1
|
Artemenko Y, Niu G, Arnold ME, Roberts KE, Fernandez BN, Flores T, McClave HD, Paestella M, Borleis J, Devreotes PN. A negative feedback loop between small GTPase Rap1 and mammalian tumor suppressor homologue KrsB regulates cell-substrate adhesion in Dictyostelium. Mol Biol Cell 2025; 36:ar43. [PMID: 39937679 PMCID: PMC12005108 DOI: 10.1091/mbc.e24-11-0507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025] Open
Abstract
Cell adhesion to the substrate influences a variety of cell behaviors and its proper regulation is essential for migration, although details of the molecular pathways regulating cell adhesion during migration are lacking. Rap1 is a small GTPase that regulates adhesion in mammalian cells, as well as in Dictyostelium discoideum social amoeba, which is an established model for studying directed cell migration. In Dictyostelium, Rap1 controls adhesion via its effects on adhesion mediator talin and Ser/Thr kinase Phg2, which inhibits myosin II function. Kinase responsive to stress B (KrsB), a homologue of mammalian tumor suppressor MST1/2 and Drosophila Hippo, also regulates cell adhesion and migration, although the molecular mechanism of KrsB action is not understood. Because KrsB has been shown to interact with active Rap1 by mass spectroscopy, we investigated the genetic interaction between Rap1 and KrsB. Cells lacking KrsB have increased adhesion to the substrate, which leads to reduced movement. Expression of constitutively active Rap1 G12V increased cell spreading and adhesion even in the absence of KrsB, suggesting that Rap1 does not require KrsB to mediate cell adhesion. In contrast, KrsB activation requires Rap1 since dominant-negative Rap1 S17N impaired KrsB phosphorylation, which has been previously shown to be necessary for KrsB activity and its function in adhesion. Even though Rap1 did not require KrsB for its function in adhesion, KrsB negatively regulates Rap1 function as seen by increased cortical localization of active Rap1 in KrsB-null cells. Consistently, Rap1 S17N completely reversed the overadhesive phenotype of KrsB-null cells. Furthermore, chemoattractant-induced activation of downstream effectors of Rap1, TalB and Phg2, was increased in the absence of KrsB. Taken together, these findings suggest that Rap1 leads to activation of KrsB, which inhibits Rap1 and its downstream targets, shutting off adhesion. The existence of a negative feedback loop between Rap1 and KrsB may contribute to the dynamic regulation of cell adhesion that is necessary for rapid amoeboid-type migration.
Collapse
Affiliation(s)
- Yulia Artemenko
- Department of Biological Sciences, SUNY Oswego, Oswego, NY 13126
| | - Gengle Niu
- Department of Biological Sciences, SUNY Oswego, Oswego, NY 13126
| | - Megan E. Arnold
- Department of Biological Sciences, SUNY Oswego, Oswego, NY 13126
| | | | | | - Tiffany Flores
- Department of Biological Sciences, SUNY Oswego, Oswego, NY 13126
| | | | | | - Jane Borleis
- Department of Cell biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Peter N. Devreotes
- Department of Cell biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
2
|
Mijanović L, Putar D, Mimica L, Klajn S, Filić V, Weber I. The IQGAP-related RasGAP IqgC regulates cell-substratum adhesion in Dictyostelium discoideum. Cell Mol Biol Lett 2025; 30:4. [PMID: 39789437 PMCID: PMC11720917 DOI: 10.1186/s11658-024-00678-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025] Open
Abstract
Proper adhesion of cells to their environment is essential for the normal functioning of single cells and multicellular organisms. To attach to the extracellular matrix (ECM), mammalian cells form integrin adhesion complexes consisting of many proteins that together link the ECM and the actin cytoskeleton. Similar to mammalian cells, the amoeboid cells of the protist Dictyostelium discoideum also use multiprotein adhesion complexes to control their attachment to the underlying surface. However, the exact composition of the multiprotein complexes and the signaling pathways involved in the regulation of adhesion in D. discoideum have not yet been elucidated. Here, we show that the IQGAP-related protein IqgC is important for normal attachment of D. discoideum cells to the substratum. Mutant iqgC-null cells have impaired adhesion, whereas overexpression of IqgC promotes directional migration. A RasGAP C-terminal (RGCt) domain of IqgC is sufficient for its localization in the ventral adhesion focal complexes, while RasGAP activity of a GAP-related domain (GRD) is additionally required for the proper function of IqgC in adhesion. We identify the small GTPase RapA as a novel direct IqgC interactor and show that IqgC participates in a RapA-regulated signaling pathway targeting the adhesion complexes that include talin A, myosin VII, and paxillin B. On the basis of our results, we propose that IqgC is a positive regulator of adhesion, responsible for the strengthening of ventral adhesion structures and for the temporal control of their subsequent degradation.
Collapse
Affiliation(s)
- Lucija Mijanović
- Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Darija Putar
- Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Lucija Mimica
- Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Sabina Klajn
- Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Vedrana Filić
- Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Igor Weber
- Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
3
|
Nichols RA, Ide AD, Morrison CT, Anger AL, Buccilli MJ, Damer CK. Copine C plays a role in adhesion and streaming in Dictyostelium. Cell Adh Migr 2024; 18:1-19. [PMID: 38378453 PMCID: PMC10880500 DOI: 10.1080/19336918.2024.2315629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
Copines are a family of calcium-dependent membrane-binding proteins. To study these proteins, anull mutant for cpnC was created in Dictyostelium, which has six copines genes (cpnA-cpnF). During development, cpnC- cells were able to aggregate, but did not form streams. Once aggregated into mounds, they formed large ring structures. cpnC- cells were less adherent to plastic substrates, but more adherent to other cells. These phenotypes correlated with changes in adhesion protein expression with decreased expression of SibA and increased expression of CsaA in developing cpnC- cells. We also measured the expression of RegA, a cAMP phosphodiesterase, and found that cpnC- cells have reduced RegA expression. The reduced RegA expression in cpnC- cells is most likely responsible for the observed phenotypes.
Collapse
Affiliation(s)
- Rodney A. Nichols
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Amber D. Ide
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Cody T. Morrison
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Amber L. Anger
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | | | - Cynthia K. Damer
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
4
|
Shirokawa Y, Shimada M, Shimada N, Sawai S. Prestalk-like positioning of de-differentiated cells in the social amoeba Dictyostelium discoideum. Sci Rep 2024; 14:7677. [PMID: 38561423 PMCID: PMC10985001 DOI: 10.1038/s41598-024-58277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
The social amoeba Dictyostelium discoideum switches between solitary growth and social fruitification depending on nutrient availability. Under starvation, cells aggregate and form fruiting bodies consisting of spores and altruistic stalk cells. Once cells socially committed, they complete fruitification, even if a new source of nutrients becomes available. This social commitment is puzzling because it hinders individual cells from resuming solitary growth quickly. One idea posits that traits that facilitate premature de-commitment are hindered from being selected. We studied outcomes of the premature de-commitment through forced refeeding. Our results show that when refed cells interacted with non-refed cells, some of them became solitary, whereas a fraction was redirected to the altruistic stalk, regardless of their original fate. The refed cells exhibited reduced cohesiveness and were sorted out during morphogenesis. Our findings provide an insight into a division of labor of the social amoeba, in which less cohesive individuals become altruists.
Collapse
Affiliation(s)
- Yuka Shirokawa
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, 153-8902, Japan.
| | - Masakazu Shimada
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, 153-8902, Japan
| | - Nao Shimada
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, 153-8902, Japan
| | - Satoshi Sawai
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, 153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Tokyo, 153-8902, Japan
| |
Collapse
|
5
|
Fierro Morales JC, Redfearn C, Titus MA, Roh-Johnson M. Reduced PaxillinB localization to cell-substrate adhesions promotes cell migration in Dictyostelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585764. [PMID: 38562712 PMCID: PMC10983970 DOI: 10.1101/2024.03.19.585764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Many cells adhere to extracellular matrix for efficient cell migration. This adhesion is mediated by focal adhesions, a protein complex linking the extracellular matrix to the intracellular cytoskeleton. Focal adhesions have been studied extensively in mesenchymal cells, but recent research in physiological contexts and amoeboid cells suggest focal adhesion regulation differs from the mesenchymal focal adhesion paradigm. We used Dictyostelium discoideum to uncover new mechanisms of focal adhesion regulation, as Dictyostelium are amoeboid cells that form focal adhesion-like structures for migration. We show that PaxillinB, the Dictyostelium homologue of Paxillin, localizes to dynamic focal adhesion-like structures during Dictyostelium migration. Unexpectedly, reduced PaxillinB recruitment to these structures increases Dictyostelium cell migration. Quantitative analysis of focal adhesion size and dynamics show that lack of PaxillinB recruitment to focal adhesions does not alter focal adhesion size, but rather increases focal adhesion turnover. These findings are in direct contrast to Paxillin function at focal adhesions during mesenchymal migration, challenging the established focal adhesion model.
Collapse
Affiliation(s)
| | - Chandler Redfearn
- Department of Kinesiology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Margaret A Titus
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Minna Roh-Johnson
- Department of Biochemistry, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Kinesiology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Hijazi N, Shi Z, Rockey DC. Paxillin regulates liver fibrosis via actin polymerization and ERK activation in hepatic stellate cells. J Cell Sci 2023; 136:jcs261122. [PMID: 37667902 PMCID: PMC10560551 DOI: 10.1242/jcs.261122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023] Open
Abstract
Liver injury leads to fibrosis and cirrhosis. The primary mechanism underlying the fibrogenic response is the activation of hepatic stellate cells (HSCs), which are 'quiescent' in normal liver but become 'activated' after injury by transdifferentiating into extracellular matrix (ECM)-secreting myofibroblasts. Given that integrins are important in HSC activation and fibrogenesis, we hypothesized that paxillin, a key downstream effector in integrin signaling, might be critical in the fibrosis pathway. Using a cell-culture-based model of HSC activation and in vivo models of liver injury, we found that paxillin is upregulated in activated HSCs and fibrotic livers. Overexpression of paxillin (both in vitro and in vivo) led to increased ECM protein expression, and depletion of paxillin in a novel conditional mouse injury model reduced fibrosis. The mechanism by which paxillin mediated this effect appeared to be through the actin cytoskeleton, which signals to the ERK pathway and induces ECM protein production. These data highlight a novel role for paxillin in HSC biology and fibrosis.
Collapse
Affiliation(s)
- Nour Hijazi
- Digestive Disease Research Center Core, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zengdun Shi
- Digestive Disease Research Center Core, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Don C. Rockey
- Digestive Disease Research Center Core, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
7
|
Abstract
A signature feature of the animal kingdom is the presence of epithelia: sheets of polarized cells that both insulate the organism from its environment and mediate interactions with it. Epithelial cells display a marked apico-basal polarity, which is highly conserved across the animal kingdom, both in terms of morphology and of molecular regulators. How did this architecture first evolve? Although the last eukaryotic common ancestor almost certainly possessed a simple form of apico-basal polarity (marked by the presence of one or several flagella at a single cellular pole), comparative genomics and evolutionary cell biology reveal that the polarity regulators of animal epithelial cells have a surprisingly complex and stepwise evolutionary history. Here, we retrace their evolutionary assembly. We suggest that the "polarity network" that polarized animal epithelial cells evolved by integration of initially independent cellular modules that evolved at distinct steps of our evolutionary ancestry. The first module dates back to the last common ancestor of animals and amoebozoans and involved Par1, extracellular matrix proteins, and the integrin-mediated adhesion complex. Other regulators, such as Cdc42, Dlg, Par6 and cadherins evolved in ancient unicellular opisthokonts, and might have first been involved in F-actin remodeling and filopodial dynamics. Finally, the bulk of "polarity proteins" as well as specialized adhesion complexes evolved in the metazoan stem-line, in concert with the newly evolved intercellular junctional belts. Thus, the polarized architecture of epithelia can be understood as a palimpsest of components of distinct histories and ancestral functions, which have become tightly integrated in animal tissues.
Collapse
|
8
|
Kim WD, Huber RJ. An altered transcriptome underlies cln5-deficiency phenotypes in Dictyostelium discoideum. Front Genet 2022; 13:1045738. [DOI: 10.3389/fgene.2022.1045738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Mutations in CLN5 cause a subtype of neuronal ceroid lipofuscinosis (NCL) called CLN5 disease. The NCLs, commonly referred to as Batten disease, are a family of neurodegenerative lysosomal storage diseases that affect all ages and ethnicities globally. Previous research showed that CLN5 participates in a variety of cellular processes. However, the precise function of CLN5 in the cell and the pathway(s) regulating its function are not well understood. In the model organism Dictyostelium discoideum, loss of the CLN5 homolog, cln5, impacts various cellular and developmental processes including cell proliferation, cytokinesis, aggregation, cell adhesion, and terminal differentiation. In this study, we used comparative transcriptomics to identify differentially expressed genes underlying cln5-deficiency phenotypes during growth and the early stages of multicellular development. During growth, genes associated with protein ubiquitination/deubiquitination, cell cycle progression, and proteasomal degradation were affected, while genes linked to protein and carbohydrate catabolism were affected during early development. We followed up this analysis by showing that loss of cln5 alters the intracellular and extracellular amounts of proliferation repressors during growth and increases the extracellular amount of conditioned medium factor, which regulates cAMP signalling during the early stages of development. Additionally, cln5- cells displayed increased intracellular and extracellular amounts of discoidin, which is involved in cell-substrate adhesion and migration. Previous work in mammalian models reported altered lysosomal enzyme activity due to mutation or loss of CLN5. Here, we detected altered intracellular activities of various carbohydrate enzymes and cathepsins during cln5- growth and starvation. Notably, cln5- cells displayed reduced β-hexosaminidase activity, which aligns with previous work showing that D. discoideum Cln5 and human CLN5 can cleave the substrate acted upon by β-hexosaminidase. Finally, consistent with the differential expression of genes associated with proteasomal degradation in cln5- cells, we also observed elevated amounts of a proteasome subunit and reduced proteasome 20S activity during cln5- growth and starvation. Overall, this study reveals the impact of cln5-deficiency on gene expression in D. discoideum, provides insight on the genes and proteins that play a role in regulating Cln5-dependent processes, and sheds light on the molecular mechanisms underlying CLN5 disease.
Collapse
|
9
|
Fierro Morales JC, Xue Q, Roh-Johnson M. An evolutionary and physiological perspective on cell-substrate adhesion machinery for cell migration. Front Cell Dev Biol 2022; 10:943606. [PMID: 36092727 PMCID: PMC9453864 DOI: 10.3389/fcell.2022.943606] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-substrate adhesion is a critical aspect of many forms of cell migration. Cell adhesion to an extracellular matrix (ECM) generates traction forces necessary for efficient migration. One of the most well-studied structures cells use to adhere to the ECM is focal adhesions, which are composed of a multilayered protein complex physically linking the ECM to the intracellular actin cytoskeleton. Much of our understanding of focal adhesions, however, is primarily derived from in vitro studies in Metazoan systems. Though these studies provide a valuable foundation to the cell-substrate adhesion field, the evolution of cell-substrate adhesion machinery across evolutionary space and the role of focal adhesions in vivo are largely understudied within the field. Furthering investigation in these areas is necessary to bolster our understanding of the role cell-substrate adhesion machinery across Eukaryotes plays during cell migration in physiological contexts such as cancer and pathogenesis. In this review, we review studies of cell-substrate adhesion machinery in organisms evolutionary distant from Metazoa and cover the current understanding and ongoing work on how focal adhesions function in single and collective cell migration in an in vivo environment, with an emphasis on work that directly visualizes cell-substrate adhesions. Finally, we discuss nuances that ought to be considered moving forward and the importance of future investigation in these emerging fields for application in other fields pertinent to adhesion-based processes.
Collapse
Affiliation(s)
| | | | - Minna Roh-Johnson
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
10
|
Adiba S, Forget M, De Monte S. Evolving social behaviour through selection of single-cell adhesion in Dictyostelium discoideum. iScience 2022; 25:105006. [PMID: 36105585 PMCID: PMC9464967 DOI: 10.1016/j.isci.2022.105006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/09/2022] [Accepted: 08/19/2022] [Indexed: 11/30/2022] Open
Abstract
The social amoeba Dictyostelium discoideum commonly forms chimeric fruiting bodies. Genetic variants that produce a higher proportion of spores are predicted to undercut multicellular organization unless cooperators assort positively. Cell adhesion is considered a primary factor driving such assortment, but evolution of adhesion has not been experimentally connected to changes in social performance. We modified by experimental evolution the efficiency of individual cells in attaching to a surface. Surprisingly, evolution appears to have produced social cooperators irrespective of whether stronger or weaker adhesion was selected. Quantification of reproductive success, cell-cell adhesion, and developmental patterns, however, revealed two distinct social behaviors, as captured when the classical metric for social success is generalized by considering clonal spore production. Our work shows that cell mechanical interactions can constrain the evolution of development and sociality in chimeras and that elucidation of proximate mechanisms is necessary to understand the ultimate emergence of multicellular organization. Cooperative behavior evolved as a pleiotropic effect of selection for surface adhesion Multicellular development of evolved lines with the ancestor follows two different paths A metric of social behavior including clonal development differentiates these two paths
Collapse
Affiliation(s)
- Sandrine Adiba
- Institut de Biologie de l’ENS (IBENS), Département de biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- Corresponding author
| | - Mathieu Forget
- Institut de Biologie de l’ENS (IBENS), Département de biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Silvia De Monte
- Institut de Biologie de l’ENS (IBENS), Département de biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
11
|
Mijanović L, Weber I. Adhesion of Dictyostelium Amoebae to Surfaces: A Brief History of Attachments. Front Cell Dev Biol 2022; 10:910736. [PMID: 35721508 PMCID: PMC9197732 DOI: 10.3389/fcell.2022.910736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/13/2022] [Indexed: 12/23/2022] Open
Abstract
Dictyostelium amoebae adhere to extracellular material using similar mechanisms to metazoan cells. Notably, the cellular anchorage loci in Amoebozoa and Metazoa are both arranged in the form of discrete spots and incorporate a similar repertoire of intracellular proteins assembled into multicomponent complexes located on the inner side of the plasma membrane. Surprisingly, however, Dictyostelium lacks integrins, the canonical transmembrane heterodimeric receptors that dominantly mediate adhesion of cells to the extracellular matrix in multicellular animals. In this review article, we summarize the current knowledge about the cell-substratum adhesion in Dictyostelium, present an inventory of the involved proteins, and draw parallels with the situation in animal cells. The emerging picture indicates that, while retaining the basic molecular architecture common to their animal relatives, the adhesion complexes in free-living amoeboid cells have evolved to enable less specific interactions with diverse materials encountered in their natural habitat in the deciduous forest soil. Dissection of molecular mechanisms that underlay short lifetime of the cell-substratum attachments and high turnover rate of the adhesion complexes in Dictyostelium should provide insight into a similarly modified adhesion phenotype that accompanies the mesenchymal-amoeboid transition in tumor metastasis.
Collapse
Affiliation(s)
| | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
12
|
Ghabache E, Cao Y, Miao Y, Groisman A, Devreotes PN, Rappel W. Coupling traction force patterns and actomyosin wave dynamics reveals mechanics of cell motion. Mol Syst Biol 2021; 17:e10505. [PMID: 34898015 PMCID: PMC8666840 DOI: 10.15252/msb.202110505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Motile cells can use and switch between different modes of migration. Here, we use traction force microscopy and fluorescent labeling of actin and myosin to quantify and correlate traction force patterns and cytoskeletal distributions in Dictyostelium discoideum cells that move and switch between keratocyte-like fan-shaped, oscillatory, and amoeboid modes. We find that the wave dynamics of the cytoskeletal components critically determine the traction force pattern, cell morphology, and migration mode. Furthermore, we find that fan-shaped cells can exhibit two different propulsion mechanisms, each with a distinct traction force pattern. Finally, the traction force patterns can be recapitulated using a computational model, which uses the experimentally determined spatiotemporal distributions of actin and myosin forces and a viscous cytoskeletal network. Our results suggest that cell motion can be generated by friction between the flow of this network and the substrate.
Collapse
Affiliation(s)
| | - Yuansheng Cao
- Department of PhysicsUniversity of California, San DiegoLa JollaCAUSA
| | - Yuchuan Miao
- Department of Cell BiologySchool of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| | - Alex Groisman
- Department of PhysicsUniversity of California, San DiegoLa JollaCAUSA
| | - Peter N Devreotes
- Department of Cell BiologySchool of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| | - Wouter‐Jan Rappel
- Department of PhysicsUniversity of California, San DiegoLa JollaCAUSA
| |
Collapse
|
13
|
Azizi L, Turkki P, Huynh N, Massera JM, Hytönen VP. Surface Modification of Bioactive Glass Promotes Cell Attachment and Spreading. ACS OMEGA 2021; 6:22635-22642. [PMID: 34514235 PMCID: PMC8427643 DOI: 10.1021/acsomega.1c02669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Phosphate glasses have several advantages over traditional silicate-based bioglasses but are inferior in the crucial step of cell attachment to their surface. Here, as a proof of concept, we analyze fibroblast attachment to the phosphate glass surface subjected to basic treatment and silanization. Silicate (S53P4)- and phosphate (Sr50)-based bioactive glasses were either untreated or surface-treated with basic buffer and functionalized with silane. The surface-treated samples were studied as such and after fibronectin was adsorbed on to their surface. With both glass types, surface treatment enhanced fibroblast adhesion and spreading in comparison to the untreated glass. The surface-treated Sr50 glass allowed for cell adhesion, proliferation, and spreading to a similar extent as seen with S53P4 and borosilicate control glasses. Here, we show that surface treatment of bioactive glass can be used to attract cell adhesion factors found in the serum and promote cell-material adhesion, both important for efficient tissue integration.
Collapse
Affiliation(s)
- Latifeh Azizi
- BioMediTech,
Faculty of Medicine and Health Technology, Tampere University, Kauppi Campus, Arvo Ylpön katu 34, 33520 Tampere, Finland
| | - Paula Turkki
- BioMediTech,
Faculty of Medicine and Health Technology, Tampere University, Kauppi Campus, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Fimlab
Laboratories, Biokatu
4, 33520 Tampere, Finland
| | - Ngoc Huynh
- Laboratory
of Biomaterials and Tissue Engineering, Faculty of Medicine and Health
Technology, Tampere University, Hervanta Campus, Korkeakoulunkatu
3, 33720 Tampere, Finland
| | - Jonathan M. Massera
- Laboratory
of Biomaterials and Tissue Engineering, Faculty of Medicine and Health
Technology, Tampere University, Hervanta Campus, Korkeakoulunkatu
3, 33720 Tampere, Finland
| | - Vesa P. Hytönen
- BioMediTech,
Faculty of Medicine and Health Technology, Tampere University, Kauppi Campus, Arvo Ylpön katu 34, 33520 Tampere, Finland
- Fimlab
Laboratories, Biokatu
4, 33520 Tampere, Finland
| |
Collapse
|
14
|
Alam T, Alazmi M, Naser R, Huser F, Momin AA, Astro V, Hong S, Walkiewicz KW, Canlas CG, Huser R, Ali AJ, Merzaban J, Adamo A, Jaremko M, Jaremko Ł, Bajic VB, Gao X, Arold ST. Proteome-level assessment of origin, prevalence and function of leucine-aspartic acid (LD) motifs. Bioinformatics 2020; 36:1121-1128. [PMID: 31584626 PMCID: PMC7703752 DOI: 10.1093/bioinformatics/btz703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/03/2019] [Accepted: 09/28/2019] [Indexed: 01/08/2023] Open
Abstract
Motivation Leucine-aspartic acid (LD) motifs are short linear interaction motifs (SLiMs) that link paxillin family proteins to factors controlling cell adhesion, motility and survival. The existence and importance of LD motifs beyond the paxillin family is poorly understood. Results To enable a proteome-wide assessment of LD motifs, we developed an active learning based framework (LD motif finder; LDMF) that iteratively integrates computational predictions with experimental validation. Our analysis of the human proteome revealed a dozen new proteins containing LD motifs. We found that LD motif signalling evolved in unicellular eukaryotes more than 800 Myr ago, with paxillin and vinculin as core constituents, and nuclear export signal as a likely source of de novo LD motifs. We show that LD motif proteins form a functionally homogenous group, all being involved in cell morphogenesis and adhesion. This functional focus is recapitulated in cells by GFP-fused LD motifs, suggesting that it is intrinsic to the LD motif sequence, possibly through their effect on binding partners. Our approach elucidated the origin and dynamic adaptations of an ancestral SLiM, and can serve as a guide for the identification of other SLiMs for which only few representatives are known. Availability and implementation LDMF is freely available online at www.cbrc.kaust.edu.sa/ldmf; Source code is available at https://github.com/tanviralambd/LD/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tanvir Alam
- Computational Bioscience Research Center (CBRC), Division of Computer, Electrical and Mathematical Sciences & Engineering (CEMSE), Saudi Arabia
| | - Meshari Alazmi
- Computational Bioscience Research Center (CBRC), Division of Computer, Electrical and Mathematical Sciences & Engineering (CEMSE), Saudi Arabia
| | - Rayan Naser
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Franceline Huser
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Afaque A Momin
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Veronica Astro
- Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - SeungBeom Hong
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Katarzyna W Walkiewicz
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | | | - Raphaël Huser
- Division of Computer, Electrical and Mathematical Sciences & Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Amal J Ali
- Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Jasmeen Merzaban
- Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Antonio Adamo
- Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Łukasz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Vladimir B Bajic
- Computational Bioscience Research Center (CBRC), Division of Computer, Electrical and Mathematical Sciences & Engineering (CEMSE), Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), Division of Computer, Electrical and Mathematical Sciences & Engineering (CEMSE), Saudi Arabia
| | - Stefan T Arold
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| |
Collapse
|
15
|
Pressure sensing through Piezo channels controls whether cells migrate with blebs or pseudopods. Proc Natl Acad Sci U S A 2020; 117:2506-2512. [PMID: 31964823 PMCID: PMC7007555 DOI: 10.1073/pnas.1905730117] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cells migrating within the body perform vital functions in development and for defense and repair of tissues. In this dense environment, cells encounter mechanical forces and constraints not experienced when moving under buffer, and, accordingly, many change how they move. We find that gentle squashing, which mimics mechanical resistance, causes cells to move using blebs—a form of projection driven by fluid pressure—rather than pseudopods. This behavior depends on the Piezo stretch-operated ion channel in the cell membrane and calcium fluxes into the cell. Piezo is highly conserved and is required for light touch sensation; this work extends its functions into migrating cells. Blebs and pseudopods can both power cell migration, with blebs often favored in tissues, where cells encounter increased mechanical resistance. To investigate how migrating cells detect and respond to mechanical forces, we used a “cell squasher” to apply uniaxial pressure to Dictyostelium cells chemotaxing under soft agarose. As little as 100 Pa causes a rapid (<10 s), sustained shift to movement with blebs rather than pseudopods. Cells are flattened under load and lose volume; the actin cytoskeleton is reorganized, with myosin II recruited to the cortex, which may pressurize the cytoplasm for blebbing. The transition to bleb-driven motility requires extracellular calcium and is accompanied by increased cytosolic calcium. It is largely abrogated in cells lacking the Piezo stretch-operated channel; under load, these cells persist in using pseudopods and chemotax poorly. We propose that migrating cells sense pressure through Piezo, which mediates calcium influx, directing movement with blebs instead of pseudopods.
Collapse
|
16
|
Kamprad N, Witt H, Schröder M, Kreis CT, Bäumchen O, Janshoff A, Tarantola M. Adhesion strategies of Dictyostelium discoideum- a force spectroscopy study. NANOSCALE 2018; 10:22504-22519. [PMID: 30480299 DOI: 10.1039/c8nr07107a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Biological adhesion is essential for all motile cells and generally limits locomotion to suitably functionalized substrates displaying a compatible surface chemistry. However, organisms that face vastly varying environmental challenges require a different strategy. The model organism Dictyostelium discoideum (D.d.), a slime mould dwelling in the soil, faces the challenge of overcoming variable chemistry by employing the fundamental forces of colloid science. To understand the origin of D.d. adhesion, we realized and modified a variety of conditions for the amoeba comprising the absence and presence of the specific adhesion protein Substrate Adhesion A (sadA), glycolytic degradation, ionic strength, surface hydrophobicity and strength of van der Waals interactions by generating tailored model substrates. By employing AFM-based single cell force spectroscopy we could show that experimental force curves upon retraction exhibit two regimes. The first part up to the critical adhesion force can be described in terms of a continuum model, while the second regime of the curve beyond the critical adhesion force is governed by stochastic unbinding of individual binding partners and bond clusters. We found that D.d. relies on adhesive interactions based on EDL-DLVO (Electrical Double Layer-Derjaguin-Landau-Verwey-Overbeek) forces and contributions from the glycocalix and specialized adhesion molecules like sadA. This versatile mechanism allows the cells to adhere to a large variety of natural surfaces under various conditions.
Collapse
Affiliation(s)
- Nadine Kamprad
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Shear force-based genetic screen reveals negative regulators of cell adhesion and protrusive activity. Proc Natl Acad Sci U S A 2017; 114:E7727-E7736. [PMID: 28847951 DOI: 10.1073/pnas.1616600114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The model organism Dictyostelium discoideum has greatly facilitated our understanding of the signal transduction and cytoskeletal pathways that govern cell motility. Cell-substrate adhesion is downstream of many migratory and chemotaxis signaling events. Dictyostelium cells lacking the tumor suppressor PTEN show strongly impaired migratory activity and adhere strongly to their substrates. We reasoned that other regulators of migration could be obtained through a screen for overly adhesive mutants. A screen of restriction enzyme-mediated integration mutagenized cells yielded numerous mutants with the desired phenotypes, and the insertion sites in 18 of the strains were mapped. These regulators of adhesion and motility mutants have increased adhesion and decreased motility. Characterization of seven strains demonstrated decreased directed migration, flatness, increased filamentous actin-based protrusions, and increased signal transduction network activity. Many of the genes share homology to human genes and demonstrate the diverse array of cellular networks that function in adhesion and migration.
Collapse
|
18
|
Jacob AE, Turner CE, Amack JD. Evolution and Expression of Paxillin Genes in Teleost Fish. PLoS One 2016; 11:e0165266. [PMID: 27806088 PMCID: PMC5091871 DOI: 10.1371/journal.pone.0165266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/07/2016] [Indexed: 01/05/2023] Open
Abstract
Background Paxillin family proteins regulate intracellular signaling downstream of extracellular matrix adhesion. Tissue expression patterns and cellular functions of Paxillin proteins during embryo development remain poorly understood. Additionally, the evolution of this gene family has not been thoroughly investigated. Results This report characterizes the evolution and expression of a novel Paxillin gene, called Paxillin-b, in Teleosts. Alignments indicate that Teleost Paxillin-a and Paxillin-b proteins are highly homologous to each other and to human Paxillin. Phylogenetic and synteny analyses suggest that these genes originated from the duplication of an ancestral Paxillin gene that was in a common ancestor of Teleosts and Tetrapods. Analysis of the spatiotemporal expression profiles of Paxillin-a and Paxillin-b using zebrafish revealed both overlapping and distinct domains for Paxillin-a and Paxillin-b during embryo development. Localization of zebrafish Paxillin orthologs expressed in mammalian cells demonstrated that both proteins localize to focal adhesions, similar to mammalian Paxillin. This suggests these proteins regulate adhesion-dependent processes in their endogenous tissues. Conclusion Paxillin-a and Paxillin-b were generated by duplication in Teleosts. These genes likely play similar roles as Paxillin genes in other organisms. This work provides a framework for functional investigation of Paxillin family members during development using the zebrafish as an in vivo model system.
Collapse
Affiliation(s)
- Andrew E. Jacob
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York, 13210, United States of America
| | - Christopher E. Turner
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York, 13210, United States of America
- * E-mail: (CET); (JDA)
| | - Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, New York, 13210, United States of America
- * E-mail: (CET); (JDA)
| |
Collapse
|
19
|
Bretschneider T, Othmer HG, Weijer CJ. Progress and perspectives in signal transduction, actin dynamics, and movement at the cell and tissue level: lessons from Dictyostelium. Interface Focus 2016; 6:20160047. [PMID: 27708767 DOI: 10.1098/rsfs.2016.0047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Movement of cells and tissues is a basic biological process that is used in development, wound repair, the immune response to bacterial invasion, tumour formation and metastasis, and the search for food and mates. While some cell movement is random, directed movement stimulated by extracellular signals is our focus here. This involves a sequence of steps in which cells first detect extracellular chemical and/or mechanical signals via membrane receptors that activate signal transduction cascades and produce intracellular signals. These intracellular signals control the motile machinery of the cell and thereby determine the spatial localization of the sites of force generation needed to produce directed motion. Understanding how force generation within cells and mechanical interactions with their surroundings, including other cells, are controlled in space and time to produce cell-level movement is a major challenge, and involves many issues that are amenable to mathematical modelling.
Collapse
Affiliation(s)
- Till Bretschneider
- Warwick Systems Biology Centre , University of Warwick , Coventry CV4 7AL , UK
| | - Hans G Othmer
- School of Mathematics , University of Minnesota , Minneapolis, MN 55455 , USA
| | | |
Collapse
|
20
|
Mukai A, Ichiraku A, Horikawa K. Reliable handling of highly A/T-rich genomic DNA for efficient generation of knockin strains of Dictyostelium discoideum. BMC Biotechnol 2016; 16:37. [PMID: 27075750 PMCID: PMC4831088 DOI: 10.1186/s12896-016-0267-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/07/2016] [Indexed: 11/30/2022] Open
Abstract
Background Social amoeba, Dictyostelium discoideum, is a well-established model organism for studying cellular physiology and developmental pattern formation. Its haploid genome facilitates functional analysis of genes by a single round of mutagenesis including targeted disruption. Although the efficient generation of knockout strains based on an intrinsically high homologous recombination rate has been demonstrated, successful reports for knockin strains have been limited. As social amoeba has an exceptionally high adenine and thymine (A/T)-content, conventional plasmid-based vector construction has been constrained due to deleterious deletion in E. coli. Results We describe here a simple and efficient strategy to construct GFP-knockin cassettes by using a linear DNA cloning vector derived from N15 bacteriophage. This allows reliable handling of DNA fragments whose A/T-content may be as high as 85 %, and which cannot be cloned into a circular plasmid. By optimizing the length of recombination arms, we successfully generate GFP-knockin strains for five genes involved in cAMP signalling, including a triple-colour knockin strain. Conclusions This robust strategy would be useful in handling DNA fragments with biased A/T-contents such as the genome of lower organisms and the promoter/terminator regions of higher organisms. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0267-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Asuka Mukai
- Division of Bioimaging, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Aya Ichiraku
- Division of Bioimaging, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan
| | - Kazuki Horikawa
- Division of Bioimaging, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima City, Tokushima, 770-8503, Japan.
| |
Collapse
|
21
|
How to find a leucine in a haystack? Structure, ligand recognition and regulation of leucine-aspartic acid (LD) motifs. Biochem J 2014; 460:317-29. [PMID: 24870021 DOI: 10.1042/bj20140298] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LD motifs (leucine-aspartic acid motifs) are short helical protein-protein interaction motifs that have emerged as key players in connecting cell adhesion with cell motility and survival. LD motifs are required for embryogenesis, wound healing and the evolution of multicellularity. LD motifs also play roles in disease, such as in cancer metastasis or viral infection. First described in the paxillin family of scaffolding proteins, LD motifs and similar acidic LXXLL interaction motifs have been discovered in several other proteins, whereas 16 proteins have been reported to contain LDBDs (LD motif-binding domains). Collectively, structural and functional analyses have revealed a surprising multivalency in LD motif interactions and a wide diversity in LDBD architectures. In the present review, we summarize the molecular basis for function, regulation and selectivity of LD motif interactions that has emerged from more than a decade of research. This overview highlights the intricate multi-level regulation and the inherently noisy and heterogeneous nature of signalling through short protein-protein interaction motifs.
Collapse
|
22
|
Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell Mol Life Sci 2014; 71:3711-47. [PMID: 24846395 DOI: 10.1007/s00018-014-1638-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022]
Abstract
Chemotaxis, or directed migration of cells along a chemical gradient, is a highly coordinated process that involves gradient sensing, motility, and polarity. Most of our understanding of chemotaxis comes from studies of cells undergoing amoeboid-type migration, in particular the social amoeba Dictyostelium discoideum and leukocytes. In these amoeboid cells the molecular events leading to directed migration can be conceptually divided into four interacting networks: receptor/G protein, signal transduction, cytoskeleton, and polarity. The signal transduction network occupies a central position in this scheme as it receives direct input from the receptor/G protein network, as well as feedback from the cytoskeletal and polarity networks. Multiple overlapping modules within the signal transduction network transmit the signals to the actin cytoskeleton network leading to biased pseudopod protrusion in the direction of the gradient. The overall architecture of the networks, as well as the individual signaling modules, is remarkably conserved between Dictyostelium and mammalian leukocytes, and the similarities and differences between the two systems are the subject of this review.
Collapse
|
23
|
PakD, a putative p21-activated protein kinase in Dictyostelium discoideum, regulates actin. EUKARYOTIC CELL 2013; 13:119-26. [PMID: 24243792 DOI: 10.1128/ec.00216-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proper regulation of the actin cytoskeleton is essential for cell function and ultimately for survival. Tight control of actin dynamics is required for many cellular processes, including differentiation, proliferation, adhesion, chemotaxis, endocytosis, exocytosis, and multicellular development. Here we describe a putative p21-activated protein kinase, PakD, that regulates the actin cytoskeleton in Dictyostelium discoideum. We found that cells lacking pakD are unable to aggregate and thus unable to develop. Compared to the wild type, cells lacking PakD have decreased membrane extensions, suggesting defective regulation of the actin cytoskeleton. pakD(-) cells show poor chemotaxis toward cyclic AMP (cAMP) but normal chemotaxis toward folate, suggesting that PakD mediates some but not all chemotaxis responses. pakD(-) cells have decreased polarity when placed in a cAMP gradient, indicating that the chemotactic defects of the pakD(-) cells may be due to an impaired cytoskeletal response to cAMP. In addition, while wild-type cells polymerize actin in response to global stimulation by cAMP, pakD(-) cells exhibit F-actin depolymerization under the same conditions. Taken together, the results suggest that PakD is part of a pathway coordinating F-actin organization during development.
Collapse
|
24
|
Mohamad Ansor N, Abdullah N, Aminudin N. Anti-angiotensin converting enzyme (ACE) proteins from mycelia of Ganoderma lucidum (Curtis) P. Karst. Altern Ther Health Med 2013; 13:256. [PMID: 24093919 PMCID: PMC3852974 DOI: 10.1186/1472-6882-13-256] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/17/2013] [Indexed: 11/10/2022]
Abstract
Background Ganoderma lucidum has been purported as a potent remedy in the treatment and prevention of several ailments, including hypertension. This study aimed to explore the anti-ACE potential of protein fractions from the mycelia of G. lucidum. Methods Ganoderma lucidum mycelia were cultivated by submerged fermentation in a liquid medium containing brown sugar and spent brewer’s yeast. Intracellular proteins were fractionated from mycelia crude water extract by ammonium sulphate precipitation, and their angiotensin converting enzyme inhibitory activity was evaluated. The potential anti-ACE protein fractions were further separated by RP-HPLC and characterised using proteomics platforms. Results Preliminary result demonstrated that the mycelia crude water extract inhibited ACE at IC50 value of 1.134 ± 0.036 mg/mL. Following protein fractionation and HPLC purification, the presence of highly potential anti-ACE proteins with the IC50 values less than 200 μg/mL was detected. Characterisation of these proteins demonstrated the presence of four different antihypertensive-related proteins involved in the regulation of blood pressure through different mechanisms. Conclusions This study suggests that the mycelia of G. lucidum has high potential in lowering blood pressure level due to the presence of several antihypertensive-related proteins such as cystathionine beta synthase-like protein, DEAD/DEAH box helicase-like protein, paxillin-like protein, and alpha/beta hydrolase-like protein.
Collapse
|
25
|
The G alpha subunit Gα8 inhibits proliferation, promotes adhesion and regulates cell differentiation. Dev Biol 2013; 380:58-72. [PMID: 23665473 DOI: 10.1016/j.ydbio.2013.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/15/2013] [Accepted: 05/01/2013] [Indexed: 01/26/2023]
Abstract
Heterotrimeric G protein-mediated signal transduction plays a pivotal role in both vegetative and developmental stages in the eukaryote Dictyostelium discoideum. Here we describe novel functions of the G protein alpha subunit Gα8 during vegetative and development stages. Gα8 is expressed at low levels during vegetative growth. Loss of Gα8 promotes cell proliferation, whereas excess Gα8 expression dramatically inhibits growth and induces aberrant cytokinesis on substrates in a Gβ-dependent manner. Overexpression of Gα8 also leads to increased cell-cell cohesion and cell-substrate adhesion. We demonstrate that the increased cell-cell cohesion is mainly caused by induced CadA expression, and the induced cell-substrate adhesion is responsible for the cytokinesis defects. However, the expression of several putative constitutively active mutants of Gα8 does not augment the phenotypes caused by intact Gα8. Gα8 is strongly induced after starvation, and loss of Gα8 results in decreased expression of certain adhesion molecules including CsA and tgrC1. Interestingly, Gα8 is preferentially distributed in the upper and lower cup of the fruiting body. Lack of Gα8 decreases the expression of the specific marker of the anterior-like cells, suggesting that Gα8 is required for anterior-like cell differentiation.
Collapse
|
26
|
Müller-Taubenberger A, Ishikawa-Ankerhold HC. Fluorescent reporters and methods to analyze fluorescent signals. Methods Mol Biol 2013; 983:93-112. [PMID: 23494303 DOI: 10.1007/978-1-62703-302-2_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The use of fluorescent reporters and the development of new imaging technologies have revolutionized studies in cell biology. During recent years the number of fluorescent proteins offering the ability to visualize the distribution of proteins, organelles, and cells has increased tremendously. In parallel, the imaging tools available were refined rapidly enabling now the use of a huge spectrum of specialized methods to explore the cellular and subcellular localization and dynamics of fluorescently tagged markers. This chapter presents an overview of fluorescent reporters and methods available, and describes a selection of those that are routinely applicable in imaging studies using Dictyostelium discoideum.
Collapse
|
27
|
Noratel EF, Petty CL, Kelsey JS, Cost HN, Basappa N, Blumberg DD. The adhesion modulation protein, AmpA localizes to an endocytic compartment and influences substrate adhesion, actin polymerization and endocytosis in vegetative Dictyostelium cells. BMC Cell Biol 2012; 13:29. [PMID: 23126556 PMCID: PMC3586950 DOI: 10.1186/1471-2121-13-29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 10/22/2012] [Indexed: 11/10/2022] Open
Abstract
Background AmpA is a secreted 24Kd protein that has pleiotropic effects on
Dictyostelium development. Null mutants delay development at
the mound stage with cells adhering too tightly to the substrate. Prestalk
cells initially specify as prespore cells and are delayed in their migration
to the mound apex. Extracellular AmpA can rescue these defects, but AmpA is
also necessary in a cell autonomous manner for anterior
like cells (ALCs) to migrate to the upper cup. The ALCs
are only 10% of the developing cell population making it difficult to study
the cell autonomous effect of AmpA on the migration of these cells. AmpA is
also expressed in growing cells, but, while it contains a hydrophobic leader
sequence that is cleaved, it is not secreted from growing cells. This makes
growing cells an attractive system for studying the cell autonomous function
of AmpA. Results In growing cells AmpA plays an environment dependent role in cell migration.
Excess AmpA facilitates migration on soft, adhesive surfaces but hinders
migration on less adhesive surfaces. AmpA also effects the level of actin
polymerization. Knockout cells polymerize less actin while over expressing
cells polymerize more actin than wild type. Overexpression of AmpA also
causes an increase in endocytosis that is traced to repeated formation of
multiple endocytic cups at the same site on the membrane. Immunofluorescence
analysis shows that AmpA is found in the Golgi and colocalizes with calnexin
and the slow endosomal recycling compartment marker, p25, in a perinuclear
compartment. AmpA is found on the cell periphery and is endocytically
recycled to the perinuclear compartment. Conclusion AmpA is processed through the secretory pathway and traffics to the cell
periphery where it is endocytosed and localizes to what has been defined as
a slow endosomal recycling compartment. AmpA plays a role in actin
polymerization and cell substrate adhesion. Additionally AmpA influences
cell migration in an environment dependent manner. Wild type cells show very
little variation in migration rates under the different conditions examined
here, but either loss or over expression of AmpA cause significant substrate
and environment dependent changes in migration.
Collapse
Affiliation(s)
- Elizabeth F Noratel
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | | | | | | | |
Collapse
|
28
|
A new candidate substrate for cell-matrix adhesion study: the acellular human amniotic matrix. J Biomed Biotechnol 2012; 2012:306083. [PMID: 23091344 PMCID: PMC3468124 DOI: 10.1155/2012/306083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/18/2012] [Accepted: 06/24/2012] [Indexed: 11/24/2022] Open
Abstract
In vivo adhesions between cells and the extracellular matrix play a crucial role in cell differentiation, proliferation, and migration as well as tissue remodeling. Natural three-dimensional (3D) matrices, such as self-assembling matrices and Matrigel, have limitations in terms of their biomechanical properties. Here, we present a simple method to produce an acellular human amniotic matrix (AHAM) with preserved biomechanical properties and a favorable adhesion potential. On the stromal side of the AHAM, human foreskin fibroblasts (HFFs) attached and extended with bipolar spindle-shaped morphology proliferated to multilayer networks, invaded into the AHAM, and migrated in a straight line. Moreover, αV integrin, paxillin, and fibronectin were observed to colocalize after 24 h of HFF culture on the stromal side of the AHAM. Our results indicate that the AHAM may be an ideal candidate as a cell-matrix adhesion substrate to study cell adhesion and invasion as well as other functions in vitro under a tensile force that mimics the in vivo environment.
Collapse
|
29
|
Huber RJ, O'Day DH. EGF-like peptide-enhanced cell movement in Dictyostelium is mediated by protein kinases and the activity of several cytoskeletal proteins. Cell Signal 2012; 24:1770-80. [PMID: 22588127 DOI: 10.1016/j.cellsig.2012.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 05/07/2012] [Accepted: 05/07/2012] [Indexed: 12/19/2022]
|
30
|
Hasirci V, Pepe-Mooney BJ. Understanding the cell behavior on nano-/micro-patterned surfaces. Nanomedicine (Lond) 2012; 7:1375-89. [DOI: 10.2217/nnm.12.7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aim: This article reports on studies conducted in the same laboratory on interactions between patterned substrates with different pattern dimensions and chemistries, and various types of cells. Materials & methods: In order to compare the influence of various parameters, bone marrow stromal cells, retinal pigment epithelial cells, human corneal stromal cells (keratocytes), Saos-2 (human osteosarcoma cells), human microvascular endothelial cells and vascular smooth muscle cells were tested on surfaces with different physical patterns and chemical properties. Results: It was observed that cell type and surface topography are more influential than surface chemistry in determining the alignment tendency of a cell on a substrate surface. Low walls (several microns high) could not confine cells into the microgrooves of the films but alignment was still possible if the cells had a natural alignment property. Conclusion: This information is very useful in designing tissue engineering scaffolds and in the long-term success of implants. Original submitted 30 November 2010; Revised submitted 4 January 2012; Published online 20 July 2012
Collapse
Affiliation(s)
- Vasif Hasirci
- Middle East Technical University, Biotechnology Research Unit, Ankara 06531, Turkey
| | - Brian J Pepe-Mooney
- Middle East Technical University, Biotechnology Research Unit, Ankara 06531, Turkey
- Department of Biology, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA
| |
Collapse
|
31
|
Paxillin is the target of c-Jun N-terminal kinase in Schwann cells and regulates migration. Cell Signal 2012; 24:2061-9. [PMID: 22750292 DOI: 10.1016/j.cellsig.2012.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/25/2012] [Indexed: 12/14/2022]
Abstract
During development of the peripheral nervous system (PNS), Schwann cells migrate along axons, wrapping individual axons to form a myelin sheath. This process is all mediated by the intercellular signaling between neurons and Schwann cells. As yet, little is known about the intracellular signaling mechanisms controlling these morphological changes including Schwann cell migration. We previously showed that c-Jun N-terminal kinase (JNK) plays a key role in Schwann cell migration before the initiation of myelination. Here we show that JNK, acting through phosphorylation of the cytoskeletal protein paxillin, regulates Schwann cell migration and that it mediates dorsal root ganglion (DRG) neuronal conditioned medium (CM). Phosphorylation of paxillin at the Ser-178 position, the JNK phosphorylation site, is observed following stimulation with neuronal CM. Phosphorylation is also detected as a result of stimulation with each of growth factors contained in neuronal CM. Knockdown of paxillin with the specific small interfering RNA (siRNA) inhibits migration. The reintroduction of paxillin reverses siRNA-mediated inhibition of migration, whereas paxillin harboring the Ser-178-to-Ala mutation fails to reverse it. In addition, while JNK binds to the N-terminal region (called LD1), the deletion of LD1 blocks migration. Together, JNK binds and phosphorylates paxillin to regulate Schwann cell migration, illustrating that paxillin provides one of the convergent points of intracellular signaling pathways controlling Schwann cell migration.
Collapse
|
32
|
Nelson SA, Li Z, Newton IP, Fraser D, Milne RE, Martin DMA, Schiffmann D, Yang X, Dormann D, Weijer CJ, Appleton PL, Näthke IS. Tumorigenic fragments of APC cause dominant defects in directional cell migration in multiple model systems. Dis Model Mech 2012; 5:940-7. [PMID: 22563063 PMCID: PMC3484875 DOI: 10.1242/dmm.008607] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nonsense mutations that result in the expression of truncated, N-terminal, fragments of the adenomatous polyposis coli (APC) tumour suppressor protein are found in most sporadic and some hereditary colorectal cancers. These mutations can cause tumorigenesis by eliminating β-catenin-binding sites from APC, which leads to upregulation of β-catenin and thereby results in the induction of oncogenes such as MYC. Here we show that, in three distinct experimental model systems, expression of an N-terminal fragment of APC (N-APC) results in loss of directionality, but not speed, of cell motility independently of changes in β-catenin regulation. We developed a system to culture and fluorescently label live pieces of gut tissue to record high-resolution three-dimensional time-lapse movies of cells in situ. This revealed an unexpected complexity of normal gut cell migration, a key process in gut epithelial maintenance, with cells moving with spatial and temporal discontinuity. Quantitative comparison of gut tissue from wild-type mice and APC heterozygotes (APCMin/+; multiple intestinal neoplasia model) demonstrated that cells in precancerous epithelia lack directional preference when moving along the crypt-villus axis. This effect was reproduced in diverse experimental systems: in developing chicken embryos, mesoderm cells expressing N-APC failed to migrate normally; in amoeboid Dictyostelium, which lack endogenous APC, expressing an N-APC fragment maintained cell motility, but the cells failed to perform directional chemotaxis; and multicellular Dictyostelium slug aggregates similarly failed to perform phototaxis. We propose that N-terminal fragments of APC represent a gain-of-function mutation that causes cells within tissue to fail to migrate directionally in response to relevant guidance cues. Consistent with this idea, crypts in histologically normal tissues of APCMin/+ intestines are overpopulated with cells, suggesting that a lack of migration might cause cell accumulation in a precancerous state.
Collapse
Affiliation(s)
- Scott A Nelson
- Division of Cell and Developmental Biology, College of Life Science, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Guo J, Liu LJ, Yuan L, Wang N, De W. Expression and localization of paxillin in rat pancreas during development. World J Gastroenterol 2011; 17:4479-87. [PMID: 22110278 PMCID: PMC3218138 DOI: 10.3748/wjg.v17.i40.4479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/18/2011] [Accepted: 02/25/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression and localization of paxillin in rat pancreas during development.
METHODS: Pancreata from Sprague Dawley rat fetuses, embryos, young animals, and adult animals were used in this study. Expression levels of paxillin in pancreata of different development stages were detected by reverse transcription polymerase chain reaction and Western blotting. To identify the cell location of paxillin in the developing rat pancreas, immunohistochemistry and double-immunofluorescent staining were performed using antibodies for specific cell markers and paxillin, respectively.
RESULTS: The highest paxillin mRNA level was detected at E15.5 (embryo day 15.5) following a decrease in the later developmental periods (P < 0.05 vs E18.5, P0 and adult, respectively), and a progressively increased paxillin protein expression through the transition from E15.5 to adult was detected. The paxillin positive staining was mainly localized in rat islets of Langerhans at each stage tested during pancreas development.
CONCLUSION: The dynamic expression of paxillin in rat pancreas from different stages indicates that paxillin might be involved in some aspects of pancreatic development.
Collapse
|
34
|
Abstract
Most experiments observing cell migration use planar plastic or glass surfaces despite these conditions being considerably different from physiological ones. On such planar surfaces, cells take a dorsal-ventral polarity to move two-dimensionally. Cells in tissues, however, interact with surrounding cells and the extracellular matrix such that they transverse three-dimensionally. For this reason, three-dimensional matrices have become more and more popular for cell migration experiments. In addition, recent developments in imaging techniques have enabled high resolution observations of in vivo cell migration. The combination of three-dimensional matrices and such imaging techniques has revealed motile mechanisms in tissues not observable in studies using planar surfaces. Regarding models for such cell migration studies, the cellular slime mould Dictyostelium discoideum is ideal. Single amoeboid cells aggregate into hemispherical mound structures upon starvation to begin a multicellular morphogenesis. These tiny and simple multicellular bodies are suitable for observing the behaviors of individual cells in multicellular structures. Furthermore, the unique life cycle can be exploited to identify which genes are involved in cell migration in multicellular environments. Since mutants lacking such genes are expected to fail to undergo morphogenesis, easy and systematic gene screening is possible by isolating mutants whose developments arrest around the mound stage, which is the case for several mutants lacking specific cytoskeletal proteins. In this article, I discuss the basic elements required for cell migration in multicellular environments and how Dictyostelium can be used to elucidate them.
Collapse
Affiliation(s)
- Masatsune Tsujioka
- Special Research Promotion Group, Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Japan.
| |
Collapse
|
35
|
Paxillin and phospholipase D interact to regulate actin-based processes in Dictyostelium discoideum. EUKARYOTIC CELL 2011; 10:977-84. [PMID: 21531871 DOI: 10.1128/ec.00282-10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The actin cytoskeleton forms a membrane-associated network whose proper regulation is essential for numerous processes, including cell differentiation, proliferation, adhesion, chemotaxis, endocytosis, exocytosis, and multicellular development. In this report, we show that in Dictyostelium discoideum, paxillin (PaxB) and phospholipase D (PldB) colocalize and coimmunoprecipitate, suggesting that they interact physically. Additionally, the phenotypes observed during development, cell sorting, and several actin-required processes, including cyclic AMP (cAMP) chemotaxis, cell-substrate adhesion, actin polymerization, phagocytosis, and exocytosis, reveal a genetic interaction between paxB and pldB, suggesting a functional interaction between their gene products. Taken together, our data point to PldB being a required binding partner of PaxB during processes involving actin reorganization.
Collapse
|
36
|
Uncovering a role for the tail of the Dictyostelium discoideum SadA protein in cell-substrate adhesion. EUKARYOTIC CELL 2011; 10:662-71. [PMID: 21441344 DOI: 10.1128/ec.00221-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous work from our laboratory showed that the Dictyostelium discoideum SadA protein plays a central role in cell-substrate adhesion. SadA null cells exhibit a loss of adhesion, a disrupted actin cytoskeleton, and a cytokinesis defect. How SadA mediates these phenotypes is unknown. This work addresses the mechanism of SadA function, demonstrating an important role for the C-terminal cytoplasmic tail in SadA function. We found that a SadA tailless mutant was unable to rescue the sadA adhesion deficiency, and overexpression of the SadA tail domain reduced adhesion in wild-type cells. We also show that SadA is closely associated with the actin cytoskeleton. Mutagenesis studies suggested that four serine residues in the tail, S924/S925 and S940/S941, may regulate association of SadA with the actin cytoskeleton. Glutathione S-transferase pull-down assays identified at least one likely interaction partner of the SadA tail, cortexillin I, a known actin bundling protein. Thus, our data demonstrate an important role for the carboxy-terminal cytoplasmic tail in SadA function and strongly suggest that a phosphorylation event in this tail regulates an interaction with cortexillin I. Based on our data, we propose a model for the function of SadA.
Collapse
|
37
|
Buenemann M, Levine H, Rappel WJ, Sander LM. The role of cell contraction and adhesion in dictyostelium motility. Biophys J 2010; 99:50-8. [PMID: 20655832 DOI: 10.1016/j.bpj.2010.03.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 03/25/2010] [Accepted: 03/29/2010] [Indexed: 01/16/2023] Open
Abstract
The crawling motion of Dictyostelium discoideum on substrata involves a number of coordinated events including cell contractions and cell protrusions. The mechanical forces exerted on the substratum during these contractions have recently been quantified using traction force experiments. Based on the results from these experiments, we present a biomechanical model of the contraction phase of Dictyostelium discoideum motility with an emphasis on the adhesive properties of the cell-substratum contact. Our model assumes that the cell contracts at a constant rate and is bound to the substratum by adhesive bridges that are modeled as elastic springs. These bridges are established at a spatially uniform rate while detachment occurs at a spatially varying, load-dependent rate. Using Monte Carlo simulations and assuming a rigid substratum, we find that the cell speed depends only weakly on the detachment kinetics of the cell-substratum interface, in agreement with experimental data. By varying the parameters that control the adhesive and contractile properties of the cell, we are able to make testable predictions. We also extend our model to include a flexible substrate and show that our model is able to produce substratum deformations and force patterns that are quantitatively and qualitatively in agreement with experimental data.
Collapse
Affiliation(s)
- Mathias Buenemann
- Center for Theoretical Biological Physics, University of California, San Diego, La Jolla, California, USA
| | | | | | | |
Collapse
|
38
|
Synchronization of Dictyostelium discoideum adhesion and spreading using electrostatic forces. Bioelectrochemistry 2010; 79:198-210. [PMID: 20472511 DOI: 10.1016/j.bioelechem.2010.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 04/13/2010] [Accepted: 04/14/2010] [Indexed: 11/21/2022]
Abstract
Synchronization of cell spreading is valuable for the study of molecular events involved in the formation of adhesive contacts with the substrate. At a low ionic concentration (0.17 mM) Dictyostelium discoideum cells levitate over negatively charged surfaces due to electrostatic repulsion. First, a two-chamber device, divided by a porous membrane, allows to quickly increase the ionic concentration around the levitating cells. In this way, a good synchronization was obtained, the onsets of cell spreading being separated by less than 5 s. Secondly applying a high potential pulse (2.5 V/Ref, 0.1s) to an Indium Tin Oxide surface attracts the cells toward the surface where they synchronously spread as monitored by LimE(Deltacoil)-GFP. During spreading, actin polymerizes in series of active spots. On average, the first spot appears 8-11s after the electric pulse and the next ones appear regularly, separated by about 10s. Synchronized actin-polymerization activity continues for 40s. Using an electric pulse to control the exact time point at which cells contact the surface has allowed for the first time to quantify the cellular response time for actin polymerization. Electrochemical synchronization is therefore a valuable tool to study intracellular responses to contact.
Collapse
|
39
|
Shina MC, Müller R, Blau-Wasser R, Glöckner G, Schleicher M, Eichinger L, Noegel AA, Kolanus W. A cytohesin homolog in Dictyostelium amoebae. PLoS One 2010; 5:e9378. [PMID: 20186335 PMCID: PMC2826412 DOI: 10.1371/journal.pone.0009378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 02/02/2010] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Dictyostelium, an amoeboid motile cell, harbors several paralogous Sec7 genes that encode members of three distinct subfamilies of the Sec7 superfamily of Guanine nucleotide exchange factors. Among them are proteins of the GBF/BIG family present in all eukaryotes. The third subfamily represented with three members in D. discoideum is the cytohesin family that has been thought to be metazoan specific. Cytohesins are characterized by a Sec7 PH tandem domain and have roles in cell adhesion and migration. PRINCIPAL FINDINGS Dictyostelium SecG exhibits highest homologies to the cytohesins. It harbors at its amino terminus several ankyrin repeats that are followed by the Sec7 PH tandem domain. Mutants lacking SecG show reduced cell-substratum adhesion whereas cell-cell adhesion that is important for development is not affected. Accordingly, multicellular development proceeds normally in the mutant. During chemotaxis secG(-) cells elongate and migrate in a directed fashion towards cAMP, however speed is moderately reduced. SIGNIFICANCE The data indicate that SecG is a relevant factor for cell-substrate adhesion and reveal the basic function of a cytohesin in a lower eukaryote.
Collapse
Affiliation(s)
- Maria Christina Shina
- Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Rolf Müller
- Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Rosemarie Blau-Wasser
- Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Gernot Glöckner
- Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
- Leibniz Institute for Age Research - Fritz-Lipmann-Institute e.V., Jena, Germany
| | - Michael Schleicher
- Institute of Anatomy and Cell Biology and Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-University, Muenchen, Germany
| | - Ludwig Eichinger
- Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - Angelika A. Noegel
- Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Köln, Germany
- * E-mail: (AAN); (WK)
| | - Waldemar Kolanus
- Laboratory of Molecular Immunology, LIMES Institute of the University of Bonn, Bonn, Germany
- * E-mail: (AAN); (WK)
| |
Collapse
|
40
|
Abstract
Collective cell migration is a key process during the development of most organisms. It can involve either the migration of closely packed mesenchymal cells that make dynamic contacts with frequently changing neighbour cells, or the migration of epithelial sheets that typically display more stable cell-cell interactions and less frequent changes in neighbours. These collective movements can be controlled by short- or long-range dynamic gradients of extracellular signalling molecules, depending on the number of cells involved and their distance of migration. These gradients are sensed by some or all of the migrating cells and translated into directed migration, which in many settings is further modulated by cell-contact-mediated attractive or repulsive interactions that result in contact-following or contact-inhibition of locomotion, respectively. Studies of collective migration of groups of epithelial cells during development indicate that, in some cases, only leader cells sense and migrate up an external signal gradient, and that adjacent cells follow through strong cell-cell contacts. In this Commentary, I review studies of collective cell migration of differently sized cell populations during the development of several model organisms, and discuss our current understanding of the molecular mechanisms that coordinate this migration.
Collapse
Affiliation(s)
- Cornelis J Weijer
- Division of Cell and Developmental Biology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
41
|
Abstract
Integrin-mediated adhesion is as ancient as multicellularity, but it was not always as complex as it is in humans. Here, I examine the extent of conservation of 192 adhesome proteins across the genomes of nine model organisms spanning one and a half billion years of evolution. The work reveals that Rho GTPases, lipid- and serine/threonine-kinases, and phosphatases existed before integrins, but tyrosine phosphorylation developed concomitant with integrins. The expansion of specific functional groups such as GAPs, GEFs, adaptors, and receptors is demonstrated, along with the expansion of specific protein domains, such as SH3, PH, SH2, CH, and LIM. Expansion is due to gene duplication and creation of families of paralogues. Apparently, these paralogues share few partners and create new sets of interactions, thus increasing specificity and the repertoire of integrin-mediated signaling. Interestingly, the average number of interactions positively correlates with the evolutionary age of proteins. While shedding light on the evolution of adhesome complexity, this analysis also highlights the relevance and creates a framework for studying integrin-mediated adhesion in simpler model organisms.
Collapse
Affiliation(s)
- Ronen Zaidel-Bar
- Department of Zoology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
42
|
Duran MB, Rahman A, Colten M, Brazill D. Dictyostelium discoideum paxillin regulates actin-based processes. Protist 2009; 160:221-32. [PMID: 19213599 PMCID: PMC2743336 DOI: 10.1016/j.protis.2008.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 09/13/2008] [Indexed: 10/21/2022]
Abstract
Paxillin is a key player in integrating the actin cytoskeleton with adhesion, and thus is essential to numerous cellular processes, including proliferation, differentiation, and migration in animal cells. PaxB, the Dictyostelium discoideum orthologue of paxillin, has been shown to be important for adhesion and development, much like its mammalian counterpart. Here, we use the overproduction of PaxB to gain better insight into its role in regulating the actin cytoskeleton and adhesion. We find that PaxB-overexpressing (PaxBOE) cells can aggregate and form mounds normally, but are blocked in subsequent development. This arrest can be rescued by addition of wild-type cells, indicating a non-cell autonomous role for PaxB. PaxBOE cells also have alterations in several actin-based processes, including adhesion, endocytosis, motility, and chemotaxis. PaxBOE cells exhibit an EDTA-sensitive increase in cell-cell cohesion, suggesting that PaxB-mediated adhesion is Ca(2+) or Mg(2+) dependent. Interestingly, cells overexpressing paxB are less adhesive to the substratum. In addition, PaxBOE cells display decreased motility under starved conditions, decreased endocytosis, and are unable to efficiently chemotax up a folate gradient. Taken together, the data suggest that proper expression of PaxB is vital for the regulation of development and actin-dependent processes.
Collapse
Affiliation(s)
- M. Berenice Duran
- Department of Biological Sciences, Center for the Study of Gene Structure and Function, Hunter College of the City University of New York, New York, NY 10021, USA
| | - Asif Rahman
- Department of Biological Sciences, Center for the Study of Gene Structure and Function, Hunter College of the City University of New York, New York, NY 10021, USA
| | - Max Colten
- Department of Biological Sciences, Center for the Study of Gene Structure and Function, Hunter College of the City University of New York, New York, NY 10021, USA
| | - Derrick Brazill
- Department of Biological Sciences, Center for the Study of Gene Structure and Function, Hunter College of the City University of New York, New York, NY 10021, USA
| |
Collapse
|
43
|
Engler AJ, Humbert PO, Wehrle-Haller B, Weaver VM. Multiscale modeling of form and function. Science 2009; 324:208-12. [PMID: 19359578 DOI: 10.1126/science.1170107] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Topobiology posits that morphogenesis is driven by differential adhesive interactions among heterogeneous cell populations. This paradigm has been revised to include force-dependent molecular switches, cell and tissue tension, and reciprocal interactions with the microenvironment. It is now appreciated that tissue development is executed through conserved decision-making modules that operate on multiple length scales from the molecular and subcellular level through to the cell and tissue level and that these regulatory mechanisms specify cell and tissue fate by modifying the context of cellular signaling and gene expression. Here, we discuss the origin of these decision-making modules and illustrate how emergent properties of adhesion-directed multicellular structures sculpt the tissue, promote its functionality, and maintain its homeostasis through spatial segregation and organization of anchored proteins and secreted factors and through emergent properties of tissues, including tension fields and energy optimization.
Collapse
Affiliation(s)
- Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
44
|
Nagasaki A, Kanada M, Uyeda TQ. Cell adhesion molecules regulate contractile ring-independent cytokinesis in Dictyostelium discoideum. Cell Res 2009; 19:236-46. [PMID: 19065153 DOI: 10.1038/cr.2008.318] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
To investigate the roles of substrate adhesion in cytokinesis, we established cell lines lacking paxillin (PAXB) or vinculin (VINA), and those expressing the respective GFP fusion proteins in Dictyostelium discoideum. As in mammalian cells, GFP-PAXB and GFP-VINA formed focal adhesion-like complexes on the cell bottom. paxB(-) cells in suspension grew normally, but on substrates, often failed to divide after regression of the furrow. The efficient cytokinesis of paxB(-) cells in suspension is not because of shear forces to assist abscission, as they divided normally in static suspension culture as well. Double knockout strains lacking mhcA, which codes for myosin II, and paxB or vinA displayed more severe cytokinetic defects than each single knockout strain. In mitotic wild-type cells, GFP-PAXB was diffusely distributed on the basal membrane, but was strikingly condensed along the polar edges in mitotic mhcA(-) cells. These results are consistent with our idea that Dictyostelium displays two forms of cytokinesis, one that is contractile ring-dependent and adhesion-independent, and the other that is contractile ring-independent and adhesion-dependent, and that the latter requires PAXB and VINA. Furthermore, that paxB(-) cells fail to divide normally in the presence of substrate adhesion suggests that this adhesion molecule may play additional signaling roles.
Collapse
Affiliation(s)
- Akira Nagasaki
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8562, Japan.
| | | | | |
Collapse
|
45
|
Abstract
Paxillin is a multi-domain scaffold protein that localizes to the intracellular surface of sites of cell adhesion to the extracellular matrix. Through the interactions of its multiple protein-binding modules, many of which are regulated by phosphorylation, paxillin serves as a platform for the recruitment of numerous regulatory and structural proteins that together control the dynamic changes in cell adhesion, cytoskeletal reorganization and gene expression that are necessary for cell migration and survival. In particular, paxillin plays a central role in coordinating the spatial and temporal action of the Rho family of small GTPases, which regulate the actin cytoskeleton, by recruiting an array of GTPase activator, suppressor and effector proteins to cell adhesions. When paxillin was first described 18 years ago, the amazing complexity of cell-adhesion organization, dynamics and signaling was yet to be realized. Herein we highlight our current understanding of how the multiple protein interactions of paxillin contribute to the coordination of cell-adhesion function.
Collapse
Affiliation(s)
- Nicholas O. Deakin
- Dept of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, Phone 315 464 8598, Fax 315 464 8535
| | - Christopher E. Turner
- Dept of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, Phone 315 464 8598, Fax 315 464 8535
| |
Collapse
|
46
|
Delanoë-Ayari H, Iwaya S, Maeda YT, Inose J, Rivière C, Sano M, Rieu JP. Changes in the magnitude and distribution of forces at different Dictyostelium developmental stages. ACTA ACUST UNITED AC 2008; 65:314-31. [PMID: 18205201 DOI: 10.1002/cm.20262] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The distribution of forces exerted by migrating Dictyostelium amebae at different developmental stages was measured using traction force microscopy. By using very soft polyacrylamide substrates with a high fluorescent bead density, we could measure stresses as small as 30 Pa. Remarkable differences exist both in term of the magnitude and distribution of forces in the course of development. In the vegetative state, cells present cyclic changes in term of speed and shape between an elongated form and a more rounded one. The forces are larger in this first state, especially when they are symmetrically distributed at the front and rear edge of the cell. Elongated vegetative cells can also present a front-rear asymmetric force distribution with the largest forces in the crescent-shaped rear of the cell (uropod). Pre-aggregating cells, once polarized, only present this last kind of asymmetric distribution with the largest forces in the uropod. Except for speed, no cycle is observed. Neither the force distribution of pre-aggregating cells nor their overall magnitude are modified during chemotaxis, the later being similar to the one of vegetative cells (F(0) approximately 6 nN). On the contrary, both the force distribution and overall magnitude is modified for the fast moving aggregating cells. In particular, these highly elongated cells exert lower forces (F(0) approximately 3 nN). The location of the largest forces in the various stages of the development is consistent with the myosin II localization described in the literature for Dictyostelium (Yumura et al.,1984. J Cell Biol 99:894-899) and is confirmed by preliminary experiments using a GFP-myosin Dictyostelium strain.
Collapse
Affiliation(s)
- H Delanoë-Ayari
- Université de Lyon, F-6900, France, Université Lyon 1,CNRS UMR 5586, F-69622 Villeurbanne Cedex, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Overlapping functions of the two talin homologues in Dictyostelium. EUKARYOTIC CELL 2008; 7:906-16. [PMID: 18375618 DOI: 10.1128/ec.00464-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Talin is a cytoskeletal protein involved in constructing and regulating focal adhesions in animal cells. The cellular slime mold Dictyostelium discoideum has two talin homologues, talA and talB, and earlier studies have characterized the single knockout mutants. talA(-) cells show reduced adhesion to the substrates and slightly impaired cytokinesis leading to a high proportion of multinucleated cells in the vegetative stage, while the development is normal. In contrast, talB(-) cells are characterized by reduced motility in the developmental stage, and they are arrested at the tight-mound stage. Here, we created and analyzed a double mutant with a disruption of both talA and talB. Defects in adhesion to the substrates, cytokinesis, and development were more severe in cells with a disruption of both talA and talB. The talA(-) talB(-) cells failed to attach to the substrates in the vegetative stage, exhibited a higher proportion of multinucleated cells than talA(-) cells, and showed more-reduced motility during the development and an earlier developmental arrest than talB(-) cells at the loose-mound stage. Moreover, overexpression of either talA or talB compensated for the loss of the other talin, respectively. The analysis of talA(-) talB(-) cells also revealed that talin was required for the formation of paxillin-rich adhesion sites and that there was another adhesion mechanism which is independent of talin in the developmental stage. This is the first study demonstrating overlapping functions of two talin homologues, and our data further indicate the importance of talin.
Collapse
|
48
|
Patel H, König I, Tsujioka M, Frame MC, Anderson KI, Brunton VG. The multi-FERM-domain-containing protein FrmA is required for turnover of paxillin-adhesion sites during cell migration of Dictyostelium. J Cell Sci 2008; 121:1159-64. [PMID: 18349074 DOI: 10.1242/jcs.021725] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FERM domain proteins, including talins, ERMs, FAK and certain myosins, regulate connections between the plasma membrane, cytoskeleton and extracellular matrix. Here we show that FrmA, a Dictyostelium discoideum protein containing two talin-like FERM domains, plays a major role in normal cell shape, cell-substrate adhesion and actin cytoskeleton organisation. Using total internal reflection fluorescence (TIRF) microscopy we show that FrmA-null cells are more adherent to substrate than wild-type cells because of an increased number, persistence and mislocalisation of paxillin-rich cell-substrate adhesions, which is associated with decreased motility. We show for the first time that talinA colocalises with paxillin at the distal ends of filopodia to form cell-substrate adhesions and indeed arrives prior to paxillin. After a period of colocalisation, talin leaves the adhesion site followed by paxillin. Whereas talinA-rich spots turnover prior to the arrival of the main body of the cell, paxillin-rich spots turn over as the main body of the cell passes over it. In FrmA-null cells talinA initially localises to cell-substrate adhesion sites at the distal ends of filopodia but paxillin is instead localised to stabilised adhesion sites at the periphery of the main cell body. This suggests a model for cell-substrate adhesion in Dictyostelium whereby the talin-like FERM domains of FrmA regulate the temporal and spatial control of talinA and paxillin at cell-substrate adhesion sites, which in turn controls adhesion and motility.
Collapse
Affiliation(s)
- Hitesh Patel
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | | | | | | | | | | |
Collapse
|
49
|
Ge W, Balasubramanian MK. Pxl1p, a paxillin-related protein, stabilizes the actomyosin ring during cytokinesis in fission yeast. Mol Biol Cell 2008; 19:1680-92. [PMID: 18272786 DOI: 10.1091/mbc.e07-07-0715] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Paxillins are a family of conserved LIM domain-containing proteins that play important roles in the function and integrity of the actin cytoskeleton. Although paxillins have been extensively characterized by cell biological and biochemical approaches, genetic studies are relatively scarce. Here, we identify and characterize a paxillin-related protein Pxl1p in the fission yeast Schizosaccharomyces pombe. Pxl1p is a component of the fission yeast actomyosin ring, a structure that is essential for cytokinesis. Cells deleted for pxl1 display a novel phenotype characterized by a splitting of the actomyosin ring in late anaphase, leading to the formation of two rings of which only one undergoes constriction. In addition, the rate of actomyosin ring constriction is slower in the absence of Pxl1p. pxl1Delta mutants display strong genetic interactions with mutants defective in IQGAP-related protein Rng2p and mutants defective in components of the fission yeast type II myosin machinery. Collectively, these results suggest that Pxl1p might cooperate with type II myosin and Rng2p-IQGAP to regulate actomyosin ring constriction as well as to maintain its integrity during constriction.
Collapse
Affiliation(s)
- Wanzhong Ge
- Cell Division Laboratory, Temasek Life Sciences Laboratory and the Department of Biological Sciences, National University of Singapore, Singapore
| | | |
Collapse
|
50
|
Galdeen SA, Stephens S, Thomas DD, Titus MA. Talin influences the dynamics of the myosin VII-membrane interaction. Mol Biol Cell 2007; 18:4074-84. [PMID: 17671169 PMCID: PMC1995725 DOI: 10.1091/mbc.e06-07-0586] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Myosin VII (M7) and talin are ancient and ubiquitous actin-binding proteins with conserved roles in adhesion. Talin serves to link membrane receptors to the underlying actin cytoskeleton and forms a complex with M7 in Dictyostelium. The levels of talinA are tightly linked to M7 levels in Dictyostelium. Cells lacking M7 exhibit an 80% decrease in steady-state levels of talinA, whereas increased levels of M7 result in concomitant increases in total talinA. In contrast, changes in talinA levels do not affect M7 levels. Immunoprecipitation reveals that talinA and M7 are associated with each other in membrane fractions. Fluorescence recovery after photobleaching experiments on green fluorescent protein (GFP)-M7 cells expressing different levels of the M7 and talinA show that changes in the overall amounts of these two proteins influences the dynamics of membrane-associated M7. The recovery of GFP-M7 on the membrane is faster in cells lacking talinA and limited in the presence of excess amounts of talinA and M7. These results establish that M7 stabilizes talinA in the cytosol and, in return, talinA regulates the residence time of M7 at the plasma membrane, suggesting that these two proteins are both part of the same dynamic adhesion complex on the plasma membrane.
Collapse
Affiliation(s)
| | | | - David D. Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | | |
Collapse
|