1
|
Norris N, Yau B, Famularo C, Webster H, Loudovaris T, Thomas HE, Larance M, Senior AM, Kebede MA. Optimized Proteomic Analysis of Insulin Granules From MIN6 Cells Identifies Scamp3, a Novel Regulator of Insulin Secretion and Content. Diabetes 2024; 73:2045-2054. [PMID: 39320956 PMCID: PMC11579411 DOI: 10.2337/db24-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Pancreatic β-cells in the islets of Langerhans are key to maintaining glucose homeostasis by secreting the peptide hormone insulin. Insulin is packaged within vesicles named insulin secretory granules (ISGs), which recently have been considered to have intrinsic structures and proteins that regulate insulin granule maturation, trafficking, and secretion. Previously, studies have identified a handful of novel ISG-associated proteins, using different separation techniques. The present study combines an optimized ISG isolation technique and mass spectrometry-based proteomics, with an unbiased protein correlation profiling and targeted machine-learning approach to uncover 211 ISG-associated proteins with confidence. Four of these proteins, syntaxin-7, synaptophysin, synaptotagmin-13, and Scamp3 have not been previously associated with ISG. Through colocalization analysis of confocal imaging, we validate the association of these proteins to the ISG in MIN6 and human β-cells. We further validate the role for one (Scamp3) in regulating insulin content and secretion from β-cells for the first time. Scamp3 knockdown INS-1 cells have reduced insulin content and dysfunctional insulin secretion. These data provide the basis for future investigation of Scamp3 in β-cell biology and the regulation of insulin secretion. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Nicholas Norris
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Belinda Yau
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Carlo Famularo
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Hayley Webster
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Thomas Loudovaris
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Helen E. Thomas
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Mark Larance
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Alistair M. Senior
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, New South Wales, Australia
| | - Melkam A. Kebede
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Guo H, Chen Y, Zhang X, Xiang H, Xiang X, Chen X, Fu W, Wang Y, Ma X. Investigating the shared genetic architecture of osteoarthritis and frailty: a genome-wide cross-trait analysis. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:316-326. [PMID: 39583911 PMCID: PMC11578813 DOI: 10.62347/blxc1352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/01/2024] [Indexed: 11/26/2024]
Abstract
Observational studies suggest a link between osteoarthritis (OA) and frailty, but the shared genetic architecture and causal relationships remain unclear. We analyzed X-ray and 18F-FDG PET/CT images in frail and non-frail individuals and conducted genetic correlation analyses using Linkage Disequilibrium Score Regression (LDSC) based on recent Genome-Wide Association Studies (GWAS) for OA and frailty. We identified pleiotropic single-nucleotide polymorphisms (SNPs) through Cross-Phenotype Association (CPASSOC) and Colocalization (COLOC) analyses and investigated genetic overlaps using Multi-marker Analysis of GenoMic Annotation (MAGMA). Transcriptome-wide association studies (TWAS) were conducted to analyze pleiotropic gene expression, and Mendelian Randomization (MR) was used to assess causal relationships between OA and frailty. Frail individuals showed more severe OA on X-ray (67% vs. 31%, P ≤ 0.01) and higher SUVmax on 18F-FDG PET/CT (4.1 vs. 3.6, P < 0.05) compared to non-frail individuals. Genetic correlation between frailty and OA was significant (rg = 0.532, P = 4.230E-88). Cross-trait analyses identified 42 genomic loci and 138 genes shared between the conditions. COLOC analysis revealed 2 pleiotropic loci, while TWAS identified 27 significant shared genetic expressions in whole blood and musculoskeletal tissue. Bidirectional MR indicated that OA increases the risk of frailty (IVW: beta: 0.13, P = 1.52E-08) and vice versa (IVW: beta: 0.73, P = 1.66E-04). Frail individuals exhibit more severe imaging features of OA. The shared genetic basis between OA and frailty suggests an intrinsic link, providing new insights into the relationship between these conditions.
Collapse
Affiliation(s)
- Honghui Guo
- Department of Nuclear Medicine, The Second Xiangya Hospital of Central South University139 Renmin Middle Road, Changsha 410011, Hunan, PR China
| | - Yanjing Chen
- Department of Radiology, The Second Xiangya Hospital of Central South University139 Renmin Middle Road, Changsha 410011, Hunan, PR China
| | - Xinlu Zhang
- Department of Nuclear Medicine, The Second Xiangya Hospital of Central South University139 Renmin Middle Road, Changsha 410011, Hunan, PR China
| | - Hong Xiang
- Department of Nuclear Medicine, The Second Xiangya Hospital of Central South University139 Renmin Middle Road, Changsha 410011, Hunan, PR China
| | - Xin Xiang
- Department of Nuclear Medicine, The Second Xiangya Hospital of Central South University139 Renmin Middle Road, Changsha 410011, Hunan, PR China
| | - Xingdou Chen
- Department of Nuclear Medicine, The Second Xiangya Hospital of Central South University139 Renmin Middle Road, Changsha 410011, Hunan, PR China
| | - Wenjie Fu
- Department of Nuclear Medicine, The Second Xiangya Hospital of Central South University139 Renmin Middle Road, Changsha 410011, Hunan, PR China
| | - Yunhua Wang
- Department of Nuclear Medicine, The Second Xiangya Hospital of Central South University139 Renmin Middle Road, Changsha 410011, Hunan, PR China
| | - Xiaowei Ma
- Department of Nuclear Medicine, The Second Xiangya Hospital of Central South University139 Renmin Middle Road, Changsha 410011, Hunan, PR China
| |
Collapse
|
3
|
Abdullaev B, Alsaab HO, Hjazi A, Alkhafaji AT, Alawadi AH, Hamzah HF. The mechanisms behind the dual role of long non-coding RNA (lncRNA) metastasis suppressor-1 in human tumors: Shedding light on the molecular mechanisms. Pathol Res Pract 2024; 256:155189. [PMID: 38452581 DOI: 10.1016/j.prp.2024.155189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 03/09/2024]
Abstract
When the expression levels of metastasis suppressor-1 (MTSS1) were discovered to be downregulated in a metastatic cancer cell line in 2002, it was proposed that MTSS1 functioned as a suppressor of metastasis. The 755 amino acid long protein MTSS1 connects to actin and organizes the cytoskeleton. Its gene is located on human chromosome 8q24. The suppressor of metastasis in metastatic cancer was first found to be MTSS1. Subsequent reports revealed that MTSS1 is linked to the prevention of metastasis in a variety of cancer types, including hematopoietic cancers like diffuse large B cell lymphoma and esophageal, pancreatic, and stomach cancers. Remarkably, conflicting results have also been documented. For instance, it has been reported that MTSS1 expression levels are elevated in a subset of melanomas, hepatocellular carcinoma associated with hepatitis B, head and neck squamous cell carcinoma, and lung squamous cell carcinoma. This article provides an overview of the pathological effects of lncRNA MTSS1 dysregulation in cancer. In order to facilitate the development of MTSS1-based therapeutic targeting, we also shed light on the current understanding of MTS1.
Collapse
Affiliation(s)
- Bekhzod Abdullaev
- Research Department of Biotechnology, New Uzbekistan University, Mustaqillik Avenue 54, Tashkent 100007, Republic ofUzbekistan
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | | | - Ahmed Hussien Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
4
|
Salgüero S, Brochado-Kith Ó, Verdices AV, Berenguer J, González-García J, Martínez I, Díez C, Hontañón V, Pérez-Latorre L, Fernández-Rodríguez A, Jiménez-Sousa MÁ, Resino S. PBMCs gene expression signature of advanced cirrhosis with high risk for clinically significant portal hypertension in HIV/HCV coinfected patients: A cross-control study. Biomed Pharmacother 2023; 159:114220. [PMID: 36628818 DOI: 10.1016/j.biopha.2023.114220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Patients with advanced cirrhosis are at high risk of developing clinically significant portal hypertension (CSPH). We analyzed the gene expression profile of peripheral blood mononuclear cells (PBMCs) from HIV/HCV coinfected patients to identify a gene expression signature of advanced cirrhosis with high risk for CSPH. METHODS We conducted a cross-sectional study on 68 patients. Liver stiffness measurement (LSM) was used to stratify patients into < 12.5 kPa (no cirrhosis, n = 19), 12.5 - 24.9 kPa (cirrhosis, n = 20), and ≥ 25 kPa (advanced cirrhosis with high risk for CSPH, n = 29). Besides, we further evaluated LSM < 25 kPa (n = 39) vs. ≥ 25 kPa (n = 29). Total RNA was extracted from PBMCs, and poly(A) RNA sequencing was performed. Two significant differentially expressed (SDE) transcripts were validated by quantitative PCR in a different cohort (n = 46). RESULTS We found 60 SDE transcripts between patients with LSM < 12.5 kPa and ≥ 25 kPa. Partial least squares discriminant analysis showed that those 60 SDE transcripts collectively discriminated LSM ≥ 25 kPa, with an area under the receiver operating characteristic curve (AUROC) of 0.84. Eight genes had an AUROC ≥ 0.75 for LSM ≥ 25 kPa: five were positively associated with LSM values (SCAMP1, ABHD17B, GPR146, GTF2A1, and TMEM64), while three were inversely associated (ZFHX2-AS1, MDK, and STAG3L2). We validated the two SDE transcripts with the highest discrimination capacity in a different cohort, finding significant differences between < 25 kPa and ≥ 25 kPa (MDK (p = 0.006) and STAG3L2 (p = 0.021)). CONCLUSIONS A gene expression signature of 60 transcripts was associated with advanced cirrhosis with high risk for CSPH in HIV/HCV coinfected patients.
Collapse
Affiliation(s)
- Sergio Salgüero
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Unidad de Análisis Clínicos, Hospital El Escorial, Spain.
| | - Óscar Brochado-Kith
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Ana Virseda Verdices
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Juan Berenguer
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas/VIH; Hospital General Universitario "Gregorio Marañón", Madrid, Spain; Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain.
| | - Juan González-García
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unidad de VIH; Servicio de Medicina Interna, Hospital Universitario "La Paz", Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain.
| | - Isidoro Martínez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Cristina Díez
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas/VIH; Hospital General Universitario "Gregorio Marañón", Madrid, Spain; Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain.
| | - Víctor Hontañón
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unidad de VIH; Servicio de Medicina Interna, Hospital Universitario "La Paz", Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain.
| | - Leire Pérez-Latorre
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas/VIH; Hospital General Universitario "Gregorio Marañón", Madrid, Spain; Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain.
| | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - María Ángeles Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Fungal antitumor protein D1 is internalized via endocytosis and inhibits non-small cell lung cancer proliferation through MAPK signaling pathway. Int J Biol Macromol 2023; 227:45-57. [PMID: 36521713 DOI: 10.1016/j.ijbiomac.2022.12.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/20/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Lung cancer has the highest mortality among cancer-related deaths worldwide. Among lung cancers, non-small cell lung cancer (NSCLC) is the most common histological type. In the previous research, we isolated a protein (D1) from Boletus bicolor that inhibits the proliferation of NSCLC cell lines. In this study, we elucidated the internalization mechanism and antitumor mechanism of protein D1 in A549 cells. Protein D1 has a strong inhibitory effect on A549 cells. It binds to secretory carrier membrane protein 3 on the A549 cell membrane and enters A549 cells by clathrin-mediated endocytosis. In vitro, protein D1 activates mitogen-activated protein kinase (MAPK) signaling pathway. JNK and p38MAPK are the biological targets for protein D1. In vivo, protein D1 inhibits the tumor growth of NSCLC xenografts by inducing apoptosis and inhibiting cell proliferation. Protein D1 alters the expression of genes related to apoptosis, cell cycle, and MAPK signaling pathway in tumor cells.
Collapse
|
6
|
Chen Y, Fan J, Xiao D, Li X. The role of SCAMP5 in central nervous system diseases. Neurol Res 2022; 44:1024-1037. [PMID: 36217917 DOI: 10.1080/01616412.2022.2107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/26/2022] [Indexed: 10/17/2022]
Abstract
OBJECTIVE Secretory carrier membrane proteins (SCAMPs) constitute a group of membrane transport proteins in plants, insects and mammals. The mammalian genome contains five types of SCAMP genes, namely, SCAMP1-SCAMP5. SCAMPs participate in the vesicle cycling fusion of vesicles and cell membranes and play roles in regulating exocytosis and endocytosis, activating synaptic function and transmitting nerve signals. Among these proteins, SCAMP5 is highly expressed in the brain and has direct or indirect effects on the function of the central nervous system. This paper may allow us to better understand the role of SCAMP5 in the central nervous system diseases. SCAMP5 regulates membrane transport, controls the exocytosis of SVs and is related to secretion carrier and membrane function. In addition, SCAMP5 plays a major role in the normal maintenance of the physiological functions of nerve cells. This article summarizes the effects of SCAMP5 on nerve cell exocytosis, endocytosis and synaptic function, as well as the relationship between SCAMP5 and various neurological diseases, to better understand the role of SCAMP5 in the pathogenesis of neurological diseases. METHODS Through PubMed, this paper examined and analyzed the role of SCAMP5 in the central nervous system, as well as the relationship between SCAMP5 and various neurological diseases using the key terms "secretory carrier membrane proteins"," SCAMP5"," exocytosis"," endocytosis", "synaptic function", "central nervous system diseases" up to 01 March 2022. RESULTS SCAMP5 regulates membrane transport, controls the exocytosis of SVs and is related to secretion carrier and membrane function. In addition, SCAMP5 plays a major role in the normal maintenance of the physiological functions of nerve cells. CONCLUSION This article summarizes the effects of SCAMP5 on nerve cell exocytosis, endocytosis and synaptic function, as well as the relationship between SCAMP5 and various neurological diseases, to better understand the role of SCAMP5 in the pathogenesis of neurological diseases.
Collapse
Affiliation(s)
- Ye Chen
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, Sichuan, China
| | - Jiali Fan
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, Sichuan, China
| | - Dongqiong Xiao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, Sichuan, China
| | - Xihong Li
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, Sichuan, China
| |
Collapse
|
7
|
Ayalew H, Peiris S, Chiluwal A, Kumar R, Tiwari M, Ostmeyer T, Bean S, Jagadish SVK. Stable sorghum grain quality QTL were identified using SC35 × RTx430 mapping population. THE PLANT GENOME 2022; 15:e20227. [PMID: 35880472 DOI: 10.1002/tpg2.20227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Understanding the genetic control and inheritance of grain quality traits is instrumental in facilitating end-use quality improvement. This study was conducted to identify and map quantitative trait loci (QTL) controlling protein, starch, and amylose content in grain sorghum [Sorghum bicolor (L.) Moench] grown under variable environmental conditions. A recombinant inbred line (RIL) population derived from a cross between RTx430 and SC35 was evaluated in six environments across Hays and Manhattan, KS. Significant variation was observed in genotype, environment, and genotype × environment interaction for all three quality traits. Unlike the RILs, the two parental lines did not show significant differences for these traits. However, significant transgressive segregation was observed for all traits resulting in phenotypic performance extending beyond the two parents. A total of seven protein, 10 starch, and 10 amylose content QTL were identified. Chromosomal regions and phenotypic variation (PVE) of QTL were variable across growing conditions. Quantitative trait loci hotspots for all three traits were detected on chromosomes 1 (115.2-119.2 cM) and 2 (118.2-127.4 cM). Candidate gene analysis indicated that these QTL hotspots were conditioned by several transcription factors, such as Cytochrome P450 and basic helix-loop-helix DNA binding protein, which regulate starch and protein accumulation in the grain. The identified genomic regions and underlying candidate genes provide a starting point for further validation and marker-assisted gene pyramiding to improve sorghum grain quality.
Collapse
Affiliation(s)
- Habtamu Ayalew
- Dep. of Agronomy, Kansas State Univ., Manhattan, KS, 66506, USA
| | - Shantha Peiris
- Grain Quality and Structure Research Unit, CGAHR, USDA-ARS, Manhattan, KS, 66502, USA
| | - Anuj Chiluwal
- Dep. of Agronomy, Kansas State Univ., Manhattan, KS, 66506, USA
| | - Ritesh Kumar
- Dep. of Agronomy, Kansas State Univ., Manhattan, KS, 66506, USA
| | - Manish Tiwari
- Dep. of Agronomy, Kansas State Univ., Manhattan, KS, 66506, USA
| | - Troy Ostmeyer
- Dep. of Agronomy, Kansas State Univ., Manhattan, KS, 66506, USA
| | - Scott Bean
- Grain Quality and Structure Research Unit, CGAHR, USDA-ARS, Manhattan, KS, 66502, USA
| | | |
Collapse
|
8
|
Cmarko L, Stringer RN, Jurkovicova-Tarabova B, Vacik T, Lacinova L, Weiss N. Secretory carrier-associated membrane protein 2 (SCAMP2) regulates cell surface expression of T-type calcium channels. Mol Brain 2022; 15:1. [PMID: 34980194 PMCID: PMC8721997 DOI: 10.1186/s13041-021-00891-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022] Open
Abstract
Low-voltage-activated T-type Ca2+ channels are key regulators of neuronal excitability both in the central and peripheral nervous systems. Therefore, their recruitment at the plasma membrane is critical in determining firing activity patterns of nerve cells. In this study, we report the importance of secretory carrier-associated membrane proteins (SCAMPs) in the trafficking regulation of T-type channels. We identified SCAMP2 as a novel Cav3.2-interacting protein. In addition, we show that co-expression of SCAMP2 in mammalian cells expressing recombinant Cav3.2 channels caused an almost complete drop of the whole cell T-type current, an effect partly reversed by single amino acid mutations within the conserved cytoplasmic E peptide of SCAMP2. SCAMP2-induced downregulation of T-type currents was also observed in cells expressing Cav3.1 and Cav3.3 channel isoforms. Finally, we show that SCAMP2-mediated knockdown of the T-type conductance is caused by the lack of Cav3.2 expression at the cell surface as evidenced by the concomitant loss of intramembrane charge movement without decrease of total Cav3.2 protein level. Taken together, our results indicate that SCAMP2 plays an important role in the trafficking of Cav3.2 channels at the plasma membrane.
Collapse
Affiliation(s)
- Leos Cmarko
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Robin N Stringer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Bohumila Jurkovicova-Tarabova
- Center of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tomas Vacik
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lubica Lacinova
- Center of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Norbert Weiss
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic. .,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic. .,Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic. .,Center of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
9
|
Secretory Carrier Membrane Protein 3 Interacts with 3A Viral Protein of Enterovirus and Participates in Viral Replication. Microbiol Spectr 2021; 9:e0047521. [PMID: 34378951 PMCID: PMC8552740 DOI: 10.1128/spectrum.00475-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Picornaviruses are a diverse and major cause of human disease, and their genomes replicate with intracellular membranes. The functionality of these replication organelles depends on the activities of both viral nonstructural proteins and co-opted host proteins. The mechanism by which viral-host interactions generate viral replication organelles and regulate viral RNA synthesis is unclear. To elucidate this mechanism, enterovirus A71 (EV-A71) was used here as a virus model to investigate how these replication organelles are formed and to identify the cellular components that are critical in this process. An immunoprecipitation assay was combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis to identify 172 cellular proteins and four viral proteins associating with viral 3A protein. Secretory carrier membrane protein 3 (SCAMP3) was one of the host proteins we selected for further investigation. Here, we demonstrate by immunoprecipitation assay that SCAMP3 associates with 3A protein and colocalizes with 3A protein during virus infection. SCAMP3 knockdown or knockout in infected cells decreases synthesis of EV-A71 viral RNA, viral proteins, and viral growth. Furthermore, the viral 3A protein associates with SCAMP3 and phosphatidylinositol-4-kinase type III β (PI4KIIIβ) as shown by immunoprecipitation assay and colocalizes to the replication complex. Upon infection of cells with a SCAMP3 knockout construct, PI4KIIIβ and phosphatidylinositol-4-phosphate (PI4P) colocalization with EV-A71 3A protein decreases; viral RNA synthesis also decreases. SCAMP3 is also involved in the extracellular signal-regulated kinase (ERK) signaling pathway to regulate viral replication. The 3A and SCAMP3 interaction is also important for the replication of coxsackievirus B3 (CVB3). SCAMP3 also associates with 3A protein of CVB3 and enhances viral replication but does not regulate dengue virus 2 (DENV2) replication. Taken together, the results suggest that enterovirus 3A protein, SCAMP3, PI4KIIIβ, and PI4P form a replication complex and positively regulate enterovirus replication. IMPORTANCE Virus-host interaction plays an important role in viral replication. 3A protein of enterovirus A71 (EV-A71) recruits other viral and host factors to form a replication complex, which is important for viral replication. In this investigation, we utilized immunoprecipitation combined with proteomics approaches to identify 3A-interacting factors. Our results demonstrate that secretory carrier membrane protein 3 (SCAMP3) is a novel host factor that associates with enterovirus 3A protein, phosphatidylinositol-4-kinase type III β (PI4KIIIβ), and phosphatidylinositol-4-phosphate (PI4P) to form a replication complex and positively regulates viral replication. SCAMP3 is also involved in the extracellular signal-regulated kinase (ERK) signaling pathway to regulate viral replication.
Collapse
|
10
|
Wan B, Belghazi M, Lemauf S, Poirié M, Gatti JL. Proteomics of purified lamellocytes from Drosophila melanogaster HopT um-l identifies new membrane proteins and networks involved in their functions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 134:103584. [PMID: 34033897 DOI: 10.1016/j.ibmb.2021.103584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
In healthy Drosophila melanogaster larvae, plasmatocytes and crystal cells account for 95% and 5% of the hemocytes, respectively. A third type of hemocytes, lamellocytes, are rare, but their number increases after oviposition by parasitoid wasps. The lamellocytes form successive layers around the parasitoid egg, leading to its encapsulation and melanization, and finally the death of this intruder. However, the total number of lamellocytes per larva remains quite low even after parasitoid infestation, making direct biochemical studies difficult. Here, we used the HopTum-l mutant strain that constitutively produces large numbers of lamellocytes to set up a purification method and analyzed their major proteins by 2D gel electrophoresis and their plasma membrane surface proteins by 1D SDS-PAGE after affinity purification. Mass spectrometry identified 430 proteins from 2D spots and 344 affinity-purified proteins from 1D bands, for a total of 639 unique proteins. Known lamellocyte markers such as PPO3 and the myospheroid integrin were among the components identified with specific chaperone proteins. Affinity purification detected other integrins, as well as a wide range of integrin-associated proteins involved in the formation and function of cell-cell junctions. Overall, the newly identified proteins indicate that these cells are highly adapted to the encapsulation process (recognition, motility, adhesion, signaling), but may also have several other physiological functions (such as secretion and internalization of vesicles) under different signaling pathways. These results provide the basis for further in vivo and in vitro studies of lamellocytes, including the development of new markers to identify coexisting populations and their respective origins and functions in Drosophila immunity.
Collapse
Affiliation(s)
- Bin Wan
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Maya Belghazi
- Institute of NeuroPhysiopathology (INP), UMR7051, CNRS, Aix-Marseille Université, Marseille, 13015, France
| | - Séverine Lemauf
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Marylène Poirié
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Jean-Luc Gatti
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France.
| |
Collapse
|
11
|
Venugopalan A, Lynberg M, Cultraro CM, Nguyen KDP, Zhang X, Waris M, Dayal N, Abebe A, Maity TK, Guha U. SCAMP3 is a mutant EGFR phosphorylation target and a tumor suppressor in lung adenocarcinoma. Oncogene 2021; 40:3331-3346. [PMID: 33850265 PMCID: PMC8514158 DOI: 10.1038/s41388-021-01764-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 02/01/2023]
Abstract
Mutations in the epidermal growth factor receptor (EGFR) tyrosine kinase domain constitutively activate EGFR resulting in lung tumorigenesis. Activated EGFR modulates downstream signaling by altering phosphorylation-driven interactions that promote growth and survival. Secretory carrier membrane proteins (SCAMPs) are a family of transmembrane proteins that regulate recycling of receptor proteins, including EGFR. The potential role of SCAMPs in mutant EGFR function and tumorigenesis has not been elucidated. Using quantitative mass-spectrometry-based phosphoproteomics, we identified SCAMP3 as a target of mutant EGFRs in lung adenocarcinoma and sought to further investigate the role of SCAMP3 in the regulation of lung tumorigenesis. Here we show that activated EGFR, either directly or indirectly phosphorylates SCAMP3 at Y86 and this phosphorylation increases the interaction of SCAMP3 with both wild-type and mutant EGFRs. SCAMP3 knockdown increases lung adenocarcinoma cell survival and increases xenograft tumor growth in vivo, demonstrating a tumor suppressor role of SCAMP3 in lung tumorigenesis. The tumor suppressor function is a result of SCAMP3 promoting EGFR degradation and attenuating MAP kinase signaling pathways. SCAMP3 knockdown also increases multinucleated cells in culture, suggesting that SCAMP3 is required for efficient cytokinesis. The enhanced growth, increased colony formation, reduced EGFR degradation and multinucleation phenotype of SCAMP3-depleted cells were reversed by re-expression of wild-type SCAMP3, but not SCAMP3 Y86F, suggesting that Y86 phosphorylation is critical for SCAMP3 function. Taken together, the results of this study demonstrate that SCAMP3 functions as a novel tumor suppressor in lung cancer by modulating EGFR signaling and cytokinesis that is partly Y86 phosphorylation-dependent.
Collapse
Affiliation(s)
- Abhilash Venugopalan
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
| | - Matthew Lynberg
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Constance M Cultraro
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Khoa Dang P Nguyen
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Xu Zhang
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Maryam Waris
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Noelle Dayal
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Asebot Abebe
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Tapan K Maity
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
- Bristol Myers Squibb, Lawrenceville, NJ, USA.
| |
Collapse
|
12
|
Mao F, Duan H, Allamyradov A, Xin Z, Du Y, Wang X, Xu P, Li Z, Qian J, Yao J. Expression and prognostic analyses of SCAMPs in pancreatic adenocarcinoma. Aging (Albany NY) 2021; 13:4096-4114. [PMID: 33493138 PMCID: PMC7906166 DOI: 10.18632/aging.202377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
Due to the difficulties in early diagnosis of pancreatic adenocarcinoma (PAAD), many patients fail to receive optimal therapeutic regimens. The Secretory-Carrier-Membrane-Proteins (SCAMPs) are known to be dysregulated in a range of human diseases due to their characterized roles in mammalian cell exocytosis inferred from their functions as integral membrane proteins. However, the expression and prognostic value of SCAMPs in PAAD is poorly characterized. We compared cancer vs. healthy tissue and found that the expression of SCAMPs1-4 was upregulated in PAAD compared to normal tissue. In contrast, SCAMP5 expression was downregulated in PAAD. Moreover, the expression of SCAMPs1-4 was enhanced in PAAD cell lines according to Cancer Cell Line public database. Furthermore, the HPA, GEPIA databases and immunohistochemical analysis from 238 patients suggested that the loss of SCAMP1 led to improved overall survival (OS), whilst lower SCAMP5 levels led to a poorer OS. The univariate and multivariate analysis showed that SCAMP1 and SCAMP5 expression were independent prognostic factors of PAAD. In addition, the cBioPortal for Cancer Genomics, LinkedOmics datasets, and the GEPIA were used to identify the co-expression genes of SCAMP1,5 and the correlation between SCAMPs members. We conclude that SCAMPs 1 and 5 significantly represent promising diagnosis and prognostic biomarkers.
Collapse
Affiliation(s)
- Feiyu Mao
- Clinical Medical College of Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - Heng Duan
- The First Affiliated Hospital of Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Aly Allamyradov
- Clinical Medical College of Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - Zechang Xin
- The First Affiliated Hospital of Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yan Du
- The First Affiliated Hospital of Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Xiaodong Wang
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital, Guangling Qu, Yangzhou 225001, Jiangsu Province, China
| | - Peng Xu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital, Guangling Qu, Yangzhou 225001, Jiangsu Province, China
| | - Zhennan Li
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital, Guangling Qu, Yangzhou 225001, Jiangsu Province, China
| | - Jianjun Qian
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital, Guangling Qu, Yangzhou 225001, Jiangsu Province, China
| | - Jie Yao
- Clinical Medical College of Yangzhou University, Yangzhou 225001, Jiangsu Province, China.,Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital, Guangling Qu, Yangzhou 225001, Jiangsu Province, China
| |
Collapse
|
13
|
Han SS, Feng ZQ, Liu R, Ye J, Cheng WW, Bao JB. Bioinformatics Analysis and RNA-Sequencing of SCAMP3 Expression and Correlated Gene Regulation in Hepatocellular Carcinoma. Onco Targets Ther 2020; 13:1047-1057. [PMID: 32099407 PMCID: PMC7007781 DOI: 10.2147/ott.s221785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Background Secretory Carrier Membrane Proteins 3 (SCAMP3) is a transmembrane protein that affects intracellular trafficking, protein sorting and vesicle formation. Overexpression of SCAMP3 correlates with poorly differentiated hepatocellular carcinoma (HCC). However, the expression and corresponding gene regulation of SCAMP3 in HCC remain unclear. Methods Bioinformatics analyses of clinical parameters and survival data were conducted to predict the prognostic value of SCAMP3 in HCC. RNA sequencing and real-time PCR were conducted to confirm the SCAMP3 expression in HCC tissue. Expression was analyzed using OncomineTM and UALCAN, while SCAMP3 alterations and survival analysis were identified by cBioPortal. Differential gene expression with SCAMP3 was analyzed by LinkedOmics and GEPIA. The target networks of enzymes and co-transcriptional factors were identified using Gene enrichment analysis. Expression of SCAMP3 in HCC tissue was detected by RNA-sequencing and Western-blotting. Results Based on bioinformatics analysis and detection of mRNA expression, SCAMP3 was over-expressed in numerous tumors, especially in HCC. SCAMP3 level was positively correlated with disease stages and tumor grades and negatively correlated with patient survival. Furthermore, functional network analysis indicated that SCAMP3 regulated metabolic process and DNA replication through oxidative phosphorylation and chromatin remodeling or Ribosome. SCAMP3 regulated a number of gene expressions including PPAP2B, SNRK, ARID4A, PRCC, VPS72 via protein binding and proteasome, which may affect cell adhesion, proliferation, transcription, cell cycle and metabolism. Further, Real-time PCR and Western-blotting showed that the SCAMP3 level was increased in HCC tissue. Conclusion The present data analysis efficiently reveals information about SCAMP3 expression and correlated function in HCC, laying a foundation for further study of SCAMP3 in the tumor.
Collapse
Affiliation(s)
- Shan-Shan Han
- Beijing Chaoyang Emergency Medical Center, Department of General Surgery, Chaoyang, Beijing 100020, People's Republic of China
| | - Zhi-Qiang Feng
- Beijing Chaoyang Emergency Medical Center, Department of General Surgery, Chaoyang, Beijing 100020, People's Republic of China
| | - Rui Liu
- Medical University of Anhui Air Force Clinical School, Department of Hepatobiliary Surgery, Beijing 100142, People's Republic of China
| | - Jun Ye
- Medical University of Anhui Air Force Clinical School, Department of Hepatobiliary Surgery, Beijing 100142, People's Republic of China
| | - Wei-Wei Cheng
- Medical University of Anhui Air Force Clinical School, Department of Hepatobiliary Surgery, Beijing 100142, People's Republic of China
| | - Jun-Bo Bao
- First People's Hospital of Suqian, Department of Medicine, Suqian, Jiangsu 223800, People's Republic of China
| |
Collapse
|
14
|
Kim KM, Noh JH, Bodogai M, Martindale JL, Pandey PR, Yang X, Biragyn A, Abdelmohsen K, Gorospe M. SCAMP4 enhances the senescent cell secretome. Genes Dev 2018; 32:909-914. [PMID: 29967290 PMCID: PMC6075036 DOI: 10.1101/gad.313270.118] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/22/2018] [Indexed: 02/01/2023]
Abstract
In this study, Kim et al. investigated the molecular regulators of SASP factor secretion. They identified SCAMP4 (secretory carrier membrane protein 4) as a protein that is highly abundant on the surface of senescent cells but not proliferating cells, promotes SASP factor secretion, and critically enhances the SASP phenotype. The senescence-associated secretory phenotype (SASP) is a major trait of senescent cells, but the molecular regulators of SASP factor secretion are poorly understood. Mass spectrometry analysis revealed that secretory carrier membrane protein 4 (SCAMP4) levels were strikingly elevated on the surface of senescent cells compared with proliferating cells. Interestingly, silencing SCAMP4 in senescent fibroblasts reduced the secretion of SASP factors, including interleukin 6 (IL6), IL8, growth differentiation factor 15 (GDF-15), C-X-C motif chemokine ligand 1 (CXCL1), and IL7, while, conversely, SCAMP4 overexpression in proliferating fibroblasts increased SASP factor secretion. Our results indicate that SCAMP4 accumulates on the surface of senescent cells, promotes SASP factor secretion, and critically enhances the SASP phenotype.
Collapse
Affiliation(s)
- Kyoung Mi Kim
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Ji Heon Noh
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Monica Bodogai
- Laboratory of Molecular Biology and Immunology, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Poonam R Pandey
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Arya Biragyn
- Laboratory of Molecular Biology and Immunology, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
15
|
MTSS1 and SCAMP1 cooperate to prevent invasion in breast cancer. Cell Death Dis 2018; 9:344. [PMID: 29497041 PMCID: PMC5832821 DOI: 10.1038/s41419-018-0364-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/10/2018] [Accepted: 01/30/2018] [Indexed: 12/24/2022]
Abstract
Cell-cell adhesions constitute the structural "glue" that retains cells together and contributes to tissue organisation and physiological function. The integrity of these structures is regulated by extracellular and intracellular signals and pathways that act on the functional units of cell adhesion such as the cell adhesion molecules/adhesion receptors, the extracellular matrix (ECM) proteins and the cytoplasmic plaque/peripheral membrane proteins. In advanced cancer, these regulatory pathways are dysregulated and lead to cell-cell adhesion disassembly, increased invasion and metastasis. The Metastasis suppressor protein 1 (MTSS1) plays a key role in the maintenance of cell-cell adhesions and its loss correlates with tumour progression in a variety of cancers. However, the mechanisms that regulate its function are not well-known. Using a system biology approach, we unravelled potential interacting partners of MTSS1. We found that the secretory carrier-associated membrane protein 1 (SCAMP1), a molecule involved in post-Golgi recycling pathways and in endosome cell membrane recycling, enhances Mtss1 anti-invasive function in HER2+/ER-/PR- breast cancer, by promoting its protein trafficking leading to elevated levels of RAC1-GTP and increased cell-cell adhesions. This was clinically tested in HER2 breast cancer tissue and shown that loss of MTSS1 and SCAMP1 correlates with reduced disease-specific survival. In summary, we provide evidence of the cooperative roles of MTSS1 and SCAMP1 in preventing HER2+/ER-/PR- breast cancer invasion and we show that the loss of Mtss1 and Scamp1 results in a more aggressive cancer cell phenotype.
Collapse
|
16
|
Knuff K, Finlay BB. What the SIF Is Happening-The Role of Intracellular Salmonella-Induced Filaments. Front Cell Infect Microbiol 2017; 7:335. [PMID: 28791257 PMCID: PMC5524675 DOI: 10.3389/fcimb.2017.00335] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/10/2017] [Indexed: 11/29/2022] Open
Abstract
A common strategy among intracellular bacterial pathogens is to enter into a vacuolar environment upon host cell invasion. One such pathogen, Salmonella enterica, resides within the Salmonella-containing vacuole (SCV) inside epithelial cells and macrophages. Salmonella hijacks the host endosomal system to establish this unique intracellular replicative niche, forming a highly complex and dynamic network of Salmonella-induced filaments (SIFs). SIFs radiate outwards from the SCV upon onset of bacterial replication. SIF biogenesis is dependent on the activity of bacterial effector proteins secreted by the Salmonella-pathogenicity island-2 (SPI-2) encoded type III secretion system. While the presence of SIFs has been known for almost 25 years, their precise role during infection remains elusive. This review summarizes our current knowledge of SCV maturation and SIF biogenesis, and recent advances in our understanding of the role of SIFs inside cells.
Collapse
Affiliation(s)
- Katelyn Knuff
- Michael Smith Laboratories, University of British ColumbiaVancouver, BC, Canada.,Department of Microbiology and Immunology, University of British ColumbiaVancouver, BC, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British ColumbiaVancouver, BC, Canada.,Department of Microbiology and Immunology, University of British ColumbiaVancouver, BC, Canada.,Department of Biochemistry and Molecular Biology, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
17
|
Yang Y, Qin M, Bao P, Xu W, Xu J. Secretory carrier membrane protein 5 is an autophagy inhibitor that promotes the secretion of α-synuclein via exosome. PLoS One 2017; 12:e0180892. [PMID: 28700687 PMCID: PMC5507457 DOI: 10.1371/journal.pone.0180892] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/22/2017] [Indexed: 01/07/2023] Open
Abstract
Autophagy-lysosomal pathway is a cellular protective system to remove aggregated proteins and damaged organelles. Meanwhile, exosome secretion has emerged as a mode to selectively clear the neurotoxic proteins, such as α-synuclein. Mounting evidence suggests that these two cellular processes are coordinated to facilitate the clearance of toxic cellular waste; however the regulators for the transition between these two processes are unclear. Here we show that SCAMP5, a secretory carrier membrane protein significantly induced in the brains of Huntington's disease patients, is quickly and transiently induced by protein stress and autophagic stimulation, and is regulated by the master autophagy transcriptional regulator TFEB. Ironically, SCAMP5 inhibits autophagy flux by blocking the fusion of autophagosomes and lysosomes. Although autophagy is blocked, SCAMP5 does not cause significant protein aggregation in cells. Instead, it promotes the Golgi fragmentation and stimulates the unconventional secretion of the co-localizing α-synuclein via exosome as an exosome component. Therefore, we have identified SCAMP5 as a novel coordinator of autophagy and exosome secretion, which is induced upon protein stress to channel the efficient clearance of toxic proteins via the exosomes rather than autophagy-lysosomal pathway.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Meiling Qin
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Puhua Bao
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Wangchao Xu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Jin Xu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
18
|
De Angelis Rigotti F, De Gassart A, Pforr C, Cano F, N'Guessan P, Combes A, Camossetto V, Lehner PJ, Pierre P, Gatti E. MARCH9-mediated ubiquitination regulates MHC I export from the TGN. Immunol Cell Biol 2017; 95:753-764. [PMID: 28559542 DOI: 10.1038/icb.2017.44] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 01/08/2023]
Abstract
Given the heterogeneous nature of antigens, major histocompatibility complex class I (MHC I) intracellular transport intersects with multiple degradation pathways for efficient peptide loading and presentation to cytotoxic T cells. MHC I loading with peptides in the endoplasmic reticulum (ER) is a tightly regulated process, while post-ER intracellular transport is considered to occur by default, leading to peptide-bearing MHC I delivery to the plasma membrane. We show here that MHC I traffic is submitted to a previously uncharacterized sorting step at the trans Golgi network (TGN), dependent on the ubiquitination of its cytoplasmic tail lysine residues. MHC I ubiquitination is mediated by the E3 ligase membrane-associated RING-CH 9 (MARCH9) and allows MHC I access to Syntaxin 6-positive endosomal compartments. We further show that MARCH9 can also target the human MHC I-like lipid antigen-presentation molecule CD1a. MARCH9 expression is modulated by microbial pattern exposure in dendritic cells (DCs), thus revealing the role of this ubiquitin E3 ligase in coordinating MHC I access to endosomes and DC activation for efficient antigen cross-presentation.
Collapse
Affiliation(s)
| | - Aude De Gassart
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, CNRS, INSERM, Marseille, France
| | - Carina Pforr
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, CNRS, INSERM, Marseille, France
| | - Florencia Cano
- Division of Immunology, Cambridge Institute of Medical Research, Addenbrookes Hospital, Cambridge, UK
| | - Prudence N'Guessan
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, CNRS, INSERM, Marseille, France
| | - Alexis Combes
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, CNRS, INSERM, Marseille, France
| | - Voahirana Camossetto
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, CNRS, INSERM, Marseille, France
| | - Paul J Lehner
- Division of Immunology, Cambridge Institute of Medical Research, Addenbrookes Hospital, Cambridge, UK
| | - Philippe Pierre
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, CNRS, INSERM, Marseille, France
| | - Evelina Gatti
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, CNRS, INSERM, Marseille, France
| |
Collapse
|
19
|
Thomas P, Wohlford D, Aoh QL. SCAMP 3 is a novel regulator of endosomal morphology and composition. Biochem Biophys Res Commun 2016; 478:1028-34. [PMID: 27507217 DOI: 10.1016/j.bbrc.2016.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/03/2016] [Indexed: 12/15/2022]
Abstract
Secretory Carrier Membrane Proteins (SCAMPs) are transmembrane proteins that function in the plasma membrane, endosomes, and trans-Golgi network. Here we show that SCAMP 3 is a novel regulator of endosomal morphology and composition. Under certain nutrient-starved conditions, SCAMP 3 concentrates in enlarged early endosomes. The enlarged contain ubiquitylated and non-ubiquitylated SCAMP 3 as well as other SCAMPs, EEA1, and the ESCRT-0 protein Hrs. We demonstrate that SCAMP 3 is sufficient to recruit Hrs to the enlarged endosomes. Taken together, our results suggest a novel role for SCAMP 3 in modifying endosome structure through interactions that involve its ubiquitylation and ESCRT proteins.
Collapse
Affiliation(s)
- Priscilla Thomas
- Department of Biology, Gannon University, Erie, PA 16514, United States
| | - Dacey Wohlford
- Department of Biology, Gannon University, Erie, PA 16514, United States
| | - Quyen L Aoh
- Department of Biology, Gannon University, Erie, PA 16514, United States.
| |
Collapse
|
20
|
Onelli E, Idilli AI, Moscatelli A. Emerging roles for microtubules in angiosperm pollen tube growth highlight new research cues. FRONTIERS IN PLANT SCIENCE 2015; 6:51. [PMID: 25713579 PMCID: PMC4322846 DOI: 10.3389/fpls.2015.00051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/20/2015] [Indexed: 05/21/2023]
Abstract
In plants, actin filaments have an important role in organelle movement and cytoplasmic streaming. Otherwise microtubules (MTs) have a role in restricting organelles to specific areas of the cell and in maintaining organelle morphology. In somatic plant cells, MTs also participate in cell division and morphogenesis, allowing cells to take their definitive shape in order to perform specific functions. In the latter case, MTs influence assembly of the cell wall, controlling the delivery of enzymes involved in cellulose synthesis and of wall modulation material to the proper sites. In angiosperm pollen tubes, organelle movement is generally attributed to the acto-myosin system, the main role of which is in distributing organelles in the cytoplasm and in carrying secretory vesicles to the apex for polarized growth. Recent data on membrane trafficking suggests a role of MTs in fine delivery and repositioning of vesicles to sustain pollen tube growth. This review examines the role of MTs in secretion and endocytosis, highlighting new research cues regarding cell wall construction and pollen tube-pistil crosstalk, that help unravel the role of MTs in polarized growth.
Collapse
Affiliation(s)
| | - Aurora I. Idilli
- Institute of Biophysics, National Research Council and Fondazione Bruno Kessler, Trento, Italy
| | - Alessandra Moscatelli
- Department of Biosciences, University of Milan, Milan, Italy
- *Correspondence: Alessandra Moscatelli, Department of Biosciences, University of Milan, Via Celoria, 26, 20113 Milano, Italy e-mail:
| |
Collapse
|
21
|
Yang S, Lee KT, Lee JY, Lee JK, Lee KH, Rhee JC. Inhibition of SCAMP1 suppresses cell migration and invasion in human pancreatic and gallbladder cancer cells. Tumour Biol 2013; 34:2731-2739. [PMID: 23653380 DOI: 10.1007/s13277-013-0825-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/26/2013] [Indexed: 12/25/2022] Open
Abstract
Lymph node (LN) metastasis is one of the most important risk factors for the prognosis of pancreatic cancer. This study aimed to identify novel LN metastasis-associated markers and therapeutic targets for pancreatic and gallbladder cancers. DNA microarray analysis was carried out to identify genes differentially expressed between 17 pancreatic cancer tissues with LN metastasis and 17 pancreatic cancer tissues without LN metastasis. The expression of LZIC, FXR, SCAMP1, and SULT1E1 is significantly higher in pancreatic cancer tissues with LN metastasis than in pancreatic cancer tissues without LN metastasis. We recently reported that FXR plays an important role in LN metastasis of pancreatic cancer, and in this study, we selected the secretory carrier membrane protein 1 (SCAMP1) gene. To determine that function of the SCAMP1 gene, we examined the effects of SCAMP1 knockdown on pancreatic and gallbladder cancer proliferation, migration, and invasion using SCAMP1 small interfering RNA (siRNA) and the activity of vascular endothelial growth factor (VEGF) was measured by enzyme-linked immunosorbent assay. SCAMP1 overexpression is associated with LN metastasis in pancreatic cancer patients. The siRNA-mediated downregulation of SCAMP1 resulted in a marked reduction in cell migration and invasion, but not proliferation in MIA-PaCa2, PANC-1, TGBC-1, and TGBC-2 cells. In addition, downregulation of SCAMP1 inhibited VEGF levels of conditioned medium from SCAMP1 siRNA-transfected cells. These results suggest that downregulation of SCAMP1 could be a potential therapeutic target for patients with pancreatic and gallbladder cancer.
Collapse
Affiliation(s)
- Sera Yang
- Samsung Biomedical Research Institute, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
22
|
Lee KM, Kang HA, Ko CB, Oh EH, Park M, Lee HY, Choi HR, Yun CH, Jung WW, Oh JW, Kang HS. Differential gene expression profiles in spontaneously hypertensive rats induced by administration of enalapril and nifedipine. Int J Mol Med 2012; 31:179-87. [PMID: 23165955 DOI: 10.3892/ijmm.2012.1183] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/18/2012] [Indexed: 11/06/2022] Open
Abstract
Enalapril and nifedipine are used as antihypertensive drugs; however, the therapeutic target molecules regulated by enalapril and nifedipine have yet to be fully identified. The aim of this study was to identify novel target genes that are specifically regulated by enalapril and nifedipine in tissues from spontaneously hypertensive rats (SHR) using DNA microarray analysis. We found that administration of SHR with enalapril and nifedipine differentially regulated 33 genes involved in the pathogenesis of cardiovascular diseases. Furthermore, we identified 16 genes that have not previously been implicated in cardiovascular diseases, including interleukin-24 (IL-24). Among them, exogenous administration of IL-24 attenuated the expression of vascular inflammation and hypertension-related genes induced by H2O2 treatment in mouse vascular smooth muscle (MOVAS) cells. This study provides valuable information for the development of novel antihypertensive drugs. In addition, the genes identified may be of use as biomarkers and therapeutic targets for cardiovascular diseases, including hypertension.
Collapse
Affiliation(s)
- Ki-Mo Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 500‑757, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Edinger RS, Bertrand CA, Rondandino C, Apodaca GA, Johnson JP, Butterworth MB. The epithelial sodium channel (ENaC) establishes a trafficking vesicle pool responsible for its regulation. PLoS One 2012; 7:e46593. [PMID: 23029554 PMCID: PMC3460899 DOI: 10.1371/journal.pone.0046593] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/05/2012] [Indexed: 12/16/2022] Open
Abstract
The epithelial sodium channel (ENaC) is the rate-limiting step for sodium reabsorption across tight epithelia. Cyclic-AMP (cAMP) stimulation promotes ENaC trafficking to the apical surface to increase channel number and transcellular Na(+) transport. Removal of corticosteroid supplementation in a cultured cortical collecting duct cell line reduced ENaC expression. Concurrently, the number of vesicles trafficked in response to cAMP stimulation, as measured by a change in membrane capacitance, also decreased. Stimulation with aldosterone restored both the basal and cAMP-stimulated ENaC activity and increased the number of exocytosed vesicles. Knocking down ENaC directly decreased both the cAMP-stimulated short-circuit current and capacitance response in the presence of aldosterone. However, constitutive apical recycling of the Immunoglobulin A receptor was unaffected by alterations in ENaC expression or trafficking. Fischer Rat Thyroid cells, transfected with α,β,γ-mENaC had a significantly greater membrane capacitance response to cAMP stimulation compared to non-ENaC controls. Finally, immunofluorescent labeling and quantitation revealed a smaller number of vesicles in cells where ENaC expression was reduced. These findings indicate that ENaC is not a passive passenger in regulated epithelial vesicle trafficking, but plays a role in establishing and maintaining the pool of vesicles that respond to cAMP stimulation.
Collapse
Affiliation(s)
- Robert S. Edinger
- Department of Medicine, Renal-Electrolyte Division, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Carol A. Bertrand
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Christine Rondandino
- Department of Medicine, Renal-Electrolyte Division, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Gerard A. Apodaca
- Department of Medicine, Renal-Electrolyte Division, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - John P. Johnson
- Department of Medicine, Renal-Electrolyte Division, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael B. Butterworth
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
24
|
FIP3-endosome-dependent formation of the secondary ingression mediates ESCRT-III recruitment during cytokinesis. Nat Cell Biol 2012; 14:1068-78. [PMID: 23000966 DOI: 10.1038/ncb2577] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/09/2012] [Indexed: 12/19/2022]
Abstract
The final cytokinesis event involves severing of the connecting intercellular bridge (ICB) between daughter cells. FIP3-positive recycling endosomes (FIP3 endosomes) and ESCRT complexes have been implicated in mediating the final stages of cytokinesis. Here we analyse the spatiotemporal dynamics of the actin cytoskeleton, FIP3-endosome fusion and ESCRT-III localization during cytokinesis to show that the ICB narrows by a FIP3-endosome-mediated secondary ingression, whereas the ESCRT-III complex is needed only for the last scission step of cytokinesis. We characterize the role of FIP3 endosomes during cytokinesis to demonstrate that FIP3 endosomes deliver SCAMP2/3 and p50RhoGAP to the ICB during late telophase, proteins required for the formation of the secondary ingression. We also show that the FIP3-endosome-induced secondary ingression is required for the recruitment of the ESCRT-III complex to the abscission site. Finally, we characterize a FIP3-endosome-dependent regulation of the ICB cortical actin network through the delivery of p50RhoGAP. These results provide a framework for the coordinated efforts of actin, FIP3 endosomes and the ESCRTs to regulate cytokinesis and abscission.
Collapse
|
25
|
Cai Y, Zhuang X, Wang J, Wang H, Lam SK, Gao C, Wang X, Jiang L. Vacuolar degradation of two integral plasma membrane proteins, AtLRR84A and OsSCAMP1, is cargo ubiquitination-independent and prevacuolar compartment-mediated in plant cells. Traffic 2012; 13:1023-40. [PMID: 22486829 DOI: 10.1111/j.1600-0854.2012.01360.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 12/31/2022]
Abstract
In plant cells, how integral plasma membrane (PM) proteins are degraded in a cargo ubiquitination-independent manner remains elusive. Here, we studied the degradative pathway of two plant PM proteins: AtLRR84A, a type I integral membrane protein belonging to the leucine-rich repeat receptor-like kinase protein family, and OsSCAMP1 (rice secretory carrier membrane protein 1), a tetraspan transmembrane protein located on the PM and trans-Golgi network (TGN) or early endosome (EE). Using wortmannin and ARA7(Q69L) mutant that could enlarge the multivesicular body (MVB) or prevacuolar compartment (PVC) as tools, we demonstrated that, when expressed as green fluorescent protein (GFP) fusions in tobacco BY-2 or Arabidopsis protoplasts, both AtLRR84A and OsSCAMP1 were degraded in the lytic vacuole via the internal vesicles of MVB/PVC in a cargo ubiquitination-independent manner. Such MVB/PVC-mediated vacuolar degradation of PM proteins was further supported by immunocytochemical electron microscopy (immunoEM) study showing the labeling of the fusions on the internal vesicles of the PVC/MVB. Thus, cargo ubiquitination-independent and PVC-mediated degradation of PM proteins in the vacuole is functionally operated in plant cells.
Collapse
Affiliation(s)
- Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Figueira R, Holden DW. Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology (Reading) 2012; 158:1147-1161. [DOI: 10.1099/mic.0.058115-0] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Rita Figueira
- Section of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - David W. Holden
- Section of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| |
Collapse
|
27
|
Law AHY, Chow CM, Jiang L. Secretory carrier membrane proteins. PROTOPLASMA 2012; 249:269-83. [PMID: 21633931 DOI: 10.1007/s00709-011-0295-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 05/22/2011] [Indexed: 05/24/2023]
Abstract
Secretory carrier membrane proteins (SCAMPs) are a family of integral membrane proteins that play roles in mediating exocytosis in animal cells. However, relatively little is known about the subcellular localization, trafficking, and function of SCAMPs in plants. Several recent studies in plant cells indicate that plant SCAMPs share many similarities with their mammalian homologs although there are differences. In this review, we will first summarize and compare animal and plant SCAMPs in terms of their subcellular localization, trafficking, and possible functions. We will then present a phylogenetic analysis of plant and animal SCAMPs. Finally, we will present expression analysis on selective Arabidopsis SCAMPs in the hope of pointing to directions for functional characterization of plant SCAMPs in the future.
Collapse
Affiliation(s)
- Angus Ho Yin Law
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | |
Collapse
|
28
|
Eisenach PA, de Sampaio PC, Murphy G, Roghi C. Membrane type 1 matrix metalloproteinase (MT1-MMP) ubiquitination at Lys581 increases cellular invasion through type I collagen. J Biol Chem 2012; 287:11533-45. [PMID: 22315223 DOI: 10.1074/jbc.m111.306340] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Membrane type 1 matrix metalloproteinase (MT1-MMP/MMP14) is a zinc-dependent type I transmembrane metalloproteinase playing pivotal roles in the regulation of pericellular proteolysis and cellular migration. Elevated expression levels of MT1-MMP have been demonstrated to correlate with a poor prognosis in cancer. MT1-MMP has a short intracellular domain (ICD) that has been shown to play important roles in cellular migration and invasion, although these ICD-mediated mechanisms remain poorly understood. In this study, we report that MT1-MMP is mono-ubiquitinated at its unique lysine residue (Lys(581)) within the ICD. Our data suggest that this post-translational modification is involved in MT1-MMP trafficking as well as in modulating cellular invasion through type I collagen matrices. By using an MT1-MMP Y573A mutant or the Src family inhibitor PP2, we observed that the previously described Src-dependent MT1-MMP phosphorylation is a prerequisite for ubiquitination. Taken together, these findings show for the first time an additional post-translational modification of MT1-MMP that regulates its trafficking and cellular invasion, which further emphasizes the key role of the MT1-MMP ICD.
Collapse
Affiliation(s)
- Patricia A Eisenach
- Department of Oncology, Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, University of Cambridge, Cambridge CB2 0RE, United Kingdom.
| | | | | | | |
Collapse
|
29
|
Zheng ZY, Cheng CM, Fu XR, Chen LY, Xu L, Terrillon S, Wong ST, Bar-Sagi D, Songyang Z, Chang EC. CHMP6 and VPS4A mediate the recycling of Ras to the plasma membrane to promote growth factor signaling. Oncogene 2012; 31:4630-8. [PMID: 22231449 PMCID: PMC3326214 DOI: 10.1038/onc.2011.607] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
While Ras is well-known to function on the plasma membrane (PM) to mediate growth factor signaling, increasing evidence suggests that Ras has complex roles in the cytoplasm. To uncover these roles, we screened a cDNA library and isolated H-Ras-binding proteins that also influence Ras functions. Many isolated proteins regulate trafficking involving endosomes; CHMP6/VPS20 and VPS4A, which interact with ESCRT-III, were chosen for further study. We showed that the binding is direct and occurs in endosomes. Furthermore, the binding is most efficient when H-Ras has a functional effector-binding-loop and is GTP-bound and ubiquitylated. CHMP6 and VPS4A also bound N-Ras, but not K-Ras. Repressing CHMP6 and VPS4A blocked Ras-induced transformation, which correlated with inefficient Ras localization to the PM as measured by cell fractionation and photobleaching. Moreover, silencing CHMP6 and VPS4A also blocked EGFR recycling. These data suggest that Ras interacts with key ESCRT-III components to promote recycling of itself and EGFR back to the PM to create a positive feedback loop to enhance growth factor signaling.
Collapse
Affiliation(s)
- Z-Y Zheng
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Malik-Kale P, Jolly CE, Lathrop S, Winfree S, Luterbach C, Steele-Mortimer O. Salmonella - at home in the host cell. Front Microbiol 2011; 2:125. [PMID: 21687432 PMCID: PMC3109617 DOI: 10.3389/fmicb.2011.00125] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 05/19/2011] [Indexed: 11/16/2022] Open
Abstract
The Gram-negative bacterium Salmonella enterica has developed an array of sophisticated tools to manipulate the host cell and establish an intracellular niche, for successful propagation as a facultative intracellular pathogen. While Salmonella exerts diverse effects on its host cell, only the cell biology of the classic “trigger”-mediated invasion process and the subsequent development of the Salmonella-containing vacuole have been investigated extensively. These processes are dependent on cohorts of effector proteins translocated into host cells by two type III secretion systems (T3SS), although T3SS-independent mechanisms of entry may be important for invasion of certain host cell types. Recent studies into the intracellular lifestyle of Salmonella have provided new insights into the mechanisms used by this pathogen to modulate its intracellular environment. Here we discuss current knowledge of Salmonella-host interactions including invasion and establishment of an intracellular niche within the host.
Collapse
Affiliation(s)
- Preeti Malik-Kale
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Disease, National Institute of Health Hamilton, MT, USA
| | | | | | | | | | | |
Collapse
|
32
|
Zhang G, Deinhardt K, Chao MV, Neubert TA. Study of neurotrophin-3 signaling in primary cultured neurons using multiplex stable isotope labeling with amino acids in cell culture. J Proteome Res 2011; 10:2546-54. [PMID: 21370927 PMCID: PMC3090507 DOI: 10.1021/pr200016n] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Conventional stable isotope labeling with amino acids in cell culture (SILAC) requires extensive metabolic labeling of proteins and therefore is difficult to apply to cells that do not divide or are unstable in SILAC culture. Using two different sets of heavy amino acids for labeling allows for straightforward SILAC quantitation using partially labeled cells because the two cell populations are always equally labeled. Here we report the application of this labeling strategy to primary cultured neurons. We demonstrated that protein quantitation was not compromised by incomplete labeling of the neuronal proteins. We used this method to study neurotrophin-3 (NT-3) signaling in primary cultured neurons. Surprisingly our results indicate TrkB signaling is a major component of the signaling network induced by NT-3 in cortical neurons. In addition, involvement of proteins such as VAMP2, Scamp1, and Scamp3 suggests that NT-3 may lead to enhanced exocytosis of synaptic vesicles.
Collapse
Affiliation(s)
- Guoan Zhang
- Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Katrin Deinhardt
- Departments of Cell Biology, Physiology and Neuroscience, and Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Moses V. Chao
- Departments of Cell Biology, Physiology and Neuroscience, and Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Thomas A. Neubert
- Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Pharmacology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
33
|
Zaarour N, Defontaine N, Demaretz S, Azroyan A, Cheval L, Laghmani K. Secretory carrier membrane protein 2 regulates exocytic insertion of NKCC2 into the cell membrane. J Biol Chem 2011; 286:9489-9502. [PMID: 21205824 PMCID: PMC3059028 DOI: 10.1074/jbc.m110.166546] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 12/23/2010] [Indexed: 12/20/2022] Open
Abstract
The renal-specific Na-K-2Cl co-transporter, NKCC2, plays a pivotal role in regulating body salt levels and blood pressure. NKCC2 mutations lead to type I Bartter syndrome, a life-threatening kidney disease. Regulation of NKCC2 trafficking behavior serves as a major mechanism in controlling NKCC2 activity across the plasma membrane. However, the identities of the protein partners involved in cell surface targeting of NKCC2 are largely unknown. To gain insight into these processes, we used a yeast two-hybrid system to screen a kidney cDNA library for proteins that interact with the NKCC2 C terminus. One binding partner we identified was SCAMP2 (secretory carrier membrane protein 2). Microscopic confocal imaging and co-immunoprecipitation assays confirmed NKCC2-SCAMP2 interaction in renal cells. SCAMP2 associated also with the structurally related co-transporter NCC, suggesting that the interaction with SCAMP2 is a common feature of sodium-dependent chloride co-transporters. Heterologous expression of SCAMP2 specifically decreased cell surface abundance as well as transport activity of NKCC2 across the plasma membrane. Co-immunolocalization experiments revealed that intracellularly retained NKCC2 co-localizes with SCAMP2 in recycling endosomes. The rate of NKCC2 endocytic retrieval, assessed by the sodium 2-mercaptoethane sulfonate cleavage assay, was not affected by SCAMP2. The surface-biotinylatable fraction of newly inserted NKCC2 in the plasma membrane was reduced by SCAMP2, demonstrating that SCAMP2-induced decrease in surface NKCC2 is due to decreased exocytotic trafficking. Finally, a single amino acid mutation, cysteine 201 to alanine, within the conserved cytoplasmic E peptide of SCAMP2, which is believed to regulate exocytosis, abolished SCAMP2-mediated down-regulation of the co-transporter. Taken together, these data are consistent with a model whereby SCAMP2 regulates NKCC2 transit through recycling endosomes and limits the cell surface targeting of the co-transporter by interfering with its exocytotic trafficking.
Collapse
Affiliation(s)
- Nancy Zaarour
- From INSERM, Centre de Recherche des Cordeliers, UMRS 872, CNRS, ERL7226, 75006 Paris, France
- Université Pierre et Marie Curie, 75006 Paris, France, and
- the Faculté de Médecine, Université Paris-Descartes, 75005 Paris, France
| | - Nadia Defontaine
- From INSERM, Centre de Recherche des Cordeliers, UMRS 872, CNRS, ERL7226, 75006 Paris, France
- Université Pierre et Marie Curie, 75006 Paris, France, and
- the Faculté de Médecine, Université Paris-Descartes, 75005 Paris, France
| | - Sylvie Demaretz
- From INSERM, Centre de Recherche des Cordeliers, UMRS 872, CNRS, ERL7226, 75006 Paris, France
- Université Pierre et Marie Curie, 75006 Paris, France, and
- the Faculté de Médecine, Université Paris-Descartes, 75005 Paris, France
| | - Anie Azroyan
- From INSERM, Centre de Recherche des Cordeliers, UMRS 872, CNRS, ERL7226, 75006 Paris, France
- Université Pierre et Marie Curie, 75006 Paris, France, and
- the Faculté de Médecine, Université Paris-Descartes, 75005 Paris, France
| | - Lydie Cheval
- From INSERM, Centre de Recherche des Cordeliers, UMRS 872, CNRS, ERL7226, 75006 Paris, France
- Université Pierre et Marie Curie, 75006 Paris, France, and
- the Faculté de Médecine, Université Paris-Descartes, 75005 Paris, France
| | - Kamel Laghmani
- From INSERM, Centre de Recherche des Cordeliers, UMRS 872, CNRS, ERL7226, 75006 Paris, France
- Université Pierre et Marie Curie, 75006 Paris, France, and
- the Faculté de Médecine, Université Paris-Descartes, 75005 Paris, France
| |
Collapse
|
34
|
Cai Y, Jia T, Lam SK, Ding Y, Gao C, San MWY, Pimpl P, Jiang L. Multiple cytosolic and transmembrane determinants are required for the trafficking of SCAMP1 via an ER-Golgi-TGN-PM pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:882-96. [PMID: 21251105 DOI: 10.1111/j.1365-313x.2010.04469.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
How polytopic plasma membrane (PM) proteins reach their destination in plant cells remains elusive. Using transgenic tobacco BY-2 cells, we previously showed that the rice secretory carrier membrane protein 1 (SCAMP1), an integral membrane protein with four transmembrane domains (TMDs), is localized to the PM and trans-Golgi network (TGN). Here, we study the transport pathway and sorting signals of SCAMP1 by following its transient expression in tobacco BY-2 protoplasts and show that SCAMP1 reaches the PM via an endoplasmic reticulum (ER)-Golgi-TGN-PM pathway. Loss-of-function and gain-of-function analysis of various green fluorescent protein (GFP) fusions with SCAMP1 mutations further demonstrates that: (i) the cytosolic N-terminus of SCAMP1 contains an ER export signal; (ii) the transmembrane domain 2 (TMD2) and TMD3 of SCAMP1 are essential for Golgi export; (iii) SCAMP1 TMD1 is essential for TGN-to-PM targeting; (iv) the predicted topology of SCAMP1 and its various mutants remain identical as demonstrated by protease protection assay. Therefore, both the cytosolic N-terminus and TMD sequences of SCAMP1 play integral roles in mediating its transport to the PM via an ER-Golgi-TGN pathway.
Collapse
Affiliation(s)
- Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Steuble M, Gerrits B, Ludwig A, Mateos JM, Diep TM, Tagaya M, Stephan A, Schätzle P, Kunz B, Streit P, Sonderegger P. Molecular characterization of a trafficking organelle: dissecting the axonal paths of calsyntenin-1 transport vesicles. Proteomics 2011; 10:3775-88. [PMID: 20925061 DOI: 10.1002/pmic.201000384] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Kinesin motors play crucial roles in the delivery of membranous cargo to its destination and thus for the establishment and maintenance of cellular polarization. Recently, calsyntenin-1 was identified as a cargo-docking protein for Kinesin-1-mediated axonal transport of tubulovesicular organelles along axons of central nervous system neurons. To further define the function of calsyntenin-1, we immunoisolated calsyntenin-1 organelles from murine brain homogenates and determined their proteome by MS. We found that calsyntenin-1 organelles are endowed with components of the endosomal trafficking machinery and contained the β-amyloid precursor protein (APP). Detailed biochemical analyses of calsyntenin-1 immunoisolates in conjunction with immunocytochemical colocalization studies with cultured hippocampal neurons, using endosomal marker proteins for distinct subcompartments of the endosomal pathways, indicated that neuronal axons contain at least two distinct, nonoverlapping calsyntenin-1-containing transport packages: one characterized as early-endosomal, APP positive, the other as recycling-endosomal, APP negative. We postulate that calsyntenin-1 acts as a general mediator of anterograde axonal transportation of endosomal vesicles. In this role, calsyntenin-1 may actively contribute to axonal growth and pathfinding in the developing as well as to the maintenance of neuronal polarity in the adult nervous system; further, it may actively contribute to the stabilization of APP during its anterograde axonal trajectory.
Collapse
Affiliation(s)
- Martin Steuble
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Salmonella-induced tubular networks. Trends Microbiol 2011; 19:268-77. [PMID: 21353564 DOI: 10.1016/j.tim.2011.01.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/12/2011] [Accepted: 01/20/2011] [Indexed: 12/26/2022]
Abstract
Salmonella virulence relies on its capacity to replicate inside various cell types in a membrane-bound compartment, the Salmonella-containing vacuole (SCV). A unique feature of Salmonella-infected cells is the presence of tubular structures originating from and connected to the SCV, which often extend throughout the cell cytoplasm. These tubules include the well-studied Salmonella-induced filaments (SIFs), enriched in lysosomal membrane proteins. However, recent studies revealed that the Salmonella-induced tubular network is more extensive than previously thought and includes three types of tubules distinct from SIFs: sorting nexin tubules, Salmonella-induced secretory carrier membrane protein 3 (SCAMP3) tubules and lysosome-associated membrane protein 1 (LAMP1)-negative tubules. In this review, we examine the molecular mechanisms involved in the formation of Salmonella-induced tubular networks and discuss the importance of the tubules for Salmonella virulence and establishment of a Salmonella intracellular replicative niche.
Collapse
|
37
|
Sturek JM, Castle JD, Trace AP, Page LC, Castle AM, Evans-Molina C, Parks JS, Mirmira RG, Hedrick CC. An intracellular role for ABCG1-mediated cholesterol transport in the regulated secretory pathway of mouse pancreatic beta cells. J Clin Invest 2010; 120:2575-89. [PMID: 20530872 DOI: 10.1172/jci41280] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 04/14/2010] [Indexed: 01/12/2023] Open
Abstract
Cholesterol is a critical component of cell membranes, and cellular cholesterol levels and distribution are tightly regulated in mammals. Recent evidence has revealed a critical role for pancreatic beta cell-specific cholesterol homeostasis in insulin secretion as well as in beta cell dysfunction in diabetes and the metabolic response to thiazolidinediones (TZDs), which are antidiabetic drugs. The ATP-binding cassette transporter G1 (ABCG1) has been shown to play a role in cholesterol efflux, but its role in beta cells is currently unknown. In other cell types, ABCG1 expression is downregulated in diabetes and upregulated by TZDs. Here we have demonstrated an intracellular role for ABCG1 in beta cells. Loss of ABCG1 expression impaired insulin secretion both in vivo and in vitro, but it had no effect on cellular cholesterol content or efflux. Subcellular localization studies showed the bulk of ABCG1 protein to be present in insulin granules. Loss of ABCG1 led to altered granule morphology and reduced granule cholesterol levels. Administration of exogenous cholesterol restored granule morphology and cholesterol content and rescued insulin secretion in ABCG1-deficient islets. These findings suggest that ABCG1 acts primarily to regulate subcellular cholesterol distribution in mouse beta cells. Furthermore, islet ABCG1 expression was reduced in diabetic mice and restored by TZDs, implicating a role for regulation of islet ABCG1 expression in diabetes pathogenesis and treatment.
Collapse
Affiliation(s)
- Jeffrey M Sturek
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Toyooka K, Matsuoka K. Exo- and endocytotic trafficking of SCAMP2. PLANT SIGNALING & BEHAVIOR 2009; 4:1196-8. [PMID: 20514246 PMCID: PMC2819456 DOI: 10.4161/psb.4.12.10075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 09/14/2009] [Accepted: 09/14/2009] [Indexed: 05/24/2023]
Abstract
Exo- and endocytotic membrane trafficking is an essential process for transport of secretory proteins, extracellular glycans, transporters and lipids in plant cells. Using secretory carrier membrane protein 2 (SCAMP2) as a marker for secretory vesicles and tobacco BY-2 cells as a model system, we recently demonstrated that SCAMP2 positive structures containing secretory materials are transported from the Golgi apparatus to the plasma membrane (PM) and/or cell plate. This structure is consisted with clustered vesicles and was thus named the secretory vesicle cluster (SVC). Here, we have utilized the reversible photoswitching fluorescent protein Dronpa1 to trace the movement of SCAMP2 on the PM and cell plate. Activated SCAMP2-Dronpa fluorescence on the PM and cell plate moved into the BY-2 cells within several minutes, but did not spread around PM. This is consistent with recycling of SCAMP2 among endomembrane compartments such as the TGN, PM and cell plate. The relationship between SVC-mediated trafficking and exo- and endocytosis of plant cells is discussed taking into account this new data and knowledge provided by recent reports.
Collapse
Affiliation(s)
| | - Ken Matsuoka
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama Japan
- Laboratory of Plant Nutrition; Faculty of Agriculture; Kyushu University, Higashi-ku, Fukuoka Japan
| |
Collapse
|
39
|
Mota LJ, Ramsden AE, Liu M, Castle JD, Holden DW. SCAMP3 is a component of the Salmonella-induced tubular network and reveals an interaction between bacterial effectors and post-Golgi trafficking. Cell Microbiol 2009; 11:1236-53. [PMID: 19438519 PMCID: PMC2730479 DOI: 10.1111/j.1462-5822.2009.01329.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 04/21/2009] [Indexed: 11/26/2022]
Abstract
Salmonella enterica are facultative intracellular bacterial pathogens that proliferate within host cells in a membrane-bounded compartment, the Salmonella-containing vacuole (SCV). Intracellular replication of Salmonella is mediated by bacterial effectors translocated on to the cytoplasmic face of the SCV membrane by a type III secretion system. Some of these effectors manipulate the host endocytic pathway, resulting in the formation in epithelial cells of tubules enriched in late endosomal markers, known as Salmonella-induced filaments (SIFs). However, much less is known about possible interference of Salmonella with the secretory pathway. Here, a small-interference RNA screen revealed that secretory carrier membrane proteins (SCAMPs) 2 and 3 contribute to the maintenance of SCVs in the Golgi region of HeLa cells. This is likely to reflect a function of SCAMPs in vacuolar membrane dynamics. Moreover, SCAMP3, which accumulates on the trans-Golgi network in uninfected cells, marked tubules induced by Salmonella effectors that overlapped with SIFs but which also comprised distinct tubules lacking late endosomal proteins. We propose that SCAMP3 tubules reflect a manipulation of specific post-Golgi trafficking that might allow Salmonella to acquire nutrients and membrane, or to control host immune responses.
Collapse
Affiliation(s)
- Luís Jaime Mota
- Centre for Molecular Microbiology and Infection, Imperial College LondonArmstrong Road, London SW7 2AZ, UK.
| | - Amy E Ramsden
- Centre for Molecular Microbiology and Infection, Imperial College LondonArmstrong Road, London SW7 2AZ, UK.
| | - Mei Liu
- Centre for Molecular Microbiology and Infection, Imperial College LondonArmstrong Road, London SW7 2AZ, UK.
| | - J David Castle
- Department of Cell Biology and Cell and Developmental Biology Program, University of VirginiaCharlottesville, VA 22908, USA.
| | - David W Holden
- Centre for Molecular Microbiology and Infection, Imperial College LondonArmstrong Road, London SW7 2AZ, UK.
| |
Collapse
|
40
|
Muretta JM, Mastick CC. How insulin regulates glucose transport in adipocytes. VITAMINS AND HORMONES 2009; 80:245-86. [PMID: 19251041 DOI: 10.1016/s0083-6729(08)00610-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Insulin stimulates glucose storage and metabolism by the tissues of the body, predominantly liver, muscle and fat. Storage in muscle and fat is controlled to a large extent by the rate of facilitative glucose transport across the plasma membrane of the muscle and fat cells. Insulin controls this transport. Exactly how remains debated. Work presented in this review focuses on the pathways responsible for the regulation of glucose transport by insulin. We present some historical work to show how the prevailing model for regulation of glucose transport by insulin was originally developed, then some more recent data challenging this model. We finish describing a unifying model for the control of glucose transport, and some very recent data illustrating potential molecular machinery underlying this regulation. This review is meant to give an overview of our current understanding of the regulation of glucose transport through the regulation of the trafficking of Glut4, highlighting important questions that remain to be answered. A more detailed treatment of specific aspects of this pathway can be found in several excellent recent reviews (Brozinick et al., 2007 Hou and Pessin, 2007; Huang and Czech, 2007;Larance et al., 2008 Sakamoto and Holman, 2008; Watson and Pessin, 2007; Zaid et al., 2008)One of the main objectives of this review is to discuss the results of the experiments measuring the kinetics of Glut4 movement between subcellular compartments in the context of our emerging model of the Glut4 trafficking pathway.
Collapse
Affiliation(s)
- Joseph M Muretta
- Department of Biochemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
41
|
O'Gorman GM, Park SDE, Hill EW, Meade KG, Coussens PM, Agaba M, Naessens J, Kemp SJ, MacHugh DE. Transcriptional profiling of cattle infected with Trypanosoma congolense highlights gene expression signatures underlying trypanotolerance and trypanosusceptibility. BMC Genomics 2009; 10:207. [PMID: 19409086 PMCID: PMC2685408 DOI: 10.1186/1471-2164-10-207] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 05/01/2009] [Indexed: 11/14/2022] Open
Abstract
Background African animal trypanosomiasis (AAT) caused by tsetse fly-transmitted protozoa of the genus Trypanosoma is a major constraint on livestock and agricultural production in Africa and is among the top ten global cattle diseases impacting on the poor. Here we show that a functional genomics approach can be used to identify temporal changes in host peripheral blood mononuclear cell (PBMC) gene expression due to disease progression. We also show that major gene expression differences exist between cattle from trypanotolerant and trypanosusceptible breeds. Using bovine long oligonucleotide microarrays and real time quantitative reverse transcription PCR (qRT-PCR) validation we analysed PBMC gene expression in naïve trypanotolerant and trypanosusceptible cattle experimentally challenged with Trypanosoma congolense across a 34-day infection time course. Results Trypanotolerant N'Dama cattle displayed a rapid and distinct transcriptional response to infection, with a ten-fold higher number of genes differentially expressed at day 14 post-infection compared to trypanosusceptible Boran cattle. These analyses identified coordinated temporal gene expression changes for both breeds in response to trypanosome infection. In addition, a panel of genes were identified that showed pronounced differences in gene expression between the two breeds, which may underlie the phenomena of trypanotolerance and trypanosusceptibility. Gene ontology (GO) analysis demonstrate that the products of these genes may contribute to increased mitochondrial mRNA translational efficiency, a more pronounced B cell response, an elevated activation status and a heightened response to stress in trypanotolerant cattle. Conclusion This study has revealed an extensive and diverse range of cellular processes that are altered temporally in response to trypanosome infection in African cattle. Results indicate that the trypanotolerant N'Dama cattle respond more rapidly and with a greater magnitude to infection compared to the trypanosusceptible Boran cattle. Specifically, a subset of the genes analyzed by real time qRT-PCR, which display significant breed differences, could collectively contribute to the trypanotolerance trait in N'Dama.
Collapse
Affiliation(s)
- Grace M O'Gorman
- Animal Genomics Laboratory, UCD School of Agriculture, Food Science and Veterinary Medicine, UCD College of Life Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Han C, Chen T, Yang M, Li N, Liu H, Cao X. Human SCAMP5, a novel secretory carrier membrane protein, facilitates calcium-triggered cytokine secretion by interaction with SNARE machinery. THE JOURNAL OF IMMUNOLOGY 2009; 182:2986-96. [PMID: 19234194 DOI: 10.4049/jimmunol.0802002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytokines produced by immune cells play pivotal roles in the regulation of both innate and adaptive immunity. However, the mechanisms controlling secretion of cytokines have not been fully elucidated. Secretory carrier membrane proteins (SCAMPs) are widely distributed integral membrane molecules implicated in regulating vesicular transport. In this study, we report the functional characterization of human SCAMP5 (hSCAMP5), a novel SCAMP protein that is widely expressed by a variety of neuronal and nonneuronal tissues and cells. By measuring the cytokine secretion (RANTES/CCL5 and IL-1beta) as an exocytotic model, we show that hSCAMP5 can promote the calcium-regulated signal peptide-containing cytokine (CCL5 but not IL-1beta) secretion in human epithelial cancer cells, human monocytes, and mouse macrophages. By using subcellular fractionation, immunofluorescence confocal microscopy, and membrane vesicle immunoisolation methods, we find that hSCAMP5 is mainly localized in the Golgi-associated compartments, and the calcium ionophore ionomycin can trigger a rapid translocation of hSCAMP5 from Golgi apparatus to plasma membrane along the classical exocytosis pathway. During the translocation of hSCAMP5 from Golgi apparatus to plasma membrane, hSCAMP5 can codistribute and complex with local soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) molecules. We further demonstrate that hSCAMP5 can directly interact with the calcium sensor synaptotagmins via the cytosolic C-terminal tail of hSCAMP5, thus providing a potential molecular mechanism linking SCAMPs with the SNARE molecules. Our findings suggest that hSCAMP5, in cooperation with the SNARE machinery, is involved in calcium-regulated exocytosis of signal peptide-containing cytokines.
Collapse
Affiliation(s)
- Chaofeng Han
- Institute of Immunology, Tsinghua University School of Medicine, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
43
|
Toyooka K, Goto Y, Asatsuma S, Koizumi M, Mitsui T, Matsuoka K. A mobile secretory vesicle cluster involved in mass transport from the Golgi to the plant cell exterior. THE PLANT CELL 2009; 21:1212-29. [PMID: 19376937 PMCID: PMC2685622 DOI: 10.1105/tpc.108.058933] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 03/08/2009] [Accepted: 03/30/2009] [Indexed: 05/17/2023]
Abstract
Secretory proteins and extracellular glycans are transported to the extracellular space during cell growth. These materials are carried in secretory vesicles generated at the trans-Golgi network (TGN). Analysis of the mammalian post-Golgi secretory pathway demonstrated the movement of separated secretory vesicles in the cell. Using secretory carrier membrane protein 2 (SCAMP2) as a marker for secretory vesicles and tobacco (Nicotiana tabacum) BY-2 cell as a model cell, we characterized the transport machinery in plant cells. A combination of analyses, including electron microscopy of quick-frozen cells and four-dimensional analysis of cells expressing fluorescent-tagged SCAMP2, enabled the identification of a clustered structure of secretory vesicles generated from TGN that moves in the cell and eventually fuses with plasma membrane. This structure was termed the secretory vesicle cluster (SVC). The SVC was also found in Arabidopsis thaliana and rice (Oryza sativa) cells and moved to the cell plate in dividing tobacco cells. Thus, the SVC is a motile structure involved in mass transport from the Golgi to the plasma membrane and cell plate in plant cells.
Collapse
Affiliation(s)
- Kiminori Toyooka
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Qing DJ, Lu HF, Li N, Dong HT, Dong DF, Li YZ. Comparative profiles of gene expression in leaves and roots of maize seedlings under conditions of salt stress and the removal of salt stress. PLANT & CELL PHYSIOLOGY 2009; 50:889-903. [PMID: 19264788 DOI: 10.1093/pcp/pcp038] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We studied the transcriptional profiles of leaves and roots of three-leaf stage seedlings of the maize inbred line YQ7-96 under conditions of salt stress (100 mM NaCl) and removal of salt stress (RSS). A total of 296 genes were regulated specifically by the stress, of which 206 were specific to leaves and 90 were specific to roots. Stress-regulated genes were classified into eight and seven expression patterns for leaves and roots, respectively. There were 60 genes which were regulated specifically by RSS, 27 of which were specific to leaves and 33 specific to roots. No genes were found to be co-regulated in tissues and to be regulated commonly by the stress and RSS. It can be concluded that (i) at the early stage of the stress, transcriptional responses are directed at water deficit in maize leaves but at both water deficit and Na+ accumulation in roots; (ii) at the later stage, the responses in leaves and roots result from dual effects of both water deficit and Na+ accumulation; (iii) the polyamine metabolic pathway is an important linker for the co-ordination between leaves and roots to accomplish the tolerance of the whole maize plant to the stress; (iv) the stress can lead to genomic restructuring and nuclear transport in maize; (v) maize leaves are distinct from roots in terms of molecular mechanisms for responses to and growth recovery from the stress; and (vi) mechanisms for the maize responses to the stress differ from those for their growth recovery during RSS.
Collapse
Affiliation(s)
- Dong-Jin Qing
- Guangxi Key Laboratory of Subtropical Bioresource Conservation and Utilization, Guangxi University, Nanning, Guangxi 530005, PR China
| | | | | | | | | | | |
Collapse
|
45
|
Diering GH, Church J, Numata M. Secretory Carrier Membrane Protein 2 Regulates Cell-surface Targeting of Brain-enriched Na+/H+ Exchanger NHE5. J Biol Chem 2009; 284:13892-13903. [PMID: 19276089 DOI: 10.1074/jbc.m807055200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
NHE5 is a brain-enriched Na(+)/H(+) exchanger that dynamically shuttles between the plasma membrane and recycling endosomes, serving as a mechanism that acutely controls the local pH environment. In the current study we show that secretory carrier membrane proteins (SCAMPs), a group of tetraspanning integral membrane proteins that reside in multiple secretory and endocytic organelles, bind to NHE5 and co-localize predominantly in the recycling endosomes. In vitro protein-protein interaction assays revealed that NHE5 directly binds to the N- and C-terminal cytosolic extensions of SCAMP2. Heterologous expression of SCAMP2 but not SCAMP5 increased cell-surface abundance as well as transporter activity of NHE5 across the plasma membrane. Expression of a deletion mutant lacking the SCAMP2-specific N-terminal cytosolic domain, and a mini-gene encoding the N-terminal extension, reduced the transporter activity. Although both Arf6 and Rab11 positively regulate NHE5 cell-surface targeting and NHE5 activity across the plasma membrane, SCAMP2-mediated surface targeting of NHE5 was reversed by dominant-negative Arf6 but not by dominant-negative Rab11. Together, these results suggest that SCAMP2 regulates NHE5 transit through recycling endosomes and promotes its surface targeting in an Arf6-dependent manner.
Collapse
Affiliation(s)
- Graham H Diering
- Departments of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - John Church
- Cellular and Physiological Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Masayuki Numata
- Departments of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
46
|
Agarwal N, Shusta EV. Multiplex expression cloning of blood-brain barrier membrane proteins. Proteomics 2009; 9:1099-108. [PMID: 19180536 PMCID: PMC2644738 DOI: 10.1002/pmic.200800368] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Indexed: 12/18/2022]
Abstract
The blood-brain barrier (BBB) is a vascular endothelial interface that separates the brain interior from the bloodstream. Membrane proteins resident at the BBB play important functional and regulatory roles. The current study describes the development and successful implementation of a multiplex expression cloning (MEC) method to allow facile identification of BBB membrane proteins. The overriding goal of the MEC approach was to mine a BBB cDNA library and selectively isolate membrane protein-encoding cDNAs. This selection process was achieved via fluorescence-activated cell sorting (FACS) of cDNA-expressing mammalian host cells for those cells that were immunolabeled with a BBB membrane protein-specific polyclonal antiserum (BMSPA). After optimization of the host cell expression system, four selection rounds allowed the isolation of a panel of 15 unique cDNAs that encoded BBB membrane proteins. The identified proteins display significant diversity in structure, function and in vivo expression levels. The MEC approach thus proved effective for conducting moderate throughput membrane proteome analyses of the BBB while limiting any biases caused by membrane protein insolubility or low in vivo expression levels that can complicate other proteomic approaches.
Collapse
Affiliation(s)
- Nitin Agarwal
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Eric V. Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| |
Collapse
|
47
|
Aoh QL, Castle AM, Hubbard CH, Katsumata O, Castle JD. SCAMP3 negatively regulates epidermal growth factor receptor degradation and promotes receptor recycling. Mol Biol Cell 2009; 20:1816-32. [PMID: 19158374 DOI: 10.1091/mbc.e08-09-0894] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is targeted for lysosomal degradation by ubiquitin-mediated interactions with the ESCRTs (endosomal-sorting complexes required for transport) in multivesicular bodies (MVBs). We show that secretory carrier membrane protein, SCAMP3, localizes in part to early endosomes and negatively regulates EGFR degradation through processes that involve its ubiquitylation and interactions with ESCRTs. SCAMP3 is multimonoubiquitylated and is able to associate with Nedd4 HECT ubiquitin ligases and the ESCRT-I subunit Tsg101 via its PY and PSAP motifs, respectively. SCAMP3 also associates with the ESCRT-0 subunit Hrs. Depletion of SCAMP3 in HeLa cells by inhibitory RNA accelerated degradation of EGFR and EGF while inhibiting recycling. Conversely, overexpression enhanced EGFR recycling unless ubiquitylatable lysines, PY or PSAP motifs in SCAMP3 were mutated. Notably, dual depletions of SCAMP3 and ESCRT subunits suggest that SCAMP3 has a distinct function in parallel with the ESCRTs that regulates receptor degradation. This function may affect trafficking of receptors from prelysosomal compartments as SCAMP3 depletion appeared to sustain the incidence of EGFR-containing MVBs detected by immunoelectron microscopy. Together, our results suggest that SCAMP3, its modification with ubiquitin, and its interactions with ESCRTs coordinately regulate endosomal pathways and affect the efficiency of receptor down-regulation.
Collapse
Affiliation(s)
- Quyen L Aoh
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
48
|
Chen X, Ulintz PJ, Simon ES, Williams JA, Andrews PC. Global topology analysis of pancreatic zymogen granule membrane proteins. Mol Cell Proteomics 2008; 7:2323-36. [PMID: 18682380 DOI: 10.1074/mcp.m700575-mcp200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The zymogen granule is the specialized organelle in pancreatic acinar cells for digestive enzyme storage and regulated secretion and is a classic model for studying secretory granule function. Our long term goal is to develop a comprehensive architectural model for zymogen granule membrane (ZGM) proteins that would direct new hypotheses for subsequent functional studies. Our initial proteomics analysis focused on identification of proteins from purified ZGM (Chen, X., Walker, A. K., Strahler, J. R., Simon, E. S., Tomanicek-Volk, S. L., Nelson, B. B., Hurley, M. C., Ernst, S. A., Williams, J. A., and Andrews, P. C. (2006) Organellar proteomics: analysis of pancreatic zymogen granule membranes. Mol. Cell. Proteomics 5, 306-312). In the current study, a new global topology analysis of ZGM proteins is described that applies isotope enrichment methods to a protease protection protocol. Our results showed that tryptic peptides of ZGM proteins were separated into two distinct clusters according to their isobaric tag for relative and absolute quantification (iTRAQ) ratios for proteinase K-treated versus control zymogen granules. The low iTRAQ ratio cluster included cytoplasm-orientated membrane and membrane-associated proteins including myosin V, vesicle-associated membrane proteins, syntaxins, and all the Rab proteins. The second cluster having unchanged ratios included predominantly luminal proteins. Because quantification is at the peptide level, this technique is also capable of mapping both cytoplasm- and lumen-orientated domains from the same transmembrane protein. To more accurately assign the topology, we developed a statistical mixture model to provide probabilities for identified peptides to be cytoplasmic or luminal based on their iTRAQ ratios. By implementing this approach to global topology analysis of ZGM proteins, we report here an experimentally constrained, comprehensive topology model of identified zymogen granule membrane proteins. This model contributes to a firm foundation for developing a higher order architecture model of the ZGM and for future functional studies of individual ZGM proteins.
Collapse
Affiliation(s)
- Xuequn Chen
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | |
Collapse
|
49
|
Lam SK, Cai Y, Hillmer S, Robinson DG, Jiang L. SCAMPs highlight the developing cell plate during cytokinesis in tobacco BY-2 cells. PLANT PHYSIOLOGY 2008; 147:1637-45. [PMID: 18508957 PMCID: PMC2492649 DOI: 10.1104/pp.108.119925] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 05/19/2008] [Indexed: 05/17/2023]
Abstract
We previously demonstrated that rice (Oryza sativa) SECRETORY CARRIER MEMBRANE PROTEIN1 (OsSCAMP1)-yellow fluorescent protein in transgenic tobacco (Nicotiana tabacum) Bright Yellow-2 cells locates to the plasma membrane and to motile punctate structures, which represent the trans-Golgi network/early endosome and are tubular-vesicular in nature. Here, we now show that SCAMPs are diverted to the cell plate during cytokinesis dividing Bright Yellow-2 cells. As cells progress from metaphase to cytokinesis, punctate OsSCAMP1-labeled structures begin to collect in the future division plane. Together with the internalized endosomal marker FM4-64, they then become incorporated into the cell plate as it forms and expands. This was confirmed by immunogold electron microscopy. We also monitored for the Golgi apparatus and the prevacuolar compartment (PVC)/multivesicular body. Golgi stacks tend to accumulate in the vicinity of the division plane, but the signals are clearly separate to the cell plate. The situation with the PVC (labeled by green fluorescent protein-BP-80) is not so clear. Punctate BP-80 signals are seen at the advancing periphery of the cell plate, which was confirmed by immunogold electron microscopy. Specific but weak labeling was observed in the cell plate, but no evidence for a fusion of the PVC/multivesicular body with the cell plate could be obtained. Our data, therefore, support the notion that cell plate formation is mainly a secretory process involving mass incorporation of domains of the trans-Golgi network/early endosome membrane. We regard the involvement of multivesicular late endosomes in this process to be equivocal.
Collapse
Affiliation(s)
- Sheung Kwan Lam
- Department of Biology and Molecular Biotechnology Program, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | |
Collapse
|
50
|
Liao H, Zhang J, Shestopal S, Szabo G, Castle A, Castle D. Nonredundant function of secretory carrier membrane protein isoforms in dense core vesicle exocytosis. Am J Physiol Cell Physiol 2008; 294:C797-809. [DOI: 10.1152/ajpcell.00493.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Five secretory carrier membrane proteins (SCAMP-1, -2, -3, -4, and -5) have been characterized in mammalian cells. Previously, SCAMP-1 and -2 have been implicated to function in exocytosis. RNA inhibitor-mediated deficiency of one or both of these SCAMPs interferes with dense core vesicle (DCV) exocytosis in neuroendocrine PC12 cells as detected by amperometry. Knockdowns of these SCAMPs each decreased the number and frequency of depolarization-induced exocytotic events. SCAMP-2 but not SCAMP-1 depletion also delayed the onset of exocytosis. Both knockdowns, however, altered fusion pore dynamics, increasing rapid pore closure and decreasing pore dilation. In contrast, knockdowns of SCAMP-3 and -5 only interfered with the frequency of fusion pore opening and did not affect the dynamics of newly opened pores. None of the knockdowns noticeably affected upstream events, including the distribution of DCVs near the plasma membrane and calcium signaling kinetics, although norepinephrine uptake/storage was moderately decreased by deficiency of SCAMP-1 and -5. Thus, SCAMP-1 and -2 are most closely linked to the final events of exocytosis. Other SCAMPs collaborate in regulating fusion sites, but the roles of individual isoforms appear at least partially distinct.
Collapse
|