1
|
Mercadante DL, Manning AL, Olson SD. Modeling reveals cortical dynein-dependent fluctuations in bipolar spindle length. Biophys J 2021; 120:3192-3210. [PMID: 34197801 DOI: 10.1016/j.bpj.2021.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/26/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022] Open
Abstract
Proper formation and maintenance of the mitotic spindle is required for faithful cell division. Although much work has been done to understand the roles of the key molecular components of the mitotic spindle, identifying the consequences of force perturbations in the spindle remains a challenge. We develop a computational framework accounting for the minimal force requirements of mitotic progression. To reflect early spindle formation, we model microtubule dynamics and interactions with major force-generating motors, excluding chromosome interactions that dominate later in mitosis. We directly integrate our experimental data to define and validate the model. We then use simulations to analyze individual force components over time and their relationship to spindle dynamics, making it distinct from previously published models. We show through both model predictions and biological manipulation that rather than achieving and maintaining a constant bipolar spindle length, fluctuations in pole-to-pole distance occur that coincide with microtubule binding and force generation by cortical dynein. Our model further predicts that high dynein activity is required for spindle bipolarity when kinesin-14 (HSET) activity is also high. To the best of our knowledge, our results provide novel insight into the role of cortical dynein in the regulation of spindle bipolarity.
Collapse
Affiliation(s)
- Dayna L Mercadante
- Bioinformatics and Computational Biology Program, Worcester, Massachusetts
| | - Amity L Manning
- Department of Biology and Biotechnology, Worcester, Massachusetts.
| | - Sarah D Olson
- Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, Massachusetts.
| |
Collapse
|
2
|
Shrestha S, Hazelbaker M, Yount AL, Walczak CE. Emerging Insights into the Function of Kinesin-8 Proteins in Microtubule Length Regulation. Biomolecules 2018; 9:biom9010001. [PMID: 30577528 PMCID: PMC6359247 DOI: 10.3390/biom9010001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Proper regulation of microtubules (MTs) is critical for the execution of diverse cellular processes, including mitotic spindle assembly and chromosome segregation. There are a multitude of cellular factors that regulate the dynamicity of MTs and play critical roles in mitosis. Members of the Kinesin-8 family of motor proteins act as MT-destabilizing factors to control MT length in a spatially and temporally regulated manner. In this review, we focus on recent advances in our understanding of the structure and function of the Kinesin-8 motor domain, and the emerging contributions of the C-terminal tail of Kinesin-8 proteins to regulate motor activity and localization.
Collapse
Affiliation(s)
- Sanjay Shrestha
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA.
| | - Mark Hazelbaker
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA.
| | - Amber L Yount
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Claire E Walczak
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
3
|
Edzuka T, Goshima G. Drosophila kinesin-8 stabilizes the kinetochore-microtubule interaction. J Cell Biol 2018; 218:474-488. [PMID: 30538142 PMCID: PMC6363442 DOI: 10.1083/jcb.201807077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/24/2018] [Accepted: 11/28/2018] [Indexed: 02/06/2023] Open
Abstract
Kinesin-8 motor proteins control chromosome alignment in a variety of species, but the specific biochemical activity responsible is unclear. Edzuka and Goshima find that Drosophila kinesin-8 (Klp67A) exhibits both microtubule plus end–stabilizing and –destabilizing activities in vitro. In cells, Klp67A, and likely human kinesin-8 (KIF18A) as well, stabilize the kinetochore–microtubule attachment during mitosis. Kinesin-8 is required for proper chromosome alignment in a variety of animal and yeast cell types. However, it is unclear how this motor protein family controls chromosome alignment, as multiple biochemical activities, including inconsistent ones between studies, have been identified. Here, we find that Drosophila kinesin-8 (Klp67A) possesses both microtubule (MT) plus end–stabilizing and –destabilizing activity, in addition to kinesin-8's commonly observed MT plus end–directed motility and tubulin-binding activity in vitro. We further show that Klp67A is required for stable kinetochore–MT attachment during prometaphase in S2 cells. In the absence of Klp67A, abnormally long MTs interact in an “end-on” fashion with kinetochores at normal frequency. However, the interaction is unstable, and MTs frequently become detached. This phenotype is rescued by ectopic expression of the MT plus end–stabilizing factor CLASP, but not by artificial shortening of MTs. We show that human kinesin-8 (KIF18A) is also important to ensure proper MT attachment. Overall, these results suggest that the MT-stabilizing activity of kinesin-8 is critical for stable kinetochore–MT attachment.
Collapse
Affiliation(s)
- Tomoya Edzuka
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan.,Marine Biological Laboratory, Woods Hole, MA
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan .,Marine Biological Laboratory, Woods Hole, MA
| |
Collapse
|
4
|
Dave S, Anderson SJ, Sinha Roy P, Nsamba ET, Bunning AR, Fukuda Y, Gupta ML. Discrete regions of the kinesin-8 Kip3 tail differentially mediate astral microtubule stability and spindle disassembly. Mol Biol Cell 2018; 29:1866-1877. [PMID: 29874146 PMCID: PMC6085823 DOI: 10.1091/mbc.e18-03-0199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To function in diverse cellular processes, the dynamic properties of microtubules must be tightly regulated. Cellular microtubules are influenced by a multitude of regulatory proteins, but how their activities are spatiotemporally coordinated within the cell, or on specific microtubules, remains mostly obscure. The conserved kinesin-8 motor proteins are important microtubule regulators, and family members from diverse species combine directed motility with the ability to modify microtubule dynamics. Yet how kinesin-8 activities are appropriately deployed in the cellular context is largely unknown. Here we reveal the importance of the nonmotor tail in differentially controlling the physiological functions of the budding yeast kinesin-8, Kip3. We demonstrate that the tailless Kip3 motor domain adequately governs microtubule dynamics at the bud tip to allow spindle positioning in early mitosis. Notably, discrete regions of the tail mediate specific functions of Kip3 on astral and spindle microtubules. The region proximal to the motor domain operates to spatially regulate astral microtubule stability, while the distal tail serves a previously unrecognized role to control the timing of mitotic spindle disassembly. These findings provide insights into how nonmotor tail domains differentially control kinesin functions in cells and the mechanisms that spatiotemporally control the stability of cellular microtubules.
Collapse
Affiliation(s)
- Sandeep Dave
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Samuel J Anderson
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Pallavi Sinha Roy
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Emmanuel T Nsamba
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Angela R Bunning
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| | - Yusuke Fukuda
- Cell and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Mohan L Gupta
- Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011
| |
Collapse
|
5
|
Renda F, Pellacani C, Strunov A, Bucciarelli E, Naim V, Bosso G, Kiseleva E, Bonaccorsi S, Sharp DJ, Khodjakov A, Gatti M, Somma MP. The Drosophila orthologue of the INT6 onco-protein regulates mitotic microtubule growth and kinetochore structure. PLoS Genet 2017; 13:e1006784. [PMID: 28505193 PMCID: PMC5448806 DOI: 10.1371/journal.pgen.1006784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 05/30/2017] [Accepted: 04/27/2017] [Indexed: 12/01/2022] Open
Abstract
INT6/eIF3e is a highly conserved component of the translation initiation complex that interacts with both the 26S proteasome and the COP9 signalosome, two complexes implicated in ubiquitin-mediated protein degradation. The INT6 gene was originally identified as the insertion site of the mouse mammary tumor virus (MMTV), and later shown to be involved in human tumorigenesis. Here we show that depletion of the Drosophila orthologue of INT6 (Int6) results in short mitotic spindles and deformed centromeres and kinetochores with low intra-kinetochore distance. Poleward flux of microtubule subunits during metaphase is reduced, although fluorescence recovery after photobleaching (FRAP) demonstrates that microtubules remain dynamic both near the kinetochores and at spindle poles. Mitotic progression is delayed during metaphase due to the activity of the spindle assembly checkpoint (SAC). Interestingly, a deubiquitinated form of the kinesin Klp67A (a putative orthologue of human Kif18A) accumulates near the kinetochores in Int6-depleted cells. Consistent with this finding, Klp67A overexpression mimics the Int6 RNAi phenotype. Furthermore, simultaneous depletion of Int6 and Klp67A results in a phenotype identical to RNAi of just Klp67A, which indicates that Klp67A deficiency is epistatic over Int6 deficiency. We propose that Int6-mediated ubiquitination is required to control the activity of Klp67A. In the absence of this control, excess of Klp67A at the kinetochore suppresses microtubule plus-end polymerization, which in turn results in reduced microtubule flux, spindle shortening, and centromere/kinetochore deformation.
Collapse
Affiliation(s)
- Fioranna Renda
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Claudia Pellacani
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
- Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Roma, Italy
| | - Anton Strunov
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, Russia
| | | | - Valeria Naim
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - Giuseppe Bosso
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - Elena Kiseleva
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, Russia
- Institute of Cytology and Genetics, Siberian Branch of RAS, Novosibirsk, Russia
| | - Silvia Bonaccorsi
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - David J. Sharp
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
- Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Roma, Italy
- Institute of Molecular and Cellular Biology, Siberian Branch of RAS, Novosibirsk, Russia
| | | |
Collapse
|
6
|
Möckel MM, Heim A, Tischer T, Mayer TU. Xenopus laevis Kif18A is a highly processive kinesin required for meiotic spindle integrity. Biol Open 2017; 6:463-470. [PMID: 28228376 PMCID: PMC5399559 DOI: 10.1242/bio.023952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly and functionality of the mitotic spindle depends on the coordinated activities of microtubule-associated motor proteins of the dynein and kinesin superfamily. Our current understanding of the function of motor proteins is significantly shaped by studies using Xenopus laevis egg extract as its open structure allows complex experimental manipulations hardly feasible in other model systems. Yet, the Kinesin-8 orthologue of human Kif18A has not been described in Xenopus laevis so far. Here, we report the cloning and characterization of Xenopus laevis (Xl) Kif18A. Xenopus Kif18A is expressed during oocyte maturation and its depletion from meiotic egg extract results in severe spindle defects. These defects can be rescued by wild-type Kif18A, but not Kif18A lacking motor activity or the C-terminus. Single-molecule microscopy assays revealed that Xl_Kif18A possesses high processivity, which depends on an additional C-terminal microtubule-binding site. Human tissue culture cells depleted of endogenous Kif18A display mitotic defects, which can be rescued by wild-type, but not tail-less Xl_Kif18A. Thus, Xl_Kif18A is the functional orthologue of human Kif18A whose activity is essential for the correct function of meiotic spindles in Xenopus oocytes. Summary: The highly processive kinesin Kif18A, which is expressed during oocyte maturation in Xenopus laevis, is required for correct spindle formation in meiotic egg extracts and can functionally complement human Kif18A in tissue culture cells.
Collapse
Affiliation(s)
- Martin M Möckel
- Department of Molecular Genetics and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany
| | - Andreas Heim
- Department of Molecular Genetics and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany
| | - Thomas Tischer
- Department of Molecular Genetics and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany
| | - Thomas U Mayer
- Department of Molecular Genetics and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, Konstanz 78457, Germany
| |
Collapse
|
7
|
Walczak CE, Zong H, Jain S, Stout JR. Spatial regulation of astral microtubule dynamics by Kif18B in PtK cells. Mol Biol Cell 2016; 27:3021-3030. [PMID: 27559136 PMCID: PMC5063611 DOI: 10.1091/mbc.e16-04-0254] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/19/2016] [Indexed: 01/07/2023] Open
Abstract
The spatial and temporal control of microtubule dynamics is fundamentally important for proper spindle assembly and chromosome segregation. This is achieved, in part, by the multitude of proteins that bind to and regulate spindle microtubules, including kinesin superfamily members, which act as microtubule-destabilizing enzymes. These fall into two general classes: the kinesin-13 proteins, which directly depolymerize microtubules, and the kinesin-8 proteins, which are plus end-directed motors that either destabilize microtubules or cap the microtubule plus ends. Here we analyze the contribution of a PtK kinesin-8 protein, Kif18B, in the control of mitotic microtubule dynamics. Knockdown of Kif18B causes defects in spindle microtubule organization and a dramatic increase in astral microtubules. Kif18B-knockdown cells had defects in chromosome alignment, but there were no defects in chromosome segregation. The long astral microtubules that occur in the absence of Kif18B are limited in length by the cell cortex. Using EB1 tracking, we show that Kif18B activity is spatially controlled, as loss of Kif18B has the most dramatic effect on the lifetimes of astral microtubules that extend toward the cell cortex. Together our studies provide new insight into how diverse kinesins contribute to spatial microtubule organization in the spindle.
Collapse
Affiliation(s)
| | - Hailing Zong
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Sachin Jain
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Jane R Stout
- Medical Sciences, Indiana University, Bloomington, IN 47405
| |
Collapse
|
8
|
Gergely ZR, Crapo A, Hough LE, McIntosh JR, Betterton MD. Kinesin-8 effects on mitotic microtubule dynamics contribute to spindle function in fission yeast. Mol Biol Cell 2016; 27:3490-3514. [PMID: 27146110 PMCID: PMC5221583 DOI: 10.1091/mbc.e15-07-0505] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 04/26/2016] [Indexed: 11/17/2022] Open
Abstract
Kinesin-8 motor proteins destabilize microtubules and increase chromosome loss in mitosis. In fission yeast, aberrant microtubule-driven kinetochore pushing movements, tripolar mitotic spindles, and fluctuations in metaphase spindle length occurred in kinesin-8–deletion mutants. A mathematical model can explain these results. Kinesin-8 motor proteins destabilize microtubules. Their absence during cell division is associated with disorganized mitotic chromosome movements and chromosome loss. Despite recent work studying effects of kinesin-8s on microtubule dynamics, it remains unclear whether the kinesin-8 mitotic phenotypes are consequences of their effect on microtubule dynamics, their well-established motor activity, or additional, unknown functions. To better understand the role of kinesin-8 proteins in mitosis, we studied the effects of deletion of the fission yeast kinesin-8 proteins Klp5 and Klp6 on chromosome movements and spindle length dynamics. Aberrant microtubule-driven kinetochore pushing movements and tripolar mitotic spindles occurred in cells lacking Klp5 but not Klp6. Kinesin-8–deletion strains showed large fluctuations in metaphase spindle length, suggesting a disruption of spindle length stabilization. Comparison of our results from light microscopy with a mathematical model suggests that kinesin-8–induced effects on microtubule dynamics, kinetochore attachment stability, and sliding force in the spindle can explain the aberrant chromosome movements and spindle length fluctuations seen.
Collapse
Affiliation(s)
- Zachary R Gergely
- Department of Physics, University of Colorado at Boulder, Boulder, CO 80309.,Department of MCD Biology, University of Colorado at Boulder, Boulder, CO 80309
| | - Ammon Crapo
- Department of Physics, University of Colorado at Boulder, Boulder, CO 80309
| | - Loren E Hough
- Department of Physics, University of Colorado at Boulder, Boulder, CO 80309
| | - J Richard McIntosh
- Department of MCD Biology, University of Colorado at Boulder, Boulder, CO 80309
| | | |
Collapse
|
9
|
Abstract
Cell division ends with the physical separation of the two daughter cells, a process known as cytokinesis. This final event ensures that nuclear and cytoplasmic contents are accurately partitioned between the two nascent cells. Cytokinesis is one of the most dramatic changes in cell shape and requires an extensive reorganization of the cell's cytoskeleton. Here, we describe the cytoskeletal structures, factors, and signaling pathways that orchestrate this robust and yet highly dynamic process in animal cells. Finally, we discuss possible future directions in this growing area of cell division research and its implications in human diseases, including cancer.
Collapse
Affiliation(s)
- Pier Paolo D'Avino
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari c/o Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, 00185 Roma, Italy
| | - Mark Petronczki
- Cell Division and Aneuploidy Laboratory, Cancer Research UK-London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| |
Collapse
|
10
|
Giansanti MG, Sechi S, Frappaolo A, Belloni G, Piergentili R. Cytokinesis in Drosophila male meiosis. SPERMATOGENESIS 2014; 2:185-196. [PMID: 23094234 PMCID: PMC3469441 DOI: 10.4161/spmg.21711] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytokinesis separates the cytoplasm and the duplicated genome into two daughter cells at the end of cell division. This process must be finely regulated to maintain ploidy and prevent tumor formation. Drosophila male meiosis provides an excellent cell system for investigating cytokinesis. Mutants affecting this process can be easily identified and spermatocytes are large cells particularly suitable for cytological analysis of cytokinetic structures. Over the past decade, the powerful tools of Drosophila genetics and the unique characteristics of this cell system have led researchers to identify molecular players of the cell cleavage machinery and to address important open questions. Although spermatocyte cytokinesis is incomplete, resulting in formation of stable intercellular bridges, the molecular mechanisms are largely conserved in somatic cells. Thus, studies of Drosophila male meiosis will shed new light on the complex cell circuits regulating furrow ingression and substantially further our knowledge of cancer and other human diseases.
Collapse
Affiliation(s)
- Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR; Dipartimento di Biologia e Biotecnologie Università Sapienza di Roma; Rome, Italy
| | | | | | | | | |
Collapse
|
11
|
Messin LJ, Millar JBA. Role and regulation of kinesin-8 motors through the cell cycle. SYSTEMS AND SYNTHETIC BIOLOGY 2014; 8:205-13. [PMID: 25136382 DOI: 10.1007/s11693-014-9140-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/11/2014] [Accepted: 03/15/2014] [Indexed: 10/25/2022]
Abstract
Members of the kinesin-8 motor family play a central role in controlling microtubule length throughout the eukaryotic cell cycle. Inactivation of kinesin-8 causes defects in cell polarity during interphase and astral and mitotic spindle length, metaphase chromosome alignment, timing of anaphase onset and accuracy of chromosome segregation. Although the biophysical mechanism by which kinesin-8 molecules influence microtubule dynamics has been studied extensively in a variety of species, a consensus view has yet to emerge. One reason for this might be that some members of the kinesin-8 family can associate to other microtubule-associated proteins, cell cycle regulatory proteins and other kinesin family members. In this review we consider how cell cycle specific modification and its association to other regulatory proteins may modulate the function of kinesin-8 to enable it to function as a master regulator of microtubule dynamics.
Collapse
Affiliation(s)
- Liam J Messin
- Mechanochemical Cell Biology Building, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry, CV4 7AL UK
| | - Jonathan B A Millar
- Mechanochemical Cell Biology Building, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry, CV4 7AL UK
| |
Collapse
|
12
|
Microtubule-sliding activity of a kinesin-8 promotes spindle assembly and spindle-length control. Nat Cell Biol 2013; 15:948-57. [PMID: 23851487 PMCID: PMC3767134 DOI: 10.1038/ncb2801] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 06/04/2013] [Indexed: 12/14/2022]
Abstract
Molecular motors play critical roles in the formation of mitotic spindles, either through controlling the stability of individual microtubules, or by cross-linking and sliding microtubule arrays. Kinesin-8 motors are best known for their regulatory roles in controlling microtubule dynamics. They contain microtubule-destabilizing activities, and restrict spindle length in a wide variety of cell types and organisms. Here, we report for the first time on an anti-parallel microtubule-sliding activity of the budding yeast kinesin-8, Kip3. The in vivo importance of this sliding activity was established through the identification of complementary Kip3 mutants that separate the sliding activity and microtubule destabilizing activity. In conjunction with kinesin-5/Cin8, the sliding activity of Kip3 promotes bipolar spindle assembly and the maintenance of genome stability. We propose a “slide-disassemble” model where Kip3’s sliding and destabilizing activity balance during pre-anaphase. This facilitates normal spindle assembly. However, Kip3’s destabilizing activity dominates in late anaphase, inhibiting spindle elongation and ultimately promoting spindle disassembly.
Collapse
|
13
|
Abstract
Regulating physical size is an essential problem that biological organisms must solve from the subcellular to the organismal scales, but it is not well understood what physical principles and mechanisms organisms use to sense and regulate their size. Any biophysical size-regulation scheme operates in a noisy environment and must be robust to other cellular dynamics and fluctuations. This work develops theory of filament length regulation inspired by recent experiments on kinesin-8 motor proteins, which move with directional bias on microtubule filaments and alter microtubule dynamics. Purified kinesin-8 motors can depolymerize chemically-stabilized microtubules. In the length-dependent depolymerization model, the rate of depolymerization tends to increase with filament length, because long filaments accumulate more motors at their tips and therefore shorten more quickly. When balanced with a constant filament growth rate, this mechanism can lead to a fixed polymer length. However, the mechanism by which kinesin-8 motors affect the length of dynamic microtubules in cells is less clear. We study the more biologically realistic problem of microtubule dynamic instability modulated by a motor-dependent increase in the filament catastrophe frequency. This leads to a significant decrease in the mean filament length and a narrowing of the filament length distribution. The results improve our understanding of the biophysics of length regulation in cells.
Collapse
Affiliation(s)
- Hui-Shun Kuan
- Program in Chemical Physics and Biofrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA
| | | |
Collapse
|
14
|
Move in for the kill: motile microtubule regulators. Trends Cell Biol 2012; 22:567-75. [PMID: 22959403 DOI: 10.1016/j.tcb.2012.08.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/01/2012] [Accepted: 08/09/2012] [Indexed: 12/18/2022]
Abstract
The stereotypical function of kinesin superfamily motors is to transport cargo along microtubules. However, some kinesins also shape the microtubule track by regulating microtubule assembly and disassembly. Recent work has shown that the kinesin-8 family of motors emerge as key regulators of cellular microtubule length. The studied kinesin-8s are highly processive motors that walk towards the microtubule plus-end. Once at plus-ends, they have complex effects on polymer dynamics; kinesin-8s either destabilize or stabilize microtubules, depending on the context. This review focuses on the mechanisms underlying kinesin-8-microtubule interactions and microtubule length control. We compare and contrast kinesin-8s with the other major microtubule-regulating kinesins (kinesin-4 and kinesin-13), to survey the current understanding of the diverse ways that kinesins control microtubule dynamics.
Collapse
|
15
|
Erent M, Drummond DR, Cross RA. S. pombe kinesins-8 promote both nucleation and catastrophe of microtubules. PLoS One 2012; 7:e30738. [PMID: 22363481 PMCID: PMC3282699 DOI: 10.1371/journal.pone.0030738] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 12/23/2011] [Indexed: 11/18/2022] Open
Abstract
The kinesins-8 were originally thought to be microtubule depolymerases, but are now emerging as more versatile catalysts of microtubule dynamics. We show here that S. pombe Klp5-436 and Klp6-440 are non-processive plus-end-directed motors whose in vitro velocities on S. pombe microtubules at 7 and 23 nm s(-1) are too slow to keep pace with the growing tips of dynamic interphase microtubules in living S. pombe. In vitro, Klp5 and 6 dimers exhibit a hitherto-undescribed combination of strong enhancement of microtubule nucleation with no effect on growth rate or catastrophe frequency. By contrast in vivo, both Klp5 and Klp6 promote microtubule catastrophe at cell ends whilst Klp6 also increases the number of interphase microtubule arrays (IMAs). Our data support a model in which Klp5/6 bind tightly to free tubulin heterodimers, strongly promoting the nucleation of new microtubules, and then continue to land as a tubulin-motor complex on the tips of growing microtubules, with the motors then dissociating after a few seconds residence on the lattice. In vivo, we predict that only at cell ends, when growing microtubule tips become lodged and their growth slows down, will Klp5/6 motor activity succeed in tracking growing microtubule tips. This mechanism would allow Klp5/6 to detect the arrival of microtubule tips at cells ends and to amplify the intrinsic tendency for microtubules to catastrophise in compression at cell ends. Our evidence identifies Klp5 and 6 as spatial regulators of microtubule dynamics that enhance both microtubule nucleation at the cell centre and microtubule catastrophe at the cell ends.
Collapse
Affiliation(s)
- Muriel Erent
- Centre for Mechanochemical Cell Biology, Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Douglas R. Drummond
- Centre for Mechanochemical Cell Biology, Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Robert A. Cross
- Centre for Mechanochemical Cell Biology, Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
16
|
Su X, Qiu W, Gupta ML, Pereira-Leal JB, Reck-Peterson SL, Pellman D. Mechanisms underlying the dual-mode regulation of microtubule dynamics by Kip3/kinesin-8. Mol Cell 2011; 43:751-63. [PMID: 21884976 DOI: 10.1016/j.molcel.2011.06.027] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/18/2011] [Accepted: 06/21/2011] [Indexed: 12/16/2022]
Abstract
The kinesin-8 family of microtubule motors plays a critical role in microtubule length control in cells. These motors have complex effects on microtubule dynamics: they destabilize growing microtubules yet stabilize shrinking microtubules. The budding yeast kinesin-8, Kip3, accumulates on plus ends of growing but not shrinking microtubules. Here we identify an essential role of the tail domain of Kip3 in mediating both its destabilizing and its stabilizing activities. The Kip3 tail promotes Kip3's accumulation at the plus ends and facilitates the destabilizing effect of Kip3. However, the Kip3 tail also inhibits microtubule shrinkage and is required for promoting microtubule rescue by Kip3. These effects of the tail domain are likely to be mediated by the tubulin- and microtubule-binding activities that we describe. We propose a concentration-dependent model for the coordination of the destabilizing and stabilizing activities of Kip3 and discuss its relevance to cellular microtubule organization.
Collapse
Affiliation(s)
- Xiaolei Su
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
17
|
Drummond DR. Regulation of microtubule dynamics by kinesins. Semin Cell Dev Biol 2011; 22:927-34. [PMID: 22001250 DOI: 10.1016/j.semcdb.2011.09.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 09/30/2011] [Indexed: 01/14/2023]
Abstract
The simple mechanistic and functional division of the kinesin family into either active translocators or non-motile microtubule depolymerases was initially appropriate but is now proving increasingly unhelpful, given evidence that several translocase kinesins can affect microtubule dynamics, whilst non-translocase kinesins can promote microtubule assembly and depolymerisation. Such multi-role kinesins act either directly on microtubule dynamics, by interaction with microtubules and tubulin, or indirectly, through the transport of other factors along the lattice to the microtubule tip. Here I review recent progress on the mechanisms and roles of these translocase kinesins.
Collapse
Affiliation(s)
- Douglas R Drummond
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| |
Collapse
|
18
|
Stout JR, Yount AL, Powers JA, Leblanc C, Ems-McClung SC, Walczak CE. Kif18B interacts with EB1 and controls astral microtubule length during mitosis. Mol Biol Cell 2011; 22:3070-80. [PMID: 21737685 PMCID: PMC3164455 DOI: 10.1091/mbc.e11-04-0363] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Kif18B is a newly discovered plus-tip-tracking protein that is enriched on astral microtubule (MT) ends during early mitosis. Kif18B binds directly to EB1, and this interaction is required for proper localization of Kif18B and to control astral MT length. Regulation of microtubule (MT) dynamics is essential for proper spindle assembly and organization. Kinesin-8 family members are plus-end-directed motors that modulate plus-end MT dynamics by acting as MT depolymerases or as MT plus-end capping proteins. In this paper, we show that the human kinesin-8 Kif18B functions during mitosis to control astral MT organization. Kif18B is a MT plus-tip-tracking protein that localizes to the nucleus in interphase and is enriched at astral MT plus ends during early mitosis. Knockdown of Kif18B caused spindle defects, resulting in an increased number and length of MTs. A yeast two-hybrid screen identified an interaction of the C-terminal domain of Kif18B with the plus-end MT-binding protein EB1. EB1 knockdown disrupted Kif18B targeting to MT plus ends, indicating that EB1/Kif18B interaction is physiologically important. This interaction is direct, as the far C-terminal end of Kif18B is sufficient for binding to EB1 in vitro. Overexpression of this domain is sufficient for plus-end MT targeting in cells; however, targeting is enhanced by the motor domain, which cooperates with the tail to achieve proper Kif18B localization at MT plus ends. Our results suggest that Kif18B is a new MT dynamics regulatory protein that interacts with EB1 to control astral MT length.
Collapse
Affiliation(s)
- Jane R Stout
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | | | |
Collapse
|
19
|
Civelekoglu-Scholey G, Scholey JM. Mitotic force generators and chromosome segregation. Cell Mol Life Sci 2010; 67:2231-50. [PMID: 20221784 PMCID: PMC2883081 DOI: 10.1007/s00018-010-0326-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 10/31/2022]
Abstract
The mitotic spindle uses dynamic microtubules and mitotic motors to generate the pico-Newton scale forces that are needed to drive the mitotic movements that underlie chromosome capture, alignment and segregation. Here, we consider the biophysical and molecular basis of force-generation for chromosome movements in the spindle, and, with reference to the Drosophila embryo mitotic spindle, we briefly discuss how mathematical modeling can complement experimental analysis to illuminate the mechanisms of chromosome-to-pole motility during anaphase A and spindle elongation during anaphase B.
Collapse
Affiliation(s)
- Gul Civelekoglu-Scholey
- Department of Molecular and Cell Biology, University of California at Davis, 149 Briggs Hall, One Shields Avenue, Davis, CA 95616 USA
| | - Jonathan M. Scholey
- Department of Molecular and Cell Biology, University of California at Davis, 149 Briggs Hall, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
20
|
Wordeman L. How kinesin motor proteins drive mitotic spindle function: Lessons from molecular assays. Semin Cell Dev Biol 2010; 21:260-8. [PMID: 20109570 PMCID: PMC2844474 DOI: 10.1016/j.semcdb.2010.01.018] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 01/19/2010] [Indexed: 12/31/2022]
Abstract
Kinesins are enzymes that use the energy of ATP to perform mechanical work. There are approximately 14 families of kinesins within the kinesin superfamily. Family classification is derived primarily from alignments of the sequences of the core motor domain. For this reason, the enzymatic behavior and motility of each motor generally reflects its family. At the cellular level, kinesin motors perform a variety of functions during cell division and within the mitotic spindle to ensure that chromosomes are segregated with the highest fidelity possible. The cellular functions of these motors are intimately related to their mechanical and enzymatic properties at the single molecule level. For this reason, motility studies designed to evaluate the activity of purified molecular motors are a requirement in order to understand, mechanistically, how these motors make the mitotic spindle work and what can cause the spindle to fail. This review will focus on a selection of illustrative kinesins, which have been studied at the molecular level in order to inform our understanding of their function in cells. In addition, the review will endeavor to point out some kinesins that have been studied extensively but which still lack sufficient molecular underpinnings to fully predict their contribution to spindle function.
Collapse
Affiliation(s)
- Linda Wordeman
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290, United States.
| |
Collapse
|
21
|
Savoian MS, Glover DM. Drosophila Klp67A binds prophase kinetochores to subsequently regulate congression and spindle length. J Cell Sci 2010; 123:767-76. [PMID: 20144994 DOI: 10.1242/jcs.055905] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025] Open
Abstract
The kinesin-8 proteins are a family of microtubule-depolymerising motor molecules, which, despite their highly conserved roles in chromosome alignment and spindle dynamics, remain poorly characterised. Here, we report that the Drosophila kinesin-8 protein, Klp67A, exists in two spatially and functionally separable metaphase pools: at kinetochores and along the spindle. Fixed and live-cell analyses of different Klp67A recombinant variants indicate that this kinesin-8 first collects at kinetochores during prophase and, by metaphase, localises to the kinetochore outerplate. Although the catalytic motor activity of Klp67A is required for efficient kinetochore recruitment at all times, microtubules are entirely dispensable for this process. The tail of Klp67A does not play a role in kinetochore accumulation, but is both necessary and sufficient for spindle association. Using functional assays, we reveal that chromosome position and spindle length are determined by the microtubule-depolymerising motor activity of Klp67A exclusively when located at kinetochores, but not along the spindle. These data reveal that, unlike other metazoan kinesin-8 proteins, Klp67A binds the nascent prophase and mature metaphase kinetochore. From this location, Klp67A uses its motor activity to ensure chromosome alignment and proper spindle length.
Collapse
Affiliation(s)
- Matthew S Savoian
- University of Cambridge, Department of Genetics, Cambridge, CB2 3EH, UK.
| | | |
Collapse
|
22
|
Grissom PM, Fiedler T, Grishchuk EL, Nicastro D, West RR, McIntosh JR. Kinesin-8 from fission yeast: a heterodimeric, plus-end-directed motor that can couple microtubule depolymerization to cargo movement. Mol Biol Cell 2008; 20:963-72. [PMID: 19037096 DOI: 10.1091/mbc.e08-09-0979] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Fission yeast expresses two kinesin-8s, previously identified and characterized as products of the klp5(+) and klp6(+) genes. These polypeptides colocalize throughout the vegetative cell cycle as they bind cytoplasmic microtubules during interphase, spindle microtubules, and/or kinetochores during early mitosis, and the interpolar spindle as it elongates in anaphase B. Here, we describe in vitro properties of these motor proteins and some truncated versions expressed in either bacteria or Sf9 cells. The motor-plus-neck domain of Klp6p formed soluble dimers that cross-linked microtubules and showed both microtubule-activated ATPase and plus-end-directed motor activities. Full-length Klp5p and Klp6p, coexpressed in Sf9 cells, formed soluble heterodimers with the same activities. The latter recombinant protein could also couple microbeads to the ends of shortening microtubules and use energy from tubulin depolymerization to pull a load in the minus end direction. These results, together with the spindle localizations of these proteins in vivo and their requirement for cell viability in the absence of the Dam1/DASH kinetochore complex, support the hypothesis that fission yeast kinesin-8 contributes both to chromosome congression to the metaphase plate and to the coupling of spindle microtubules to kinetochores during anaphase A.
Collapse
Affiliation(s)
- Paula M Grissom
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | | | | | | | | | | |
Collapse
|
23
|
West RR, McIntosh JR. Novel interactions of fission yeast kinesin 8 revealed through in vivo expression of truncation alleles. CELL MOTILITY AND THE CYTOSKELETON 2008; 65:626-40. [PMID: 18553361 PMCID: PMC2583243 DOI: 10.1002/cm.20289] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fission yeast expresses two kinesin 8s, klp5+ and klp6+, which are important for diverse cellular functions: mitosis, meiosis, and the maintenance of normal cell morphology. During vegetative growth these motors display complex localization patterns, moving from the cytoplasm during interphase to the kinetochores in early mitosis, the interpolar spindle in anaphase B, and then back into the cytoplasm. We have expressed GFP-tagged alleles of domains from these motors, seeking the signals required for their localizations. The tail of Klp5p localized to the interphase nucleus, more specifically to telomeres. Addition of the neck re-directed this fragment to microtubules in the cytoplasm. Klp6-tail and the neck-tail domains of both motors localized at microtubule ends. Klp6-neck-tail localized to the spindle in early mitosis but to the pole-proximal ends of the spindle in anaphase B. The Klp5-motor and motor-neck localized to microtubules, often causing them to bundle. Over-expression of Klp6-motor or motor-neck resulted in shorter microtubules. These localization patterns were no different when constructs were expressed in strains lacking either or both of the endogenous, full-length proteins. Our results indicate that the localization signals for these kinesins are not derived from simple amino acid sequences but from complex interactions among multiple domains of each motor.
Collapse
Affiliation(s)
| | - J. Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309−0347
| |
Collapse
|
24
|
Gardner MK, Odde DJ, Bloom K. Kinesin-8 molecular motors: putting the brakes on chromosome oscillations. Trends Cell Biol 2008; 18:307-10. [PMID: 18513970 PMCID: PMC2866008 DOI: 10.1016/j.tcb.2008.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 05/08/2008] [Accepted: 05/08/2008] [Indexed: 11/24/2022]
Abstract
Recent studies suggest that the human Kinesin-8 molecular motor Kif18A has a role in chromosome congression. Specifically, these studies find that Kif18A promotes chromosome congression by attenuating chromosome oscillation magnitudes. Together with recent modeling work, in vitro studies, and the analysis of in vivo yeast data, these reports reveal how Kinesin-8 molecular motors might control chromosome oscillation amplitudes by spatially regulating the dynamic instability of microtubule plus-ends within the mitotic spindle.
Collapse
Affiliation(s)
- Melissa K Gardner
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
25
|
Glover DM, Capalbo L, D'Avino PP, Gatt MK, Savoian MS, Takeda T. Girds 'n' cleeks o' cytokinesis: microtubule sticks and contractile hoops in cell division. Biochem Soc Trans 2008; 36:400-4. [PMID: 18481968 DOI: 10.1042/bst0360400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Microtubules maintain an intimate relationship with the rings of anillin, septins and actomyosin filaments throughout cytokinesis. In Drosophila, peripheral microtubules emanating from the spindle poles contact the equatorial cell cortex to deliver the signal that initiates formation of the cytokinetic furrow. Mutations that affect microtubule stability lead to ectopic furrowing because peripheral microtubules contact inappropriate cortical sites. The PAV-KLP (Pavarotti-kinesin-like protein)/RacGAP50C (where GAP is GTPase-activating protein) centralspindlin complex moves towards the plus ends of microtubules to reach the cell equator. When RacGAP50C is tethered to the cell membrane, furrowing initiates at multiple non-equatorial sites, indicating that mis-localization of this single molecule is sufficient to promote furrowing. Furrow formation and ingression requires RhoA activation by the RhoGEF (guanine-nucleotide-exchange factor) Pebble, which interacts with RacGAP50C. RacGAP50C also binds anillin, which associates with actin, myosin and septins. Thus RacGAP50C plays a pivotal role during furrow formation by activating RhoA and linking the peripheral microtubules with the nascent rings through its interaction with anillin.
Collapse
Affiliation(s)
- David M Glover
- Cancer Research U.K. Cell Cycle Genetics Research Group, University of Cambridge, Department of Genetics, Downing Street, Cambridge CB2 3EH, UK.
| | | | | | | | | | | |
Collapse
|
26
|
Buster DW, Zhang D, Sharp DJ. Poleward tubulin flux in spindles: regulation and function in mitotic cells. Mol Biol Cell 2007; 18:3094-104. [PMID: 17553931 PMCID: PMC1949370 DOI: 10.1091/mbc.e06-11-0994] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The poleward flux of tubulin subunits through spindle microtubules is a striking and conserved phenomenon whose function and molecular components remain poorly understood. To screen for novel components of the flux machinery, we utilized RNA interference to deplete regulators of microtubule dynamics, individually and in various combinations, from S2 cells and examined the resulting impact on flux rate. This led to the identification of two previously unknown flux inhibitors, KLP59C and KLP67A, and a flux promoter, Mini-spindles. Furthermore, we find that flux rate is regulated by functional antagonism among microtubule stabilizers and destabilizers specifically at plus ends. Finally, by examining mitosis on spindles in which flux has been up- or down-regulated or restored after the codepletion of antagonistic flux regulators, we show that flux is an integral contributor to anaphase A but is not responsible for chromosome congression, interkinetochore tension, or the establishment of normal spindle length during prometaphase/metaphase.
Collapse
Affiliation(s)
- Daniel W. Buster
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Dong Zhang
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461
| | - David J. Sharp
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
27
|
Mayr MI, Hümmer S, Bormann J, Grüner T, Adio S, Woehlke G, Mayer TU. The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Curr Biol 2007; 17:488-98. [PMID: 17346968 DOI: 10.1016/j.cub.2007.02.036] [Citation(s) in RCA: 240] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 02/06/2007] [Accepted: 02/08/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND The accurate alignment of chromosomes at the spindle equator is fundamental for the equal distribution of the genome in mitosis and thus for the genetic integrity of eukaryotes. Although it is well established that chromosome movements are coupled to microtubule dynamics, the underlying mechanism is not well understood. RESULTS By combining RNAi-depletion experiments with in vitro biochemical assays, we demonstrate that the human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression in mammalian tissue culture cells. We show that in vitro Kif18A is a slow plus-end-directed kinesin that possesses microtubule depolymerizing activity. Notably, Kif18A like its yeast ortholog Kip3p depolymerizes longer microtubules more quickly than shorter ones. In vivo, Kif18A accumulates in mitosis where it localizes close to the plus ends of kinetochore microtubules. The depletion of Kif18A induces aberrantly long mitotic spindles and loss of tension across sister kinetochores, resulting in the activation of the Mad2-dependent spindle-assembly checkpoint. Live-cell microscopy studies revealed that in Kif18A-depleted cells, chromosomes move at reduced speed and completely fail to align at the spindle equator. CONCLUSIONS These studies identify Kif18A as a dual-functional kinesin and a key component of chromosome congression in mammalian cells.
Collapse
Affiliation(s)
- Monika I Mayr
- Chemical Genetics, Independent Research Group, Department of Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Brust-Mascher I, Scholey JM. Mitotic spindle dynamics in Drosophila. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 259:139-72. [PMID: 17425941 DOI: 10.1016/s0074-7696(06)59004-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitosis, the process by which the replicated chromosomes are segregated equally into daughter cells, has been studied for over a century. Drosophila melanogaster is an ideal organism for this research. Drosophila embryos are well suited to image mitosis, because during cycles 10-13 nuclei divide rapidly at the surface of the embryo, but mitotic cells during larval stages and spermatocytes are also used for the study of mitosis. Drosophila can be easily maintained, many mutant stocks exist, and transgenic flies expressing mutated or fluorescently labeled proteins can be made. In addition, the genome has been completed and RNA interference can be used in Drosophila tissue culture cells. Here, we review our current understanding of spindle dynamics, looking at the experiments and quantitative modeling on which it is based. Many molecular players in the Drosophila mitotic spindle are similar to those in mammalian spindles, so findings in Drosophila can be extended to other organisms.
Collapse
Affiliation(s)
- Ingrid Brust-Mascher
- Section of Molecular and Cellular Biology, University of California at Davis, Davis, California 95616, USA
| | | |
Collapse
|
29
|
D'Avino PP, Savoian MS, Capalbo L, Glover DM. RacGAP50C is sufficient to signal cleavage furrow formation during cytokinesis. J Cell Sci 2006; 119:4402-8. [PMID: 17032738 DOI: 10.1242/jcs.03210] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Several studies indicate that spindle microtubules determine the position of the cleavage plane at the end of cell division, but their exact role in triggering the formation and ingression of the cleavage furrow is still unclear. Here we show that in Drosophila depletion of either the GAP (GTPase-activating protein) or the kinesin-like subunit of the evolutionary conserved centralspindlin complex prevents furrowing without affecting the association of astral microtubules with the cell cortex. Moreover, time-lapse imaging indicates that astral microtubules serve to deliver the centralspindlin complex to the equatorial cortex just before furrow formation. However, when the GAP-signaling component was mislocalized around the entire cortex using a membrane-tethering motif, this caused ectopic furrowing even in the absence of its motor partner. Thus, the GAP component of centralspindlin is both necessary and sufficient for furrow formation and ingression and astral microtubules provide a route for its delivery to the cleavage site.
Collapse
Affiliation(s)
- Pier Paolo D'Avino
- Cancer Research UK Cell Cycle Genetics Research Group, Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| | | | | | | |
Collapse
|
30
|
|
31
|
Grallert A, Beuter C, Craven RA, Bagley S, Wilks D, Fleig U, Hagan IM. S. pombe CLASP needs dynein, not EB1 or CLIP170, to induce microtubule instability and slows polymerization rates at cell tips in a dynein-dependent manner. Genes Dev 2006; 20:2421-36. [PMID: 16951255 PMCID: PMC1560416 DOI: 10.1101/gad.381306] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Schizosaccharomyces pombe CLIP170-associated protein (CLASP) Peg1 was identified in a screen for mutants with spindle formation defects and a screen for molecules that antagonized EB1 function. The conditional peg1.1 mutant enabled us to identify key features of Peg1 function. First, Peg1 was required to form a spindle and astral microtubules, yet destabilized interphase microtubules. Second, Peg1 was required to slow the polymerization rate of interphase microtubules that establish end-on contact with the cortex at cell tips. Third, Peg1 antagonized the action of S. pombe CLIP170 (Tip1) and EB1 (Mal3). Fourth, although Peg1 resembled higher eukaryotic CLASPs by physically associating with both Mal3 and Tip1, neither Tip1 nor Mal3 was required for Peg1 to destabilize interphase microtubules or for it to associate with microtubules. Conversely, neither Mal3 nor Tip1 required Peg1 to associate with microtubules or cell tips. Consistently, while mal3.Delta and tip1.Delta disrupted linear growth, corrupting peg1 (+) did not. Fifth, peg1.1 phenotypes resembled those arising from deletion of the single heavy or both light chains of fission yeast dynein. Furthermore, all interphase phenotypes arising from peg1 (+) manipulation relied on dynein function. Thus, the impact of S. pombe CLASP on interphase microtubule behavior is more closely aligned to dynein than EB1 or CLIP170.
Collapse
Affiliation(s)
- Agnes Grallert
- Cancer Research UK Cell Division Group, Paterson Institute for Cancer Research, Manchester M20 4BX, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
32
|
Gupta ML, Carvalho P, Roof DM, Pellman D. Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle. Nat Cell Biol 2006; 8:913-23. [PMID: 16906148 DOI: 10.1038/ncb1457] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 07/27/2006] [Indexed: 11/09/2022]
Abstract
The budding yeast protein Kip3p is a member of the conserved kinesin-8 family of microtubule motors, which are required for microtubule-cortical interactions, normal spindle assembly and kinetochore dynamics. Here, we demonstrate that Kip3p is both a plus end-directed motor and a plus end-specific depolymerase--a unique combination of activities not found in other kinesins. The ATPase activity of Kip3p was activated by both microtubules and unpolymerized tubulin. Furthermore, Kip3p in the ATP-bound state formed a complex with unpolymerized tubulin. Thus, motile kinesin-8s may depolymerize microtubules by a mechanism that is similar to that used by non-motile kinesin-13 proteins. Fluorescent speckle analysis established that, in vivo, Kip3p moved toward and accumulated on the plus ends of growing microtubules, suggesting that motor activity brings Kip3p to its site of action. Globally, and more dramatically on cortical contact, Kip3p promoted catastrophes and pausing, and inhibited microtubule growth. These findings explain the role of Kip3p in positioning the mitotic spindle in budding yeast and potentially other processes controlled by kinesin-8 family members.
Collapse
Affiliation(s)
- Mohan L Gupta
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Children's Hospital Boston and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
33
|
Abstract
The mechanism underlying cytokinesis, the final step in cell division, remains one of the major unsolved questions in basic cell biology. Thanks to advances in functional genomics and proteomics, we are now able to assemble a "parts list" of proteins involved in cytokinesis. In this review, we discuss how to relate this parts list to biological mechanism. For easier analysis, we split cytokinesis into discrete steps: cleavage plane specification, rearrangement of microtubule structures, contractile ring assembly, ring ingression, and completion. We report on the advances that have been made to understand these steps and how they can be integrated into a global understanding of cytokinesis. We also discuss the extent to which classic questions have been answered and identify major outstanding questions.
Collapse
Affiliation(s)
- Ulrike S Eggert
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
34
|
Gatt MK, Glover DM. The Drosophila phosphatidylinositol transfer protein encoded by vibrator is essential to maintain cleavage-furrow ingression in cytokinesis. J Cell Sci 2006; 119:2225-35. [PMID: 16684816 DOI: 10.1242/jcs.02933] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cytokinesis requires the coordination of cytoskeletal and plasma membrane dynamics. A role for phosphatidylinositol lipids has been proposed for the successful completion of cytokinesis but this is still poorly characterised. Here, we show mutants of the gene vibrator, previously found to encode the Drosophila phosphatidylinositol transfer protein, produce multinucleate cells indicative of cytokinesis failure in male meiosis. Examination of fixed preparations of mutant spermatocytes showed contractile rings of anillin and actin that were of normal appearance at early stages but were larger and less well organised at later stages of cytokinesis than in wild-type cells. Time-lapse imaging revealed sequential defects in cytokinesis of vibrator spermatocytes. In cells that fail cytokinesis, central spindle formation occurred correctly, but furrow ingression was delayed and the central spindle did not become compressed to the extent seen in wild-type cells. Cells then stalled at this point before the apparent connection between the constricted cytoskeleton and the plasma membrane was lost; the furrow then underwent elastic regression. We discuss these defects in relation to multiple functions of phosphoinositol lipids in regulating actin dynamics and membrane synthesis.
Collapse
Affiliation(s)
- Melanie K Gatt
- Cancer Research UK Cell Cycle Genetics Research Group, Department of Genetics, University of Cambridge.
| | | |
Collapse
|
35
|
Zavortink M, Contreras N, Addy T, Bejsovec A, Saint R. Tum/RacGAP50C provides a critical link between anaphase microtubules and the assembly of the contractile ring in Drosophila melanogaster. J Cell Sci 2006; 118:5381-92. [PMID: 16280552 DOI: 10.1242/jcs.02652] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A central question in understanding cytokinesis is how the cleavage plane is positioned. Although the positioning signal is likely to be transmitted via the anaphase microtubule array to the cell cortex, exactly how the microtubule array determines the site of contractile ring formation remains unresolved. By analysing tum/RacGAP50C mutant Drosophila embryos we show that cells lacking Tum do not form furrows and fail to localise the key cytokinetic components Pebble (a RhoGEF), Aurora B kinase, Diaphanous, Pav-KLP and Anillin. The GAP activity of Tum is required for cytokinesis: in its absence cytokinesis fails early even though Tum is present on microtubules at the cell equator where the furrow should form. Disruption of the Pebble-interacting domain leaves Tum localised to the cell equator on cortically associated microtubules, again with no evidence of furrowing. These data support a model in which Tum/RacGAP, via its interaction with Pbl, provides a critical link between the anaphase microtubule spindle and cytokinetic furrow formation in Drosophila cells.
Collapse
Affiliation(s)
- Michael Zavortink
- ARC Special Research Centre for the Molecular Genetics of Development and Molecular Genetics and Evolution Group, Research School of Biological Sciences, Australian National University, GPO Box 475, Canberra, ACT 2601, Australia
| | | | | | | | | |
Collapse
|