1
|
Revealing PAK2's Function in the Cell Division through MKLP1's Interactome. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8854245. [PMID: 33204722 PMCID: PMC7666706 DOI: 10.1155/2020/8854245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 11/30/2022]
Abstract
Cell division-related proteins are essential for the normal development and differentiation of cells and may be related to the occurrence of cancer and the drug resistance mechanism of cancer cells. The mitotic kinesin-like protein 1 (MKLP1) is a kinesin protein that has been involved in the assembly of the midzone/midbody during mitosis and cytokinesis. In this study, we found that the tail domain of MKLP1 exhibited an autoinhibitory effect on its motor activity. Overexpression of the tail domain in HEK293 cells blocked cytokinesis and caused bi-/multinucleation. It is possible that protein binding to the MKLP1 tail relieves this autoinhibition and induces the motility of MKLP1. We used the GST pull-down assay followed by the LC-MS/MS analysis and identified 54 MKLP1 tail domain-specific binding proteins. Further, we confirmed the MS result by coimmunoprecipitation and FRET that a serine/threonine kinase, p21-activated kinase 2 (PAK2), binding to MKLP1. Endogenous PAK2 expression was found to be identical to that of MKLP1 in HEK293 cells during cytokinesis. Finally, functional studies indicated that when PAK2 expression was downregulated by siRNA, MKLP1 underwent a change in its localization away from the midbody, and cell cytokinesis was subsequently impeded. This study presents a novel regulatory mechanism that PAK2 promotes the activation of MKLP1 and contributes to complete cell cytokinesis.
Collapse
|
2
|
Zhang ZH, Zhang H, Wang YR, Liu XL, Huang H, Xu XH. SIRT 1 binding with PKM and NSE and modulate their acetylation and activities. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:794-801. [DOI: 10.1016/j.bbapap.2019.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/27/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022]
|
3
|
Zhang ZH, Zhao WQ, Ma FF, Zhang H, Xu XH. Rab10 Disruption Results in Delayed OPC Maturation. Cell Mol Neurobiol 2017; 37:1303-1310. [PMID: 28132130 PMCID: PMC11482111 DOI: 10.1007/s10571-017-0465-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/16/2017] [Indexed: 12/14/2022]
Abstract
Oligodendrocyte precursor cell (OPC) maturation requires membrane addition for myelin sheath formation. Since the Rab system has been shown to contribute to membrane addition in other cell types, in this study, we explored the role of Rab in OPC maturation. SiRNA and shRNA techniques and conditional knockout mice provided in vitro and in vivo evidence that Rab10 is involved in OPC maturation and may affect myelination during OPC development.
Collapse
Affiliation(s)
- Zhao-Huan Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Department of Neurology, Changzheng Hospital, Shanghai, 200003, China
| | - Wei-Qian Zhao
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Fan-Fei Ma
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Hui Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiao-Hui Xu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
4
|
Abstract
Oligodendrocyte precursor cell (OPC) development into myelinated oligodendrocytes demands vigorous membrane addition. Since myristoylated alanine-rich C-kinase substrate (MARCKS) reportedly contributes to Ras-associated protein (Rab)-10-associated vesicle insertion into neuronal membranes, we investigated the role of MARCKS in OPC maturation. We found that either knockdown of MARCKS or interruption of its interaction with Rab10 would cause a decrease of the cell membrane area during OPC development. Enhanced MARCKS phosphorylation by Nogo66 or myelin debris treatment inhibited OPC maturation, while its dephosphorylation by protein phosphatase 2 A activator D-erythro-sphingosine promoted OPC development in the presence of myelin debris. Our results demonstrated that MARCKS is involved in OPC maturation by interacting with Rab10.
Collapse
|
5
|
Hong F, Ze Y, Zhou Y, Hong J, Yu X, Sheng L, Wang L. Nanoparticulate TiO 2 -mediated inhibition of the Wnt signaling pathway causes dendritic development disorder in cultured rat hippocampal neurons. J Biomed Mater Res A 2017; 105:2139-2149. [PMID: 28371053 DOI: 10.1002/jbm.a.36073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 02/26/2017] [Accepted: 03/24/2017] [Indexed: 11/11/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are increasingly used in daily life, in industry, and in environmental clearing, but their potential neurodevelopmental toxicity has been highly debated. In this study, we explored whether TiO2 NPs inhibited development of dendritic morphology and identified possible molecular mechanisms associated with this inhibition in primary cultured rat hippocampal neurons. Results showed that TiO2 NPs decreased neurite length, the number of branches and the spine density, and impaired mitochondrial function in the developing neurons. Furthermore, TiO2 NPs significantly reduced the expression of several proteins involved in canonical Wnt3a/β-catenin signaling including Wnt3a, β-catenin, p-GSK-3β, and CyclinD1 and conversely, elevated GSK-3β expression. In addition to altering expression of proteins involved in canonical Wnt3a/β-catenin signaling, TiO2 NPs decreased expression of proteins invovled in non-canonical Wnt signaling, including, MKLP1, CRMP3, ErbB4, and KIF17. Taken together, these results indicate that suppression of dendritic development caused by TiO2 NPs is associated with inhibition of activation of the Wnt/β-catenin pathway or non-canonical Wnt pathway-induced expression of microtubule cytoskeletal components in the developing neurons. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2139-2149, 2017.
Collapse
Affiliation(s)
- Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China.,Jiangsu Key Laboratory for Food Safety and Nutritional Function, Huaiyin Normal University, Huaian, 223300, China.,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Yuguan Ze
- Medical College of Soochow University, Suzhou, 215123, China
| | - Yaoming Zhou
- Food Department, Jiangsu Food and Pharmaceutical Science College, Huaian, 223303, China
| | - Jie Hong
- Medical College of Soochow University, Suzhou, 215123, China
| | - Xiaohon Yu
- Medical College of Soochow University, Suzhou, 215123, China
| | - Lei Sheng
- Medical College of Soochow University, Suzhou, 215123, China
| | - Ling Wang
- Library of Soochow University, Suzhou, China, Suzhou, 215123, China
| |
Collapse
|
6
|
WNK1 is involved in Nogo66 inhibition of OPC differentiation. Mol Cell Neurosci 2015; 65:135-42. [PMID: 25749374 DOI: 10.1016/j.mcn.2015.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 02/27/2015] [Accepted: 03/04/2015] [Indexed: 01/02/2023] Open
Abstract
LINGO-1 is a transmembrane receptor expressed primarily in the central nervous system (CNS) and plays an important role in myelination. Recent studies have indicated that it is also involved in oligodendrocyte precursor cell (OPC) survival and differentiation; however, the downstream signaling pathway underlying OPC development is unknown. In our previous study, we found that LINGO-1 is associated with WNK1 in mediating Nogo-induced neurite extension inhibition by RhoA activation. In an effort to identify the role of LINGO-1-WNK1 in OPCs, we first confirmed that WNK1 is also expressed in OPCs and co-localized with LINGO-1, which suppresses WNK1 expression by RNA interference-attenuated Nogo66-induced inhibition of OPC differentiation. Furthermore, we mapped the WNK1 kinase domain using several fragmented peptides to identify the key region of interaction with LINGO-1. We found that a sequence corresponding to the D6 peptide is necessary for the interaction. Finally, we found that using the TAT-D6 peptide to introduce D6 peptide into primary cultured OPC inhibits the association between LINGO-1 and WNK1 and significantly attenuates Nogo66-induced inhibition of OPC differentiation. Taken together, our results show that WNK1, via a specific region on WNK1 kinase domain, interacts with LINGO-1, thus mediating Nogo66-inhibited OPC differentiation.
Collapse
|
7
|
MARCKS regulates membrane targeting of Rab10 vesicles to promote axon development. Cell Res 2014; 24:576-94. [PMID: 24662485 DOI: 10.1038/cr.2014.33] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/31/2013] [Accepted: 02/25/2014] [Indexed: 01/19/2023] Open
Abstract
Axon development requires membrane addition from the intracellular supply, which has been shown to be mediated by Rab10-positive plasmalemmal precursor vesicles (PPVs). However, the molecular mechanisms underlying the membrane trafficking processes of PPVs remain unclear. Here, we show that myristoylated alanine-rich C-kinase substrate (MARCKS) mediates membrane targeting of Rab10-positive PPVs, and this regulation is critical for axon development. We found that the GTP-locked active form of Rab10 binds to membrane-associated MARCKS, whose affinity depends on the phosphorylation status of the MARCKS effector domain. Either genetic silencing of MARCKS or disruption of its interaction with Rab10 inhibited axon growth of cortical neurons, impaired docking and fusion of Rab10 vesicles with the plasma membrane, and consequently caused a loss of membrane insertion of axonal receptors responsive to extracellular axon growth factors. Thus, this study has identified a novel function of MARCKS in mediating membrane targeting of PPVs during axon development.
Collapse
|
8
|
Ha S, Baver S, Huo L, Gata A, Hairston J, Huntoon N, Li W, Zhang T, Benecchi EJ, Ericsson M, Hentges ST, Bjørbæk C. Somato-dendritic localization and signaling by leptin receptors in hypothalamic POMC and AgRP neurons. PLoS One 2013; 8:e77622. [PMID: 24204898 PMCID: PMC3812230 DOI: 10.1371/journal.pone.0077622] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/13/2013] [Indexed: 11/18/2022] Open
Abstract
Leptin acts via neuronal leptin receptors to control energy balance. Hypothalamic pro-opiomelanocortin (POMC) and agouti-related peptide (AgRP)/Neuropeptide Y (NPY)/GABA neurons produce anorexigenic and orexigenic neuropeptides and neurotransmitters, and express the long signaling form of the leptin receptor (LepRb). Despite progress in the understanding of LepRb signaling and function, the sub-cellular localization of LepRb in target neurons has not been determined, primarily due to lack of sensitive anti-LepRb antibodies. Here we applied light microscopy (LM), confocal-laser scanning microscopy (CLSM), and electron microscopy (EM) to investigate LepRb localization and signaling in mice expressing a HA-tagged LepRb selectively in POMC or AgRP/NPY/GABA neurons. We report that LepRb receptors exhibit a somato-dendritic expression pattern. We further show that LepRb activates STAT3 phosphorylation in neuronal fibers within several hypothalamic and hindbrain nuclei of wild-type mice and rats, and specifically in dendrites of arcuate POMC and AgRP/NPY/GABA neurons of Leprb+/+ mice and in Leprbdb/db mice expressing HA-LepRb in a neuron specific manner. We did not find evidence of LepRb localization or STAT3-signaling in axon-fibers or nerve-terminals of POMC and AgRP/NPY/GABA neurons. Three-dimensional serial EM-reconstruction of dendritic segments from POMC and AgRP/NPY/GABA neurons indicates a high density of shaft synapses. In addition, we found that the leptin activates STAT3 signaling in proximity to synapses on POMC and AgRP/NPY/GABA dendritic shafts. Taken together, these data suggest that the signaling-form of the leptin receptor exhibits a somato-dendritic expression pattern in POMC and AgRP/NPY/GABA neurons. Dendritic LepRb signaling may therefore play an important role in leptin’s central effects on energy balance, possibly through modulation of synaptic activity via post-synaptic mechanisms.
Collapse
Affiliation(s)
- Sangdeuk Ha
- Department of Medicine, Division of Endocrinology and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Scott Baver
- Department of Medicine, Division of Endocrinology and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lihong Huo
- Department of Medicine, Division of Endocrinology and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Adriana Gata
- Department of Medicine, Division of Endocrinology and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joyce Hairston
- Department of Medicine, Division of Endocrinology and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nicholas Huntoon
- Department of Medicine, Division of Endocrinology and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wenjing Li
- Department of Medicine, Division of Endocrinology and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thompson Zhang
- Department of Medicine, Division of Endocrinology and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizabeth J. Benecchi
- Electron Microscopy Facility, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Maria Ericsson
- Electron Microscopy Facility, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shane T. Hentges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Christian Bjørbæk
- Department of Medicine, Division of Endocrinology and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail :
| |
Collapse
|
9
|
Abstract
Microtubules are nearly uniformly oriented in the axons of vertebrate neurons but are non-uniformly oriented in their dendrites. Studies to date suggest a scenario for establishing these microtubule patterns whereby microtubules are transported into the axon and nascent dendrites with plus-ends-leading, and then additional microtubules of the opposite orientation are transported into the developing dendrites. Here, we used contemporary tools to confirm that depletion of kinesin-6 (also called CHO1/MKLP1 or kif23) from rat sympathetic neurons causes a reduction in the appearance of minus-end-distal microtubules in developing dendrites, which in turn causes them to assume an axon-like morphology. Interestingly, we observed a similar phenomenon when we depleted kinesin-12 (also called kif15 or HKLP2). Both motors are best known for their participation in mitosis in other cell types, and both are enriched in the cell body and dendrites of neurons. Unlike kinesin-12, which is present throughout the neuron, kinesin-6 is barely detectable in the axon. Accordingly, depletion of kinesin-6, unlike depletion of kinesin-12, has no effect on axonal branching or navigation. Interestingly, depletion of either motor results in faster growing axons with greater numbers of mobile microtubules. Based on these observations, we posit a model whereby these two motors generate forces that attenuate the transport of microtubules with plus-ends-leading from the cell body into the axon. Some of these microtubules are not only prevented from moving into the axon but are driven with minus-ends-leading into developing dendrites. In this manner, these so-called "mitotic" motors coregulate the microtubule patterns of axons and dendrites.
Collapse
|
10
|
Sheng H, Xu Y, Chen Y, Zhang Y, Ni X. Corticotropin-releasing hormone stimulates mitotic kinesin-like protein 1 expression via a PLC/PKC-dependent signaling pathway in hippocampal neurons. Mol Cell Endocrinol 2012; 362:157-64. [PMID: 22698524 DOI: 10.1016/j.mce.2012.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 12/22/2022]
Abstract
Corticotropin-releasing hormone (CRH) has been shown to modulate dendritic development in hippocampus. Mitotic kinesin-like protein 1 (MKLP1) plays key roles in dendritic differentiation. In the present study, we examined the effects of CRH on MKLP1 expression in cultured hippocampal neurons and determine subsequent signaling pathways involved. CRH dose-dependently increased MKLP1 mRNA and protein expression. This effect can be reversed by CRHR1 antagonist but not by CRHR2 antagonist. CRHR1 knockdown impaired this effect of CRH. CRH stimulated GTP-bound Gαs protein and phosphorylated phospholipase C (PLC)-β3 expression, which were blocked by CRHR1 antagonist. Transfection of GP antagonist-2A, an inhibitory peptide of Gαq protein, blocked CRH-induced phosphorylated PLC-β3 expression. PLC and PKC inhibitors completely blocked whereas adenylyl cyclase (AC) and PKA inhibitors did not affect CRH-induced MKLP1 expression. Our results indicate that CRH act on CRHR1 to induce MKLP1 expression via PLC/PKC signaling pathway. CRH may regulate MKLP1 expression, thereby modulating dendritic development.
Collapse
Affiliation(s)
- Hui Sheng
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, PR China
| | | | | | | | | |
Collapse
|
11
|
Baas PW, Lin S. Hooks and comets: The story of microtubule polarity orientation in the neuron. Dev Neurobiol 2011; 71:403-18. [PMID: 21557497 DOI: 10.1002/dneu.20818] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It is widely believed that signature patterns of microtubule polarity orientation within axons and dendrites underlie compositional and morphological differences that distinguish these neuronal processes from one another. Axons of vertebrate neurons display uniformly plus-end-distal microtubules, whereas their dendrites display non-uniformly oriented microtubules. Recent studies on insect neurons suggest that it is the minus-end-distal microtubules that are the critical feature of the dendritic microtubule array, whether or not they are accompanied by plus-end-distal microtubules. Discussed in this article are the history of these findings, their implications for the regulation of neuronal polarity across the animal kingdom, and potential mechanisms by which neurons establish the distinct microtubule polarity patterns that define axons and dendrites.
Collapse
Affiliation(s)
- Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | | |
Collapse
|
12
|
Zhang Z, Xu X, Zhang Y, Zhou J, Yu Z, He C. LINGO-1 interacts with WNK1 to regulate nogo-induced inhibition of neurite extension. J Biol Chem 2009; 284:15717-28. [PMID: 19363035 DOI: 10.1074/jbc.m808751200] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
LINGO-1 is a component of the tripartite receptor complexes, which act as a convergent mediator of the intracellular signaling in response to myelin-associated inhibitors and lead to collapse of growth cone and inhibition of neurite extension. Although the function of LINGO-1 has been intensively studied, its downstream signaling remains elusive. In the present study, a novel interaction between LINGO-1 and a serine-threonine kinase WNK1 was identified by yeast two-hybrid screen. The interaction was further validated by fluorescence resonance energy transfer and co-immunoprecipitation, and this interaction was intensified by Nogo66 treatment. Morphological evidences showed that WNK1 and LINGO-1 were co-localized in cortical neurons. Furthermore, either suppressing WNK1 expression by RNA interference or overexpression of WNK1-(123-510) attenuated Nogo66-induced inhibition of neurite extension and inhibited the activation of RhoA. Moreover, WNK1 was identified to interact with Rho-GDI1, and this interaction was attenuated by Nogo66 treatment, further indicating its regulatory effect on RhoA activation. Taken together, our results suggest that WNK1 is a novel signaling molecule involved in regulation of LINGO-1 mediated inhibition of neurite extension.
Collapse
Affiliation(s)
- Zhaohuan Zhang
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology, Ministry of Education, Neuroscience Research Center of Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
13
|
Allen J, Chilton JK. The specific targeting of guidance receptors within neurons: who directs the directors? Dev Biol 2008; 327:4-11. [PMID: 19121301 DOI: 10.1016/j.ydbio.2008.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 11/27/2008] [Accepted: 12/09/2008] [Indexed: 02/04/2023]
Abstract
Guidance molecules present in both axonal and dendritic growth cones mediate neuronal responses to extracellular cues thereby ensuring correct neurite pathfinding and development of the nervous system. Little is known though about the mechanisms employed by neurons to deliver these receptors, specifically and efficiently, to the extending growth cone. A deeper understanding of this process is crucial if guidance receptors are to be manipulated to promote nervous system repair. Studies in other polarised cells, notably epithelial, have elucidated fundamental routes to the intracellular segregation of molecules mediated by endosomal pathways. Due to their extreme complexity and specialisation, neurons appear to have built upon these generic systems to evolve sophisticated trafficking networks. A striking feature is the axon initial segment which acts like a valve to tightly regulate the flux of molecules both entering and leaving the axon. Once in the growth cone, further controls operate to enhance the retention or rejection, as appropriate, of membrane receptors. We discuss the current state of knowledge regarding the intracellular trafficking of axon guidance receptors and how this relates to their developmental roles. We highlight the various facets still to be properly elucidated and by building on existing data regarding neuronal polarity and intracellular sorting mechanisms suggest ways to fill these gaps.
Collapse
Affiliation(s)
- James Allen
- Institute of Biomedical and Clinical Science, Peninsula Medical School, Research Way, Plymouth PL6 8BU, UK
| | | |
Collapse
|
14
|
Stone MC, Roegiers F, Rolls MM. Microtubules have opposite orientation in axons and dendrites of Drosophila neurons. Mol Biol Cell 2008; 19:4122-9. [PMID: 18667536 PMCID: PMC2555934 DOI: 10.1091/mbc.e07-10-1079] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 07/09/2008] [Accepted: 07/18/2008] [Indexed: 01/18/2023] Open
Abstract
In vertebrate neurons, axons have a uniform arrangement of microtubules with plus ends distal to the cell body (plus-end-out), and dendrites have equal numbers of plus- and minus-end-out microtubules. To determine whether microtubule orientation is a conserved feature of axons and dendrites, we analyzed microtubule orientation in invertebrate neurons. Using microtubule plus end dynamics, we mapped microtubule orientation in Drosophila sensory neurons, interneurons, and motor neurons. As expected, all axonal microtubules have plus-end-out orientation. However, in proximal dendrites of all classes of neuron, approximately 90% of dendritic microtubules were oriented with minus ends distal to the cell body. This result suggests that minus-end-out, rather than mixed orientation, microtubules are the signature of the dendritic microtubule cytoskeleton. Surprisingly, our map of microtubule orientation predicts that there are no tracks for direct cargo transport between the cell body and dendrites in unipolar neurons. We confirm this prediction, and validate the completeness of our map, by imaging endosome movements in motor neurons. As predicted by our map, endosomes travel smoothly between the cell body and axon, but they cannot move directly between the cell body and dendrites.
Collapse
Affiliation(s)
- Michelle C. Stone
- *Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802; and
| | - Fabrice Roegiers
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Melissa M. Rolls
- *Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802; and
| |
Collapse
|