic inflammation and cancer cell dissemination. The motility signaling pathway elicited by cl-CD95L remains poorly defined. Here, we show that in the presence of cl-CD95L, CD95 activates the Akt and RhoA signaling pathways, which together orchestrate an allosteric activation of the Na+/H+ exchanger NHE1. Pharmacologic inhibition of Akt or ROCK1 independently blocks the cl-CD95L-induced migration. Confirming these pharmacologic data, disruption of the Akt and ROCK1 phosphorylation sites on NHE1 decreases cell migration in cells exposed to cl-CD95L. Together, these findings demonstrate that NHE1 is a novel molecular actor in the CD95 signaling pathway that drives the cl-CD95L-induced cell migration through both the Akt and RhoA signaling pathways.
Collapse
|
7
|
Lipid rafts and raft-mediated supramolecular entities in the regulation of CD95 death receptor apoptotic signaling. Apoptosis 2015; 20:584-606. [DOI: 10.1007/s10495-015-1104-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
CD95 engagement mediates actin-independent and -dependent apoptotic signals. Cell Death Differ 2009; 16:1654-64. [DOI: 10.1038/cdd.2009.111] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
9
|
Degli Esposti M, Tour J, Ouasti S, Ivanova S, Matarrese P, Malorni W, Khosravi-Far R. Fas death receptor enhances endocytic membrane traffic converging into the Golgi region. Mol Biol Cell 2008; 20:600-15. [PMID: 19037097 DOI: 10.1091/mbc.e08-09-0925] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The death receptor Fas/CD95 initiates apoptosis by engaging diverse cellular organelles including endosomes. The link between Fas signaling and membrane traffic has remained unclear, in part because it may differ in diverse cell types. After a systematic investigation of all known pathways of endocytosis, we have clarified that Fas activation opens clathrin-independent portals in mature T cells. These portals drive rapid internalization of surface proteins such as CD59 and depend upon actin-regulating Rho GTPases, especially CDC42. Fas-enhanced membrane traffic invariably produces an accumulation of endocytic membranes around the Golgi apparatus, in which recycling endosomes concentrate. This peri-Golgi polarization has been documented by colocalization analysis of various membrane markers and applies also to active caspases associated with internalized receptor complexes. Hence, T lymphocytes show a diversion in the traffic of endocytic membranes after Fas stimulation that seems to resemble the polarization of membrane traffic after their activation.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Faculty of Life Sciences, The University of Manchester, M139PT Manchester, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
10
|
Turzanski J, Daniels I, Haynes AP. Internalisation of uncross-linked rituximab is not essential for the induction of caspase-independent killing in Burkitt lymphoma cell lines. Leuk Lymphoma 2008; 49:1578-91. [PMID: 18766972 DOI: 10.1080/10428190802163313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Characterising the mechanisms underpinning caspase-independent programmed cell death (CI-PCD) induction by uncross-linked rituximab in B-cells may positively impact upon the treatment of disease states in which the classical apoptotic pathway is disabled. The necessity of rituximab internalisation for CI-PCD induction was investigated by flow cytometry and confocal microscopy in human BL cell lines with (e.g. Mutu I) and without (Mutu III) susceptibility to rituximab-induced killing. Flow cytometry demonstrated small, significant and similar amounts of rituximab internalisation by Mutu I cells after 1, 2, 4 and 24 h (p < 0.03, n = 5) and Mutu III cells after 0.5, 2, 4 and 24 h (p < 0.05, n = 4). Confocal microscopy confirmed this. Cytochalasin B and latrunculin A significantly inhibited rituximab-induced CI-PCD (p < or = 0.04, n = 6 and p = 0.01, n = 6, respectively) and internalisation (p = 0.02, n = 5 and p = 0.0002, n = 6, respectively) in Mutu I cells, but confocal microscopy showed no correlation between internalised rituximab and phosphatidylserine exposure. We conclude that rituximab internalisation is not essential for CI-PCD induction in BL cell lines.
Collapse
Affiliation(s)
- Julie Turzanski
- The David Evans Medical Research Centre, Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham, UK.
| | | | | |
Collapse
|
11
|
Hébert M, Potin S, Sebbagh M, Bertoglio J, Bréard J, Hamelin J. Rho-ROCK-Dependent Ezrin-Radixin-Moesin Phosphorylation Regulates Fas-Mediated Apoptosis in Jurkat Cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:5963-73. [DOI: 10.4049/jimmunol.181.9.5963] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Mikhailov A, Sokolovskaya A, Yegutkin GG, Amdahl H, West A, Yagita H, Lahesmaa R, Thompson LF, Jalkanen S, Blokhin D, Eriksson JE. CD73 participates in cellular multiresistance program and protects against TRAIL-induced apoptosis. THE JOURNAL OF IMMUNOLOGY 2008; 181:464-75. [PMID: 18566412 DOI: 10.4049/jimmunol.181.1.464] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The molecular mechanisms underlying the multiresistant phenotype of leukemic and other cancer cells are incompletely understood. We used expression arrays to reveal differences in the gene expression profiles of an apoptosis-resistant T cell leukemia clone (A4) and normally apoptosis-sensitive parental Jurkat cells. CD73 (ecto-5'-nucleotidase) was the most up-regulated gene in the resistant A4 cell clone. A4 cells displayed CD73 surface expression and significant ecto-5'-nucleotidase activity. The role of CD73 was confirmed by transfection of wild-type CD73 into native Jurkat cells, which led to specific resistance against TRAIL-induced apoptosis, but not other types of apoptosis. The protective role of CD73 was further confirmed by small interfering RNA-mediated down-regulation of CD73, restoring TRAIL sensitivity. CD73-mediated resistance was independent of enzymatic activity of CD73, but was reliant on the anchoring of the protein to the membrane via GPI. We suggest that the inhibition of TRAIL signaling works through interaction of CD73 with death receptor 5, as CD73 and death receptor 5 could be coimmunoprecipitated and were shown to be colocalized in the plasma membrane by confocal microscopy. We propose that CD73 is a component of multiresistance machinery, the transcription of which is activated under selective pressure of the immune system.
Collapse
Affiliation(s)
- Andrey Mikhailov
- Turku Centre for Biotechnology, University of Turku/Abo Akademi University, Turku, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mrówczynska L, Hägerstrand H. Patching of ganglioside(M1) in human erythrocytes - distribution of CD47 and CD59 in patched and curved membrane. Mol Membr Biol 2008; 25:258-65. [PMID: 18428041 DOI: 10.1080/09687680802043638] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Membrane rafts may act as platforms for membrane protein signalling. Rafts have also been implicated in the sorting of membrane components during membrane budding. We have studied by fluorescence microscopy cross-linking of ganglioside GM1 in the human erythrocyte membrane, and how membrane proteins CD47 and CD59 distribute in GM1 patched discoid cells and calcium-induced echinocytic cells. Patching of ganglioside(M1) (GM1) by cholera toxin subunit B (CTB) plus anti-CTB resulted in the formation of usually 40-60 GM1 patches distributed over the membrane in discoid erythrocytes. Pre-treatment of erythrocytes with methyl-beta-cyclodextrin abolished GM1 patching. GM1 patching was insensitive to pre-fixation (paraformaldehyde) of cells. Patching of GM1 did not affect the discoid shape of erythrocytes. Membrane proteins CD47 and CD59 did not accumulate into GM1 patches. No capping of patches occurred. GM1 accumulated in calcium-induced echinocytic spiculae. Also CD59, but not CD47, accumulated in spiculae. However, CD59 showed a low degree of co-localization with GM1 and frequently accumulated in different spiculae than GM1. In conclusion, our study describes a novel method for examining properties and composition of rafts. The study characterizes raft patching in the human erythrocyte membrane and emphasizes the mobility and 'echinophilicity' of GM1. Glycosyl phosphatidylinositol-anchored CD59 was identified as a mobile 'echinophilic' but 'raftophobic(GM1)' protein. Largely immobile CD47 showed no segregation.
Collapse
|
14
|
Petrovas C, Mueller YM, Yang G, Altork SR, Jacobson JM, Pitsakis PG, Mounzer KC, Altman JD, Katsikis PD. Actin integrity is indispensable for CD95/Fas-induced apoptosis of HIV-specific CD8+ T cells. Apoptosis 2008; 12:2175-86. [PMID: 17891455 DOI: 10.1007/s10495-007-0128-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We have recently provided data suggesting a potential role for mitochondria and Bcl-2-family molecules in apoptosis sensitivity of HIV-specific CD8+ T cells. Here, we report on the role of filamentous (F) actin in this process. Disruption of actin by cytochalasin D (cytD) or lantrunculin A remarkably reduced CD95/Fas-induced apoptosis of HIV-specific CD8+ T cells while their spontaneous apoptosis was unaffected. This inhibition cannot be attributed to changes of CD95/Fas distribution or levels in these cells. Furthermore, cytD treatment reduced CD95/Fas-induced apoptosis of CD8+ T cells from HIV+ patients independently of their differentiation status. CD95/Fas-induced apoptosis of both CD38+ and CD38- HIV-specific CD8+ T cells was inhibited by cytD treatment indicating that actin mediates this apoptotic process independently of the activation level of these cells. CytD was found to reduce the activation of caspase-8 induced by short treatment of purified CD8+ T cells from HIV+ patients with anti-CD95/Fas. Our data reveal actin as a critical mediator of HIV-specific CD8+ T cell apoptosis; further analysis of the molecular mechanisms governing this process may potentially contribute to design new therapies targeting the enhancement of the immune system in HIV infection.
Collapse
Affiliation(s)
- Constantinos Petrovas
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Drexel University, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Lipid rafts are sphingolipid- and cholesterol-rich domains of the plasma membrane which contain a variety of signalling and transport proteins. Different subtypes of lipid rafts can be distinguished according to their protein and lipid composition. Caveolae are types of rafts that are rich in proteins of the caveolin family (caveolin-1, -2 and -3) which present a distinct signalling platform. The importance of lipid raft signalling in the pathogenesis of a variety of conditions, such as Alzheimer's, Parkinson's, cardiovascular and prion diseases, systemic lupus erythematosus and HIV, has been elucidated over recent years and makes these specific membrane domains an interesting target for pharmacological approaches in the cure and prevention of these diseases. This Review analyses the importance of lipid raft proteins and lipids in health and disease, with a focus on the current state of knowledge.
Collapse
Affiliation(s)
- Vera Michel
- Department of Human Health and Nutritional Sciences, Animal Science and Nutrition Building, Room 346, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|