1
|
Wang LJ, Lai XH, Luo Z, Feng GL, Song YF. Diallyl disulfide alleviates hepatic steatosis by the conservative mechanism from fish to tetrapod: Augment Mfn2/Atgl-Mediated lipid droplet-mitochondria coupling. Redox Biol 2024; 77:103395. [PMID: 39447254 PMCID: PMC11539707 DOI: 10.1016/j.redox.2024.103395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Despite increasing evidences has highlighted the importance of mitochondria-lipid droplet (LD) coupling in maintaining lipid homeostasis, little progress in unraveling the role of mitochondria-LD coupling in hepatic lipid metabolism has been made. Additionally, diallyl disulfide (DADS), a garlic organosulfur compound, has been proposed to prevent hepatic steatosis; however, no studies have focused on the molecular mechanism to date. To address these gaps, this study investigated the systemic control mechanisms of mitochondria-LD coupling regulating hepatic lipid metabolism, and also explored their function in the process of DADS alleviating hepatic steatosis. To this end, an animal model of lipid metabolism, yellow catfish Pelteobagrus fulvidraco were fed four different diets (control, high-fat, DADS and high-fat + DADS diet) in vivo for 8 weeks; in vitro experiments were conducted to inhibit Mfn2/Atgl-mediated mitochondria-LD coupling in isolated hepatocytes. The key findings are: (1) the activations of hepatic LDs lipolysis and mitochondrial β-oxidation are likely the major drivers for DADS alleviating hepatic steatosis; (2) the underlying mechanism is that DADS enhances mitochondria-LD coupling by promoting the interaction between mitochondrion-localized Mfn2 with LD-localized Atgl, which facilitates the hepatic LDs lipolysis and the transfer of fatty acids (FAs) from LDs to mitochondria for subsequent β-oxidation; (3) Mfn2-mediated mitochondrial fusion facilitates mitochondria to form more PDM, which possess higher β-oxidation capacity in hepatocytes. Significantly, the present research unveils a previously undisclosed mechanism by which Mfn2/Atgl-mitochondria-LD coupling relieves hepatic LDs accumulation, which is a conserved strategy from fish to tetrapod. This study provides another dimension for mitochondria-LD coupling and opens up new avenues for the therapeutic interventions in hepatic steatosis.
Collapse
Affiliation(s)
- Ling-Jiao Wang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Hong Lai
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Guang-Li Feng
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Feng Song
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Hu L, Tang D, Qi B, Guo D, Wang Y, Geng J, Zhang X, Song L, Chang P, Chen W, Fu F, Li Y. Mfn2/Hsc70 Complex Mediates the Formation of Mitochondria-Lipid Droplets Membrane Contact and Regulates Myocardial Lipid Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307749. [PMID: 38311582 PMCID: PMC11005711 DOI: 10.1002/advs.202307749] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/17/2024] [Indexed: 02/06/2024]
Abstract
The heart primarily derives its energy through lipid oxidation. In cardiomyocytes, lipids are stored in lipid droplets (LDs) and are utilized in mitochondria, although the structural and functional connections between these two organelles remain largely unknown. In this study, visible evidence have presented indicating that a complex is formed at the mitochondria-LD membrane contact (MLC) site, involving mitochondrion-localized Mfn2 and LD-localized Hsc70. This complex serves to tether mitochondria to LDs, facilitating the transfer of fatty acids (FAs) from LDs to mitochondria for β-oxidation. Reduction of Mfn2 induced by lipid overload inhibits MLC, hinders FA transfer, and results in lipid accumulation. Restoring Mfn2 reinstates MLC, alleviating myocardial lipotoxicity under lipid overload conditions both in-vivo and in-vitro. Additionally, prolonged lipid overload induces Mfn2 degradation through the ubiquitin-proteasome pathway, following Mfn2 acetylation at the K243 site. This leads to the transition from adaptive lipid utilization to maladaptive lipotoxicity. The experimental findings are supported by clinical data from patients with obesity and age-matched non-obese individuals. These translational results make a significant contribution to the molecular understanding of MLC in the heart, and offer new insights into its role in myocardial lipotoxicity.
Collapse
Affiliation(s)
- Lang Hu
- Department of CardiologyTangdu HospitalAirforce Medical UniversityXi'an710032China
| | - Daishi Tang
- Digestive System DepartmentShaanxi Provincial Crops Hospital of Chinese People's Armed Police ForceXi'an710032China
| | - Bingchao Qi
- Department of CardiologyTangdu HospitalAirforce Medical UniversityXi'an710032China
| | - Dong Guo
- Department of CardiologyTangdu HospitalAirforce Medical UniversityXi'an710032China
| | - Ying Wang
- Department of CardiologyTangdu HospitalAirforce Medical UniversityXi'an710032China
| | - Jing Geng
- Department of CardiologyTangdu HospitalAirforce Medical UniversityXi'an710032China
| | - Xiaoliang Zhang
- Department of CardiologyTangdu HospitalAirforce Medical UniversityXi'an710032China
| | - Liqiang Song
- Department of RespirologyXijing HospitalAirforce Medical UniversityXi'an710032China
| | - Pan Chang
- Department of CardiologyThe Second Affiliated Hospital of Xi'an Medical CollegeXi'an710032China
| | - Wensheng Chen
- Department of Cardiovascular SurgeryXi'an Gaoxin HospitalXi'an710032China
| | - Feng Fu
- Department of Physiology and PathophysiologyAirforce Medical UniversityXi'an710032China
| | - Yan Li
- Department of CardiologyTangdu HospitalAirforce Medical UniversityXi'an710032China
| |
Collapse
|
3
|
Wang H, Luo W, Chen H, Cai Z, Xu G. Mitochondrial dynamics and mitochondrial autophagy: Molecular structure, orchestrating mechanism and related disorders. Mitochondrion 2024; 75:101847. [PMID: 38246334 DOI: 10.1016/j.mito.2024.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Mitochondrial dynamics and autophagy play essential roles in normal cellular physiological activities, while abnormal mitochondrial dynamics and mitochondrial autophagy can cause cancer and related disorders. Abnormal mitochondrial dynamics usually occur in parallel with mitochondrial autophagy. Both have been reported to have a synergistic effect and can therefore complement or inhibit each other. Progress has been made in understanding the classical mitochondrial PINK1/Parkin pathway and mitochondrial dynamical abnormalities. Still, the mechanisms and regulatory pathways underlying the interaction between mitophagy and mitochondrial dynamics remain unexplored. Like other existing reviews, we review the molecular structure of proteins involved in mitochondrial dynamics and mitochondrial autophagy, and how their abnormalities can lead to the development of related diseases. We will also review the individual or synergistic effects of abnormal mitochondrial dynamics and mitophagy leading to cellular proliferation, differentiation and invasion. In addition, we explore the mechanisms underlying mitochondrial dynamics and mitochondrial autophagy to contribute to targeted and precise regulation of mitochondrial function. Through the study of abnormal mitochondrial dynamics and mitochondrial autophagy regulation mechanisms, as well as the role of early disease development, effective targets for mitochondrial function regulation can be proposed to enable accurate diagnosis and treatment of the associated disorders.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China; Guangzhou Medical University, Guangzhou 511495, China
| | - Wenjun Luo
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China
| | - Haoyu Chen
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China
| | - Zhiduan Cai
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China.
| | - Guibin Xu
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510700, China; Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510230, China.
| |
Collapse
|
4
|
Vlieghe A, Niort K, Fumat H, Guigner JM, Cohen MM, Tareste D. Role of Lipids and Divalent Cations in Membrane Fusion Mediated by the Heptad Repeat Domain 1 of Mitofusin. Biomolecules 2023; 13:1341. [PMID: 37759741 PMCID: PMC10527301 DOI: 10.3390/biom13091341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondria are highly dynamic organelles that constantly undergo fusion and fission events to maintain their shape, distribution and cellular function. Mitofusin 1 and 2 proteins are two dynamin-like GTPases involved in the fusion of outer mitochondrial membranes (OMM). Mitofusins are anchored to the OMM through their transmembrane domain and possess two heptad repeat domains (HR1 and HR2) in addition to their N-terminal GTPase domain. The HR1 domain was found to induce fusion via its amphipathic helix, which interacts with the lipid bilayer structure. The lipid composition of mitochondrial membranes can also impact fusion. However, the precise mode of action of lipids in mitochondrial fusion is not fully understood. In this study, we examined the role of the mitochondrial lipids phosphatidylethanolamine (PE), cardiolipin (CL) and phosphatidic acid (PA) in membrane fusion induced by the HR1 domain, both in the presence and absence of divalent cations (Ca2+ or Mg2+). Our results showed that PE, as well as PA in the presence of Ca2+, effectively stimulated HR1-mediated fusion, while CL had a slight inhibitory effect. By considering the biophysical properties of these lipids in the absence or presence of divalent cations, we inferred that the interplay between divalent cations and specific cone-shaped lipids creates regions with packing defects in the membrane, which provides a favorable environment for the amphipathic helix of HR1 to bind to the membrane and initiate fusion.
Collapse
Affiliation(s)
- Anaïs Vlieghe
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Kristina Niort
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Hugo Fumat
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Jean-Michel Guigner
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), CNRS UMR 7590, MNHN, IRD UR 206, 75005 Paris, France
| | - Mickaël M. Cohen
- Sorbonne Université, Institut de Biologie Physico-Chimique (IBPC), CNRS UMR 8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, 75005 Paris, France
| | - David Tareste
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| |
Collapse
|
5
|
Ozeir M, Cohen MM. From dynamin related proteins structures and oligomers to membrane fusion mediated by mitofusins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148913. [PMID: 36057374 DOI: 10.1016/j.bbabio.2022.148913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/17/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria assemble in a highly dynamic network where interconnected tubules evolve in length and size through regulated cycles of fission and fusion of mitochondrial membranes thereby adapting to cellular needs. Mitochondrial fusion and fission processes are mediated by specific sets of mechano-chemical large GTPases that belong to the Dynamin-Related Proteins (DRPs) super family. DRPs bind to cognate membranes and auto-oligomerize to drive lipid bilayers remodeling in a nucleotide dependent manner. Although structural characterization and mechanisms of DRPs that mediate membrane fission are well established, the capacity of DRPs to mediate membrane fusion is only emerging. In this review, we discuss the distinct structures and mechanisms of DRPs that trigger the anchoring and fusion of biological membranes with a specific focus on mitofusins that are dedicated to the fusion of mitochondrial outer membranes. In particular, we will highlight oligomeric assemblies of distinct DRPs and confront their mode of action against existing models of mitofusins assemblies with emphasis on recent biochemical, structural and computational reports. As we will see, the literature brings valuable insights into the presumed macro-assemblies mitofusins may form during anchoring and fusion of mitochondrial outer membranes.
Collapse
Affiliation(s)
- Mohammad Ozeir
- Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France
| | - Mickael M Cohen
- Sorbonne Université, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005 Paris, France.
| |
Collapse
|
6
|
Kiyimba F, Hartson SD, Rogers J, VanOverbeke DL, Mafi GG, Ramanathan R. Dark-cutting beef mitochondrial proteomic signatures reveal increased biogenesis proteins and bioenergetics capabilities. J Proteomics 2022; 265:104637. [DOI: 10.1016/j.jprot.2022.104637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/04/2022] [Accepted: 05/29/2022] [Indexed: 10/18/2022]
|
7
|
Abati E, Manini A, Velardo D, Del Bo R, Napoli L, Rizzo F, Moggio M, Bresolin N, Bellone E, Bassi MT, D'Angelo MG, Comi GP, Corti S. Clinical and genetic features of a cohort of patients with MFN2-related neuropathy. Sci Rep 2022; 12:6181. [PMID: 35418194 PMCID: PMC9008012 DOI: 10.1038/s41598-022-10220-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/05/2022] [Indexed: 11/09/2022] Open
Abstract
Charcot–Marie–Tooth disease type 2A (CMT2A) is a rare inherited axonal neuropathy caused by mutations in MFN2 gene, which encodes Mitofusin 2, a transmembrane protein of the outer mitochondrial membrane. We performed a cross-sectional analysis on thirteen patients carrying mutations in MFN2, from ten families, describing their clinical and genetic characteristics. Evaluated patients presented a variable age of onset and a wide phenotypic spectrum, with most patients presenting a severe phenotype. A novel heterozygous missense variant was detected, p.K357E. It is located at a highly conserved position and predicted as pathogenic by in silico tools. At a clinical level, the p.K357E carrier shows a severe sensorimotor axonal neuropathy. In conclusion, our work expands the genetic spectrum of CMT2A, disclosing a novel mutation and its related clinical effect, and provides a detailed description of the clinical features of a cohort of patients with MFN2 mutations. Obtaining a precise genetic diagnosis in affected families is crucial both for family planning and prenatal diagnosis, and in a therapeutic perspective, as we are entering the era of personalized therapy for genetic diseases.
Collapse
Affiliation(s)
- Elena Abati
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy. .,Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Arianna Manini
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Daniele Velardo
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Neuromuscular and Rare Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberto Del Bo
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Napoli
- Neuromuscular and Rare Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Rizzo
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.,Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Moggio
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.,Neuromuscular and Rare Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nereo Bresolin
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.,Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Emilia Bellone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (Dinogmi) - Medical Genetics, University of Genoa, Genoa, Italy
| | - Maria Teresa Bassi
- Laboratory of Molecular Biology, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Maria Grazia D'Angelo
- Neuromuscular Disorder Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Giacomo Pietro Comi
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.,Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Neuromuscular and Rare Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience Section, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.,Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
8
|
Aberrant Mitochondrial Dynamics and Exacerbated Response to Neuroinflammation in a Novel Mouse Model of CMT2A. Int J Mol Sci 2021; 22:ijms222111569. [PMID: 34769001 PMCID: PMC8584238 DOI: 10.3390/ijms222111569] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 01/09/2023] Open
Abstract
Charcot-Marie-Tooth disease type 2A (CMT2A) is the most common hereditary axonal neuropathy caused by mutations in MFN2 encoding Mitofusin-2, a multifunctional protein located in the outer mitochondrial membrane. In order to study the effects of a novel MFN2K357T mutation associated with early onset, autosomal dominant severe CMT2A, we generated a knock-in mouse model. While Mfn2K357T/K357T mouse pups were postnatally lethal, Mfn2+/K357T heterozygous mice were asymptomatic and had no histopathological changes in their sciatic nerves up to 10 months of age. However, immunofluorescence analysis of Mfn2+/K357T mice revealed aberrant mitochondrial clustering in the sciatic nerves from 6 months of age, in optic nerves from 8 months, and in lumbar spinal cord white matter at 10 months, along with microglia activation. Ultrastructural analyses confirmed dysmorphic mitochondrial aggregates in sciatic and optic nerves. After exposure of 6-month-old mice to lipopolysaccharide, Mfn2+/K357T mice displayed a higher immune response, a more severe motor impairment, and increased CNS inflammation, microglia activation, and macrophage infiltrates. Overall, ubiquitous Mfn2K357T expression renders the CNS and peripheral nerves of Mfn2+/K357T mice more susceptible to mitochondrial clustering, and augments their response to inflammation, modeling some cellular mechanisms that may be relevant for the development of neuropathy in patients with CMT2A.
Collapse
|
9
|
Brandner A, De Vecchis D, Baaden M, Cohen MM, Taly A. Physics-based oligomeric models of the yeast mitofusin Fzo1 at the molecular scale in the context of membrane docking. Mitochondrion 2019; 49:234-244. [PMID: 31306768 DOI: 10.1016/j.mito.2019.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/07/2019] [Accepted: 06/24/2019] [Indexed: 11/17/2022]
Abstract
Tethering and homotypic fusion of mitochondrial outer membranes is mediated by large GTPases of the dynamin-related proteins family called the mitofusins. The yeast mitofusin Fzo1 forms high molecular weight complexes and its assembly during membrane fusion likely involves the formation of high order complexes. Consistent with this possibility, mitofusins form oligomers in both cis (on the same lipid bilayer) and trans to mediate membrane attachment and fusion. Here, we utilize our recent Fzo1 model to investigate and discuss the formation of cis and trans mitofusin oligomers. We have built three distinct cis-assembly Fzo1 models that gave rise to three distinct trans-oligomeric models of mitofusin constructs. Each model involves two main components of mitofusin oligomerization: the GTPase and the trunk domains. The oligomeric models proposed in this study were further assessed for stability and dynamics in a membrane environment using a coarse-grained molecular dynamics (MD) simulation approach. A narrow opening 'head-to-head' cis-oligomerization (via the GTPase domain) followed by the antiparallel 'back-to-back' trans-associations (via the trunk domain) appears to be in agreement with all of the available experimental data. More broadly, this study opens new possibilities to start exploring cis and trans conformations for Fzo1 and mitofusins in general.
Collapse
Affiliation(s)
- Astrid Brandner
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, UPR 9080, 13 rue Pierre et Marie Curie, F-75005, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Dario De Vecchis
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, UPR 9080, 13 rue Pierre et Marie Curie, F-75005, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Marc Baaden
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, UPR 9080, 13 rue Pierre et Marie Curie, F-75005, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Mickael M Cohen
- Laboratoire de Biologie Cellulaire et Moléculaire des Eucaryotes, Sorbonne Université, CNRS, UMR 8226, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France.
| | - Antoine Taly
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, UPR 9080, 13 rue Pierre et Marie Curie, F-75005, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France.
| |
Collapse
|
10
|
Nam SH, Choi BO. Clinical and genetic aspects of Charcot-Marie-Tooth disease subtypes. PRECISION AND FUTURE MEDICINE 2019. [DOI: 10.23838/pfm.2018.00163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
11
|
Abstract
Mitochondria undergo frequent fusion and fission events to adapt their morphology to cellular needs. Homotypic docking and fusion of outer mitochondrial membranes are controlled by Mitofusins, a set of large membrane-anchored GTPase proteins belonging to the dynamin superfamily. Mitofusins include, in addition to their GTPase and transmembrane domains, two heptad repeat domains, HR1 and HR2. All four regions are crucial for Mitofusin function, but their precise contribution to mitochondrial docking and fusion events has remained elusive until very recently. In this commentary, we first give an overview of the established strategies employed by various protein machineries distinct from Mitofusins to mediate membrane fusion. We then present recent structure–function data on Mitofusins that provide important novel insights into their mode of action in mitochondrial fusion.
Collapse
Affiliation(s)
- Mickael M Cohen
- Sorbonne Université, CNRS UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Paris, France
| | - David Tareste
- Université Paris Descartes, Sorbonne Paris Cité, INSERM ERL U950, Trafic Membranaire dans le Cerveau Normal et Pathologique, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, INSERM UMR 894, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| |
Collapse
|
12
|
Daste F, Sauvanet C, Bavdek A, Baye J, Pierre F, Le Borgne R, David C, Rojo M, Fuchs P, Tareste D. The heptad repeat domain 1 of Mitofusin has membrane destabilization function in mitochondrial fusion. EMBO Rep 2018; 19:embr.201643637. [PMID: 29661855 DOI: 10.15252/embr.201643637] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/07/2018] [Accepted: 03/16/2018] [Indexed: 12/31/2022] Open
Abstract
Mitochondria are double-membrane-bound organelles that constantly change shape through membrane fusion and fission. Outer mitochondrial membrane fusion is controlled by Mitofusin, whose molecular architecture consists of an N-terminal GTPase domain, a first heptad repeat domain (HR1), two transmembrane domains, and a second heptad repeat domain (HR2). The mode of action of Mitofusin and the specific roles played by each of these functional domains in mitochondrial fusion are not fully understood. Here, using a combination of in situ and in vitro fusion assays, we show that HR1 induces membrane fusion and possesses a conserved amphipathic helix that folds upon interaction with the lipid bilayer surface. Our results strongly suggest that HR1 facilitates membrane fusion by destabilizing the lipid bilayer structure, notably in membrane regions presenting lipid packing defects. This mechanism for fusion is thus distinct from that described for the heptad repeat domains of SNARE and viral proteins, which assemble as membrane-bridging complexes, triggering close membrane apposition and fusion, and is more closely related to that of the C-terminal amphipathic tail of the Atlastin protein.
Collapse
Affiliation(s)
- Frédéric Daste
- Membrane Traffic in Health & Disease, INSERM ERL U950, Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Cécile Sauvanet
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Andrej Bavdek
- Membrane Traffic in Health & Disease, INSERM ERL U950, Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - James Baye
- Membrane Traffic in Health & Disease, INSERM ERL U950, Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Fabienne Pierre
- Membrane Traffic in Health & Disease, INSERM ERL U950, Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France.,Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Rémi Le Borgne
- Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Claudine David
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Manuel Rojo
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Patrick Fuchs
- Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - David Tareste
- Membrane Traffic in Health & Disease, INSERM ERL U950, Sorbonne Paris Cité, Université Paris Descartes, Paris, France .,Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France.,Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| |
Collapse
|
13
|
Xu K, Chen G, Li X, Wu X, Chang Z, Xu J, Zhu Y, Yin P, Liang X, Dong L. MFN2 suppresses cancer progression through inhibition of mTORC2/Akt signaling. Sci Rep 2017; 7:41718. [PMID: 28176801 PMCID: PMC5296837 DOI: 10.1038/srep41718] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/03/2017] [Indexed: 01/10/2023] Open
Abstract
The mitochondrial GTPase mitofusin-2 (MFN2) has previously been reported to play a role in regulating cell proliferation, apoptosis and differentiation in a number of cell types. Here, we report that breast cancer patients with low MFN2 expression are associated with poor prognosis as compared to patients with high MFN2 expression. We find that MFN2 knockout from MCF7 and A549 cells via Crispr/Cas9 greatly promotes cell viability, colony formation, and invasion of cancer cells in vitro and in vivo, which were confirmed by colony formation assay, transwell invasion assay, and tumor xenograft model. Signaling analyses suggest the mammalian target of rapamycin complex 2 (mTORC2)/Akt signaling pathway is highly elevated in MFN2 knockout cancer cells. The elevated mTORC2 promotes cancer cell growth and metastasis via AktS437 phosphorylation mediated signaling pathway. Mechanistic studies reveal that MFN2 suppresses mTORC2 through direct interaction by binding its domain HR1. Inhibition of mTORC2 significantly suppresses MFN2 deficient tumor growth. Collectively, this study provides novel insights into the tumor progression associated with MFN2 deficiency and suggests that the importance of mTORC2 inhibitor in the treatment of MFN2 downregulated cancer patients.
Collapse
Affiliation(s)
- Ke Xu
- Central laboratory, General Surgery, Putuo Hospital, and Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Rd, Shanghai 200062, PR China
| | - Guo Chen
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiaobo Li
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China
| | - Xiaoqin Wu
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILDAMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, 230032, China
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianhua Xu
- Central laboratory, General Surgery, Putuo Hospital, and Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Rd, Shanghai 200062, PR China
| | - Yu Zhu
- Department of Clinical Laboratory, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vessels and Neural Degeneration, Tianjin 300350, China
| | - Peihao Yin
- Central laboratory, General Surgery, Putuo Hospital, and Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Rd, Shanghai 200062, PR China
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering &Shanghai Key Laboratory of New drug design, School of pharmacy, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, PR China
| | - Lei Dong
- Central laboratory, General Surgery, Putuo Hospital, and Interventional Cancer Institute of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Rd, Shanghai 200062, PR China.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Bannerman P, Burns T, Xu J, Miers L, Pleasure D. Mice Hemizygous for a Pathogenic Mitofusin-2 Allele Exhibit Hind Limb/Foot Gait Deficits and Phenotypic Perturbations in Nerve and Muscle. PLoS One 2016; 11:e0167573. [PMID: 27907123 PMCID: PMC5132404 DOI: 10.1371/journal.pone.0167573] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/16/2016] [Indexed: 12/31/2022] Open
Abstract
Charcot-Marie-Tooth disease type 2A (CMT2A), the most common axonal form of hereditary sensory motor neuropathy, is caused by mutations of mitofusin-2 (MFN2). Mitofusin-2 is a GTPase required for fusion of mitochondrial outer membranes, repair of damaged mitochondria, efficient mitochondrial energetics, regulation of mitochondrial-endoplasmic reticulum calcium coupling and axonal transport of mitochondria. We knocked T105M MFN2 preceded by a loxP-flanked STOP sequence into the mouse Rosa26 locus to permit cell type-specific expression of this pathogenic allele. Crossing these mice with nestin-Cre transgenic mice elicited T105M MFN2 expression in neuroectoderm, and resulted in diminished numbers of mitochondria in peripheral nerve axons, an alteration in skeletal muscle fiber type distribution, and a gait abnormality.
Collapse
Affiliation(s)
- Peter Bannerman
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, Sacramento, California, United States of America
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States of America
- * E-mail:
| | - Travis Burns
- Department of Neurology, University of California Davis, Sacramento, California, United States of America
| | - Jie Xu
- Department of Neurology, University of California Davis, Sacramento, California, United States of America
| | - Laird Miers
- Department of Neurology, University of California Davis, Sacramento, California, United States of America
| | - David Pleasure
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, Sacramento, California, United States of America
- Department of Neurology, University of California Davis, Sacramento, California, United States of America
| |
Collapse
|
15
|
Shah N, Lee NY. Regulation of gene expression and mitochondrial dynamics by SMAD. Mol Cell Oncol 2016; 3:e1204492. [PMID: 27857972 DOI: 10.1080/23723556.2016.1204492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 01/22/2023]
Abstract
Mothers against decapentaplegic homolog (SMAD) proteins exert a wide spectrum of transcriptional effects in different cell types and tissues in response to transforming growth factor-β (TGF-β). A recent study demonstrates what is thought to be the first distinct cytoplasmic function for SMAD2 in modulating mitochondrial dynamics and hence reveals new pathophysiological implications for TGF-β signaling.
Collapse
Affiliation(s)
- Nirav Shah
- Division of Pharmacology, College of Pharmacy , Columbus, OH, USA
| | - Nam Y Lee
- Division of Pharmacology, College of Pharmacy, Columbus, OH, USA; Davis Heart and Lung Research Institute, Columbus, OH, USA; James Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
16
|
Kumar S, Pan CC, Shah N, Wheeler SE, Hoyt KR, Hempel N, Mythreye K, Lee NY. Activation of Mitofusin2 by Smad2-RIN1 Complex during Mitochondrial Fusion. Mol Cell 2016; 62:520-31. [PMID: 27184078 DOI: 10.1016/j.molcel.2016.04.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 02/04/2016] [Accepted: 04/07/2016] [Indexed: 01/11/2023]
Abstract
Smads are nuclear-shuttling transcriptional mediators of transforming growth factor-β (TGF-β) signaling. Although their essential nuclear roles in gene regulation during development and carcinogenesis are well established, whether they have important cytoplasmic functions remains unclear. Here we report that Smad2 is a critical determinant of mitochondrial dynamics. We identified mitofusin2 (MFN2) and Rab and Ras Interactor 1 (RIN1) as new Smad2 binding partners required for mitochondrial fusion. Unlike TGF-β-induced Smad2/3 transcriptional responses underlying mitochondrial fragmentation and apoptosis, inactive cytoplasmic Smad2 rapidly promotes mitochondrial fusion by recruiting RIN1 into a complex with MFN2. We demonstrate that Smad2 is a key scaffold, allowing RIN1 to act as a GTP exchange factor for MFN2-GTPase activation to promote mitochondrial ATP synthesis and suppress superoxide production. These results reveal functional implications between Smads and mitochondrial dysfunction in cancer and metabolic and neurodegenerative disorders.
Collapse
Affiliation(s)
- Sanjay Kumar
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Christopher C Pan
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Nirav Shah
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Sarah E Wheeler
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Kari R Hoyt
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Nadine Hempel
- Department of Pharmacology, Penn State University, Hershey, PA 17033, USA
| | - Karthikeyan Mythreye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Nam Y Lee
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
17
|
Gupte TM. Mitochondrial Fragmentation Due to Inhibition of Fusion Increases Cyclin B through Mitochondrial Superoxide Radicals. PLoS One 2015; 10:e0126829. [PMID: 26000631 PMCID: PMC4441460 DOI: 10.1371/journal.pone.0126829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 04/08/2015] [Indexed: 11/25/2022] Open
Abstract
During the cell cycle, mitochondria undergo regulated changes in morphology. Two particularly interesting events are first, mitochondrial hyperfusion during the G1-S transition and second, fragmentation during entry into mitosis. The mitochondria remain fragmented between late G2- and mitotic exit. This mitotic mitochondrial fragmentation constitutes a checkpoint in some cell types, of which little is known. We bypass the ‘mitotic mitochondrial fragmentation’ checkpoint by inducing fragmented mitochondrial morphology and then measure the effect on cell cycle progression. Using Drosophila larval hemocytes, Drosophila S2R+ cell and cells in the pouch region of wing imaginal disc of Drosophila larvae we show that inhibiting mitochondrial fusion, thereby increasing fragmentation, causes cellular hyperproliferation and an increase in mitotic index. However, mitochondrial fragmentation due to over-expression of the mitochondrial fission machinery does not cause these changes. Our experiments suggest that the inhibition of mitochondrial fusion increases superoxide radical content and leads to the upregulation of cyclin B that culminates in the observed changes in the cell cycle. We provide evidence for the importance of mitochondrial superoxide in this process. Our results provide an insight into the need for mitofusin-degradation during mitosis and also help in understanding the mechanism by which mitofusins may function as tumor suppressors.
Collapse
Affiliation(s)
- Tejas M. Gupte
- National Centre for Biological Sciences (NCBS-TIFR), UAS-GKVK campus, Bellary road, Bangalore, 560 065, Karnataka, India
- inStem, Institute for Stem Cell Biology and Regenerative Medicine, GKVK post, Bellary road, Bangalore, 560 065, Karnataka, India
- * E-mail:
| |
Collapse
|
18
|
Ugarte-Uribe B, García-Sáez AJ. Membranes in motion: mitochondrial dynamics and their role in apoptosis. Biol Chem 2015; 395:297-311. [PMID: 24184992 DOI: 10.1515/hsz-2013-0234] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/31/2013] [Indexed: 11/15/2022]
Abstract
Mitochondrial dynamics is crucial for cell survival, development and homeostasis and impairment of these functions leads to neurologic disorders and metabolic diseases. The key components of mitochondrial dynamics have been identified. Mitofusins and OPA1 mediate mitochondrial fusion, whereas Drp1 is responsible for mitochondrial fission. In addition, an interplay between the proteins of the mitochondrial fission/fusion machinery and the Bcl-2 proteins, essential mediators in apoptosis, has been also described. Here, we review the molecular mechanisms regarding mitochondrial dynamics together with their role in apoptosis.
Collapse
|
19
|
Choudhary V, Kaddour-Djebbar I, Alaisami R, Kumar MV, Bollag WB. Mitofusin 1 degradation is induced by a disruptor of mitochondrial calcium homeostasis, CGP37157: a role in apoptosis in prostate cancer cells. Int J Oncol 2014; 44:1767-73. [PMID: 24626641 DOI: 10.3892/ijo.2014.2343] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 02/24/2014] [Indexed: 11/06/2022] Open
Abstract
Mitochondria constantly divide (mitochondrial fission) and fuse (mitochondrial fusion) in a normal cell. Disturbances in the balance between these two physiological processes may lead to cell dysfunction or to cell death. Induction of cell death is the prime goal of prostate cancer chemotherapy. Our previous study demonstrated that androgens increase the expression of a mitochondrial protein involved in fission and facilitate an apoptotic response to CGP37157 (CGP), an inhibitor of mitochondrial calcium efflux, in prostate cancer cells. However, the regulation and role of mitochondrial fusion proteins in the death of these cells have not been examined. Therefore, our objective was to investigate the effect of CGP on a key mitochondrial fusion protein, mitofusin 1 (Mfn1), and the role of Mfn1 in prostate cancer cell apoptosis. We used various prostate cancer cell lines and western blot analysis, qRT-PCR, siRNA, M30 apoptosis assay and immunoprecipitation techniques to determine mechanisms regulating Mfn1. Treatment of prostate cancer cells with CGP resulted in selective degradation of Mfn1. Mfn1 ubiquitination was detected following immunoprecipitation of overexpressed Myc-tagged Mfn1 protein from CGP-treated cells, and treatment with the proteasomal inhibitor lactacystin, as well as siRNA-mediated knockdown of the E3 ubiquitin ligase March5, protected Mfn1 from CGP-induced degradation. These data indicate the involvement of the ubiquitin-proteasome pathway in CGP-induced degradation of Mfn1. We also demonstrated that downregulation of Mfn1 by siRNA enhanced the apoptotic response of LNCaP cells to CGP, suggesting a likely pro-survival role for Mfn1 in these cells. Our results suggest that manipulation of mitofusins may provide a novel therapeutic advantage in treating prostate cancer.
Collapse
Affiliation(s)
| | | | - Rabei Alaisami
- Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA, USA
| | | | | |
Collapse
|
20
|
Bereiter-Hahn J. Mitochondrial dynamics in aging and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 127:93-131. [PMID: 25149215 DOI: 10.1016/b978-0-12-394625-6.00004-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondria are self-replicating organelles but nevertheless strongly depend on supply coded in nuclear genes. They serve many physiological demands in living cells. Supply of the cytoplasm with ATP and engagement in Ca(2+) regulation belong to the main functions of mitochondria. In large eukaryotic cells, in particular in neurons, with their long dendrites and axons, mitochondria have to move to the sites of their action. This trafficking involves several motor molecules and mechanisms to sense the sites of requirements of mitochondria. With aging and as a consequence of some diseases, mitochondrial components may be rendered dysfunctional, and mtDNA mutations arise during the course of replication and by the action of reactive oxygen species. Mutants in motor molecules engaged in trafficking and in the machinery of fusion and fission are causing severe deficiencies on the cellular level; they support neurodegeneration and, thus, cause many diseases. Frequent fusion and fission events mediate the elimination of impaired parts from mitochondria which finally will be degraded by autophagosomes. Extensive fusion provides a basis for functional complementation. Mobility of proteins and small molecules within the mitochondria is necessary to reach the functional goals of fusion and fission, although cristae and a large fraction of proteins of the respiratory complexes proved to be stable for hours after fusion and perform slow exchange of material.
Collapse
Affiliation(s)
- Jürgen Bereiter-Hahn
- Institute for Cell Biology and Neurosciences, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
21
|
Mitofusion-2-mediated alleviation of insulin resistance in rats through reduction in lipid intermediate accumulation in skeletal muscle. J Biomed Sci 2013; 20:45. [PMID: 23815800 PMCID: PMC3720227 DOI: 10.1186/1423-0127-20-45] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/25/2013] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Increased lipid accumulation and mitochondrial dysfunction within skeletal muscle have been shown to be strongly associated with insulin resistance. However, the role of mitofusion-2 (MFN2), a key factor in mitochondrial function and energy metabolism, in skeletal muscle lipid intermediate accumulation remains to be elucidated. RESULTS A high-fat diet resulted in insulin resistance as well as accumulation of cytosolic lipid intermediates and down-regulation of MFN2 and CPT1 in skeletal muscle in rats, while MFN2 overexpression improved insulin sensitivity and reduced lipid intermediates in muscle, possibly by upregulation of CPT1 expression. CONCLUSIONS MFN2 overexpression can rescue insulin resistance, possibly by upregulating CPT1 expression leading to reduction in the accumulation of lipid intermediates in skeletal muscle. These observations contribute to the investigations of new diabetes therapies.
Collapse
|
22
|
Cagalinec M, Safiulina D, Liiv M, Liiv J, Choubey V, Wareski P, Veksler V, Kaasik A. Principles of the mitochondrial fusion and fission cycle in neurons. J Cell Sci 2013; 126:2187-97. [PMID: 23525002 DOI: 10.1242/jcs.118844] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial fusion-fission dynamics play a crucial role in many important cell processes. These dynamics control mitochondrial morphology, which in turn influences several important mitochondrial properties including mitochondrial bioenergetics and quality control, and they appear to be affected in several neurodegenerative diseases. However, an integrated and quantitative understanding of how fusion-fission dynamics control mitochondrial morphology has not yet been described. Here, we took advantage of modern visualisation techniques to provide a clear explanation of how fusion and fission correlate with mitochondrial length and motility in neurons. Our main findings demonstrate that: (1) the probability of a single mitochondrion splitting is determined by its length; (2) the probability of a single mitochondrion fusing is determined primarily by its motility; (3) the fusion and fission cycle is driven by changes in mitochondrial length and deviations from this cycle serves as a corrective mechanism to avoid extreme mitochondrial length; (4) impaired mitochondrial motility in neurons overexpressing 120Q Htt or Tau suppresses mitochondrial fusion and leads to mitochondrial shortening whereas stimulation of mitochondrial motility by overexpressing Miro-1 restores mitochondrial fusion rates and sizes. Taken together, our results provide a novel insight into the complex crosstalk between different processes involved in mitochondrial dynamics. This knowledge will increase understanding of the dynamic mitochondrial functions in cells and in particular, the pathogenesis of mitochondrial-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Michal Cagalinec
- Department of Pharmacology, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 19, Tartu, Estonia
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Gan KX, Wang C, Chen JH, Zhu CJ, Song GY. Mitofusin-2 ameliorates high-fat diet-induced insulin resistance in liver of rats. World J Gastroenterol 2013; 19:1572-1581. [PMID: 23538485 PMCID: PMC3602474 DOI: 10.3748/wjg.v19.i10.1572] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 11/13/2012] [Accepted: 01/05/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of mitofusin-2 (MFN2) on insulin sensitivity and its potential targets in the liver of rats fed with a high-fat diet (HFD).
METHODS: Rats were fed with a control or HFD for 4 or 8 wk, and were then infected with a control or an MFN2 expressing adenovirus once a week for 3 wk starting from the 9th wk. Blood glucose (BG), plasma insulin and insulin sensitivity of rats were determined at end of the 4th and 8th wk, and after treatment with different amounts of MFN2 expressing adenovirus (108, 109 or 1010 vp/kg body weight). BG levels were measured by Accu-chek Active Meter. Plasma insulin levels were analyzed by using a Rat insulin enzyme-linked immunosorbent assay kit. Insulin resistance was evaluated by measuring the glucose infusion rate (GIR) using a hyperinsulinemic euglycemic clamp technique. The expression or phosphorylation levels of MFN2 and essential molecules in the insulin signaling pathway, such as insulin receptor (INSR), insulin receptor substrate 2 (IRS2), phosphoinositide-3-kinase (PI3K), protein kinase beta (AKT2) and glucose transporter type 2 (GLUT2) was assayed by quantitative real-time polymerase chain reaction and Western-blotting.
RESULTS: After the end of 8 wk, the body weight of rats receiving the normal control diet (ND) and the HFD was not significantly different (P > 0.05). Compared with the ND group, GIR in the HFD group was significantly decreased (P < 0.01), while the levels of BG, triglycerides (TG), total cholesterol (TC) and insulin in the HFD group were significantly higher than those in the ND group (P < 0.05). Expression of MFN2 mRNA and protein in liver of rats was significantly down-regulated in the HFD group (P < 0.01) after 8 wk of HFD feeding. The expression of INSR, IRS2 and GLUT2 were down-regulated markedly (P < 0.01). Although there were no changes in PI3K-P85 and AKT2 expression, their phosphorylation levels were decreased significantly (P < 0.01). After intervention with MFN2 expressing adenovirus for 3 wk, the expression of MFN2 mRNA and protein levels were up-regulated (P < 0.01). There was no difference in body weight of rats between the groups. The levels of BG, TG, TC and insulin in rats were lower than those in the Ad group (P < 0.05), but GIR in rats infected with Ad-MFN2 was significantly increased (P < 0.01), compared with the Ad group. The expression of INSR, IRS2 and GLUT2 was increased, while phosphorylation levels of PI3K-P85 and AKT2 were increased (P < 0.01), compared with the Ad group.
CONCLUSION: HFDs induce insulin resistance, and this can be reversed by MFN2 over-expression targeting the insulin signaling pathway.
Collapse
|
24
|
Escobar-Henriques M, Anton F. Mechanistic perspective of mitochondrial fusion: tubulation vs. fragmentation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:162-75. [PMID: 22884630 DOI: 10.1016/j.bbamcr.2012.07.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/28/2012] [Accepted: 07/30/2012] [Indexed: 01/02/2023]
Abstract
Mitochondrial fusion is a fundamental process driven by dynamin related GTPase proteins (DRPs), in contrast to the general SNARE-dependence of most cellular fusion events. The DRPs Mfn1/Mfn2/Fzo1 and OPA1/Mgm1 are the key effectors for fusion of the mitochondrial outer and inner membranes, respectively. In order to promote fusion, these two DRPs require post-translational modifications and proteolysis. OPA1/Mgm1 undergoes partial proteolytic processing, which results in a combination between short and long isoforms. In turn, ubiquitylation of mitofusins, after oligomerization and GTP hydrolysis, promotes and positively regulates mitochondrial fusion. In contrast, under conditions of mitochondrial dysfunction, negative regulation by proteolysis on these DRPs results in mitochondrial fragmentation. This occurs by complete processing of OPA1 and via ubiquitylation and degradation of mitofusins. Mitochondrial fragmentation contributes to the elimination of damaged mitochondria by mitophagy, and may play a protective role against Parkinson's disease. Moreover, a link of Mfn2 to Alzheimer's disease is emerging and mutations in Mfn2 or OPA1 cause Charcot-Marie-Tooth type 2A neuropathy or autosomal-dominant optic atrophy. Here, we summarize our current understanding on the molecular mechanisms promoting or inhibiting fusion of mitochondrial membranes, which is essential for cellular survival and disease control. This article is part of a Special Issue entitled: Mitochondrial dynamics and physiology.
Collapse
|
25
|
Fyfe JC, Al-Tamimi RA, Liu J, Schäffer AA, Agarwala R, Henthorn PS. A novel mitofusin 2 mutation causes canine fetal-onset neuroaxonal dystrophy. Neurogenetics 2011; 12:223-32. [PMID: 21643798 PMCID: PMC3165057 DOI: 10.1007/s10048-011-0285-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 05/09/2011] [Indexed: 12/21/2022]
Abstract
We recently reported autosomal recessive fetal-onset neuroaxonal dystrophy (FNAD) in a large family of dogs that is not caused by mutation in the PLA2G6 locus (Fyfe et al., J Comp Neurol 518:3771-3784, 2010). Here, we report a genome-wide linkage analysis using 333 microsatellite markers to map canine FNAD to the telomeric end of chromosome 2. The interval of zero recombination was refined by single-nucleotide polymorphism (SNP) haplotype analysis to ~200 kb, and the included genes were sequenced. We found a homozygous 3-nucleotide deletion in exon 14 of mitofusin 2 (MFN2), predicting loss of a glutamate residue at position 539 in the protein of affected dogs. RT-PCR demonstrated near normal expression of the mutant mRNA, but MFN2 expression was undetectable to very low on western blots of affected dog brainstem, cerebrum, kidney, and cultured fibroblasts and by immunohistochemistry on brainstem sections. MFN2 is a multifunctional, membrane-bound GTPase of mitochondria and endoplasmic reticulum most commonly associated with human Charcot-Marie-Tooth disease type 2A2. The canine disorder extends the range of MFN2-associated phenotypes and suggests MFN2 as a candidate gene for rare cases of human FNAD.
Collapse
Affiliation(s)
- John C Fyfe
- Laboratory of Comparative Medical Genetics, Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Huang P, Galloway CA, Yoon Y. Control of mitochondrial morphology through differential interactions of mitochondrial fusion and fission proteins. PLoS One 2011; 6:e20655. [PMID: 21647385 PMCID: PMC3103587 DOI: 10.1371/journal.pone.0020655] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 05/09/2011] [Indexed: 12/25/2022] Open
Abstract
Mitochondria in mammals are organized into tubular networks that undergo frequent shape change. Mitochondrial fission and fusion are the main components mediating the mitochondrial shape change. Perturbation of the fission/fusion balance is associated with many disease conditions. However, underlying mechanisms of the fission/fusion balance are not well understood. Mitochondrial fission in mammals requires the dynamin-like protein DLP1/Drp1 that is recruited to the mitochondrial surface, possibly through the membrane-anchored protein Fis1 or Mff. Additional dynamin-related GTPases, mitofusin (Mfn) and OPA1, are associated with the outer and inner mitochondrial membranes, respectively, and mediate fusion of the respective membranes. In this study, we found that two heptad-repeat regions (HR1 and HR2) of Mfn2 interact with each other, and that Mfn2 also interacts with the fission protein DLP1. The association of the two heptad-repeats of Mfn2 is fusion inhibitory whereas a positive role of the Mfn2/DLP1 interaction in mitochondrial fusion is suggested. Our results imply that the differential binding of Mfn2-HR1 to HR2 and DLP1 regulates mitochondrial fusion and that DLP1 may act as a regulatory factor for efficient execution of both fusion and fission of mitochondria.
Collapse
Affiliation(s)
- Pinwei Huang
- Mitochondrial Research and Innovation Group, Department of Anesthesiology, Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Chad A. Galloway
- Mitochondrial Research and Innovation Group, Department of Anesthesiology, Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Yisang Yoon
- Mitochondrial Research and Innovation Group, Department of Anesthesiology, Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| |
Collapse
|
27
|
Feely SME, Laura M, Siskind CE, Sottile S, Davis M, Gibbons VS, Reilly MM, Shy ME. MFN2 mutations cause severe phenotypes in most patients with CMT2A. Neurology 2011; 76:1690-6. [PMID: 21508331 PMCID: PMC3100135 DOI: 10.1212/wnl.0b013e31821a441e] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 11/22/2010] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Charcot-Marie-Tooth disease type 2A (CMT2A), the most common form of CMT2, is caused by mutations in the mitofusin 2 gene (MFN2), a nuclear encoded gene essential for mitochondrial fusion and tethering the endoplasmic reticulum to mitochondria. Published CMT2A phenotypes have differed widely in severity. METHODS To determine the prevalence and phenotypes of CMT2A within our clinics we performed genetic testing on 99 patients with CMT2 evaluated at Wayne State University in Detroit and on 27 patients with CMT2 evaluated in the National Hospital for Neurology and Neurosurgery in London. We then preformed a cross-sectional analysis on our patients with CMT2A. RESULTS Twenty-one percent of patients had MFN2 mutations. Most of 27 patients evaluated with CMT2A had an earlier onset and more severe impairment than patients without CMT2A. CMT2A accounted for 91% of all our severely impaired patients with CMT2 but only 11% of mildly or moderately impaired patients. Twenty-three of 27 patients with CMT2A were nonambulatory prior to age 20 whereas just one of 78 non-CMT2A patients was nonambulatory after this age. Eleven patients with CMT2A had a pure motor neuropathy while another 5 also had profound proprioception loss. MFN2 mutations were in the GTPase domain, the coiled-coil domains, or the highly conserved R3 domain of the protein. CONCLUSIONS We find MFN2 mutations particularly likely to cause severe neuropathy that may be primarily motor or motor accompanied by prominent proprioception loss. Disruption of functional domains of the protein was particularly likely to cause neuropathy.
Collapse
Affiliation(s)
- S M E Feely
- Department of Neurology, Wayne State University, 421 Ea Canfield, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang Y, Jiang LC, Hu WJ, Hu QG, Zheng QC. TNF-α treatment alters Mfn2 expression and mitochondrial morphology and function in hepatic LO2 cells. Shijie Huaren Xiaohua Zazhi 2010; 18:3452-3456. [DOI: 10.11569/wcjd.v18.i32.3452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the influence of treatment with tumor necrosis factor-alpha (TNF-α) on the expression of mitofusin 2 (Mfn2) and mitochondrial morphology and function in hepatic LO2 cells.
METHODS: After pEGFP-Mfn2 plasmid was transfected into LO2 cells with Lipofectamine 2000, transfected LO2 cells were incubated with TNF-α for 12 h. The expression of Mfn2 mRNA and protein was detected by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot, respectively. MitoTracker Mitochondrion-Selective Probes were used to detect the changes in mitochondrial morphology. ATP synthesis and reactive oxygen species (ROS) production were measured to assess mitochondrial function.
RESULTS: RT-PCR and Western blot analyses showed that Mfn2 was highly expressed in LO2 cells. After treatment of LO2 cells with TNF-α, Mfn2 expression was significantly suppressed (0.279 ± 0.026 vs 0.742 ± 0.018; 0.196 ± 0.024 vs 0.580 ± 0.011, P < 0.05), ATP level decreased (2.00 µmol/g ± 0.15 µmol/g vs 5.81 µmol/g ± 0.31 µmol/g, P < 0.05), ROS production increased (80.68 ± 4.02 vs 65.44 ± 3.47, P < 0.05), and the normal tubular network of mitochondria was fragmented into short rods or spheres when compared to control cells. In contrast, these changes were not significant in Mfn2-transfected LO2 cells.
CONCLUSION: TNF-α treatment may alter mitochondrial morphology and impair mitochondrial function by decreasing the expression of Mfn2 in hepatic LO2 cells.
Collapse
|
29
|
Fang HY, Chang CL, Hsu SH, Huang CY, Chiang SF, Chiou SH, Huang CH, Hsiao YT, Lin TY, Chiang IP, Hsu WH, Sugano S, Chen CY, Lin CY, Ko WJ, Chow KC. ATPase family AAA domain-containing 3A is a novel anti-apoptotic factor in lung adenocarcinoma cells. J Cell Sci 2010; 123:1171-80. [PMID: 20332122 DOI: 10.1242/jcs.062034] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AAA domain-containing 3A (ATAD3A) is a member of the AAA-ATPase family. Three forms of ATAD3 have been identified: ATAD3A, ATAD3B and ATAD3C. In this study, we examined the type and expression of ATAD3 in lung adenocarcinoma (LADC). Expression of ATAD3A was detected by reverse transcription-polymerase chain reaction, immunoblotting, immunohistochemistry and confocal immunofluorescent microscopy. Our results show that ATAD3A is the major form expressed in LADC. Silencing of ATAD3A expression increased mitochondrial fragmentation and cisplatin sensitivity. Serum deprivation increased ATAD3A expression and drug resistance. These results suggest that ATAD3A could be an anti-apoptotic marker in LADC.
Collapse
Affiliation(s)
- Hsin-Yuan Fang
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
- Departments of Surgery, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chia-Ling Chang
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Han Hsu
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Fen Chiang
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Shiow-Her Chiou
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Hua Huang
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ting Hsiao
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Tze-Yi Lin
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan
| | - I-Ping Chiang
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Hu Hsu
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Sumio Sugano
- Laboratory of Functional Genomics, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Tokyo, Japan
| | - Chih-Yi Chen
- Departments of Surgery, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Ching-Yuang Lin
- Departments of Surgery, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Wen-Je Ko
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuan-Chih Chow
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
30
|
Liver-specific reduction of Mfn2 protein by RNAi results in impaired glycometabolism and lipid homeostasis in BALB/c mice. ACTA ACUST UNITED AC 2009; 29:689-96. [PMID: 20037808 DOI: 10.1007/s11596-009-0603-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Indexed: 12/13/2022]
Abstract
Mitofusin-2 (Mfn2) gene expression is positively correlated with insulin sensitivity in patients with type 2 diabetes. However, it is unclear if Mfn2 is involved in carbohydrate metabolism and lipid homeostasis. In order to investigate the specific functions of Mfn2 in glycometabolism and lipid homeostasis in BALB/c mice, a RNA interference technique-mediated hydrodynamic injection was developed, in which short hairpin RNAs (shRNAs) were used to inhibit the Mfn2 expression in vivo. Seventy-two mice were randomly divided into two groups: the Mfn2 reduction group (Mfn2/shRNA) and the negative control group (NC). Intraperitoneal glucose tolerance tests and intraperitoneal insulin tolerance tests were used to evaluate glycometabolism and insulin sensitivity. D-(3-3H) glucose or 3H2O was injected into the tail vein or intraperitoneally to facilitate the calculation of the rate of hepatic glucose production and fatty acid synthesis in vivo. The results showed that, in Mfn2/shRNA mice, the liver Mfn2 protein was significantly decreased, and fasting blood glucose concentrations were increased by approximately 48%, when compared with the NC mice. In parallel with the changes in fasting glucose levels, hepatic glucose production was significantly elevated in Mfn2/shRNA mice. When insulin was administrated, these mice exhibited impaired insulin tolerance. It was also found that the reduction of Mfn2 markedly decreased the rate of fatty acid synthesis in the liver, and the Mfn2/shRNA mice exhibited hypertriglyceridema. Taken together, our results indicate that Mfn2 plays an important role in maintaining glucose and lipid homeostasis, and in the development of insulin resistance in vivo.
Collapse
|
31
|
Liesa M, Palacín M, Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol Rev 2009; 89:799-845. [PMID: 19584314 DOI: 10.1152/physrev.00030.2008] [Citation(s) in RCA: 714] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The meaning of the word mitochondrion (from the Greek mitos, meaning thread, and chondros, grain) illustrates that the heterogeneity of mitochondrial morphology has been known since the first descriptions of this organelle. Such a heterogeneous morphology is explained by the dynamic nature of mitochondria. Mitochondrial dynamics is a concept that includes the movement of mitochondria along the cytoskeleton, the regulation of mitochondrial architecture (morphology and distribution), and connectivity mediated by tethering and fusion/fission events. The relevance of these events in mitochondrial and cell physiology has been partially unraveled after the identification of the genes responsible for mitochondrial fusion and fission. Furthermore, during the last decade, it has been identified that mutations in two mitochondrial fusion genes (MFN2 and OPA1) cause prevalent neurodegenerative diseases (Charcot-Marie Tooth type 2A and Kjer disease/autosomal dominant optic atrophy). In addition, other diseases such as type 2 diabetes or vascular proliferative disorders show impaired MFN2 expression. Altogether, these findings have established mitochondrial dynamics as a consolidated area in cellular physiology. Here we review the most significant findings in the field of mitochondrial dynamics in mammalian cells and their implication in human pathologies.
Collapse
Affiliation(s)
- Marc Liesa
- Institute for Research in Biomedicine (IRB Barcelona), CIBER de Diabetes y Enfermedades Metabólicas Asociadas, and Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Barcelona 08028, Spain
| | | | | |
Collapse
|
32
|
Aihara T, Nakamura N, Honda S, Hirose S. A novel potential role for gametogenetin-binding protein 1 (GGNBP1) in mitochondrial morphogenesis during spermatogenesis in mice. Biol Reprod 2009; 80:762-70. [PMID: 19208545 DOI: 10.1095/biolreprod.108.074013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Mitochondria are dynamic organelles that undergo fusion, fission, and translocation. The dynamic property is essential for establishing energy-consuming biological processes including cellular differentiation. Early ultrastructural studies have shown that mitochondria of mammalian spermatogenic cells dramatically change their number, size, distribution, and internal structure. However, its regulatory mechanism is largely unknown. In course of searching for molecules involved in the mitochondrial morphogenesis in spermatogenesis, we identified mouse gametogenetin-binding protein 1 (GGNBP1), a DUF1055 domain-containing protein of unknown function, as a mitochondrial protein. When GGNBP1 was expressed in COS7 cells, it was localized in the intermembrane space and induced an extensive fragmentation of mitochondria in the manner dependent on the activity of the mitochondrial fission factor DNM1L. Deletion mutant analyses demonstrated that the N-terminal region is required for its mitochondrial targeting and that the C-terminal region including the DUF1055 domain is responsible for the mitochondrial fragmentation activity. Immunohistochemistry of mouse testis revealed that GGNBP1 is highly expressed in the late pachytene spermatocytes and early round spermatids. However, a subcellular fractionation study showed that it is localized to not only mitochondria but also other membranous compartments in vivo. These results suggest that GGNBP1 is involved in spermatogenesis by modifying mitochondrial dynamics and morphology.
Collapse
Affiliation(s)
- Takeshi Aihara
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | |
Collapse
|
33
|
Nakamura N, Hirose S. Regulation of mitochondrial morphology by USP30, a deubiquitinating enzyme present in the mitochondrial outer membrane. Mol Biol Cell 2008; 19:1903-11. [PMID: 18287522 DOI: 10.1091/mbc.e07-11-1103] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent studies have suggested that ubiquitination of mitochondrial proteins participates in regulating mitochondrial dynamics in mammalian cells, but it is unclear whether deubiquitination is involved in this process. Here, we identify human ubiquitin-specific protease 30 (USP30) as a deubiquitinating enzyme that is embedded in the mitochondrial outer membrane. Depletion of USP30 expression by RNA interference induced elongated and interconnected mitochondria, depending on the activities of the mitochondrial fusion factors mitofusins, without changing the expression levels of the key regulators for mitochondrial dynamics. Mitochondria were rescued from this abnormal phenotype by ectopic expression of USP30 in a manner dependent on its enzymatic activity. Our findings reveal that USP30 participates in the maintenance of mitochondrial morphology, a finding that provides new insight into the cellular function of deubiquitination.
Collapse
Affiliation(s)
- Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan.
| | | |
Collapse
|
34
|
Huang P, Yu T, Yoon Y. Mitochondrial clustering induced by overexpression of the mitochondrial fusion protein Mfn2 causes mitochondrial dysfunction and cell death. Eur J Cell Biol 2007; 86:289-302. [PMID: 17532093 DOI: 10.1016/j.ejcb.2007.04.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 03/15/2007] [Accepted: 04/16/2007] [Indexed: 10/23/2022] Open
Abstract
Mitochondria change their shapes dynamically mainly through fission and fusion. Dynamin-related GTPases have been shown to mediate remodeling of mitochondrial membranes during these processes. One of these GTPases, mitofusin, is anchored at the outer mitochondrial membrane and mediates fusion of the outer membrane. We found that overexpression of a mitofusin isoform, Mfn2, drastically changes mitochondrial morphology, forming mitochondrial clusters. High-resolution microscopic examination indicated that the mitochondrial clusters consisted of small fragmented mitochondria. Inhibiting mitochondrial fission prevented the cluster formation, supporting the notion that mitochondrial clusters are formed by fission-mediated mitochondrial fragmentation and aggregation. Mitochondrial clusters displayed a decreased inner membrane potential and mitochondrial function, suggesting a functional compromise of small fragmented mitochondria produced by Mfn2 overexpression; however, mitochondrial clusters still retained mitochondrial DNA. We found that cells containing clustered mitochondria lost cytochrome c from mitochondria and underwent caspase-mediated apoptosis. These results demonstrate that mitochondrial deformation impairs mitochondrial function, leading to apoptotic cell death and suggest the presence of an intricate form-function relationship in mitochondria.
Collapse
Affiliation(s)
- Pinwei Huang
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, P.O. Box 604, Rochester, NY 14642, USA
| | | | | |
Collapse
|
35
|
Abstract
Fusion controls mitochondrial morphology and is important for normal mitochondrial function, including roles in respiration, development, and apoptosis. Key components of the mitochondrial fusion machinery have been identified, allowing an initial dissection of its molecular mechanism. Outer and inner membrane fusion events are coordinately coupled but are mechanistically distinct. Mitofusins are mitochondrial GTPases that likely mediate outer membrane fusion. The dynamin-related protein OPA1/Mgm1p is required for inner membrane fusion and maintenance of normal cristae structure. We highlight recent findings that have advanced our understanding of the mechanism, function, and regulation of mitochondrial fusion.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Biology, California Institute of Technology, Pasadena, CA 91125
| | - David C. Chan
- Division of Biology, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
36
|
Nakamura N, Kimura Y, Tokuda M, Honda S, Hirose S. MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep 2006; 7:1019-22. [PMID: 16936636 PMCID: PMC1618377 DOI: 10.1038/sj.embor.7400790] [Citation(s) in RCA: 339] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 07/17/2003] [Accepted: 07/26/2006] [Indexed: 11/08/2022] Open
Abstract
Mitofusins and Drp1 are key components in mitochondrial membrane fusion and division, but the molecular mechanism underlying the regulation of their activities remains to be clarified. Here, we identified human membrane-associated RING-CH (MARCH)-V as a novel transmembrane protein of the mitochondrial outer membrane. Immunoprecipitation studies demonstrated that MARCH-V interacts with mitofusin 2 (MFN2) and ubiquitinated forms of Drp1. Overexpression of MARCH-V promoted the formation of long tubular mitochondria in a manner that depends on MFN2 activity. By contrast, mutations in the RING finger caused fragmentation of mitochondria. We also show that MARCH-V promotes ubiquitination of Drp1. These results indicate that MARCH-V has a crucial role in the control of mitochondrial morphology by regulating MFN2 and Drp1 activities.
Collapse
Affiliation(s)
- Nobuhiro Nakamura
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B19 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Yasuo Kimura
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B19 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Masaki Tokuda
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B19 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Shinji Honda
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B19 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Shigehisa Hirose
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B19 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
- Tel: +81 45 924 5726; Fax: +81 45 924 5824; E-mail:
| |
Collapse
|
37
|
Abstract
Charcot-Marie-Tooth disease (CMT) is the most common form of inherited motor and sensory neuropathy. Moreover, CMT is a genetically heterogeneous disorder of the peripheral nervous system, with many genes identified as CMT-causative. CMT has two usual classifications: type 1, the demyelinating form (CMT1); and type 2, the axonal form (CMT2). In addition, patients are classified as CMTX if they have an X-linked inheritance pattern and CMT4 if the inheritance pattern is autosomal recessive. A large amount of new information on the genetic causes of CMT has become available, and mutations causing it have been associated with more than 17 different genes and 25 chromosomal loci. Advances in our understanding of the molecular basis of CMT have revealed an enormous diversity in genetic mechanisms, despite a clinical entity that is relatively uniform in presentation. In addition, recent encouraging studies - shown in CMT1A animal models - concerning the therapeutic effects of certain chemicals have been published; these suggest potential therapies for the most common form of CMT, CMT1A. This review focuses on the inherited motor and sensory neuropathy subgroup for which there has been an explosion of new molecular genetic information over the past decade.
Collapse
Affiliation(s)
- Jung-Hwa Lee
- Department of Neurology and Ewha Medical Research Center, College of Medicine, Ewha Womans University, Seoul, Korea
| | | |
Collapse
|
38
|
Engelfried K, Vorgerd M, Hagedorn M, Haas G, Gilles J, Epplen JT, Meins M. Charcot-Marie-Tooth neuropathy type 2A: novel mutations in the mitofusin 2 gene (MFN2). BMC MEDICAL GENETICS 2006; 7:53. [PMID: 16762064 PMCID: PMC1524942 DOI: 10.1186/1471-2350-7-53] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 06/08/2006] [Indexed: 11/10/2022]
Abstract
Background Charcot-Marie-Tooth neuropathies are a group of genetically heterogeneous diseases of the peripheral nervous system. Mutations in the MFN2 gene have been reported as the primary cause of Charcot-Marie-Tooth disease type 2A. Methods Patients with the clinical diagnosis of Charcot-Marie-Tooth type 2 were screened using single strand conformation polymorphism (SSCP). All DNA samples showing band shifts in the SSCP analysis were amplified from genomic DNA and cycle sequenced. Results We analyzed a total of 73 unrelated patients with a clinical diagnosis of CMT 2. Overall, novel mutations were detected in 6 patients. c.380G>T (G127V), c.1128G>A (M376I), c.1040A>T (E347V), c.1403G>A (R468H), c.2113G>A (V705I), and c.2258_2259insT (L753fs). Conclusion We confirmed a significant role of mutations in MFN2 in the pathogenesis of Charcot-Marie-Tooth disease type 2.
Collapse
Affiliation(s)
| | - Matthias Vorgerd
- Department of Neurology, Neuromuscular Center Ruhrgebiet, Ruhr-University Bochum, Germany
| | | | - Gerhard Haas
- Neurology, Evangelische Stiftung Tannenhof, Remscheid, Germany
| | | | - Jörg T Epplen
- Department of Human Genetics, Ruhr-University Bochum, Germany
| | - Moritz Meins
- Department of Human Genetics, Ruhr-University Bochum, Germany
| |
Collapse
|
39
|
Abstract
In the past decade, the genetic causes underlying familial forms of many neurodegenerative disorders, such as Huntington's disease, Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, Friedreich ataxia, hereditary spastic paraplegia, dominant optic atrophy, Charcot-Marie-Tooth type 2A, neuropathy ataxia and retinitis pigmentosa, and Leber's hereditary optic atrophy have been elucidated. However, the common pathogenic mechanisms of neuronal death are still largely unknown. Recently, mitochondrial dysfunction has emerged as a potential 'lowest common denominator' linking these disorders. In this review, we discuss the body of evidence supporting the role of mitochondria in the pathogenesis of hereditary neurodegenerative diseases. We summarize the principal features of genetic diseases caused by abnormalities of mitochondrial proteins encoded by the mitochondrial or the nuclear genomes. We then address genetic diseases where mutant proteins are localized in multiple cell compartments, including mitochondria and where mitochondrial defects are likely to be directly caused by the mutant proteins. Finally, we describe examples of neurodegenerative disorders where mitochondrial dysfunction may be 'secondary' and probably concomitant with degenerative events in other cell organelles, but may still play an important role in the neuronal decay. Understanding the contribution of mitochondrial dysfunction to neurodegeneration and its pathophysiological basis will significantly impact our ability to develop more effective therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jennifer Q Kwong
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | |
Collapse
|
40
|
Santel A. Get the balance right: Mitofusins roles in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:490-9. [PMID: 16574259 DOI: 10.1016/j.bbamcr.2006.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 02/07/2006] [Accepted: 02/13/2006] [Indexed: 01/08/2023]
Abstract
Mitochondria are highly dynamic organelles exhibiting an elaborate morphology and fine structure. Fusion and fission processes contribute to the maintenance and dynamics of mitochondrial morphology. The Mitofusins, a class of evolutionary conserved GTPases of the mitochondrial outer membrane, are essential for the controlled fusion of mitochondrial membranes. Genetic and biochemical data propose a model in which functional domains, such as the GTPase domain and the C-terminally located coiled coil structure, act in an orchestrated manner to coordinate the tethering and mitochondrial outer membrane fusion. In addition, recent reports shed new light on the physiological importance of Mitofusin function suggesting a role in mitochondrial metabolism, apoptosis as well as cellular signalling. Mutations identified in the human Mfn2 gene from patients with the peripheral neuropathy Charcot-Marie-Tooth Type 2A invoke a direct correlation between mitochondrial morphology and function.
Collapse
Affiliation(s)
- Ansgar Santel
- Atugen AG/SR Pharma plc, Otto-Warburg-Haus, Robert-Rössle-Str.10, 13125 Berlin, Germany.
| |
Collapse
|
41
|
Griffin EE, Detmer SA, Chan DC. Molecular mechanism of mitochondrial membrane fusion. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:482-9. [PMID: 16571363 DOI: 10.1016/j.bbamcr.2006.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 02/14/2006] [Indexed: 11/18/2022]
Abstract
Mitochondrial fusion requires coordinated fusion of the outer and inner membranes. This process leads to exchange of contents, controls the shape of mitochondria, and is important for mitochondrial function. Two types of mitochondrial GTPases are essential for mitochondrial fusion. On the outer membrane, the fuzzy onions/mitofusin proteins form complexes in trans that mediate homotypic physical interactions between adjacent mitochondria and are likely directly involved in outer membrane fusion. Associated with the inner membrane, the OPA1 dynamin-family GTPase maintains membrane structure and is a good candidate for mediating inner membrane fusion. In yeast, Ugo1p binds to both of these GTPases to form a fusion complex, although a related protein has yet to be found in mammals. An understanding of the molecular mechanism of fusion may have implications for Charcot-Marie-Tooth subtype 2A and autosomal dominant optic atrophy, neurodegenerative diseases caused by mutations in Mfn2 and OPA1.
Collapse
Affiliation(s)
- Erik E Griffin
- Division of Biology, California Institute of Technology, 1200 East California Blvd., MC114-96, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
42
|
Kiefel BR, Gilson PR, Beech PL. Cell biology of mitochondrial dynamics. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 254:151-213. [PMID: 17147999 DOI: 10.1016/s0074-7696(06)54004-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mitochondria are the product of an ancient endosymbiotic event between an alpha-proteobacterium and an archael host. An early barrier to overcome in this relationship was the control of the bacterium's proliferation within the host. Undoubtedly, the bacterium (or protomitochondrion) would have used its own cell division apparatus to divide at first and, today a remnant of this system remains in some "ancient" and diverse eukaryotes such as algae and amoebae, the most conserved and widespread of all bacterial division proteins, FtsZ. In many of the eukaryotes that still use FtsZ to constrict the mitochondria from the inside, the mitochondria still resemble bacteria in shape and size. Eukaryotes, however, have a mitochondrial morphology that is often highly fluid, and in their tubular networks of mitochondria, division is clearly complemented by mitochondrial fusion. FtsZ is no longer used by these complex eukaryotes, and may have been replaced by other proteins better suited to sustaining complex mitochondrial networks. Although proteins that divide mitochondria from the inside are just beginning to be characterized in higher eukaryotes, many division proteins are known to act on the outside of the organelle. The most widespread of these are the dynamin-like proteins, which appear to have been recruited very early in the evolution of mitochondria. The essential nature of mitochondria dictates that their loss is intolerable to human cells, and that mutations disrupting mitochondrial division are more likely to be fatal than result in disease. To date, only one disease (Charcot-Marie-Tooth disease 2A) has been mapped to a gene that is required for mitochondrial division, whereas two other diseases can be attributed to mutations in mitochondrial fusion genes. Apart from playing a role in regulating the morphology, which might be important for efficient ATP production, research has indicated that the mitochondrial division and fusion proteins can also be important during apoptosis; mitochondrial fragmentation is an early triggering (and under many stimuli, essential) step in the pathway to cell suicide.
Collapse
Affiliation(s)
- Ben R Kiefel
- Center for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Melbourne, Australia
| | | | | |
Collapse
|