1
|
Tang Y, Tang S, Yang W, Zhang Z, Wang T, Wu Y, Xu J, Pilarsky C, Mazzone M, Wang LW, Sun Y, Tian R, Tang Y, Wang Y, Wang C, Xue J. MED12 loss activates endogenous retroelements to sensitise immunotherapy in pancreatic cancer. Gut 2024; 73:1999-2011. [PMID: 39216984 DOI: 10.1136/gutjnl-2024-332350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) stands as one of the most lethal cancers, marked by its lethality and limited treatment options, including the utilisation of checkpoint blockade (ICB) immunotherapy. Epigenetic dysregulation is a defining feature of tumourigenesis that is implicated in immune surveillance, but remains elusive in PDAC. DESIGN To identify the factors that modulate immune surveillance, we employed in vivo epigenetic-focused CRISPR-Cas9 screen in mouse PDAC tumour models engrafted in either immunocompetent or immunodeficient mice. RESULTS Here, we identified MED12 as a top hit, emerging as a potent negative modulator of immune tumour microenviroment (TME) in PDAC. Loss of Med12 significantly promoted infiltration and cytotoxicity of immune cells including CD8+ T cells, natural killer (NK) and NK1.1+ T cells in tumours, thereby heightening the sensitivity of ICB treatment in a mouse model of PDAC. Mechanistically, MED12 stabilised heterochromatin protein HP1A to repress H3K9me3-marked endogenous retroelements. The derepression of retrotransposons induced by MED12 loss triggered cytosolic nucleic acid sensing and subsequent activation of type I interferon pathways, ultimately leading to robust inflamed TME . Moreover, we uncovered a negative correlation between MED12 expression and immune resposne pathways, retrotransposon levels as well as the prognosis of patients with PDAC undergoing ICB therapy. CONCLUSION In summary, our findings underscore the pivotal role of MED12 in remodelling immnue TME through the epigenetic silencing of retrotransposons, offering a potential therapeutic target for enhancing tumour immunogenicity and overcoming immunotherapy resistance in PDAC.
Collapse
Affiliation(s)
- Yingying Tang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shijie Tang
- Centre of Biomedical Systems and Informatics, ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, China
| | - Wenjuan Yang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengyan Zhang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Teng Wang
- Centre of Biomedical Systems and Informatics, ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, China
| | - Yuyun Wu
- Centre of Biomedical Systems and Informatics, ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, China
| | - Junyi Xu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, Leuven, Belgium
| | - Lei-Wei Wang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongwei Sun
- Department of Biliary and Pancreatic Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Ruijun Tian
- Shenzhen Key Laboratory of Functional Proteomics, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Yujie Tang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chaochen Wang
- Centre of Biomedical Systems and Informatics, ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Hangzhou, China
- Biomedical and Health Translational Research Centre, Zhejiang University, Zhejiang, China
| | - Jing Xue
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Phan TM, Kim YC, Debelouchina GT, Mittal J. Interplay between charge distribution and DNA in shaping HP1 paralog phase separation and localization. eLife 2024; 12:RP90820. [PMID: 38592759 PMCID: PMC11003746 DOI: 10.7554/elife.90820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
The heterochromatin protein 1 (HP1) family is a crucial component of heterochromatin with diverse functions in gene regulation, cell cycle control, and cell differentiation. In humans, there are three paralogs, HP1α, HP1β, and HP1γ, which exhibit remarkable similarities in their domain architecture and sequence properties. Nevertheless, these paralogs display distinct behaviors in liquid-liquid phase separation (LLPS), a process linked to heterochromatin formation. Here, we employ a coarse-grained simulation framework to uncover the sequence features responsible for the observed differences in LLPS. We highlight the significance of the net charge and charge patterning along the sequence in governing paralog LLPS propensities. We also show that both highly conserved folded and less-conserved disordered domains contribute to the observed differences. Furthermore, we explore the potential co-localization of different HP1 paralogs in multicomponent assemblies and the impact of DNA on this process. Importantly, our study reveals that DNA can significantly reshape the stability of a minimal condensate formed by HP1 paralogs due to competitive interactions of HP1α with HP1β and HP1γ versus DNA. In conclusion, our work highlights the physicochemical nature of interactions that govern the distinct phase-separation behaviors of HP1 paralogs and provides a molecular framework for understanding their role in chromatin organization.
Collapse
Affiliation(s)
- Tien M Phan
- Artie McFerrin Department of Chemical Engineering, Texas A&M UniversityCollege StationUnited States
| | - Young C Kim
- Center for Materials Physics and Technology, Naval Research LaboratoryWashingtonUnited States
| | - Galia T Debelouchina
- Department of Chemistry and Biochemistry, University of California, San DiegoLa JollaUnited States
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M UniversityCollege StationUnited States
- Department of Chemistry, Texas A&M UniversityCollege StationUnited States
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M UniversityCollege StationUnited States
| |
Collapse
|
3
|
Phan TM, Kim YC, Debelouchina GT, Mittal J. Interplay between charge distribution and DNA in shaping HP1 paralog phase separation and localization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.28.542535. [PMID: 37398008 PMCID: PMC10312469 DOI: 10.1101/2023.05.28.542535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The heterochromatin protein 1 (HP1) family is a crucial component of heterochromatin with diverse functions in gene regulation, cell cycle control, and cell differentiation. In humans, there are three paralogs, HP1α, HP1β, and HP1γ, which exhibit remarkable similarities in their domain architecture and sequence properties. Nevertheless, these paralogs display distinct behaviors in liquid-liquid phase separation (LLPS), a process linked to heterochromatin formation. Here, we employ a coarse-grained simulation framework to uncover the sequence features responsible for the observed differences in LLPS. We highlight the significance of the net charge and charge patterning along the sequence in governing paralog LLPS propensities. We also show that both highly conserved folded and less-conserved disordered domains contribute to the observed differences. Furthermore, we explore the potential co-localization of different HP1 paralogs in multicomponent assemblies and the impact of DNA on this process. Importantly, our study reveals that DNA can significantly reshape the stability of a minimal condensate formed by HP1 paralogs due to competitive interactions of HP1α with HP1β and HP1γ versus DNA. In conclusion, our work highlights the physicochemical nature of interactions that govern the distinct phase-separation behaviors of HP1 paralogs and provides a molecular framework for understanding their role in chromatin organization.
Collapse
Affiliation(s)
- Tien M. Phan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Young C. Kim
- Center for Materials Physics and Technology, Naval Research Laboratory, Washington, DC, USA
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
- Department of Chemistry, Texas A&M University, College Station, TX, USA
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
4
|
Rocha MA, de Campos Vidal B, Mello MLS. Sodium Valproate Modulates the Methylation Status of Lysine Residues 4, 9 and 27 in Histone H3 of HeLa Cells. Curr Mol Pharmacol 2023; 16:197-210. [PMID: 35297358 DOI: 10.2174/1874467215666220316110405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/27/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Valproic acid/sodium valproate (VPA), a well-known anti-epileptic agent, inhibits histone deacetylases, induces histone hyperacetylation, promotes DNA demethylation, and affects the histone methylation status in some cell models. Histone methylation profiles have been described as potential markers for cervical cancer prognosis. However, histone methylation markers that can be studied in a cervical cancer cell line, like HeLa cells, have not been investigated following treatment with VPA. METHODS In this study, the effect of 0.5 mM and 2.0 mM VPA for 24 h on H3K4me2/me3, H3K9me/me2 and H3K27me/me3 signals as well as on KMT2D, EZH2, and KDM3A gene expression was investigated using confocal microscopy, Western blotting, and RT-PCR. Histone methylation changes were also investigated by Fourier-transform infrared spectroscopy (FTIR). RESULTS We found that VPA induces increased levels of H3K4me2/me3 and H3K9me, which are indicative of chromatin activation. Particularly, H3K4me2 markers appeared intensified close to the nuclear periphery, which may suggest their implication in increased transcriptional memory. The abundance of H3K4me2/me3 in the presence of VPA was associated with increased methyltransferase KMT2D gene expression. VPA induced hypomethylation of H3K9me2, which is associated with gene silencing, and concomitant with the demethylase KDM3A, it increased gene expression. Although VPA induces increased H3K27me/me3 levels, it is suggested that the role of the methyltransferase EZH2 in this context could be affected by interactions with this drug. CONCLUSION Histone FTIR spectra were not affected by VPA under present experimental conditions. Whether our epigenetic results are consistent with VPA affecting the aggressive tumorous state of HeLa cells, further investigation is required.
Collapse
Affiliation(s)
- Marina Amorim Rocha
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Benedicto de Campos Vidal
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Maria Luiza Silveira Mello
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| |
Collapse
|
5
|
The Highest Density of Phosphorylated Histone H1 Appeared in Prophase and Prometaphase in Parallel with Reduced H3K9me3, and HDAC1 Depletion Increased H1.2/H1.3 and H1.4 Serine 38 Phosphorylation. Life (Basel) 2022; 12:life12060798. [PMID: 35743829 PMCID: PMC9224986 DOI: 10.3390/life12060798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/10/2023] Open
Abstract
Background: Variants of linker histone H1 are tissue-specific and are responsible for chromatin compaction accompanying cell differentiation, mitotic chromosome condensation, and apoptosis. Heterochromatinization, as the main feature of these processes, is also associated with pronounced trimethylation of histones H3 at the lysine 9 position (H3K9me3). Methods: By confocal microscopy, we analyzed cell cycle-dependent levels and distribution of phosphorylated histone H1 (H1ph) and H3K9me3. By mass spectrometry, we studied post-translational modifications of linker histones. Results: Phosphorylated histone H1, similarly to H3K9me3, has a comparable level in the G1, S, and G2 phases of the cell cycle. A high density of phosphorylated H1 was inside nucleoli of mouse embryonic stem cells (ESCs). H1ph was also abundant in prophase and prometaphase, while H1ph was absent in anaphase and telophase. H3K9me3 surrounded chromosomal DNA in telophase. This histone modification was barely detectable in the early phases of mitosis. Mass spectrometry revealed several ESC-specific phosphorylation sites of H1. HDAC1 depletion did not change H1 acetylation but potentiated phosphorylation of H1.2/H1.3 and H1.4 at serine 38 positions. Conclusions: Differences in the level and distribution of H1ph and H3K9me3 were revealed during mitotic phases. ESC-specific phosphorylation sites were identified in a linker histone.
Collapse
|
6
|
Jeon YH, Kim GW, Kim SY, Yi SA, Yoo J, Kim JY, Lee SW, Kwon SH. Heterochromatin Protein 1: A Multiplayer in Cancer Progression. Cancers (Basel) 2022; 14:cancers14030763. [PMID: 35159030 PMCID: PMC8833910 DOI: 10.3390/cancers14030763] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/16/2022] Open
Abstract
Dysregulation of epigenetic mechanisms as well as genomic mutations contribute to the initiation and progression of cancer. In addition to histone code writers, including histone lysine methyltransferase (KMT), and histone code erasers, including histone lysine demethylase (KDM), histone code reader proteins such as HP1 are associated with abnormal chromatin regulation in human diseases. Heterochromatin protein 1 (HP1) recognizes histone H3 lysine 9 methylation and broadly affects chromatin biology, such as heterochromatin formation and maintenance, transcriptional regulation, DNA repair, chromatin remodeling, and chromosomal segregation. Molecular functions of HP1 proteins have been extensively studied, although their exact roles in diseases require further study. Here, we comprehensively review the studies that have revealed the altered expression of HP1 and its functions in tumorigenesis. In particular, the distinctive effects of each HP1 subtype, namely HP1α, HP1β, and HP1γ, have been thoroughly explored in various cancer types. We also highlight how HP1 can serve as a potential biomarker for cancer prognosis and therapeutic target for cancer patients.
Collapse
Affiliation(s)
- Yu Hyun Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
| | - Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
| | - So Yeon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
| | - Sang Ah Yi
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Jung Yoo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
| | - Ji Yoon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
| | - Sang Wu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea; (Y.H.J.); (G.W.K.); (S.Y.K.); (J.Y.); (J.Y.K.); (S.W.L.)
- Correspondence: ; Tel.: +82-32-749-4513
| |
Collapse
|
7
|
Bajbouj K, Al-Ali A, Ramakrishnan RK, Saber-Ayad M, Hamid Q. Histone Modification in NSCLC: Molecular Mechanisms and Therapeutic Targets. Int J Mol Sci 2021; 22:ijms222111701. [PMID: 34769131 PMCID: PMC8584007 DOI: 10.3390/ijms222111701] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
Lung cancer is the leading cause of cancer mortality in both genders, with non-small cell lung cancer (NSCLC) accounting for about 85% of all lung cancers. At the time of diagnosis, the tumour is usually locally advanced or metastatic, shaping a poor disease outcome. NSCLC includes adenocarcinoma, squamous cell carcinoma, and large cell lung carcinoma. Searching for novel therapeutic targets is mandated due to the modest effect of platinum-based therapy as well as the targeted therapies developed in the last decade. The latter is mainly due to the lack of mutation detection in around half of all NSCLC cases. New therapeutic modalities are also required to enhance the effect of immunotherapy in NSCLC. Identifying the molecular signature of NSCLC subtypes, including genetics and epigenetic variation, is crucial for selecting the appropriate therapy or combination of therapies. Epigenetic dysregulation has a key role in the tumourigenicity, tumour heterogeneity, and tumour resistance to conventional anti-cancer therapy. Epigenomic modulation is a potential therapeutic strategy in NSCLC that was suggested a long time ago and recently starting to attract further attention. Histone acetylation and deacetylation are the most frequently studied patterns of epigenetic modification. Several histone deacetylase (HDAC) inhibitors (HDIs), such as vorinostat and panobinostat, have shown promise in preclinical and clinical investigations on NSCLC. However, further research on HDIs in NSCLC is needed to assess their anti-tumour impact. Another modification, histone methylation, is one of the most well recognized patterns of histone modification. It can either promote or inhibit transcription at different gene loci, thus playing a rather complex role in lung cancer. Some histone methylation modifiers have demonstrated altered activities, suggesting their oncogenic or tumour-suppressive roles. In this review, patterns of histone modifications in NSCLC will be discussed, focusing on the molecular mechanisms of epigenetic modifications in tumour progression and metastasis, as well as in developing drug resistance. Then, we will explore the therapeutic targets emerging from studying the NSCLC epigenome, referring to the completed and ongoing clinical trials on those medications.
Collapse
Affiliation(s)
- Khuloud Bajbouj
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (K.B.); (R.K.R.); (Q.H.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Abeer Al-Ali
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Rakhee K. Ramakrishnan
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (K.B.); (R.K.R.); (Q.H.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (K.B.); (R.K.R.); (Q.H.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Faculty of Medicine, Cairo University, Cairo 11559, Egypt
- Correspondence: ; Tel.: +971-6-505-7219; Fax: +971-5-558-5879
| | - Qutayba Hamid
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (K.B.); (R.K.R.); (Q.H.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
8
|
Keenen MM, Brown D, Brennan LD, Renger R, Khoo H, Carlson CR, Huang B, Grill SW, Narlikar GJ, Redding S. HP1 proteins compact DNA into mechanically and positionally stable phase separated domains. eLife 2021; 10:e64563. [PMID: 33661100 PMCID: PMC7932698 DOI: 10.7554/elife.64563] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
In mammals, HP1-mediated heterochromatin forms positionally and mechanically stable genomic domains even though the component HP1 paralogs, HP1α, HP1β, and HP1γ, display rapid on-off dynamics. Here, we investigate whether phase-separation by HP1 proteins can explain these biological observations. Using bulk and single-molecule methods, we show that, within phase-separated HP1α-DNA condensates, HP1α acts as a dynamic liquid, while compacted DNA molecules are constrained in local territories. These condensates are resistant to large forces yet can be readily dissolved by HP1β. Finally, we find that differences in each HP1 paralog's DNA compaction and phase-separation properties arise from their respective disordered regions. Our findings suggest a generalizable model for genome organization in which a pool of weakly bound proteins collectively capitalize on the polymer properties of DNA to produce self-organizing domains that are simultaneously resistant to large forces at the mesoscale and susceptible to competition at the molecular scale.
Collapse
Affiliation(s)
- Madeline M Keenen
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - David Brown
- Department of Pharmaceutical Chemistry, University of California, San FranciscoSan FranciscoUnited States
| | - Lucy D Brennan
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Roman Renger
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Harrison Khoo
- Department of Mechanical Engineering, Johns Hopkins UniversityBaltimoreUnited States
| | - Christopher R Carlson
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
| | - Bo Huang
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Department of Pharmaceutical Chemistry, University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Stephan W Grill
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Cluster of Excellence Physics of Life, Technische Universität DresdenDresdenGermany
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Sy Redding
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Marine Biological LaboratoryWoods HoleUnited States
| |
Collapse
|
9
|
Legartová S, Fagherazzi P, Stixová L, Kovařík A, Raška I, Bártová E. The SC-35 Splicing Factor Interacts with RNA Pol II and A-Type Lamin Depletion Weakens This Interaction. Cells 2021; 10:cells10020297. [PMID: 33535591 PMCID: PMC7912905 DOI: 10.3390/cells10020297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 11/17/2022] Open
Abstract
The essential components of splicing are the splicing factors accumulated in nuclear speckles; thus, we studied how DNA damaging agents and A-type lamin depletion affect the properties of these regions, positive on the SC-35 protein. We observed that inhibitor of PARP (poly (ADP-ribose) polymerase), and more pronouncedly inhibitors of RNA polymerases, caused DNA damage and increased the SC-35 protein level. Interestingly, nuclear blebs, induced by PARP inhibitor and observed in A-type lamin-depleted or senescent cells, were positive on both the SC-35 protein and another component of the spliceosome, SRRM2. In the interphase cell nuclei, SC-35 interacted with the phosphorylated form of RNAP II, which was A-type lamin-dependent. In mitotic cells, especially in telophase, the SC-35 protein formed a well-visible ring in the cytoplasmic fraction and colocalized with β-catenin, associated with the plasma membrane. The antibody against the SRRM2 protein showed that nuclear speckles are already established in the cytoplasm of the late telophase and at the stage of early cytokinesis. In addition, we observed the occurrence of splicing factors in the nuclear blebs and micronuclei, which are also sites of both transcription and splicing. This conclusion supports the fact that splicing proceeds transcriptionally. According to our data, this process is A-type lamin-dependent. Lamin depletion also reduces the interaction between SC-35 and β-catenin in mitotic cells.
Collapse
Affiliation(s)
- Soňa Legartová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic; (S.L.); (P.F.); (L.S.); (A.K.)
| | - Paolo Fagherazzi
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic; (S.L.); (P.F.); (L.S.); (A.K.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Lenka Stixová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic; (S.L.); (P.F.); (L.S.); (A.K.)
| | - Aleš Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic; (S.L.); (P.F.); (L.S.); (A.K.)
| | - Ivan Raška
- 1st Faculty of Medicine, Charles University, Albertov 4, 128 00 Praha, Czech Republic;
| | - Eva Bártová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic; (S.L.); (P.F.); (L.S.); (A.K.)
- Correspondence:
| |
Collapse
|
10
|
Bártová E, Legartová S, Krejčí J, Arcidiacono OA. Cell differentiation and aging accompanied by depletion of the ACE2 protein. Aging (Albany NY) 2020; 12:22495-22508. [PMID: 33203793 PMCID: PMC7746349 DOI: 10.18632/aging.202221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022]
Abstract
ACE2 was observed as the cell surface receptor of the SARS-CoV-2 virus. Interestingly, we also found ACE2 positivity inside the cell nucleus. The ACE2 levels changed during cell differentiation and aging and varied in distinct cell types. We observed ACE2 depletion in the aortas of aging female mice, similarly, the aging caused ACE2 decrease in the kidneys. Compared with that in the heart, brain and kidneys, the ACE2 level was the lowest in the mouse lungs. In mice exposed to nicotine, ACE2 was not changed in olfactory bulbs but in the lungs, ACE2 was upregulated in females and downregulated in males. These observations indicate the distinct gender-dependent properties of ACE2. Differentiation into enterocytes, and cardiomyocytes, caused ACE2 depletion. The cardiomyogenesis was accompanied by renin upregulation, delayed in HDAC1-depleted cells. In contrast, vitamin D2 decreased the renin level while ACE2 was upregulated. Together, the ACE2 level is high in non-differentiated cells. This protein is more abundant in the tissues of mouse embryos and young mice in comparison with older animals. Mostly, downregulation of ACE2 is accompanied by renin upregulation. Thus, the pathophysiology of COVID-19 disease should be further studied not only by considering the ACE2 level but also the whole renin-angiotensin system.
Collapse
Affiliation(s)
- Eva Bártová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65, Brno, Czech Republic
| | - Soňa Legartová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65, Brno, Czech Republic
| | - Jana Krejčí
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65, Brno, Czech Republic
| | | |
Collapse
|
11
|
Nagao Y, Sakamoto M, Chinen T, Okada Y, Takao D. Robust classification of cell cycle phase and biological feature extraction by image-based deep learning. Mol Biol Cell 2020; 31:1346-1354. [PMID: 32320349 PMCID: PMC7353138 DOI: 10.1091/mbc.e20-03-0187] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Across the cell cycle, the subcellular organization undergoes major spatiotemporal changes that could in principle contain biological features that could potentially represent cell cycle phase. We applied convolutional neural network-based classifiers to extract such putative features from the fluorescence microscope images of cells stained for the nucleus, the Golgi apparatus, and the microtubule cytoskeleton. We demonstrate that cell images can be robustly classified according to G1/S and G2 cell cycle phases without the need for specific cell cycle markers. Grad-CAM analysis of the classification models enabled us to extract several pairs of quantitative parameters of specific subcellular features as good classifiers for the cell cycle phase. These results collectively demonstrate that machine learning-based image processing is useful to extract biological features underlying cellular phenomena of interest in an unbiased and data-driven manner.
Collapse
Affiliation(s)
- Yukiko Nagao
- Faculty of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Mika Sakamoto
- Genome Informatics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Takumi Chinen
- Faculty of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yasushi Okada
- Department of Cell Biology and Anatomy and International Research Center for Neurointelligence (WPI-IRCN), Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.,Department of Physics and Universal Biology Institute (UBI), Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.,Laboratory for Cell Polarity Regulation, Center for Biosystems Dynamics Research (BDR), RIKEN, Osaka 565-0874, Japan
| | - Daisuke Takao
- Department of Cell Biology and Anatomy and International Research Center for Neurointelligence (WPI-IRCN), Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
DNA Damage Changes Distribution Pattern and Levels of HP1 Protein Isoforms in the Nucleolus and Increases Phosphorylation of HP1β-Ser88. Cells 2019; 8:cells8091097. [PMID: 31533340 PMCID: PMC6770535 DOI: 10.3390/cells8091097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022] Open
Abstract
The family of heterochromatin protein 1 (HP1) isoforms is essential for chromatin packaging, regulation of gene expression, and repair of damaged DNA. Here we document that γ-radiation reduced the number of HP1α-positive foci, but not HP1β and HP1γ foci, located in the vicinity of the fibrillarin-positive region of the nucleolus. The additional analysis confirmed that γ-radiation has the ability to significantly decrease the level of HP1α in rDNA promoter and rDNA encoding 28S rRNA. By mass spectrometry, we showed that treatment by γ-rays enhanced the HP1β serine 88 phosphorylation (S88ph), but other analyzed modifications of HP1β, including S161ph/Y163ph, S171ph, and S174ph, were not changed in cells exposed to γ-rays or treated by the HDAC inhibitor (HDACi). Interestingly, a combination of HDACi and γ-radiation increased the level of HP1α and HP1γ. The level of HP1β remained identical before and after the HDACi/γ-rays treatment, but HDACi strengthened HP1β interaction with the KRAB-associated protein 1 (KAP1) protein. Conversely, HP1γ did not interact with KAP1, although approximately 40% of HP1γ foci co-localized with accumulated KAP1. Especially HP1γ foci at the periphery of nucleoli were mostly absent of KAP1. Together, DNA damage changed the morphology, levels, and interaction properties of HP1 isoforms. Also, γ-irradiation-induced hyperphosphorylation of the HP1β protein; thus, HP1β-S88ph could be considered as an important marker of DNA damage.
Collapse
|
13
|
Liu C, Zhu R, Mao Y. Nuclear Actin Polymerized by mDia2 Confines Centromere Movement during CENP-A Loading. iScience 2018; 9:314-327. [PMID: 30448731 PMCID: PMC6240728 DOI: 10.1016/j.isci.2018.10.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/04/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022] Open
Abstract
Centromeres are specialized chromosomal regions epigenetically defined by the histone H3 variant centromere protein A (CENP-A). CENP-A needs to be replenished in every cell cycle, but how new CENP-A is stably incorporated into centromeric chromatin remains unclear. We have discovered that a cytoskeletal protein, diaphanous formin mDia2, is essential for the stable incorporation of new CENP-A proteins into centromeric nucleosomes. Here we report that mDia2-mediated formation of dynamic and short nuclear actin filaments in G1 nucleus is required to maintain CENP-A levels at the centromere. Importantly, mDia2 and nuclear actin are required for constrained centromere movement during CENP-A loading, and depleting nuclear actin or MgcRacGAP, which lies upstream of mDia2, extends centromeric association of the CENP-A loading chaperone Holliday junction recognition protein (HJURP). Our findings thus suggest that nuclear actin polymerized by mDia2 contributes to the physical confinement of G1 centromeres so that HJURP-mediated CENP-A loading reactions can be productive, and centromere's epigenetic identity can be stably maintained.
Collapse
Affiliation(s)
- Chenshu Liu
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, 630 W 168(th) Street, New York, NY 10032, USA.
| | - Ruijun Zhu
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, 630 W 168(th) Street, New York, NY 10032, USA
| | - Yinghui Mao
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, 630 W 168(th) Street, New York, NY 10032, USA.
| |
Collapse
|
14
|
Bártová E, Legartová S, Krejčí J, Řezníčková P, Kovaříková AS, Suchánková J, Fedr R, Smirnov E, Hornáček M, Raška I. Depletion of A-type lamins and Lap2α reduces 53BP1 accumulation at UV-induced DNA lesions and Lap2α protein is responsible for compactness of irradiated chromatin. J Cell Biochem 2018; 119:8146-8162. [PMID: 29923310 DOI: 10.1002/jcb.26770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/02/2018] [Indexed: 12/29/2022]
Abstract
We studied how deficiency in lamins A/C and lamina-associated polypeptide 2α (Lap2α) affects DNA repair after irradiation. A-type lamins and Lap2α were not recruited to local DNA lesions and did not accumulate to γ-irradiation-induced foci (IRIF), as it is generally observed for well-known marker of DNA lesions, 53BP1 protein. At micro-irradiated chromatin of lmna double knockout (dn) and Lap2α dn cells, 53BP1 protein levels were reduced, compared to locally irradiated wild-type counterpart. Decreased levels of 53BP1 we also observed in whole populations of lmna dn and Lap2α dn cells, irradiated by UV light. We also studied distribution pattern of 53BP1 protein in a genome outside micro-irradiated region. In Lap2α deficient cells, identical fluorescence of mCherry-tagged 53BP1 protein was found at both microirradiated region and surrounding chromatin. However, a well-known marker of double strand breaks, γH2AX, was highly abundant in the lesion-surrounding genome of Lap2α deficient cells. Described changes, induced by irradiation in Lap2α dn cells, were not accompanied by cell cycle changes. In Lap2α dn cells, we additionally performed analysis by FLIM (Fluorescence Lifetime Imaging Microscopy) that showed different dynamic behavior of mCherry-tagged 53BP1 protein pools when it was compared with wild-type (wt) fibroblasts. This analysis revealed three different fractions of mCherry-53BP1 protein. Two of them showed identical exponential decay times (τ1 and τ3), but the decay rate of τ2 and amplitudes of fluorescence decays (A1-A3) were statistically different in wt and Lap2α dn fibroblasts. Moreover, γ-irradiation weakened an interaction between A-type lamins and Lap2α. Together, our results demonstrate how depletion of Lap2α affects DNA damage response (DDR) and how chromatin compactness is changed in Lap2α deficient cells exposed to radiation.
Collapse
Affiliation(s)
- Eva Bártová
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Soňa Legartová
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jana Krejčí
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Petra Řezníčková
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | | | - Jana Suchánková
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Radek Fedr
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Evgeny Smirnov
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Matúš Hornáček
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Ivan Raška
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
15
|
Zhang K, Wang J, Yang L, Yuan YC, Tong TR, Wu J, Yun X, Bonner M, Pangeni R, Liu Z, Yuchi T, Kim JY, Raz DJ. Targeting histone methyltransferase G9a inhibits growth and Wnt signaling pathway by epigenetically regulating HP1α and APC2 gene expression in non-small cell lung cancer. Mol Cancer 2018; 17:153. [PMID: 30348169 PMCID: PMC6198520 DOI: 10.1186/s12943-018-0896-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/25/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dysregulated histone methyltransferase G9a may represent a potential cancer therapeutic target. The roles of G9a in tumorigenesis and therapeutics are not well understood in non-small cell lung cancer (NSCLC). Here we investigated the impact of G9a on tumor growth and signaling pathways in NSCLC. METHODS Immunohistochemistry analyzed G9a expression in NSCLC tissues. Both siRNA and selective inhibitor were used to target G9a. The impact of targeting G9a on key genes, signaling pathways and growth were investigated in NSCLC cells by RNA sequencing analysis, rescue experiments, and xenograft models. RESULTS Overexpression of G9a (≥ 5% of cancer cells showing positive staining) was found in 43.2% of 213 NSCLC tissues. Multiple tumor-associated genes including HP1α, APC2 are differentially expressed; and signaling pathways involved in cellular growth, adhesion, angiogenesis, hypoxia, apoptosis, and canonical Wnt signaling pathways are significantly altered in A549, H1299, and H1975 cells upon G9a knockdown. Additionally, targeting G9a by siRNA-mediated knockdown or by a selective G9a inhibitor UNC0638 significantly inhibited tumor growth, and dramatically suppressed Wnt signaling pathway in vitro and in vivo. Furthermore, we showed that treatment with UNC0638 restores the expression of APC2 expression in these cells through promoter demethylation. Restoring HP1α and silencing APC2 respectively attenuated the inhibitory effects on cell proliferation and Wnt signaling pathway in cancer cells in which G9a was silenced or suppressed. CONCLUSIONS These findings demonstrate that overexpressed G9a represents a promising therapeutic target, and targeting G9a potentially suppresses growth and Wnt signaling pathway partially through down-regulating HP1α and epigenetically restoring these tumor suppressors such as APC2 that are silenced in NSCLC.
Collapse
Affiliation(s)
- Keqiang Zhang
- Division of Thoracic Surgery, City of Hope Medical Center, Duarte, CA USA
| | - Jinhui Wang
- The Integrative Genomics Core lab of Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA USA
| | - Lu Yang
- The Integrative Genomics Core lab of Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA USA
| | - Yate-Ching Yuan
- The Bioinformatics Core lab of Department of Molecular Medicine, City of Hope Medical Center, Duarte, CA USA
| | - Tommy R. Tong
- Department of Pathology, City of Hope Medical Center, Duarte, CA USA
| | - Jun Wu
- Division of Comparative Medicine, City of Hope National Medical Center, Duarte, CA USA
| | - Xinwei Yun
- Division of Thoracic Surgery, City of Hope Medical Center, Duarte, CA USA
| | - Melissa Bonner
- Division of Thoracic Surgery, City of Hope Medical Center, Duarte, CA USA
| | - Rajendra Pangeni
- Division of Thoracic Surgery, City of Hope Medical Center, Duarte, CA USA
| | - Zheng Liu
- The Bioinformatics Core lab of Department of Molecular Medicine, City of Hope Medical Center, Duarte, CA USA
| | - Tiger Yuchi
- Division of Thoracic Surgery, City of Hope Medical Center, Duarte, CA USA
| | - Jae Y. Kim
- Division of Thoracic Surgery, City of Hope Medical Center, Duarte, CA USA
| | - Dan J. Raz
- Division of Thoracic Surgery, City of Hope Medical Center, Duarte, CA USA
| |
Collapse
|
16
|
Yuan F, Chen X, Liu J, Feng W, Cai L, Wu X, Chen SY. Sulforaphane restores acetyl-histone H3 binding to Bcl-2 promoter and prevents apoptosis in ethanol-exposed neural crest cells and mouse embryos. Exp Neurol 2018; 300:60-66. [PMID: 29069573 PMCID: PMC5745274 DOI: 10.1016/j.expneurol.2017.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 12/14/2022]
Abstract
Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables. SFN's cytoprotective properties have been demonstrated in several models associated with a variety of disorders. Our recent studies have shown that SFN protects against ethanol-induced oxidative stress and apoptosis in neural crest cells (NCCs), an ethanol-sensitive cell population implicated in Fetal Alcohol Spectrum Disorders (FASD). This study is designed to test the hypothesis that SFN can prevent ethanol-induced apoptosis in NCCs by inhibiting HDAC and increasing histone acetylation at the Bcl-2 promoter. We found that exposure to 50mM ethanol resulted in a significant increase in HDAC activities in NCCs. Treatment with SFN decreased the activities of HDAC in ethanol-exposed NCCs. We also found that SFN treatment significantly increased the expression of acetyl-histone H3 in NCCs treated with ethanol. ChIP-qPCR assay revealed that ethanol exposure significantly decreased acetyl-histone H3 binding to the Bcl-2 promoter while supplementing with SFN reversed the ethanol-induced reduction in acetyl-histone H3 binding to the Bcl-2 promoter. In addition, SFN treatment restored the expression of Bcl-2 in ethanol-exposed NCCs and diminished ethanol-induced apoptosis in NCCs. Treatment with SFN also significantly diminished apoptosis in mouse embryos exposed to ethanol in vivo. These results demonstrate that SFN can epigenetically restore the expression of Bcl-2 and attenuate ethanol-induced apoptosis by increasing histone acetylation at the Bcl-2 promoter and suggest that SFN may prevent FASD through epigenetic regulation of the expression of anti-apoptotic genes.
Collapse
Affiliation(s)
- Fuqiang Yuan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, Louisville, KY 40202, USA
| | - Xiaopan Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, Louisville, KY 40202, USA; Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, 158 Shangtang Road, Hangzhou, Zhejiang 310014, China
| | - Jie Liu
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, Louisville, KY 40202, USA
| | - Wenke Feng
- University of Louisville, Alcohol Research Center, Louisville, KY 40202, USA; Department of Medicine, University of Louisville, Louisville, KY 40292, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, Louisville, KY 40202, USA.
| |
Collapse
|
17
|
Sardo L, Lin A, Khakhina S, Beckman L, Ricon L, Elbezanti W, Jaison T, Vishwasrao H, Shroff H, Janetopoulos C, Klase ZA. Real-time visualization of chromatin modification in isolated nuclei. J Cell Sci 2017; 130:2926-2940. [PMID: 28743737 PMCID: PMC5612227 DOI: 10.1242/jcs.205823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/13/2017] [Indexed: 12/31/2022] Open
Abstract
Chromatin modification is traditionally assessed in biochemical assays that provide average measurements of static events given that the analysis requires components from many cells. Microscopy can visualize single cells, but the cell body and organelles can hamper staining and visualization of the nucleus. Normally, chromatin is visualized by immunostaining a fixed sample or by expressing exogenous fluorescently tagged proteins in a live cell. Alternative microscopy tools to observe changes of endogenous chromatin in real-time are needed. Here, we isolated transcriptionally competent nuclei from cells and used antibody staining without fixation to visualize changes in endogenous chromatin. This method allows the real-time addition of drugs and fluorescent probes to one or more nuclei while under microscopy observation. A high-resolution map of 11 endogenous nuclear markers of the histone code, transcription machinery and architecture was obtained in transcriptionally active nuclei by performing confocal and structured illumination microscopy. We detected changes in chromatin modification and localization at the single-nucleus level after inhibition of histone deacetylation. Applications in the study of RNA transcription, viral protein function and nuclear architecture are presented. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Luca Sardo
- Department of Biological Sciences, McNeil Science and Technology Center, University of the Sciences, 600 S 43rd Street, Philadelphia, PA 19104, USA
| | - Angel Lin
- Department of Biological Sciences, McNeil Science and Technology Center, University of the Sciences, 600 S 43rd Street, Philadelphia, PA 19104, USA
| | - Svetlana Khakhina
- Department of Biological Sciences, McNeil Science and Technology Center, University of the Sciences, 600 S 43rd Street, Philadelphia, PA 19104, USA
| | - Lucas Beckman
- Department of Biological Sciences, McNeil Science and Technology Center, University of the Sciences, 600 S 43rd Street, Philadelphia, PA 19104, USA
| | - Luis Ricon
- Department of Biological Sciences, McNeil Science and Technology Center, University of the Sciences, 600 S 43rd Street, Philadelphia, PA 19104, USA
| | - Weam Elbezanti
- Department of Biological Sciences, McNeil Science and Technology Center, University of the Sciences, 600 S 43rd Street, Philadelphia, PA 19104, USA
| | - Tara Jaison
- Department of Biological Sciences, McNeil Science and Technology Center, University of the Sciences, 600 S 43rd Street, Philadelphia, PA 19104, USA
| | - Harshad Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD 28092, USA
| | - Hari Shroff
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 28092, USA
| | - Christopher Janetopoulos
- Department of Biological Sciences, McNeil Science and Technology Center, University of the Sciences, 600 S 43rd Street, Philadelphia, PA 19104, USA
| | - Zachary A Klase
- Department of Biological Sciences, McNeil Science and Technology Center, University of the Sciences, 600 S 43rd Street, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Dunn J, Rao S. Epigenetics and immunotherapy: The current state of play. Mol Immunol 2017; 87:227-239. [PMID: 28511092 DOI: 10.1016/j.molimm.2017.04.012] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/14/2017] [Accepted: 04/22/2017] [Indexed: 12/14/2022]
Abstract
Cancer cells employ a number of mechanisms to escape immunosurveillance and facilitate tumour progression. The recent explosion of interest in immunotherapy, especially immune checkpoint blockade, is a result of discoveries about the fundamental ligand-receptor interactions that occur between immune and cancer cells within the tumour microenvironment. Distinct ligands expressed by cancer cells engage with cell surface receptors on immune cells, triggering inhibitory pathways (such as PD-1/PD-L1) that render immune cells immunologically tolerant. Importantly, recent studies on the role of epigenetics in immune evasion have exposed a key role for epigenetic modulators in augmenting the tumour microenvironment and restoring immune recognition and immunogenicity. Epigenetic drugs such as DNA methyltransferase and histone deacetylase inhibitors can reverse immune suppression via several mechanisms such as enhancing expression of tumour-associated antigens, components of the antigen processing and presenting machinery pathways, immune checkpoint inhibitors, chemokines, and other immune-related genes. These discoveries have established a highly promising basis for studies using combined epigenetic and immunotherapeutic agents as anti-cancer therapies. In this review, we discuss the exciting role of epigenetic immunomodulation in tumour immune escape, emphasising its significance in priming and sensitising the host immune system to immunotherapies through mechanisms such as the activation of the viral defence pathway. With this background in mind, we highlight the promise of combined epigenetic therapy and immunotherapy, focusing on immune checkpoint blockade, to improve outcomes for patients with many different cancer types.
Collapse
Affiliation(s)
- Jennifer Dunn
- Health Research Institute, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Bruce, ACT, 2601, Australia.
| | - Sudha Rao
- Health Research Institute, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Bruce, ACT, 2601, Australia.
| |
Collapse
|
19
|
Wang C, Song X, Chen L, Xiao Y. Specifically and wash-free labeling of SNAP-tag fused proteins with a hybrid sensor to monitor local micro-viscosity. Biosens Bioelectron 2017; 91:313-320. [DOI: 10.1016/j.bios.2016.11.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/23/2016] [Accepted: 11/06/2016] [Indexed: 11/17/2022]
|
20
|
Neural Differentiation in HDAC1-Depleted Cells Is Accompanied by Coilin Downregulation and the Accumulation of Cajal Bodies in Nucleoli. Stem Cells Int 2017; 2017:1021240. [PMID: 28337219 PMCID: PMC5350323 DOI: 10.1155/2017/1021240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/12/2017] [Accepted: 01/26/2017] [Indexed: 12/23/2022] Open
Abstract
Cajal bodies (CBs) are important compartments containing accumulated proteins that preferentially regulate RNA-related nuclear events, including splicing. Here, we studied the nuclear distribution pattern of CBs in neurogenesis. In adult brains, coilin was present at a high density, but CB formation was absent in the nuclei of the choroid plexus of the lateral ventricles. Cells of the adult hippocampus were characterized by a crescent-like morphology of coilin protein. We additionally observed a 70 kDa splice variant of coilin in adult mouse brains, which was different to embryonic brains and mouse pluripotent embryonic stem cells (mESCs), characterized by the 80 kDa standard variant of coilin. Here, we also showed that depletion of coilin is induced during neural differentiation and HDAC1 deficiency in mESCs caused coilin accumulation inside the fibrillarin-positive region of the nucleoli. A similar distribution pattern was observed in adult brain hippocampi, characterized by lower levels of both coilin and HDAC1. In summary, we observed that neural differentiation and HDAC1 deficiency lead to coilin depletion and coilin accumulation in body-like structures inside the nucleoli.
Collapse
|
21
|
Activation of autophagy and PPARγ protect colon cancer cells against apoptosis induced by interactive effects of butyrate and DHA in a cell type-dependent manner: The role of cell differentiation. J Nutr Biochem 2017; 39:145-155. [DOI: 10.1016/j.jnutbio.2016.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/28/2016] [Accepted: 09/02/2016] [Indexed: 02/07/2023]
|
22
|
Vorinostat differentially alters 3D nuclear structure of cancer and non-cancerous esophageal cells. Sci Rep 2016; 6:30593. [PMID: 27503568 PMCID: PMC4977554 DOI: 10.1038/srep30593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/05/2016] [Indexed: 12/16/2022] Open
Abstract
The histone deacetylase (HDAC) inhibitor vorinostat has received significant attention in recent years as an 'epigenetic' drug used to treat solid tumors. However, its mechanisms of action are not entirely understood, particularly with regard to its interaction with the aberrations in 3D nuclear structure that accompany neoplastic progression. We investigated the impact of vorinostat on human esophageal epithelial cell lines derived from normal, metaplastic (pre-cancerous), and malignant tissue. Using a combination of novel optical computed tomography (CT)-based quantitative 3D absorption microscopy and conventional confocal fluorescence microscopy, we show that subjecting malignant cells to vorinostat preferentially alters their 3D nuclear architecture relative to non-cancerous cells. Optical CT (cell CT) imaging of fixed single cells showed that drug-treated cancer cells exhibit significant alterations in nuclear morphometry. Confocal microscopy revealed that vorinostat caused changes in the distribution of H3K9ac-marked euchromatin and H3K9me3-marked constitutive heterochromatin. Additionally, 3D immuno-FISH showed that drug-induced expression of the DNA repair gene MGMT was accompanied by spatial relocation toward the center of the nucleus in the nuclei of metaplastic but not in non-neoplastic cells. Our data suggest that vorinostat's differential modulation of 3D nuclear architecture in normal and abnormal cells could play a functional role in its anti-cancer action.
Collapse
|
23
|
Chen SY, Zheng XW, Cai JX, Zhang WP, You HS, Xing JF, Dong YL. Histone deacetylase inhibitor reverses multidrug resistance by attenuating the nucleophosmin level through PI3K/Akt pathway in breast cancer. Int J Oncol 2016; 49:294-304. [PMID: 27211281 DOI: 10.3892/ijo.2016.3528] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/26/2016] [Indexed: 11/05/2022] Open
Abstract
The development of multidrug resistance (MDR) is the major obstacle in the chemotherapy of breast cancer, and it restricts the application of antitumor drugs in the clinic. Therefore it is urgent to search for ways to reverse MDR and restore sensitivity to chemotherapeutics in breast carcinoma. Currently, histone deacetylase inhibitors (HDACIs) offer a promising strategy for tumor therapy as the effective anticancer drugs. Based on the potential resistant target of nucleophosmin (NPM), the purpose of this study was to explore the reversal effect of a new synthetic histone deacetylase inhibitor, FA17, on MDR in methotrexate-resistant breast cancer cells (MCF-7/MTX) and xenograft tumors. It was shown that the abnormal expression of NPM induced MDR and inhibited downstream mitochondrial apoptotic pathway by activating PI3K/Akt signaling pathway in MCF-7/MTX cells. The reversal effect and molecular mechanism of FA17 were investigated both in vitro and in vivo. We found that FA17 could significantly reverse resistance and sensitize MCF-7/MTX cells to methotrexate. FA17 obviously enhanced resistant cell apoptosis, inhibited expressions of NPM and efflux transporters. Additionally, FA17 could reverse MDR via inactivating PI3K/Akt pathway and accelerating mitochondrial apoptotic pathway both in MCF-7/MTX cells and in xenograft tumors. Taken together, the novel histone deacetylase inhibitor could effectively reverse drug resistance due to suppressing the activity of NPM and drug efflux pumps by PI3K/Akt and mitochondrial apoptotic pathway. The above not only indicated the potential applied value of FA17 in reversing MDR and enhancing the sensitivity of chemotherapy, but also confirmed the role of NPM in the development of MDR in breast cancer.
Collapse
Affiliation(s)
- Si-Ying Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
| | - Xiao-Wei Zheng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
| | - Jiang-Xia Cai
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
| | - Wei-Peng Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
| | - Hai-Sheng You
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
| | - Jian-Feng Xing
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
| | - Ya-Lin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
| |
Collapse
|
24
|
Inhibitors of Histone Deacetylases Attenuate Noise-Induced Hearing Loss. J Assoc Res Otolaryngol 2016; 17:289-302. [PMID: 27095478 DOI: 10.1007/s10162-016-0567-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/30/2016] [Indexed: 11/27/2022] Open
Abstract
Loss of auditory sensory hair cells is the major pathological feature of noise-induced hearing loss (NIHL). Currently, no established clinical therapies for prevention or amelioration of NIHL are available. The absence of treatments is due to our lack of a comprehensive understanding of the molecular mechanisms underlying noise-induced damage. Our previous study indicates that epigenetic modification of histones alters hair cell survival. In this study, we investigated the effect of noise exposure on histone H3 lysine 9 acetylation (H3K9ac) in the inner ear of adult CBA/J mice and determined if inhibition of histone deacetylases by systemic administration of suberoylanilide hydroxamic acid (SAHA) could attenuate NIHL. Our results showed that H3K9ac was decreased in the nuclei of outer hair cells (OHCs) and marginal cells of the stria vascularis in the basal region after exposure to a traumatic noise paradigm known to induce permanent threshold shifts (PTS). Consistent with these results, levels of histone deacetylases 1, 2, and 3 (HDAC1, HDAC2 and HDAC3) were increased predominately in the nuclei of cochlear cells. Silencing of HDAC1, HDAC2, or HDAC3 with siRNA reduced the expression of the target HDAC in OHCs, but did not attenuate noise-induced PTS, whereas treatment with the pan-HDAC inhibitor SAHA, also named vorinostat, reduced OHC loss, and attenuated PTS. These findings suggest that histone acetylation is involved in the pathogenesis of noise-induced OHC death and hearing loss. Pharmacological targeting of histone deacetylases may afford a strategy for protection against NIHL.
Collapse
|
25
|
Franek M, Suchánková J, Sehnalová P, Krejčí J, Legartová S, Kozubek S, Večeřa J, Sorokin DV, Bártová E. Advanced Image Acquisition and Analytical Techniques for Studies of Living Cells and Tissue Sections. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:326-341. [PMID: 26903193 DOI: 10.1017/s1431927616000052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Studies on fixed samples or genome-wide analyses of nuclear processes are useful for generating snapshots of a cell population at a particular time point. However, these experimental approaches do not provide information at the single-cell level. Genome-wide studies cannot assess variability between individual cells that are cultured in vitro or originate from different pathological stages. Immunohistochemistry and immunofluorescence are fundamental experimental approaches in clinical laboratories and are also widely used in basic research. However, the fixation procedure may generate artifacts and prevents monitoring of the dynamics of nuclear processes. Therefore, live-cell imaging is critical for studying the kinetics of basic nuclear events, such as DNA replication, transcription, splicing, and DNA repair. This review is focused on the advanced microscopy analyses of the cells, with a particular focus on live cells. We note some methodological innovations and new options for microscope systems that can also be used to study tissue sections. Cornerstone methods for the biophysical research of living cells, such as fluorescence recovery after photobleaching and fluorescence resonance energy transfer, are also discussed, as are studies on the effects of radiation at the individual cellular level.
Collapse
Affiliation(s)
- Michal Franek
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | - Jana Suchánková
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | - Petra Sehnalová
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | - Jana Krejčí
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | - Soňa Legartová
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | - Stanislav Kozubek
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| | | | | | - Eva Bártová
- Institute of Biophysics,Academy of Sciences of the Czech Republic,v.v.i.,Královopolská 135,612 65 Brno,Czech Republic
| |
Collapse
|
26
|
Felisbino MB, Alves da Costa T, Gatti MSV, Mello MLS. Differential Response of Human Hepatocyte Chromatin to HDAC Inhibitors as a Function of Microenvironmental Glucose Level. J Cell Physiol 2016; 231:2257-65. [DOI: 10.1002/jcp.25343] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/12/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Marina Barreto Felisbino
- Department of Structural and Functional Biology, Institute of Biology; University of Campinas (Unicamp); Campinas São Paulo Brazil
| | - Thiago Alves da Costa
- Department of Structural and Functional Biology, Institute of Biology; University of Campinas (Unicamp); Campinas São Paulo Brazil
| | - Maria Silvia Viccari Gatti
- Department of Genetics, Evolution and Bioagents, Institute of Biology; University of Campinas (Unicamp); Campinas São Paulo Brazil
| | - Maria Luiza Silveira Mello
- Department of Structural and Functional Biology, Institute of Biology; University of Campinas (Unicamp); Campinas São Paulo Brazil
| |
Collapse
|
27
|
Henry RA, Singh T, Kuo YM, Biester A, O'Keefe A, Lee S, Andrews AJ, O'Reilly AM. Quantitative Measurement of Histone Tail Acetylation Reveals Stage-Specific Regulation and Response to Environmental Changes during Drosophila Development. Biochemistry 2016; 55:1663-72. [PMID: 26836402 DOI: 10.1021/acs.biochem.5b01070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone modification plays a major role in regulating gene transcription and ensuring the healthy development of an organism. Numerous studies have suggested that histones are dynamically modified during developmental events to control gene expression levels in a temporal and spatial manner. However, the study of histone acetylation dynamics using currently available techniques is hindered by the difficulty of simultaneously measuring acetylation of the numerous potential sites of modification present in histones. Here, we present a methodology that allows us to combine mass spectrometry-based histone analysis with Drosophila developmental genetics. Using this system, we characterized histone acetylation patterns during multiple developmental stages of the fly. Additionally, we utilized this analysis to characterize how treatments with pharmacological agents or environmental changes such as γ-irradiation altered histone acetylation patterns. Strikingly, γ-irradiation dramatically increased the level of acetylation at H3K18, a site linked to DNA repair via nonhomologous end joining. In mutant fly strains deficient in DNA repair proteins, however, this increase in the level of H3K18 acetylation was lost. These results demonstrate the efficacy of our combined mass spectrometry system with a Drosophila model system and provide interesting insight into the changes in histone acetylation during development, as well as the effects of both pharmacological and environmental agents on global histone acetylation.
Collapse
Affiliation(s)
- Ryan A Henry
- Department of Cancer Biology, Fox Chase Cancer Center , Philadelphia, Pennsylvania 19111, United States
| | - Tanu Singh
- Department of Cancer Biology, Fox Chase Cancer Center , Philadelphia, Pennsylvania 19111, United States.,Department of Biochemistry and Molecular Biology, Drexel College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | - Yin-Ming Kuo
- Department of Cancer Biology, Fox Chase Cancer Center , Philadelphia, Pennsylvania 19111, United States
| | - Alison Biester
- Immersion Science Program, Fox Chase Cancer Center , Philadelphia, Pennsylvania 19111, United States
| | - Abigail O'Keefe
- Immersion Science Program, Fox Chase Cancer Center , Philadelphia, Pennsylvania 19111, United States
| | - Sandy Lee
- Immersion Science Program, Fox Chase Cancer Center , Philadelphia, Pennsylvania 19111, United States
| | - Andrew J Andrews
- Department of Cancer Biology, Fox Chase Cancer Center , Philadelphia, Pennsylvania 19111, United States
| | - Alana M O'Reilly
- Department of Cancer Biology, Fox Chase Cancer Center , Philadelphia, Pennsylvania 19111, United States
| |
Collapse
|
28
|
Bártová E, Večeřa J, Krejčí J, Legartová S, Pacherník J, Kozubek S. The level and distribution pattern of HP1β in the embryonic brain correspond to those of H3K9me1/me2 but not of H3K9me3. Histochem Cell Biol 2016; 145:447-61. [PMID: 26794325 DOI: 10.1007/s00418-015-1402-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2015] [Indexed: 01/13/2023]
Abstract
We studied the histone signature of embryonic and adult brains to strengthen existing evidence of the importance of the histone code in mouse brain development. We analyzed the levels and distribution patterns of H3K9me1, H3K9me2, H3K9me3, and HP1β in both embryonic and adult brains. Western blotting showed that during mouse brain development, the levels of H3K9me1, H3K9me2, and HP1β exhibited almost identical trends, with the highest protein levels occurring at E15 stage. These trends differed from the relatively stable level of H3K9me3 at developmental stages E8, E13, E15, and E18. Compared with embryonic brains, adult brains were characterized by very low levels of H3K9me1/me2/me3 and HP1β. Manipulation of the embryonic epigenome through histone deacetylase inhibitor treatment did not affect the distribution patterns of the studied histone markers in embryonic ventricular ependyma. Similarly, Hdac3 depletion in adult animals had no effect on histone methylation in the adult hippocampus. Our results indicate that the distribution of HP1β in the embryonic mouse brain is related to that of H3K9me1/me2 but not to that of H3K9me3. The unique status of H3K9me3 in the brain was confirmed by its pronounced accumulation in the granular layer of the adult olfactory bulb. Moreover, among the studied proteins, H3K9me3 was the only posttranslational histone modification that was highly abundant at clusters of centromeric heterochromatin, called chromocenters. When we focused on the hippocampus, we found this region to be rich in H3K9me1 and H3K9me3, whereas H3K9me2 and HP1β were present at a very low level or even absent in the hippocampal blade. Taken together, these results revealed differences in the epigenome of the embryonic and adult mouse brain and showed that the adult hippocampus, the granular layer of the adult olfactory bulb, and the ventricular ependyma of the embryonic brain are colonized by specific epigenetic marks.
Collapse
Affiliation(s)
- Eva Bártová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic.
| | - Josef Večeřa
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Jana Krejčí
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Soňa Legartová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Jiří Pacherník
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, Brno, Czech Republic
| | - Stanislav Kozubek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| |
Collapse
|
29
|
Colarossi L, Memeo L, Colarossi C, Aiello E, Iuppa A, Espina V, Liotta L, Mueller C. Inhibition of histone deacetylase 4 increases cytotoxicity of docetaxel in gastric cancer cells. Proteomics Clin Appl 2014; 8:924-931. [DOI: 10.1002/prca.201400058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Lorenzo Colarossi
- Center for Applied Proteomics and Molecular Medicine; George Mason University; Manassas VA USA
- Fondazione IOM; Viagrande Catania Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology; Mediterranean Institute of Oncology; Viagrande Catania Italy
- IOM Ricerca srl; Viagrande Catania Italy
| | - Cristina Colarossi
- Department of Experimental Oncology; Mediterranean Institute of Oncology; Viagrande Catania Italy
| | - Eleonora Aiello
- Department of Experimental Oncology; Mediterranean Institute of Oncology; Viagrande Catania Italy
| | - Antonio Iuppa
- Department of Experimental Oncology; Mediterranean Institute of Oncology; Viagrande Catania Italy
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine; George Mason University; Manassas VA USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine; George Mason University; Manassas VA USA
| | - Claudius Mueller
- Center for Applied Proteomics and Molecular Medicine; George Mason University; Manassas VA USA
| |
Collapse
|
30
|
Cowell IG, Papageorgiou N, Padget K, Watters GP, Austin CA. Histone deacetylase inhibition redistributes topoisomerase IIb from heterochromatin to euchromatin. Nucleus 2014. [DOI: 10.4161/nucl.14194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
31
|
Ganai SA, Kalladi SM, Mahadevan V. HDAC inhibition through valproic acid modulates the methylation profiles in human embryonic kidney cells. J Biomol Struct Dyn 2014; 33:1185-97. [PMID: 25012937 DOI: 10.1080/07391102.2014.938247] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Post-translational modifications on the tails of core and linker histones dictate transcription and have vital roles in disease and development. Acetylation and deacetylation events enabled by histone acetyl transferases and histone deacetylases (HDACs) on the chromatin milieu are intricately involved in gene regulation. Inhibition of HDACs is emerging as a powerful strategy in regenerative therapy, transplantation, development and in nuclear reprogramming events. Valproic acid (VPA), belonging to the short-chain fatty acid group of HDAC inhibitors, modulates the epigenome altering gene expression profiles across cell lines. This work attempts to explore the methylation profiles triggered by VPA treatment on human embryonic kidney cells (HEK 293) through a biochemical and computational approach. VPA treatment (for 48 h) has been observed to hypermethylate lysine 4 on the core histone H3 and confers a hypomethylation status of H3 lysine 27 in HEK 293 cells leaving the nuclear area and nuclear contour unaltered. Our structural docking and Binding Free Energy (BFE) calculations establish an active role for VPA in inhibiting the demethylase JARID1A (Jumonji, AT Rich Interactive Domain 1A) and the methyl-transferase EZH2 (Enhancer of Zeste Homologue 2). This work has also proven that VPA can inhibit the activity of proteins like GSK3β and PKCβII involved in developmental disorders. This work establishes a dynamic correlation between histone methylation events and HDAC inhibition and may define newer epigenetic strategies for treating neurodevelopmental and oncological disorders.
Collapse
Affiliation(s)
- Shabir Ahmad Ganai
- a Center for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology , SASTRA University , Thanjavur 613401 , India
| | | | | |
Collapse
|
32
|
Perfus-Barbeoch L, Castagnone-Sereno P, Reichelt M, Fneich S, Roquis D, Pratx L, Cosseau C, Grunau C, Abad P. Elucidating the molecular bases of epigenetic inheritance in non-model invertebrates: the case of the root-knot nematode Meloidogyne incognita. Front Physiol 2014; 5:211. [PMID: 24936189 PMCID: PMC4047830 DOI: 10.3389/fphys.2014.00211] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/15/2014] [Indexed: 01/01/2023] Open
Abstract
Root-knot nematodes of the genus Meloidogyne are biotrophic plant parasites that exhibit different life cycles and reproduction modes, ranging from classical amphimixis to obligatory mitotic parthenogenesis (apomixis), depending on the species. Meloidogyne incognita, an apomictic species, exhibits a worldwide distribution and a wide host range affecting more than 3000 plant species. Furthermore, evidences suggest that apomixis does not prevent M. incognita from adapting to its environment in contrast to what is expected from mitotic parthenogenesis that should theoretically produce clonal progenies. This raises questions about mechanisms of genome plasticity leading to genetic variation and adaptive evolution in apomictic animals. We reasoned that epigenetic mechanisms might in part be responsible for the generation of phenotypic variants that provide potential for rapid adaptation. We established therefore a pipeline to investigate the principal carriers of epigenetic information, DNA methylation and post-translational histone modifications. Even if M. incognita possesses the epigenetic machinery i.e., chromatin modifying enzymes, 5-methyl-cytosine and 5-hydroxy-methyl-cytosine content is absent or very weak. In contrast, we demonstrated that the canonical histone modifications are present and chromatin shows typical nucleosome structure. This work is the first characterization of carriers of epigenetic information in M. incognita and constitutes a preamble to further investigate if M. incognita development and its adaptation to plant hosts are under epigenetic control. Our pipeline should allow performing similar types of studies in any non-model organism.
Collapse
Affiliation(s)
- Laetitia Perfus-Barbeoch
- INRA, Institut Sophia Agrobiotech, UMR 1355 ISA Sophia-Antipolis, France ; CNRS, Institut Sophia Agrobiotech, UMR 7254 ISA Sophia-Antipolis, France ; Institut Sophia Agrobiotech, Université de Nice Sophia-Antipolis, UMR ISA Sophia-Antipolis, France
| | - Philippe Castagnone-Sereno
- INRA, Institut Sophia Agrobiotech, UMR 1355 ISA Sophia-Antipolis, France ; CNRS, Institut Sophia Agrobiotech, UMR 7254 ISA Sophia-Antipolis, France ; Institut Sophia Agrobiotech, Université de Nice Sophia-Antipolis, UMR ISA Sophia-Antipolis, France
| | | | - Sara Fneich
- Ecologie et Evolution des Interactions, Université de Perpignan Via Domitia Perpignan, France ; Ecologie et Evolution des Interactions, CNRS, UMR5244 Perpignan, France
| | - David Roquis
- Ecologie et Evolution des Interactions, Université de Perpignan Via Domitia Perpignan, France ; Ecologie et Evolution des Interactions, CNRS, UMR5244 Perpignan, France
| | - Loris Pratx
- INRA, Institut Sophia Agrobiotech, UMR 1355 ISA Sophia-Antipolis, France ; CNRS, Institut Sophia Agrobiotech, UMR 7254 ISA Sophia-Antipolis, France ; Institut Sophia Agrobiotech, Université de Nice Sophia-Antipolis, UMR ISA Sophia-Antipolis, France
| | - Céline Cosseau
- Ecologie et Evolution des Interactions, Université de Perpignan Via Domitia Perpignan, France ; Ecologie et Evolution des Interactions, CNRS, UMR5244 Perpignan, France
| | - Christoph Grunau
- Ecologie et Evolution des Interactions, Université de Perpignan Via Domitia Perpignan, France ; Ecologie et Evolution des Interactions, CNRS, UMR5244 Perpignan, France
| | - Pierre Abad
- INRA, Institut Sophia Agrobiotech, UMR 1355 ISA Sophia-Antipolis, France ; CNRS, Institut Sophia Agrobiotech, UMR 7254 ISA Sophia-Antipolis, France ; Institut Sophia Agrobiotech, Université de Nice Sophia-Antipolis, UMR ISA Sophia-Antipolis, France
| |
Collapse
|
33
|
Legartová S, Stixová L, Laur O, Kozubek S, Sehnalová P, Bártová E. Nuclear Structures Surrounding Internal Lamin Invaginations. J Cell Biochem 2014; 115:476-87. [DOI: 10.1002/jcb.24681] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/23/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Soňa Legartová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; 612 65 Brno Czech Republic
| | - Lenka Stixová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; 612 65 Brno Czech Republic
| | - Oskar Laur
- Emory University School of Medicine; Emory University; Atlanta Georgia 30322
| | - Stanislav Kozubek
- Institute of Biophysics; Academy of Sciences of the Czech Republic; 612 65 Brno Czech Republic
| | - Petra Sehnalová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; 612 65 Brno Czech Republic
| | - Eva Bártová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; 612 65 Brno Czech Republic
| |
Collapse
|
34
|
González-Barrios R, Soto-Reyes E, Quiroz-Baez R, Fabián-Morales E, Díaz-Chávez J, Del Castillo V, Mendoza J, López-Saavedra A, Castro C, Herrera LA. Differential distribution of HP1 proteins after trichostatin a treatment influences chromosomal stability in HCT116 and WI-38 cells. Cell Div 2014; 9:6. [PMID: 25729403 PMCID: PMC4343280 DOI: 10.1186/s13008-014-0006-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/02/2014] [Indexed: 11/19/2022] Open
Abstract
Background Heterochromatin protein 1 (HP1) is important in the establishment, propagation, and maintenance of constitutive heterochromatin, especially at the pericentromeric region. HP1 might participate in recruiting and directing Mis12 to the centromere during interphase, and HP1 disruption or abrogation might lead to the loss of Mis12 incorporation into the kinetochore. Therefore, the centromere structure and kinetochore relaxation that are promoted in the absence of Mis12 could further induce chromosome instability (CIN) by reducing the capacity of the kinetochore to anchor microtubules. The aim of this study was to determine whether alterations in the localization of HP1 proteins induced by trichostatin A (TSA) modify Mis12 and Centromere Protein A (CENP-A) recruitment to the centromere and whether changes in the expression of HP1 proteins and H3K9 methylation at centromeric chromatin increase CIN in HCT116 and WI-38 cells. Methods HCT116 and WI-38 cells were cultured and treated with TSA to evaluate CIN after 24 and 48 h of exposure. Immunofluorescence, Western blot, ChIP, and RT-PCR assays were performed in both cell lines to evaluate the localization and abundance of HP1α/β, Mis12, and CENP-A and to evaluate chromatin modifications during interphase and mitosis, as well as after 24 and 48 h of TSA treatment. Results Our results show that the TSA-induced reduction in heterochromatic histone marks on centromeric chromatin reduced HP1 at the centromere in the non-tumoral WI-38 cells and that this reduction was associated with cell cycle arrest and CIN. However, in HCT116 cells, HP1 proteins, together with MIS12 and CENP-A, relocated to centromeric chromatin in response to TSA treatment, even after H3K9me3 depletion in the centromeric nucleosomes. The enrichment of HP1 and the loss of H3K9me3 were associated with an increase in CIN, suggesting a response mechanism at centromeric and pericentromeric chromatin that augments the presence of HP1 proteins in those regions, possibly ensuring chromosome segregation despite serious CIN. Our results provide new insight into the epigenetic landscape of centromeric chromatin and the role of HP1 proteins in CIN. Electronic supplementary material The online version of this article (doi:10.1186/s13008-014-0006-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Ernesto Soto-Reyes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Ricardo Quiroz-Baez
- Departamento de Investigación Básica, Dirección de Investigación, Instituto Nacional de Geriatría, Secretaría de Salud, México, DF 10200 México
| | - Eunice Fabián-Morales
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Victor Del Castillo
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Julia Mendoza
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Alejandro López-Saavedra
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Clementina Castro
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), México, DF 14080 México ; Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, Coyoacán, México, DF 04510 México
| |
Collapse
|
35
|
Legartová S, Stixová L, Strnad H, Kozubek S, Martinet N, Dekker FJ, Franek M, Bártová E. Basic nuclear processes affected by histone acetyltransferases and histone deacetylase inhibitors. Epigenomics 2013; 5:379-96. [DOI: 10.2217/epi.13.38] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The optimal balance between histone acetylation and deacetylation is important for proper gene function. Therefore, we addressed how inhibitors of histone-modifying enzymes can modulate nuclear events, including replication, transcription, splicing and DNA repair. Materials & methods: Changes in cell signaling pathways upon treatment with histone acetyltransferases and/or histone deacetylase inhibitors were studied by cDNA microarrays and western blots. Results: We analyzed the effects of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) and the histone acetylase inhibitor MG149. SAHA altered the expression of factors involved in DNA replication complexes, basal transcription and the spliceosome pathway. DNA repair-related genes, including Rad51, Rad54 and BRCA2, were significantly downregulated by SAHA. However, MG149 had no effect on the investigated nuclear processes, with the exception of the spliceosome network and Sestrins, involved in DNA repair. Conclusion: Based on our results, we propose that the studied epigenetic drugs have the distinct potential to affect specific cell signaling pathways depending on their respective molecular targets.
Collapse
Affiliation(s)
- Soňa Legartová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Lenka Stixová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Hynek Strnad
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Stanislav Kozubek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Nadine Martinet
- Institut de Chimie, Université de Nice Sophia Antipolis-UMR CNRS 7272, Parc Valrose, 06100, Nice, France
| | - Frank J Dekker
- Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Michal Franek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Eva Bártová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic.
| |
Collapse
|
36
|
Cong P, Zhu K, Ji Q, Zhao H, Chen Y. Effects of trichostatin A on histone acetylation and methylation characteristics in early porcine embryos after somatic cell nuclear transfer. Anim Sci J 2013; 84:639-49. [PMID: 23607426 DOI: 10.1111/asj.12059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 01/08/2013] [Indexed: 11/28/2022]
Abstract
Until now, the efficiency of animal cloning by somatic cell nuclear transfer (SCNT) has remained low. Efforts to improve cloning efficiency have demonstrated a positive role of trichostatin A (TSA), an inhibitor of deacetylases, on the development of nuclear transfer (NT) embryos in many species. Here, we report the effects of TSA on pre-implantation development of porcine NT embryos. Our results showed that treatment of reconstructed porcine embryos with 50 nmol/L TSA for 24 h after activation significantly improved the production of blastocysts (P < 0.05), while treating donor cells with the same solution resulted in increases in cleavage rates and blastomere numbers (P < 0.05). However, TSA treatment of both donor cells and SCNT embryos did not improve blastocyst production, nor did it increase blastomere numbers. Using indirect immunofluorescence, we found that TSA treatment of NT embryos could improve the reprogramming of histone acetylation at lysine 9 of histone 3 (H3K9) and affect nuclear swelling of transferred nuclei. However, no apparent effect of TSA treatment on H3K9 dimethylation (H3K9me2) was observed. These findings suggest a positive effect of TSA treatment (either treating NT embryos or donor cells) on the development of porcine NT embryos, which is achieved by improving epigenetic reprogramming.
Collapse
Affiliation(s)
- Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|
37
|
Orlova DY, Stixová L, Kozubek S, Gierman HJ, Šustáčková G, Chernyshev AV, Medvedev RN, Legartová S, Versteeg R, Matula P, Stoklasa R, Bártová E. Arrangement of nuclear structures is not transmitted through mitosis but is identical in sister cells. J Cell Biochem 2013; 113:3313-29. [PMID: 22644811 DOI: 10.1002/jcb.24208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although it is well known that chromosomes are non-randomly organized during interphase, it is not completely clear whether higher-order chromatin structure is transmitted from mother to daughter cells. Therefore, we addressed the question of how chromatin is rearranged during interphase and whether heterochromatin pattern is transmitted after mitosis. We additionally tested the similarity of chromatin arrangement in sister interphase nuclei. We noticed a very active cell rotation during interphase, especially when histone hyperacetylation was induced or transcription was inhibited. This natural phenomenon can influence the analysis of nuclear arrangement. Using photoconversion of Dendra2-tagged core histone H4 we showed that the distribution of chromatin in daughter interphase nuclei differed from that in mother cells. Similarly, the nuclear distribution of heterochromatin protein 1β (HP1β) was not completely identical in mother and daughter cells. However, identity between mother and daughter cells was in many cases evidenced by nucleolar composition. Moreover, morphology of nucleoli, HP1β protein, Cajal bodies, chromosome territories, and gene transcripts were identical in sister cell nuclei. We conclude that the arrangement of interphase chromatin is not transmitted through mitosis, but the nuclear pattern is identical in naturally synchronized sister cells. It is also necessary to take into account the possibility that cell rotation and the degree of chromatin condensation during functionally specific cell cycle phases might influence our view of nuclear architecture.
Collapse
Affiliation(s)
- Darya Yu Orlova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-612 65 Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fletcher AJ, Towers GJ. Inhibition of retroviral replication by members of the TRIM protein family. Curr Top Microbiol Immunol 2013; 371:29-66. [PMID: 23686231 DOI: 10.1007/978-3-642-37765-5_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The TRIM protein family is emerging as a central component of mammalian antiviral innate immunity. Beginning with the identification of TRIM5α as a mammalian post-entry restriction factor against retroviruses, to the repeated observation that many TRIMs ubiquitinate and regulate signaling pathways, the past decade has witnessed an intense research effort to understand how TRIM proteins influence immunity. The list of viral families targeted directly or indirectly by TRIM proteins has grown to include adenoviruses, hepadnaviruses, picornaviruses, flaviviruses, orthomyxoviruses, paramyxoviruses, herpesviruses, rhabdoviruses and arenaviruses. We have come to appreciate how, through intense bouts of positive selection, some TRIM genes have been honed into species-specific restriction factors. Similarly, in the case of TRIMCyp, we are beginning to understand how viruses too have mutated to evade restriction, suggesting that TRIM and viruses have coevolved for millions of years of primate evolution. Recently, TRIM5α returned to the limelight when it was shown to trigger the expression of antiviral genes upon recognition of an incoming virus, a paradigm shift that demonstrated that restriction factors make excellent pathogen sensors. However, it remains unclear how many of ~100 human TRIM genes are antiviral, despite the expression of many of these genes being upregulated by interferon and upon viral infection. TRIM proteins do not conform to one type of antiviral mechanism, reflecting the diversity of viruses they target. Moreover, the cofactors of restriction remain largely enigmatic. The control of retroviral replication remains an important medical subject and provides a useful backdrop for reviewing how TRIM proteins act to repress viral replication.
Collapse
Affiliation(s)
- Adam J Fletcher
- MRC Centre for Medical Molecular Virology, University College, London, UK.
| | | |
Collapse
|
39
|
Legartová S, Jugová A, Stixová L, Kozubek S, Fojtová M, Zdráhal Z, Lochmanová G, Bártová E. Epigenetic aspects of HP1 exchange kinetics in apoptotic chromatin. Biochimie 2012; 95:167-79. [PMID: 23023195 DOI: 10.1016/j.biochi.2012.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
Abstract
Apoptotic bodies are the most condensed form of chromatin. In general, chromatin structure and function are mostly dictated by histone post-translational modifications. Thus, we have analyzed the histone signature in apoptotic cells, characterized by pronounced chromatin condensation. Here, H2B mono-acetylation, and H3K9 and H4 acetylation was significantly decreased in apoptotic cells, which maintained a high level of H3K9 methylation. This phenotype was independent of p53 function and distinct levels of anti-apoptotic Bcl2 protein. Interestingly, after etoposide treatment of leukemia and multiple myeloma cells, H3K9 and H4 hypoacetylation was accompanied by increased H3K9me2, but not H3K9me1 or H3K9me3. In adherent mouse fibroblasts, a high level of H3K9me3 and histone deacetylation in apoptotic bodies was likely responsible for the pronounced (∼40%) recovery of GFP-HP1α and GFP-HP1β after photobleaching. HP1 mobility in apoptotic cells appeared to be unique because limited exchange after photobleaching was observed for other epigenetically important proteins, including GFP-JMJD2b histone demethylase (∼10% fluorescence recovery) or Polycomb group-related GFP-BMI1 protein (∼20% fluorescence recovery). These findings imply a novel fact that only certain subset of proteins in apoptotic bodies is dynamic.
Collapse
Affiliation(s)
- Soňa Legartová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Stixová L, Matula P, Kozubek S, Gombitová A, Cmarko D, Raška I, Bártová E. Trajectories and nuclear arrangement of PML bodies are influenced by A-type lamin deficiency. Biol Cell 2012; 104:418-32. [PMID: 22443097 DOI: 10.1111/boc.201100053] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 03/16/2012] [Indexed: 01/08/2023]
Abstract
BACKGROUND INFORMATION Promyelocytic leukaemia (PML) bodies are specific nuclear structures with functional significance for acute promyelocytic leukaemia. In this study, we analysed the trajectories of PML bodies using single-particle tracking. RESULTS We observed that the recovery of PML protein after photobleaching was ATP dependent in both wild-type (wt) and A-type lamin-deficient cells. The movement of PML bodies was faster and the nuclear area occupied by particular PML bodies was larger in A-type lamin-deficient fibroblasts compared with their wt counterparts. Moreover, dysfunction of the LMNA gene increased the frequency of mutual interactions between individual PML bodies and influenced the morphology of these domains at the ultrastructural level. As a consequence of A-type lamin deficiency, PML protein accumulated in nuclear blebs and frequently appeared at the nuclear periphery. CONCLUSIONS We suggest that the physiological function of lamin A proteins is important for events that occur in the compartment of PML bodies. This observation was confirmed in other experimental models characterised by lamin changes, including apoptosis or the differentiation of mouse embryonic stem cells.
Collapse
Affiliation(s)
- Lenka Stixová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
41
|
Sustáčková G, Kozubek S, Stixová L, Legartová S, Matula P, Orlova D, Bártová E. Acetylation-dependent nuclear arrangement and recruitment of BMI1 protein to UV-damaged chromatin. J Cell Physiol 2012; 227:1838-50. [PMID: 21732356 DOI: 10.1002/jcp.22912] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Polycomb group (PcG) proteins, organized into Polycomb bodies, are important regulatory components of epigenetic processes involved in the heritable transcriptional repression of target genes. Here, we asked whether acetylation can influence the nuclear arrangement and function of the BMI1 protein, a core component of the Polycomb group complex, PRC1. We used time-lapse confocal microscopy, micro-irradiation by UV laser (355 nm) and GFP technology to study the dynamics and function of the BMI1 protein. We observed that BMI1 was recruited to UV-damaged chromatin simultaneously with decreased lysine acetylation, followed by the recruitment of heterochromatin protein HP1β to micro-irradiated regions. Pronounced recruitment of BMI1 was rapid, with half-time τ = 15 sec; thus, BMI1 is likely involved in the initiation step leading to the recognition of UV-damaged sites. Histone hyperacetylation, stimulated by HDAC inhibitor TSA, suppression of transcription by actinomycin D, and ATP-depletion prevented increased accumulation of BMI1 to γH2AX-positive irradiated chromatin. Moreover, BMI1 had slight ability to recognize spontaneously occurring DNA breaks caused by other pathophysiological processes. Taken together, our data indicate that the dynamics of recognition of UV-damaged chromatin, and the nuclear arrangement of BMI1 protein can be influenced by acetylation and occur as an early event prior to the recruitment of HPβ to UV-irradiated chromatin.
Collapse
Affiliation(s)
- Gabriela Sustáčková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
42
|
Effects of epigenetic-based anti-cancer drugs in leukaemia and multiple myeloma cells. Cell Biol Int 2011; 35:1195-203. [DOI: 10.1042/cbi20100820] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Qian CJ, Yao J, Si JM. Nuclear JAK2: form and function in cancer. Anat Rec (Hoboken) 2011; 294:1446-59. [PMID: 21809458 DOI: 10.1002/ar.21443] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 05/19/2011] [Indexed: 12/23/2022]
Abstract
The conventional view of Janus kinase 2 (JAK2) is a nonreceptor tyrosine kinase which transmits information to the nucleus via the signal transducer and activator of transcriptions (STATs) without leaving the cytoplasm. However, accumulating data suggest that JAK2 may signal by exporting from cytoplasm to nucleus, where it guides the transcriptional machinery independent of STATs protein. Recent studies demonstrated that JAK2 is a crucial component of signaling pathways operating in the nucleus. Especially the latest landmark discovery confirmed that JAK2 goes into the nucleus and directly interacts with nucleoproteins, such as histone H3 at tyrosine 41 (H3Y41), nuclear factor 1-C2 (NF1-C2) and SWI/SNF-related helicases/ATPases (RUSH)-1α, indicating that JAK2 has a fresh nuclear function. Nuclear JAK2 is linked to a variety of cellular functions, such as cell cycle progression, apoptosis and genetic instability. The balance between these functions is an essential factor in determining whether a cell remains benign or becomes malignant. The aim of this review is intended to summarize the state of our knowledge on nuclear localization of JAK2 and nuclear JAK2 pathways, and to highlight the emerging roles for nuclear JAK2 in carcinogenesis.
Collapse
Affiliation(s)
- Cui-Juan Qian
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | |
Collapse
|
44
|
Rowbotham SP, Barki L, Neves-Costa A, Santos F, Dean W, Hawkes N, Choudhary P, Will WR, Webster J, Oxley D, Green CM, Varga-Weisz P, Mermoud JE. Maintenance of silent chromatin through replication requires SWI/SNF-like chromatin remodeler SMARCAD1. Mol Cell 2011; 42:285-96. [PMID: 21549307 DOI: 10.1016/j.molcel.2011.02.036] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 01/11/2011] [Accepted: 02/25/2011] [Indexed: 01/20/2023]
Abstract
Epigenetic marks such as posttranslational histone modifications specify the functional states of underlying DNA sequences, though how they are maintained after their disruption during DNA replication remains a critical question. We identify the mammalian SWI/SNF-like protein SMARCAD1 as a key factor required for the re-establishment of repressive chromatin. The ATPase activity of SMARCAD1 is necessary for global deacetylation of histones H3/H4. In this way, SMARCAD1 promotes methylation of H3K9, the establishment of heterochromatin, and faithful chromosome segregation. SMARCAD1 associates with transcriptional repressors including KAP1, histone deacetylases HDAC1/2 and the histone methyltransferase G9a/GLP and modulates the interaction of HDAC1 and KAP1 with heterochromatin. SMARCAD1 directly interacts with PCNA, a central component of the replication machinery, and is recruited to sites of DNA replication. Our findings suggest that chromatin remodeling by SMARCAD1 ensures that silenced loci, such as pericentric heterochromatin, are correctly perpetuated.
Collapse
Affiliation(s)
- Samuel P Rowbotham
- Nuclear Dynamics and Function, Babraham Institute, Cambridge CB22 3AT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Orlova DY, Bártová E, Maltsev VP, Kozubek S, Chernyshev AV. A nonfitting method using a spatial sine window transform for inhomogeneous effective-diffusion measurements by FRAP. Biophys J 2011; 100:507-16. [PMID: 21244847 DOI: 10.1016/j.bpj.2010.11.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 11/17/2010] [Accepted: 11/30/2010] [Indexed: 01/13/2023] Open
Abstract
Determining averaged effective diffusion constants from experimental measurements of fluorescent proteins in an inhomogeneous medium in the presence of ligand-receptor interactions poses problems of analytical tractability. Here, we introduced a nonfitting method to evaluate the averaged effective diffusion coefficient of a region of interest (which may include a whole nucleus) by mathematical processing of the entire cellular two-dimensional spatial pattern of recovered fluorescence. Spatially and temporally resolved measurements of protein transport inside cells were obtained using the fluorescence recovery after photobleaching technique. Two-dimensional images of fluorescence patterns were collected by laser-scanning confocal microscopy. The method was demonstrated by applying it to an estimation of the mobility of green fluorescent protein-tagged heterochromatin protein 1 in the nuclei of living mouse embryonic fibroblasts. This approach does not require the mathematical solution of a corresponding system of diffusion-reaction equations that is typical of conventional fluorescence recovery after photobleaching data processing, and is most useful for investigating highly inhomogeneous areas, such as cell nuclei, which contain many protein foci and chromatin domains.
Collapse
Affiliation(s)
- Darya Y Orlova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
46
|
Susperreguy S, Prendes LP, Desbats MA, Charó NL, Brown K, MacDougald OA, Kerppola T, Schwartz J, Piwien-Pilipuk G. Visualization by BiFC of different C/EBPβ dimers and their interaction with HP1α reveals a differential subnuclear distribution of complexes in living cells. Exp Cell Res 2011; 317:706-23. [PMID: 21122806 PMCID: PMC3138133 DOI: 10.1016/j.yexcr.2010.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 10/18/2010] [Accepted: 11/15/2010] [Indexed: 01/13/2023]
Abstract
How the co-ordinated events of gene activation and silencing during cellular differentiation are influenced by spatial organization of the cell nucleus is still poorly understood. Little is known about the molecular mechanisms controlling subnuclear distribution of transcription factors, and their interplay with nuclear proteins that shape chromatin structure. Here we show that C/EBPβ not only associates with pericentromeric heterochromatin but also interacts with the nucleoskeleton upon induction of adipocyte differentiation of 3T3-L1 cells. Different C/EBPβ dimers localize in different nuclear domains. Using BiFC in living cells, we show that LAP (Liver Activating Protein) homodimers localize in euchromatin and heterochromatin. In contrast, LIP (Liver Inhibitory Protein) homodimers localize exclusively in heterochromatin. Importantly, their differential subnuclear distribution mirrors the site for interaction with HP1α. HP1α inhibits LAP transcriptional capacity and occupies the promoter of the C/EBPβ-dependent gene c/ebpα in 3T3-L1 preadipocytes. When adipogenesis is induced, HP1α binding decreases from c/ebpα promoter, allowing transcription. Thus, the equilibrium among different pools of C/EBPβ associated with chromatin or nucleoskeleton, and dynamic changes in their interaction with HP1α, play key roles in the regulation of C/EBP target genes during adipogenesis.
Collapse
Affiliation(s)
| | | | - María A. Desbats
- Instituto de Biología y Medicina Experimental – CONICET, Buenos Aires, Argentina
| | - Nancy L. Charó
- Instituto de Biología y Medicina Experimental – CONICET, Buenos Aires, Argentina
| | - Karen Brown
- Chromosome Biology Group, Imperial College of London, London, UK
| | - Ormond A. MacDougald
- Dept. of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tom Kerppola
- Howard Hughes Medical Institute, Dept. of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jessica Schwartz
- Dept. of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | |
Collapse
|
47
|
Stixová L, Bártová E, Matula P, Daněk O, Legartová S, Kozubek S. Heterogeneity in the kinetics of nuclear proteins and trajectories of substructures associated with heterochromatin. Epigenetics Chromatin 2011; 4:5. [PMID: 21418567 PMCID: PMC3068931 DOI: 10.1186/1756-8935-4-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/18/2011] [Indexed: 11/17/2022] Open
Abstract
Background Protein exchange kinetics correlate with the level of chromatin condensation and, in many cases, with the level of transcription. We used fluorescence recovery after photobleaching (FRAP) to analyse the kinetics of 18 proteins and determine the relationships between nuclear arrangement, protein molecular weight, global transcription level, and recovery kinetics. In particular, we studied heterochromatin-specific heterochromatin protein 1β (HP1β) B lymphoma Mo-MLV insertion region 1 (BMI1), and telomeric-repeat binding factor 1 (TRF1) proteins, and nucleolus-related proteins, upstream binding factor (UBF) and RNA polymerase I large subunit (RPA194). We considered whether the trajectories and kinetics of particular proteins change in response to histone hyperacetylation by histone deacetylase (HDAC) inhibitors or after suppression of transcription by actinomycin D. Results We show that protein dynamics are influenced by many factors and events, including nuclear pattern and transcription activity. A slower recovery after photobleaching was found when proteins, such as HP1β, BMI1, TRF1, and others accumulated at specific foci. In identical cells, proteins that were evenly dispersed throughout the nucleoplasm recovered more rapidly. Distinct trajectories for HP1β, BMI1, and TRF1 were observed after hyperacetylation or suppression of transcription. The relationship between protein trajectory and transcription level was confirmed for telomeric protein TRF1, but not for HP1β or BMI1 proteins. Moreover, heterogeneity of foci movement was especially observed when we made distinctions between centrally and peripherally positioned foci. Conclusion Based on our results, we propose that protein kinetics are likely influenced by several factors, including chromatin condensation, differentiation, local protein density, protein binding efficiency, and nuclear pattern. These factors and events likely cooperate to dictate the mobility of particular proteins.
Collapse
Affiliation(s)
- Lenka Stixová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | | | | | | | | | | |
Collapse
|
48
|
Cocaine dynamically regulates heterochromatin and repetitive element unsilencing in nucleus accumbens. Proc Natl Acad Sci U S A 2011; 108:3035-40. [PMID: 21300862 DOI: 10.1073/pnas.1015483108] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Repeated cocaine exposure induces persistent alterations in genome-wide transcriptional regulatory networks, chromatin remodeling activity and, ultimately, gene expression profiles in the brain's reward circuitry. Virtually all previous investigations have centered on drug-mediated effects occurring throughout active euchromatic regions of the genome, with very little known concerning the impact of cocaine exposure on the regulation and maintenance of heterochromatin in adult brain. Here, we report that cocaine dramatically and dynamically alters heterochromatic histone H3 lysine 9 trimethylation (H3K9me3) in the nucleus accumbens (NAc), a key brain reward region. Furthermore, we demonstrate that repeated cocaine exposure causes persistent decreases in heterochromatization in this brain region, suggesting a potential role for heterochromatic regulation in the long-term actions of cocaine. To identify precise genomic loci affected by these alterations, chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-Seq) was performed on NAc. ChIP-Seq analyses confirmed the existence of the H3K9me3 mark mainly within intergenic regions of the genome and identified specific patterns of cocaine-induced H3K9me3 regulation at repetitive genomic sequences. Cocaine-mediated decreases in H3K9me3 enrichment at specific genomic repeats [e.g., long interspersed nuclear element (LINE)-1 repeats] were further confirmed by the increased expression of LINE-1 retrotransposon-associated repetitive elements in NAc. Such increases likely reflect global patterns of genomic destabilization in this brain region after repeated cocaine administration and open the door for future investigations into the epigenetic and genetic basis of drug addiction.
Collapse
|
49
|
Cowell IG, Papageorgiou N, Padget K, Watters GP, Austin CA. Histone deacetylase inhibition redistributes topoisomerase IIβ from heterochromatin to euchromatin. Nucleus 2011; 2:61-71. [PMID: 21647300 PMCID: PMC3104810 DOI: 10.4161/nucl.2.1.14194] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 11/08/2010] [Accepted: 11/11/2010] [Indexed: 11/19/2022] Open
Abstract
The genome is organized into large scale structures in the interphase nucleus. Pericentromeric heterochromatin represents one such compartment characterized by histones H3 and H4 tri-methylated at K9 and K20 respectively and with a correspondingly low level of histone acetylation. HP1 proteins are concentrated in pericentric heterochromatin and histone deacetylase inhibitors such as trichostatin A (TSA) promote hyperacetylation of heterochromatic nucleosomes and the dispersal of HP1 proteins. We observed that in mouse cells, which contain prominent heterochromatin, DNA topoisomerase IIβ (topoIIβ) is also concentrated in heterochromatic regions. Similarly, a detergent-resistant fraction of topoIIβ is associated with heterochromatin in human cell lines. Treatment with TSA displaced topoIIβ from the heterochromatin with similar kinetics to the displacement of HP1β. Topoisomerase II is the cellular target for a number of clinically important cytotoxic anti-cancer agents known collectively as topoisomerase poisons, and it has been previously reported that histone deacetylase inhibitors can sensitize cells to these drugs. While topoIIα appears to be the major target for most topoisomerase poisons, histone deacetylase-mediated potentiation of these drugs is dependent on topoIIβ. We find that while prior treatment with TSA did not increase the quantity of etoposide-mediated topoIIβ-DNA covalent complexes, it did result in a shift in their distribution from a largely heterochromatin-associated to a pannuclear pattern. We suggest that this redistribution of topoIIβ converts this isoform of topoII to a effective relevant target for topoisomerase poisons.
Collapse
Affiliation(s)
- Ian G Cowell
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK.
| | | | | | | | | |
Collapse
|
50
|
Mathew OP, Ranganna K, Yatsu FM. Butyrate, an HDAC inhibitor, stimulates interplay between different posttranslational modifications of histone H3 and differently alters G1-specific cell cycle proteins in vascular smooth muscle cells. Biomed Pharmacother 2010; 64:733-40. [PMID: 20970954 PMCID: PMC2997917 DOI: 10.1016/j.biopha.2010.09.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 02/23/2010] [Accepted: 09/10/2010] [Indexed: 12/12/2022] Open
Abstract
HDACs and HATs regulate histone acetylation, an epigenetic modification that controls chromatin structure and through it, gene expression. Butyrate, a dietary HDAC inhibitor, inhibits VSMC proliferation, a crucial factor in atherogenesis, and the principle mechanism in arterial and in-stent restenosis. Here, the link between antiproliferation action of butyrate and the portraits of global covalent modifications of histone H3 that it induces are characterized to understand the mechanics of butyrate-arrested VSMC proliferation. Analysis of histone H3 modifications specific to butyrate arrested VSMC proliferation display induction of histone H3-Lysine9 acetylation, inhibition of histone H3-Serine10 phosphorylation, reduction of histone H3-Lysine9 dimethylation and stimulation of histone H3-Lysine4 di-methylation, which is linked to transcriptional activation, cell cycle/mitosis, transcriptional suppression and activation, respectively. Conversely, untreated VSMCs exhibit inhibition of H3-Lysine9 acetylation, induction of H3-Serine10 phosphorylation, stimulation of H3-Lysine9 di-methylation and reduction in H3-Lysine4 di-methylation. Butyrate's cooperative effects on H3-Lysine9 acetylation and H3-Serine10 phosphorylation, and contrasting effects on di-methylation of H3-Lysine9 and H3-Lysine4 suggests that the interplay between these site-specific modifications cause distinct chromatin alterations that allow cyclin D1 and D3 induction, G1-specific cdk4, cdk6 and cdk2 downregulation, and upregulation of cdk inhibitors, p15INK4b and p21Cip1. Regardless of butyrate's effect on D-type cyclins, downregulation of G1-specific cdks and upregulation of cdk inhibitors by butyrate prevents cell cycle progression by failing to inactivate Rb. Overall, through chromatin remodeling, butyrate appears to differentially alter G1-specific cell cycle proteins to ensure proliferation arrest of VSMCs, a crucial cellular component of blood vessel wall.
Collapse
Affiliation(s)
- Omana P. Mathew
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas Southern University, Houston, Texas 77004, USA
| | - Kasturi Ranganna
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas Southern University, Houston, Texas 77004, USA
| | - Frank M. Yatsu
- Department of Neurology, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|