1
|
Cigalotto L, Martinvalet D. Granzymes in health and diseases: the good, the bad and the ugly. Front Immunol 2024; 15:1371743. [PMID: 38646541 PMCID: PMC11026543 DOI: 10.3389/fimmu.2024.1371743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Granzymes are a family of serine proteases, composed of five human members: GA, B, H, M and K. They were first discovered in the 1980s within cytotoxic granules released during NK cell- and T cell-mediated killing. Through their various proteolytic activities, granzymes can trigger different pathways within cells, all of which ultimately lead to the same result, cell death. Over the years, the initial consideration of granzymes as mere cytotoxic mediators has changed due to surprising findings demonstrating their expression in cells other than immune effectors as well as new intracellular and extracellular activities. Additional roles have been identified in the extracellular milieu, following granzyme escape from the immunological synapse or their release by specific cell types. Outside the cell, granzyme activities mediate extracellular matrix alteration via the degradation of matrix proteins or surface receptors. In certain contexts, these processes are essential for tissue homeostasis; in others, excessive matrix degradation and extensive cell death contribute to the onset of chronic diseases, inflammation, and autoimmunity. Here, we provide an overview of both the physiological and pathological roles of granzymes, highlighting their utility while also recognizing how their unregulated presence can trigger the development and/or worsening of diseases.
Collapse
Affiliation(s)
- Lavinia Cigalotto
- Laboratory of Reactive Oxygen Species and Cytotoxic Immunity, Department Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute Of Molecular Medicine (VIMM), Padova, Italy
| | - Denis Martinvalet
- Laboratory of Reactive Oxygen Species and Cytotoxic Immunity, Department Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute Of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
2
|
Goyal N, Barai A, Sen S, Kondabagil K. Amoebal Tubulin Cleavage Late during Infection Is a Characteristic Feature of Mimivirus but Not of Marseillevirus. Microbiol Spectr 2022; 10:e0275322. [PMID: 36453900 PMCID: PMC9769910 DOI: 10.1128/spectrum.02753-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/04/2022] [Indexed: 12/03/2022] Open
Abstract
Mimivirus and Marseillevirus infections of Acanthamoeba castellanii, like most other viral infections, induce cytopathic effects (CPE). The details of how they bring about CPE and to what extent and how they modify the host cytoskeletal network are unclear. In this study, we compared the rearrangement of the host cytoskeletal network induced by Mimivirus and Marseillevirus upon infection. We show that while both Mimivirus and Marseillevirus infections of A. castellanii cells cause retraction of acanthopodia and depolymerization of the host actin filament network, the Mimivirus infection also results in characteristic cleavage of the host tubulin, a phenomenon not previously reported with any intracellular pathogens. Furthermore, we show that the amoebal tubulin cleavage during Mimivirus infection is a post-replicative event. Because time-lapse microscopy showed that Mimivirus infection leads to the bursting of cells, releasing the virus, we hypothesize that tubulin cleavage together with actin depolymerization during the later stages of Mimivirus assembly is essential for cell lysis due to apoptotic/necrotic cell death. We also characterize the Mimivirus-encoded gp560, a Zn metalloprotease, however, the purified gp560 protein was unable to cleave the commercially available porcine brain tubulin. While protein synthesis is essential for causing the morphological changes in the case of Mimivirus, the proteins which are packaged in the viral capsid along with the genome are sufficient to induce CPE in the case of Marseillevirus. IMPORTANCE In general, intracellular pathogens target the cytoskeletal network to enable their life cycle inside the host. Pathogen-induced changes in the host cell morphology usually accompany global changes in the cytoskeleton resulting in cytopathic effects. While viruses have been shown to use the host actin cytoskeleton for entry and transport during early infection, the role of microtubules in the viral life cycle is only beginning to emerge. Here, we show that the giant viruses Mimivirus and Marseillevirus both induce depolymerization of the actin filament, Mimivirus also causes a characteristic cleavage of tubulin not previously reported for any intracellular pathogen. Because tubulin cleavage occurs late during infection, we hypothesize that tubulin cleavage aids in cell death and lysis rather than establishing infection. The different strategies used by viruses with similar host niches may help them survive in competition.
Collapse
Affiliation(s)
- Nisha Goyal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Amlan Barai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Shamik Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
3
|
Richardson KC, Jung K, Pardo J, Turner CT, Granville DJ. Noncytotoxic Roles of Granzymes in Health and Disease. Physiology (Bethesda) 2022; 37:323-348. [PMID: 35820180 DOI: 10.1152/physiol.00011.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Granzymes are serine proteases previously believed to play exclusive and somewhat redundant roles in lymphocyte-mediated target cell death. However, recent studies have challenged this paradigm. Distinct substrate profiles and functions have since emerged for each granzyme while their dysregulated proteolytic activities have been linked to diverse pathologies.
Collapse
Affiliation(s)
- Katlyn C Richardson
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julian Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain.,Department of Microbiology, Radiology, Pediatrics and Public Health, University of Zaragoza, Zaragoza, Spain.,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Zaragoza, Spain
| | - Christopher T Turner
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Tuomela K, Ambrose AR, Davis DM. Escaping Death: How Cancer Cells and Infected Cells Resist Cell-Mediated Cytotoxicity. Front Immunol 2022; 13:867098. [PMID: 35401556 PMCID: PMC8984481 DOI: 10.3389/fimmu.2022.867098] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
Cytotoxic lymphocytes are critical in our immune defence against cancer and infection. Cytotoxic T lymphocytes and Natural Killer cells can directly lyse malignant or infected cells in at least two ways: granule-mediated cytotoxicity, involving perforin and granzyme B, or death receptor-mediated cytotoxicity, involving the death receptor ligands, tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL). In either case, a multi-step pathway is triggered to facilitate lysis, relying on active pro-death processes and signalling within the target cell. Because of this reliance on an active response from the target cell, each mechanism of cell-mediated killing can be manipulated by malignant and infected cells to evade cytolytic death. Here, we review the mechanisms of cell-mediated cytotoxicity and examine how cells may evade these cytolytic processes. This includes resistance to perforin through degradation or reduced pore formation, resistance to granzyme B through inhibition or autophagy, and resistance to death receptors through inhibition of downstream signalling or changes in protein expression. We also consider the importance of tumour necrosis factor (TNF)-induced cytotoxicity and resistance mechanisms against this pathway. Altogether, it is clear that target cells are not passive bystanders to cell-mediated cytotoxicity and resistance mechanisms can significantly constrain immune cell-mediated killing. Understanding these processes of immune evasion may lead to novel ideas for medical intervention.
Collapse
Affiliation(s)
| | | | - Daniel M. Davis
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
de Jong LC, Crnko S, ten Broeke T, Bovenschen N. Noncytotoxic functions of killer cell granzymes in viral infections. PLoS Pathog 2021; 17:e1009818. [PMID: 34529743 PMCID: PMC8445437 DOI: 10.1371/journal.ppat.1009818] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cytotoxic lymphocytes produce granules armed with a set of 5 serine proteases (granzymes (Gzms)), which, together with the pore-forming protein (perforin), serve as a major defense against viral infections in humans. This granule-exocytosis pathway subsumes a well-established mechanism in which target cell death is induced upon perforin-mediated entry of Gzms and subsequent activation of various (apoptosis) pathways. In the past decade, however, a growing body of evidence demonstrated that Gzms also inhibit viral replication and potential reactivation in cell death–independent manners. For example, Gzms can induce proteolysis of viral or host cell proteins necessary for the viral entry, release, or intracellular trafficking, as well as augment pro-inflammatory antiviral cytokine response. In this review, we summarize current evidence for the noncytotoxic mechanisms and roles by which killer cells can use Gzms to combat viral infections, and we discuss the potential thereof for the development of novel therapies.
Collapse
Affiliation(s)
- Lisanne C. de Jong
- Radboud University, Nijmegen, the Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sandra Crnko
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Toine ten Broeke
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
6
|
Schwartz D, Iyengar S. Recognition of Apoptotic Cells by Viruses and Cytolytic Lymphocytes: Target Selection in the Fog of War. Viral Immunol 2020; 33:188-196. [PMID: 32286181 PMCID: PMC7185367 DOI: 10.1089/vim.2019.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Viruses and cytolytic lymphocytes operate in an environment filled with dying and dead cells, and cell fragments. For viruses, irreversible fusion with doomed cells is suicide. For cytotoxic T lymphocyte and natural killer cells, time and limited lytic resources spent on apoptotic targets is wasteful and may result in death of the host. We make the case that the target membrane cytoskeleton is the best source of information regarding the suitability of potential targets for engagement for both viruses and lytic effector cells, and we present experimental evidence for detection of apoptotic cells by HIV, without loss of infectivity.
Collapse
Affiliation(s)
- David Schwartz
- Jurist Research Department, Hackensack University Medical Center, Hackensack, New Jersey
| | - Sujatha Iyengar
- Jurist Research Department, Hackensack University Medical Center, Hackensack, New Jersey
| |
Collapse
|
7
|
Leung JC, Cassimeris L. Reorganization of paclitaxel-stabilized microtubule arrays at mitotic entry: roles of depolymerizing kinesins and severing proteins. Cancer Biol Ther 2019; 20:1337-1347. [PMID: 31345098 PMCID: PMC6783116 DOI: 10.1080/15384047.2019.1638678] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Paclitaxel is a widely used anti-cancer treatment that disrupts cell cycle progression by blocking cells in mitosis. The block at mitosis, with spindles assembled from short microtubules, is surprising given paclitaxel’s microtubule stabilizing activity and the need to depolymerize long interphase microtubules prior to spindle formation. Cells must antagonize paclitaxel’s microtubule stabilizing activity during a brief window of time at the transition from interphase to mitosis, allowing microtubule reorganization into a mitotic spindle, although the mechanism underlying microtubule depolymerization in the presence of paclitaxel has not been examined. Here we test the hypothesis that microtubule severing and/or depolymerizing proteins active at mitotic entry are necessary to clear the interphase array in paclitaxel-treated cells and allow subsequent formation of mitotic spindles formed of short microtubules. A549 and LLC-PK1 cells treated with 30nM paclitaxel approximately 4 h prior to mitotic entry successfully progress through the G2/M transition by clearing the interphase microtubule array from the cell interior outward to the cell periphery, a spatial pattern of reorganization that differs from that of cells possessing dynamic microtubules. Depletion of kinesin-8s, KIF18A and/or KIF18B obstructed interphase microtubule clearing at mitotic entry in paclitaxel-treated cells, with KIF18B making the larger contribution. Of the severing proteins, depletion of spastin, but not katanin, reduced microtubule loss as cells entered mitosis in the presence of paclitaxel. These results support a model in which KIF18A, KIF18B, and spastin promote interphase microtubule array disassembly at mitotic entry and can overcome paclitaxel-induced microtubule stability specifically at the G2/M transition.
Collapse
Affiliation(s)
- Jessica C Leung
- Department of Biological Sciences, 111 Research Dr. Lehigh University , Bethlehem , PA , USA
| | - Lynne Cassimeris
- Department of Biological Sciences, 111 Research Dr. Lehigh University , Bethlehem , PA , USA
| |
Collapse
|
8
|
Huang Q, Li W, Chen Y, Retschnig-Tanner G, Yanez O, Neumann P, Evans JD. Dicer regulates Nosema ceranae proliferation in honeybees. INSECT MOLECULAR BIOLOGY 2019; 28:74-85. [PMID: 30171639 DOI: 10.1111/imb.12534] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nosema ceranae is a microsporidian parasite that infects the honeybee midgut epithelium. The protein-coding gene Dicer is lost in most microsporidian genomes but is present in N. ceranae. By feeding infected honeybees with small interfering RNA targeting the N. ceranae gene coding Dicer (siRNA-Dicer), we found that N. ceranae spore loads were significantly reduced. In addition, over 10% of total parasite protein-coding genes showed significantly divergent expression profiles after siRNA-Dicer treatment. Parasite genes for cell proliferation, ABC transporters and hexokinase were downregulated at 3 days postinfection, a key point in the middle of parasite replication cycles. In addition, genes involved in metabolic pathways of honeybees and N. ceranae showed significant co-expression. Furthermore, the siRNA-Dicer treatment partly reversed the expression patterns of honeybee genes. The honeybee gene mucin-2-like showed significantly upregulation in the siRNA-Dicer group compared with the infection group continually at 4, 5 and 6 days postinfection, suggesting that the siRNA-Dicer feeding promoted the strength of the mucus barrier resulted from interrupted parasite proliferation. As the gene Dicer broadly regulates N. ceranae proliferation and honeybee metabolism, our data suggest the RNA interference pathway is an important infection strategy for N. ceranae.
Collapse
Affiliation(s)
- Q Huang
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Liebefeld, Switzerland
- Honey Bee Research Institute, Jiangxi Agricultural University, Nanchang, China
| | - W Li
- USDA-ARS Bee Research Laboratory, BARC-East, Building 306, Beltsville, Maryland, USA
| | - Y Chen
- USDA-ARS Bee Research Laboratory, BARC-East, Building 306, Beltsville, Maryland, USA
| | - G Retschnig-Tanner
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Liebefeld, Switzerland
| | - O Yanez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Liebefeld, Switzerland
- Agroscope, Swiss Bee Research Center, Bern, Switzerland
| | - P Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Liebefeld, Switzerland
- Agroscope, Swiss Bee Research Center, Bern, Switzerland
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - J D Evans
- USDA-ARS Bee Research Laboratory, BARC-East, Building 306, Beltsville, Maryland, USA
| |
Collapse
|
9
|
Parang B, Thompson JJ, Williams CS. Blood Vessel Epicardial Substance (BVES) in junctional signaling and cancer. Tissue Barriers 2018; 6:1-12. [PMID: 30307367 DOI: 10.1080/21688370.2018.1499843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Blood vessel epicardial substance (BVES) is a tight-junction associated protein that was originally discovered from a cDNA screen of the developing heart. Research over the last decade has shown that not only is BVES is expressed in cardiac and skeletal tissue, but BVES is also is expressed throughout the gastrointestinal epithelium. Mice lacking BVES sustain worse intestinal injury and inflammation. Furthermore, BVES is suppressed in gastrointestinal cancers, and mouse modeling has shown that loss of BVES promotes tumor formation. Recent work from multiple laboratories has revealed that BVES can regulate several molecular pathways, including cAMP, WNT, and promoting the degradation of the oncogene, c-Myc. This review will summarize our current understanding of how BVES regulates the intestinal epithelium and discuss how BVES functions at the molecular level to preserve epithelial phenotypes and suppress tumorigenesis.
Collapse
Affiliation(s)
- Bobak Parang
- a Department of Medicine , Cornell University , New York , NY , USA
| | - Joshua J Thompson
- b Department of Medicine, Division of Gastroenterology , Vanderbilt University , Nashville , TN , USA
| | - Christopher S Williams
- b Department of Medicine, Division of Gastroenterology , Vanderbilt University , Nashville , TN , USA.,c Veterans Affairs Tennessee Valley Health Care System , Nashville , TN , USA
| |
Collapse
|
10
|
Bhagwat SR, Hajela K, Kumar A. Proteolysis to Identify Protease Substrates: Cleave to Decipher. Proteomics 2018; 18:e1800011. [DOI: 10.1002/pmic.201800011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/03/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Sonali R. Bhagwat
- Discipline of Biosciences and Biomedical Engineering; Indian Institute of Technology; Indore 453552 Simrol India
| | - Krishnan Hajela
- School of Life Sciences; Devi Ahilya Vishwavidyalaya; Indore 452001 India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering; Indian Institute of Technology; Indore 453552 Simrol India
| |
Collapse
|
11
|
Tsutsui H, Yamanishi Y, Ohtsuka H, Sato S, Yoshikawa S, Karasuyama H. The Basophil-specific Protease mMCP-8 Provokes an Inflammatory Response in the Skin with Microvascular Hyperpermeability and Leukocyte Infiltration. J Biol Chem 2016; 292:1061-1067. [PMID: 27932459 DOI: 10.1074/jbc.m116.754648] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/28/2016] [Indexed: 01/12/2023] Open
Abstract
Basophils have often been erroneously considered to be minor relatives or blood-circulating precursors of tissue-resident mast cells because of some phenotypic similarity between them, including basophilic secretory granules in the cytoplasm. However, recent studies revealed that the repertoire of serine proteases stored in secretory granules is distinct in them. Particularly, mouse mast cell protease 8 (mMCP-8) is specifically expressed by basophils but not mast cells despite its name. Therefore, mMCP-8 is commonly used as a basophil-specific marker, but its functional property remains uncertain. Here we prepared recombinant mMCP-8 and examined its activity in vitro and in vivo Purified recombinant mMCP-8 showed heat-sensitive proteolytic activity when α-tubulin was used as a substrate. One intradermal shot of mMCP-8, not heat-inactivated, induced cutaneous swelling with increased microvascular permeability in a cyclooxygenase-dependent manner. Moreover, repeated intradermal injection of mMCP-8 promoted skin infiltration of leukocytes, predominantly neutrophils and, to a lesser extent, monocytes and eosinophils, in conjunction with up-regulation of chemokine expression in the skin lesion. These results suggest that mMCP-8 is an important effector molecule in basophil-elicited inflammation, providing novel insights into how basophils exert a crucial and non-redundant role, distinct from that played by mast cells, in immune responses.
Collapse
Affiliation(s)
- Hidemitsu Tsutsui
- From the Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Yoshinori Yamanishi
- From the Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Hiromi Ohtsuka
- From the Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Shingo Sato
- From the Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Soichiro Yoshikawa
- From the Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Hajime Karasuyama
- From the Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| |
Collapse
|
12
|
Mitsugi R, Itoh T, Fujiwara R. MicroRNA-877-5p is involved in the trovafloxacin-induced liver injury. Toxicol Lett 2016; 263:34-43. [PMID: 27713024 DOI: 10.1016/j.toxlet.2016.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/26/2016] [Accepted: 10/02/2016] [Indexed: 12/21/2022]
Abstract
Trovafloxacin develops severe hepatotoxicity; however, the underlying mechanism of the trovafloxacin-induced liver injury has not been cleared. It has been shown that microRNAs (miRNAs) can be involved in the development of drug-induced liver injuries. We performed a miRNA microarray analysis to identify hepatic miRNAs that were induced or reduced by trovafloxacin in mice. It was demonstrated that miR-877-5p was the most increased miRNA in the mouse liver 24h after the trovafloxacin administration. To investigate the role of miR-877-5p in the liver, we established miR-877-5p-overexpressed HepG2 cells. Microarray analysis detected altered expressions in 2077 (>2-fold) and 1547 (<0.5-fold) genes in the miR-877-5p overexpressing cells compared to the mock cells. Especially, SLCO4C1, PEPCK, MT1M, HIST1H2BM, LGI1, and PLA2G2A were markedly increased or decreased in the miR-877-5p overexpressing cells. We conducted a correlation analysis between the expression levels of miR-877-5p and the six genes in eight miR-877-5p stably-expressed clones. It was shown that the PEPCK expression levels were correlated with miR-877-5p expression levels. PEPCK is associated with development of apoptotic cell death; therefore, the increased miR- 877-5p-induced PEPCK can be a trigger that is involved in the development of trovafloxacin-induced liver injury.
Collapse
Affiliation(s)
- Ryo Mitsugi
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tomoo Itoh
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Ryoichi Fujiwara
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
13
|
Park IY, Chowdhury P, Tripathi DN, Powell RT, Dere R, Terzo EA, Rathmell WK, Walker CL. Methylated α-tubulin antibodies recognize a new microtubule modification on mitotic microtubules. MAbs 2016; 8:1590-1597. [PMID: 27594515 DOI: 10.1080/19420862.2016.1228505] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Posttranslational modifications (PTMs) on microtubules differentiate these cytoskeletal elements for a variety of cellular functions. We recently identified SETD2 as a dual-function histone and microtubule methyltransferase, and methylation as a new microtubule PTM that occurs on lysine 40 of α-tubulin, which is trimethylated (α-TubK40me3) by SETD2. In the course of these studies, we generated polyclonal (α-TubK40me3 pAb) and monoclonal (α-TubK40me3 mAb) antibodies to a methylated α-tubulin peptide (GQMPSD-Kme3-TIGGGDC). Here, we characterize these antibodies, and the specific mono-, di- or tri-methylated lysine residues they recognize. While both the pAb and mAb antibodies recognized lysines methylated by SETD2 on microtubules and histones, the clone 18 mAb was more specific for methylated microtubules, with little cross-reactivity for methylated histones. The clone 18 mAb recognized specific subsets of microtubules during mitosis and cytokinesis, and lacked the chromatin staining seen by immunocytochemistry with the pAb. Western blot analysis using these antibodies revealed that methylated α-tubulin migrated faster than unmethylated α-tubulin, suggesting methylation may be a signal for additional processing of α-tubulin and/or microtubules. As the first reagents that specifically recognize methylated α-tubulin, these antibodies are a valuable tool for studying this new modification of the cytoskeleton, and the function of methylated microtubules.
Collapse
Affiliation(s)
- In Young Park
- a Center for Precision Environmental Health, Departments of Cellular and Molecular Biology and Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Pratim Chowdhury
- a Center for Precision Environmental Health, Departments of Cellular and Molecular Biology and Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Durga Nand Tripathi
- a Center for Precision Environmental Health, Departments of Cellular and Molecular Biology and Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Reid T Powell
- a Center for Precision Environmental Health, Departments of Cellular and Molecular Biology and Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Ruhee Dere
- a Center for Precision Environmental Health, Departments of Cellular and Molecular Biology and Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Esteban A Terzo
- b Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University , Nashville , TN , USA
| | - W Kimryn Rathmell
- b Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University , Nashville , TN , USA
| | - Cheryl Lyn Walker
- a Center for Precision Environmental Health, Departments of Cellular and Molecular Biology and Medicine, Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
14
|
|
15
|
Marcet-Palacios M, Ewen C, Pittman E, Duggan B, Carmine-Simmen K, Fahlman RP, Bleackley RC. Design and characterization of a novel human Granzyme B inhibitor. Protein Eng Des Sel 2014; 28:9-17. [DOI: 10.1093/protein/gzu052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Plasman K, Demol H, Bird PI, Gevaert K, Van Damme P. Substrate specificities of the granzyme tryptases A and K. J Proteome Res 2014; 13:6067-77. [PMID: 25383893 DOI: 10.1021/pr500968d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The physiological roles of the granzymes A and K have been debated, especially concerning their involvement in cytotoxic and inflammatory processes. By performing N-terminal COFRADIC assisted N-terminomics on the homologous human granzymes A and K, we here provide detailed data on their substrate repertoires, their specificities, and differences in efficiency by which they cleave their substrates, all of which may aid in elucidating their key substrates. In addition, the so far uncharacterized mouse granzyme K was profiled alongside its human orthologue. While the global primary specificity profiles of these granzymes appear quite similar as they revealed only subtle differences and pointed to substrate occupancies in the P1, P1', and P2' position as the main determinants for substrate recognition, differential analyses unveiled distinguishing substrate subsite features, some of which were confirmed by the more selective cleavage of specifically designed probes.
Collapse
Affiliation(s)
- Kim Plasman
- Department of Medical Protein Research, VIB , B-9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|
17
|
Ben Safta T, Ziani L, Favre L, Lamendour L, Gros G, Mami-Chouaib F, Martinvalet D, Chouaib S, Thiery J. Granzyme B-activated p53 interacts with Bcl-2 to promote cytotoxic lymphocyte-mediated apoptosis. THE JOURNAL OF IMMUNOLOGY 2014; 194:418-28. [PMID: 25404359 DOI: 10.4049/jimmunol.1401978] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Granzyme B (GzmB) plays a major role in CTLs and NK cell-mediated elimination of virus-infected cells and tumors. Human GzmB preferentially induces target cell apoptosis by cleaving the proapoptotic Bcl-2 family member Bid, which, together with Bax, induces mitochondrial outer membrane permeabilization. We previously showed that GzmB also induces a rapid accumulation of the tumor-suppressor protein p53 within target cells, which seems to be involved in GzmB-induced apoptosis. In this article, we show that GzmB-activated p53 accumulates on target cell mitochondria and interacts with Bcl-2. This interaction prevents Bcl-2 inhibitory effect on both Bax and GzmB-truncated Bid, and promotes GzmB-induced mitochondrial outer membrane permeabilization. Consequently, blocking p53-Bcl-2 interaction decreases GzmB-induced Bax activation, cytochrome c release from mitochondria, and subsequent effector caspases activation leading to a decreased sensitivity of target cells to both GzmB and CTL/NK-mediated cell death. Together, our results define p53 as a new important player in the GzmB apoptotic signaling pathway and in CTL/NK-induced apoptosis.
Collapse
Affiliation(s)
- Thouraya Ben Safta
- U753 INSERM, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France; University Paris Sud, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France; and
| | - Linda Ziani
- U753 INSERM, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France; University Paris Sud, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France; and
| | - Loetitia Favre
- U753 INSERM, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France; University Paris Sud, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France; and
| | - Lucille Lamendour
- U753 INSERM, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France; University Paris Sud, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France; and
| | - Gwendoline Gros
- U753 INSERM, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France; University Paris Sud, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France; and
| | - Fathia Mami-Chouaib
- U753 INSERM, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France; University Paris Sud, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France; and
| | - Denis Martinvalet
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
| | - Salem Chouaib
- U753 INSERM, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France; University Paris Sud, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France; and
| | - Jerome Thiery
- U753 INSERM, 94805 Villejuif, France; Gustave Roussy Cancer Campus, 94805 Villejuif, France; University Paris Sud, Faculty of Medicine, 94270 Le Kremlin Bicêtre, France; and
| |
Collapse
|
18
|
Tompkins N, MacNeil AJ, Pohajdak B. Cytohesin-associated scaffolding protein (CASP) is a substrate for granzyme B and ubiquitination. Biochem Biophys Res Commun 2014; 452:473-8. [DOI: 10.1016/j.bbrc.2014.08.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 08/19/2014] [Indexed: 01/23/2023]
|
19
|
Joeckel LT, Bird PI. Are all granzymes cytotoxic in vivo? Biol Chem 2014; 395:181-202. [DOI: 10.1515/hsz-2013-0238] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 08/30/2013] [Indexed: 01/01/2023]
Abstract
Abstract
Granzymes are serine proteases mainly found in cytotoxic lymphocytes. The most-studied member of this group is granzyme B, which is a potent cytotoxin that has set the paradigm that all granzymes are cyototoxic. In the last 5 years, this paradigm has become controversial. On one hand, there is a plethora of sometimes contradictory publications showing mainly caspase-independent cytotoxic effects of granzyme A and the so-called orphan granzymes in vitro. On the other hand, there are increasing numbers of reports of granzymes failing to induce cell death in vitro unless very high (potentially supra-physiological) concentrations are used. Furthermore, experiments with granzyme A or granzyme M knock-out mice reveal little or no deficit in their cytotoxic lymphocytes’ killing ability ex vivo, but indicate impairment in the inflammatory response. These findings of non-cytotoxic effects of granzymes challenge dogma, and thus require alternative or additional explanations to be developed of the role of granzymes in defeating pathogens. Here we review evidence for granzyme cytotoxicity, give an overview of their non-cytotoxic functions, and suggest technical improvements for future investigations.
Collapse
|
20
|
de Poot SAH, Lai KW, van der Wal L, Plasman K, Van Damme P, Porter AC, Gevaert K, Bovenschen N. Granzyme M targets topoisomerase II alpha to trigger cell cycle arrest and caspase-dependent apoptosis. Cell Death Differ 2013; 21:416-26. [PMID: 24185622 DOI: 10.1038/cdd.2013.155] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/23/2013] [Accepted: 09/26/2013] [Indexed: 12/31/2022] Open
Abstract
Cytotoxic lymphocyte protease granzyme M (GrM) is a potent inducer of tumor cell death. The apoptotic phenotype and mechanism by which it induces cell death, however, remain poorly understood and controversial. Here, we show that GrM-induced cell death was largely caspase-dependent with various hallmarks of classical apoptosis, coinciding with caspase-independent G2/M cell cycle arrest. Using positional proteomics in human tumor cells, we identified the nuclear enzyme topoisomerase II alpha (topoIIα) as a physiological substrate of GrM. Cleavage of topoIIα by GrM at Leu(1280) separated topoIIα functional domains from the nuclear localization signals, leading to nuclear exit of topoIIα catalytic activity, thereby rendering it nonfunctional. Similar to the apoptotic phenotype of GrM, topoIIα depletion in tumor cells led to cell cycle arrest in G2/M, mitochondrial perturbations, caspase activation, and apoptosis. We conclude that cytotoxic lymphocyte protease GrM targets topoIIα to trigger cell cycle arrest and caspase-dependent apoptosis.
Collapse
Affiliation(s)
- S A H de Poot
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - K W Lai
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - L van der Wal
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - K Plasman
- 1] Department of Medical Protein Research,VIB, Ghent, B-9000, Belgium [2] Department of Biochemistry, Ghent University, Ghent B-9000, Belgium
| | - P Van Damme
- 1] Department of Medical Protein Research,VIB, Ghent, B-9000, Belgium [2] Department of Biochemistry, Ghent University, Ghent B-9000, Belgium
| | - A C Porter
- Centre for Haematology, Faculty of Medicine, Imperial College London, London, UK
| | - K Gevaert
- 1] Department of Medical Protein Research,VIB, Ghent, B-9000, Belgium [2] Department of Biochemistry, Ghent University, Ghent B-9000, Belgium
| | - N Bovenschen
- 1] Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands [2] Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
21
|
Barcia C, Mitxitorena I, Carrillo-de Sauvage MA, Gallego JM, Pérez-Vallés A, Barcia C. Imaging the microanatomy of astrocyte-T-cell interactions in immune-mediated inflammation. Front Cell Neurosci 2013; 7:58. [PMID: 23641198 PMCID: PMC3639405 DOI: 10.3389/fncel.2013.00058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/15/2013] [Indexed: 11/19/2022] Open
Abstract
The role of astrocytes in the immune-mediated inflammatory response in the brain is more prominent than previously thought. Astrocytes become reactive in response to neuro-inflammatory stimuli through multiple pathways, contributing significantly to the machinery that modifies the parenchymal environment. In particular, astrocytic signaling induces the establishment of critical relationships with infiltrating blood cells, such as lymphocytes, which is a fundamental process for an effective immune response. The interaction between astrocytes and T-cells involves complex modifications to both cell types, which undergo micro-anatomical changes and the redistribution of their binding and secretory domains. These modifications are critical for different immunological responses, such as for the effectiveness of the T-cell response, for the specific infiltration of these cells and their homing in the brain parenchyma, and for their correct apposition with antigen-presenting cells (APCs) to form immunological synapses (ISs). In this article, we review the current knowledge of the interactions between T-cells and astrocytes in the context of immune-mediated inflammation in the brain, based on the micro-anatomical imaging of these appositions by high-resolution confocal microscopy and three-dimensional rendering. The study of these dynamic interactions using detailed technical approaches contributes to understanding the function of astrocytes in inflammatory responses and paves the way for new therapeutic strategies.
Collapse
Affiliation(s)
- Carlos Barcia
- Department of Neurosurgery, Hospital General Universitari de València València, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Transfection of siRNAs can alter miRNA levels and trigger non-specific protein degradation in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:455-68. [PMID: 23403288 DOI: 10.1016/j.bbagrm.2013.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 01/01/2013] [Accepted: 01/19/2013] [Indexed: 12/15/2022]
Abstract
Sequence-non-specific effects of siRNAs that alter the expression of non-targeted genes have been reported, including competition of siRNAs with endogenous RISC components. However, the detailed mechanisms and subsequent effects of such competition are not well documented. Here we analyze the competition of miRNAs in mammalian cells with low concentrations of siRNAs, and found that: 1) transfection of different siRNAs in the low nanomolar range used to deplete target RNAs can reduce the levels of miRNAs in different cell types, 2) siRNA transfection results in rapid reduction of Ago2-associated miRNAs concurrent with accumulation of Ago2-bound siRNAs and a significant change in the expression levels of many miRNAs, 3) competition largely depends on Ago2 and not Dicer, 4) microarray analysis showed that the majority of highly expressed miRNAs are reduced, in a siRNA concentration dependent manner, and low abundant miRNAs may be unchanged or repressed and a few miRNAs appear to have increased levels, and 5) consistent with previous studies, the expression levels of mRNAs that are targeted by highly repressed miRNAs are preferentially increased. As a consequence of such competition, we observed that α-tubulin, a substrate of two up-regulated proteases, granzyme B and granzyme M, was rapidly degraded at the protein level upon siRNA transfection. Our results support a model in which transfection of siRNAs can change the levels of many miRNAs by competition for Ago2, leading to altered expression of many miRNA target genes, which can in turn affect downstream gene expression even at the protein level.
Collapse
|
23
|
Krzewski K, Coligan JE. Human NK cell lytic granules and regulation of their exocytosis. Front Immunol 2012; 3:335. [PMID: 23162553 PMCID: PMC3494098 DOI: 10.3389/fimmu.2012.00335] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/22/2012] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells form a subset of lymphocytes that play a key role in immuno-surveillance and host defense against cancer and viral infections. They recognize stressed cells through a variety of germline-encoded activating cell surface receptors and utilize their cytotoxic ability to eliminate abnormal cells. Killing of target cells is a complex, multi-stage process that concludes in the directed secretion of lytic granules, containing perforin and granzymes, at the immunological synapse. Upon delivery to a target cell, perforin mediates generation of pores in membranes of target cells, allowing granzymes to access target cell cytoplasm and induce apoptosis. Therefore, lytic granules of NK cells are indispensable for normal NK cell cytolytic function. Indeed, defects in lytic granule secretion lead or are related to serious and often fatal diseases, such as familial hemophagocytic lymphohistiocytosis (FHL) type 2–5 or Griscelli syndrome type 2. A number of reports highlight the role of several proteins involved in lytic granule release and NK cell-mediated killing of tumor cells. This review focuses on lytic granules of human NK cells and the advancements in understanding the mechanisms controlling their exocytosis.
Collapse
Affiliation(s)
- Konrad Krzewski
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health Rockville, MD, USA
| | | |
Collapse
|
24
|
Abstract
Granzymes (Grs) were discovered just over a quarter century ago. They are produced by cytotoxic T cells and natural killer cells and are released upon interaction with target cells. Intensive biochemical, genetic, and biological studies have been performed in order to study their roles in immunity and inflammation. This review summarizes research on the family of Grs.
Collapse
|
25
|
Haile Y, Simmen KC, Pasichnyk D, Touret N, Simmen T, Lu JQ, Bleackley RC, Giuliani F. Granule-derived granzyme B mediates the vulnerability of human neurons to T cell-induced neurotoxicity. THE JOURNAL OF IMMUNOLOGY 2011; 187:4861-72. [PMID: 21964027 DOI: 10.4049/jimmunol.1100943] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Multiple sclerosis (MS) is considered an autoimmune disease of the CNS and is characterized by inflammatory cells infiltrating the CNS and inducing demyelination, axonal loss, and neuronal death. Recent evidence strongly suggests that axonal and neuronal degeneration underlie the progression of permanent disability in MS. In this study, we report that human neurons are selectively susceptible to the serine-protease granzyme B (GrB) isolated from cytotoxic T cell granules. In vitro, purified human GrB induced neuronal death to the same extent as the whole activated T cell population. On the contrary, activated T cells isolated from GrB knockout mice failed to induce neuronal injury. We found that following internalization through various parts of neurons, GrB accumulated in the neuronal soma. Within the cell body, GrB diffused out of endosomes possibly through a perforin-independent mechanism and induced subsequent activation of caspases and cleavage of α-tubulin. Inhibition of caspase-3, a well-known substrate for GrB, significantly reduced GrB-mediated neurotoxicity. We demonstrated that treatment of neurons with mannose-6-phosphate prevented GrB entry and inhibited GrB-mediated neuronal death, suggesting mannose-6-phosphate receptor-dependent endocytosis. Together, our data unveil a novel mechanism by which GrB induces selective neuronal injury and suggest potential new targets for the treatment of inflammatory-mediated neurodegeneration in diseases such as MS.
Collapse
Affiliation(s)
- Yohannes Haile
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
26
|
van Domselaar R, Bovenschen N. Cell death-independent functions of granzymes: hit viruses where it hurts. Rev Med Virol 2011; 21:301-14. [PMID: 21714121 DOI: 10.1002/rmv.697] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/03/2011] [Accepted: 05/06/2011] [Indexed: 12/24/2022]
Abstract
Granule exocytosis by cytotoxic lymphocytes is the key mechanism of our immune response to eliminate virus-infected cells. These lytic granules contain the pore-forming protein perforin and a set of five serine proteases called granzymes (GrA, GrB, GrH, GrK, GrM) that display distinct substrate specificities. Granzymes have mostly been studied for their ability to induce cell death. However, viruses have evolved many inhibitors to effectively block apoptosis. Evidence is emerging that granzymes also use noncytotoxic strategies to inhibit viral replication and potential viral reactivation from latency. Granzymes directly cleave viral or host cell proteins that are required in the viral life cycle. Furthermore, granzymes induce a pro-inflammatory cytokine response to create an antiviral environment. In this review, we summarize and discuss these novel strategies by which the immune system counteracts viral infections, and we will address the potential therapeutic applications that could emerge from this intriguing mechanism.
Collapse
Affiliation(s)
- Robert van Domselaar
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | |
Collapse
|
27
|
Caprodossi S, Amantini C, Nabissi M, Morelli MB, Farfariello V, Santoni M, Gismondi A, Santoni G. Capsaicin promotes a more aggressive gene expression phenotype and invasiveness in null-TRPV1 urothelial cancer cells. Carcinogenesis 2011; 32:686-94. [PMID: 21310942 DOI: 10.1093/carcin/bgr025] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Capsaicin (CPS) has been found to exhibit either tumor promoting or suppressing effects, many of which are mediated by the specific transient receptor potential vanilloid type-1 (TRPV1). Herein, we provide evidence that CPS treatment induced a more aggressive gene phenotype and invasiveness in 5637 cells-lacking TRPV1 receptor. CPS treatment of 5637 cells induced upregulation of pro-angiogenetic (angiopoietin 1, angiopoietin 2 and vascular endothelial growth factor), pro-invasive and pro-metastatic genes (MMP1, MMP9, TIMP1, TIMP3, granzyme A (GZMA), NM23A and S100A) with a downregulation of apoptotic genes (Fas/CD95 and tumor necrosis factor receptor superfamily member 1A). CPS increased the invasiveness of 5637 cells by triggering IGF (insulin-like growth factor)-1 release, GZMA and MMP9 activation, α-tubulin disassembly and cytoskeleton degradation. Finally, in order to evaluate the relationship between the lack of TRPV1 expression and increased CPS-induced invasiveness, we transfected 5637 cells with the TRPV1 complementary DNA (cDNA) sequence. We found that TRPV1-expressing cells show CPS-mediated calcium level increase, growth inhibition and apoptosis. Moreover, CPS-induced migration and MMP9 activation were reverted, suggesting an inhibitory role played by TRPV1 in urothelial cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Sara Caprodossi
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, Via Madonna delle carceri 9, Camerino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Identification of the BCL2/adenovirus E1B-19K protein-interacting protein 2 (BNIP-2) as a granzyme B target during human natural killer cell-mediated killing. Biochem J 2010; 431:423-31. [PMID: 20704564 DOI: 10.1042/bj20091073] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cytotoxic lymphocytes eliminate infected cells and tumours via the perforin-mediated delivery of pro-apoptotic serine proteases known as granzymes. Granzyme B triggers apoptosis via the cleavage of a repertoire of cellular proteins, leading to caspase activation and mitochondrial depolarization. A simple bioinformatics strategy identified a candidate granzyme B cleavage site in the widely expressed BNIP-2 (BCL2/adenovirus E1B-19K protein-interacting protein 2). Granzyme B cleaved recombinant BNIP-2 in vitro and endogenous BNIP-2 was cleaved during the NK (natural killer) cell-mediated killing of tumour cells. Cleavage required the site identified in the bioinformatics screen and was caspase-independent. Expression of either full-length BNIP-2 or a truncated molecule mimicking the granzyme B cleaved form was pro-apoptotic and led to the caspase-dependent cleavage of BNIP-2 at a site distinct from granzyme B cleavage. Inhibition of BNIP-2 expression did not affect the susceptibility to NK cell-mediated killing. Furthermore, target cells in which BID (BH3-interacting domain death agonist) expression was inhibited also remained highly susceptible to NK cell-mediated killing, revealing redundancy in the pro-apoptotic response to human cytotoxic lymphocytes. Such redundancy reduces the opportunity for escape from apoptosis induction and maximizes the chances of immune-mediated clearance of infected cells or tumour cells.
Collapse
|
29
|
Abstract
Cytotoxic lymphocytes are armed with granules that are released in the granule-exocytosis pathway to kill tumor cells and virus-infected cells. Cytotoxic granules contain the pore-forming protein perforin and a family of structurally homologues serine proteases called granzymes. While perforin facilitates the entry of granzymes into a target cell, the latter initiate distinct apoptotic routes. Granzymes are also implicated in extracellular functions such as extracellular matrix degradation, immune regulation, and inflammation. The family of human granzymes consists of five members, of which granzyme A and B have been studied most extensively. Recently, elucidation of the specific characteristics of the other three human granzymes H, K, and M, also referred to as orphan granzymes, have started. In this review, we summarize and discuss what is currently known about the biology of the human orphan granzymes.
Collapse
Affiliation(s)
- Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
| | | |
Collapse
|
30
|
Serine proteases of the human immune system in health and disease. Mol Immunol 2010; 47:1943-55. [PMID: 20537709 DOI: 10.1016/j.molimm.2010.04.020] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 04/29/2010] [Indexed: 11/23/2022]
|
31
|
Andrade F. Non-cytotoxic antiviral activities of granzymes in the context of the immune antiviral state. Immunol Rev 2010; 235:128-46. [DOI: 10.1111/j.0105-2896.2010.00909.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Afonina IS, Cullen SP, Martin SJ. Cytotoxic and non-cytotoxic roles of the CTL/NK protease granzyme B. Immunol Rev 2010; 235:105-16. [DOI: 10.1111/j.0105-2896.2010.00908.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Facey COB, Lockshin RA. The execution phase of autophagy associated PCD during insect metamorphosis. Apoptosis 2010; 15:639-52. [DOI: 10.1007/s10495-010-0499-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Martin P, Pardo J, Schill N, Jöckel L, Berg M, Froelich CJ, Wallich R, Simon MM. Granzyme B-induced and caspase 3-dependent cleavage of gelsolin by mouse cytotoxic T cells modifies cytoskeleton dynamics. J Biol Chem 2010; 285:18918-27. [PMID: 20395300 DOI: 10.1074/jbc.m109.056028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Granule-associated perforin and granzymes (gzms) are key effector molecules of cytotoxic T lymphocytes (Tc cells) and natural killer cells and play a critical role in the control of intracellular pathogens and cancer. Based on the notion that many gzms, including A, B, C, K, H, and M exhibit cytotoxic activity in vitro, all gzms are believed to serve a similar function in vivo. However, more recent evidence supports the concept that gzms are not unidimensional but, rather, possess non-cytotoxic potential, including stimulation of pro-inflammatory cytokines and anti-viral activities. The present study shows that isolated mouse gzmB cleaves the actin-severing mouse protein, cytoplasmic gelsolin (c-gelsolin) in vitro. However, when delivered to intact target cells by ex vivo immune Tc cells, gzmB mediates c-gelsolin proteolysis via activation of caspases 3/7. The NH(2)-terminal c-gelsolin fragment generated by either gzmB or caspase 3 in vitro constitutively severs actin filaments without destroying the target cells. The observation that gzmB secreted by Tc cells initiates a caspase cascade that disintegrates the actin cytoskeleton in target cells suggests that this intracellular process may contribute to anti-viral host defense.
Collapse
Affiliation(s)
- Praxedis Martin
- Metschnikoff Laboratory, Max-Planck-Institute of Immunobiology, 79108 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Granzyme B of cytotoxic T cells induces extramitochondrial reactive oxygen species production via caspase‐dependent NADPH oxidase activation. Immunol Cell Biol 2010; 88:545-54. [DOI: 10.1038/icb.2010.5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
36
|
Barcia C, Gómez A, Gallego-Sanchez JM, Perez-Vallés A, Castro MG, Lowenstein PR, Barcia C, Herrero MT. Infiltrating CTLs in human glioblastoma establish immunological synapses with tumorigenic cells. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:786-98. [PMID: 19628762 DOI: 10.2353/ajpath.2009.081034] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The immunological synapse between T cells and tumor cells is believed to be important for effective tumor clearance. However, the immunological synapse has never been imaged or analyzed in detail in human tissue. In this work, intercellular interactions between T cells and tumor cells were analyzed in detail in human glioblastoma. After characterization of the population of infiltrating T cells by multiple immunofluorescence staining and stereological quantification, the microanatomy of T cell-tumor cell intercellular communication was analyzed in detail using confocal microscopy and three-dimensional rendering. Cytotoxic T lymphocytes that infiltrated human glioblastoma underwent rearrangement when in contact with tumor cells, to form a three-dimensional structure in the intercellular contact area; this was characterized by microclusters of the CD3/TCR complex, re-arrangement of the cytoskeleton, and granzyme B polarization. In addition, such T cell-targeted cells show fragmentation of the microtubular system and increased expression levels of cleaved caspase 3, which suggests that cytotoxic T lymphocytes likely provoke changes in tumor cells and subsequently induce cell death. These results show that the formation of the cytotoxic T lymphocyte immunological synapse occurs in human tissue and may be relevant for the effective immune-mediated clearance of tumorigenic cells, therefore opening up new avenues for glioblastoma immunotherapy.
Collapse
Affiliation(s)
- Carlos Barcia
- Clinical and Experimental Neuroscience, CIBERNED, School of Medicine, University of Murcia, Campus de Espinardo, 30071, Murcia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Cauwe B, Martens E, Proost P, Opdenakker G. Multidimensional degradomics identifies systemic autoantigens and intracellular matrix proteins as novel gelatinase B/MMP-9 substrates. Integr Biol (Camb) 2009; 1:404-26. [PMID: 20023747 DOI: 10.1039/b904701h] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The action radius of matrix metalloproteinases or MMPs is not restricted to massive extracellular matrix (ECM) degradation, it extends to the proteolysis of numerous secreted and membrane-bound proteins. Although many instances exist in which cells disintegrate, often in conjunction with induction of MMPs, the intracellular MMP substrate repertoire or degradome remains relatively unexplored. We started an unbiased exploration of the proteolytic modification of intracellular proteins by MMPs, using gelatinase B/MMP-9 as a model enzyme. To this end, multidimensional degradomics technology was developed by the integration of broadly available biotechniques. In this way, 100-200 MMP-9 candidate substrates were isolated, of which 69 were identified. Integration of these results with the known biological functions of the substrates revealed many novel MMP-9 substrates from the intracellular matrix (ICM), such as actin, tubulin, gelsolin, moesin, ezrin, Arp2/3 complex subunits, filamin B and stathmin. About 2/3 of the identified candidates were autoantigens described in multiple autoimmune conditions and in cancer (e.g. annexin I, nucleolin, citrate synthase, HMGB1, alpha-enolase, histidyl-tRNA synthetase, HSP27, HSC70, HSP90, snRNP D3). These findings led to the insight that MMPs and other proteases may have novel (immuno)regulatory properties by the clearance of toxic and immunogenic burdens of abundant ICM proteins released after extensive necrosis. In line with the extracellular processing of organ-specific autoantigens, proteolysis might also assist in the generation of immunodominant 'neo-epitopes' from systemic autoantigens. The study of proteolysis of ICM molecules, autoantigens, alarmins and other crucial intracellular molecules may result in the discovery of novel roles for proteolytic modification.
Collapse
Affiliation(s)
- Bénédicte Cauwe
- Department of Microbiology and Immunology, Laboratory of Immunobiology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, Leuven, Belgium
| | | | | | | |
Collapse
|
38
|
Abstract
The cytotoxic granzyme B (GrB)/perforin pathway has been traditionally viewed as a primary mechanism that is used by cytotoxic lymphocytes to eliminate allogeneic, virally infected and/or transformed cells. Although originally proposed to have intracellular and extracellular functions, upon the discovery that perforin, in combination with GrB, could induce apoptosis, other potential functions for this protease were, for the most part, disregarded. As there are 5 granzymes in humans and 11 granzymes in mice, many studies used perforin knockout mice as an initial screen to evaluate the role of granzymes in disease. However, in recent years, emerging clinical and biochemical evidence has shown that the latter approach may have overlooked a critical perforin-independent, pathogenic role for these proteases in disease. This review focuses on GrB, the most characterized of the granzyme family, in disease. Long known to be a pro-apoptotic protease expressed by cytotoxic lymphocytes and natural killer cells, it is now accepted that GrB can be expressed in other cell types of immune and nonimmune origin. To the latter, an emerging immune-independent role for GrB has been forwarded due to recent discoveries that GrB may be expressed in nonimmune cells such as smooth muscle cells, keratinocytes, and chondrocytes in certain disease states. Given that GrB retains its activity in the blood, can cleave extracellular matrix, and its levels are often elevated in chronic inflammatory diseases, this protease may be an important contributor to certain pathologies. The implications of sustained elevations of intracellular and extracellular GrB in chronic vascular, dermatological, and neurological diseases, among others, are developing. This review examines, for the first time, the multiple roles of GrB in disease pathogenesis.
Collapse
|
39
|
Van Damme P, Maurer-Stroh S, Plasman K, Van Durme J, Colaert N, Timmerman E, De Bock PJ, Goethals M, Rousseau F, Schymkowitz J, Vandekerckhove J, Gevaert K. Analysis of protein processing by N-terminal proteomics reveals novel species-specific substrate determinants of granzyme B orthologs. Mol Cell Proteomics 2008; 8:258-72. [PMID: 18836177 DOI: 10.1074/mcp.m800060-mcp200] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using a targeted peptide-centric proteomics approach, we performed in vitro protease substrate profiling of the apoptotic serine protease granzyme B resulting in the delineation of more than 800 cleavage sites in 322 human and 282 mouse substrates, encompassing the known substrates Bid, caspase-7, lupus La protein, and fibrillarin. Triple SILAC (stable isotope labeling by amino acids in cell culture) further permitted intra-experimental evaluation of species-specific variations in substrate selection by the mouse or human granzyme B ortholog. For the first time granzyme B substrate specificities were directly mapped on a proteomic scale and revealed unknown cleavage specificities, uncharacterized extended specificity profiles, and macromolecular determinants in substrate selection that were confirmed by molecular modeling. We further tackled a substrate hunt in an in vivo setup of natural killer cell-mediated cell death confirming in vitro characterized granzyme B cleavages next to several other unique and hitherto unreported proteolytic events in target cells.
Collapse
Affiliation(s)
- Petra Van Damme
- Department of Medical Protein Research, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cicchillitti L, Penci R, Di Michele M, Filippetti F, Rotilio D, Donati MB, Scambia G, Ferlini C. Proteomic characterization of cytoskeletal and mitochondrial class III beta-tubulin. Mol Cancer Ther 2008; 7:2070-9. [PMID: 18645017 DOI: 10.1158/1535-7163.mct-07-2370] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Class III beta-tubulin (TUBB3) has been discovered as a marker of drug resistance in human cancer. To get insights into the mechanisms by which this protein is involved in drug resistance, we analyzed TUBB3 in a panel of drug-sensitive and drug-resistant cell lines. We identified two main different isoforms of TUBB3 having a specific electrophoretic profile. We showed that the apparently higher molecular weight isoform is glycosylated and phosphorylated and it is localized in the cytoskeleton. The apparently lower molecular weight isoform is instead found exclusively in mitochondria. We observed that levels of phosphorylation and glycosylation of TUBB3 are associated with the resistant phenotype and compartmentalization into cytoskeleton. By two-dimensional nonreduced/reduced SDS-PAGE analysis, we also found that TUBB3 protein in vivo forms protein complexes through intermolecular disulfide bridges. Through TUBB3 immunoprecipitation, we isolated protein species able to interact with TUBB3. Following trypsin digestion, these proteins were characterized by mass spectrometry analysis. Functional analysis revealed that these proteins are involved in adaptation to oxidative stress and glucose deprivation, thereby suggesting that TUBB3 is a survival factor able to directly contribute to drug resistance. Moreover, glycosylation of TUBB3 could represent an attractive pathway whose inhibition could hamper cytoskeletal compartmentalization and TUBB3 function.
Collapse
Affiliation(s)
- Lucia Cicchillitti
- Department of Oncology, Catholic University of the Sacred Heart, Largo A. Gemelli, 1-86100, Campobasso, Italy
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Bovenschen N, de Koning PJA, Quadir R, Broekhuizen R, Damen JMA, Froelich CJ, Slijper M, Kummer JA. NK Cell Protease Granzyme M Targets α-Tubulin and Disorganizes the Microtubule Network. THE JOURNAL OF IMMUNOLOGY 2008; 180:8184-91. [DOI: 10.4049/jimmunol.180.12.8184] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Granzyme B-induced cell death exerted by ex vivo CTL: discriminating requirements for cell death and some of its signs. Cell Death Differ 2007; 15:567-79. [DOI: 10.1038/sj.cdd.4402289] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
43
|
|
44
|
Abstract
The extended substrate specificity of granzyme B (GrB) was used to identify substrates among the chaperone superfamily. This approach identified Hsp90 and Bag1-L as novel GrB substrates, and an additional GrB cleavage site was identified in the Hsc70/Hsp70-Interacting Protein, Hip. Hsp90, Bag1L, and Hip were validated as GrB substrates in vitro, and mutational analysis confirmed the additional cleavage site in Hip. Because the role of Hip in apoptosis is unknown, its proteolysis by GrB was used as a basis to test whether it has anti-apoptotic activity. Previous work on Hip was limited to in vitro characterization; therefore, it was important to demonstrate Hip cleavage in a physiological context and to show its relevance to natural killer (NK) cell-mediated death. Hip is cleaved at both GrB cleavage sites during NK-mediated cell death in a caspase-independent manner, and its cleavage is due solely to GrB and not other granule components. Furthermore, Hip is not cleaved upon stimulation of the Fas receptor in the Jurkat T-cell line, suggesting that Hip is a substrate unique to GrB. RNA interference-mediated reduction of Hip within the K562 cell line rendered the cells more susceptible to NK cell-mediated lysis, indicating that proteolysis by GrB of Hip contributes to death induction. The small effect of RNA interference-mediated Hip deficiency on cytotoxicity is in agreement with the inherent redundancy of NK cell-mediated cell death. The identification of additional members of the chaperone superfamily as GrB substrates and the validation of Hip as an anti-apoptotic protein contribute to understanding the interplay between stress response and apoptosis.
Collapse
Affiliation(s)
- Daniel R Hostetter
- Department of Pharmaceutical Chemistry, Tetrad Graduate Program, University of California San Franicisco, CA 94158-2517, USA
| | | | | | | |
Collapse
|
45
|
Bredemeyer AJ, Carrigan PE, Fehniger TA, Smith DF, Ley TJ. Hop cleavage and function in granzyme B-induced apoptosis. J Biol Chem 2006; 281:37130-41. [PMID: 17005566 DOI: 10.1074/jbc.m607969200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Granzyme B (GzmB) is a cytotoxic protease found in the granules of natural killer cells and cytotoxic T lymphocytes. GzmB cleaves multiple intracellular protein substrates, leading to caspase activation, DNA fragmentation, cytoskeletal instability, and rapid induction of target cell apoptosis. However, no known individual substrate is required for GzmB to induce apoptosis. GzmB is therefore thought to initiate multiple cell death pathways simultaneously to ensure the death of target cells. We previously identified Hop (Hsp70/Hsp90-organizing protein) as a GzmB substrate in a proteomic survey (Bredemeyer, A. J., Lewis, R. M., Malone, J. P., Davis, A. E., Gross, J., Townsend, R. R., and Ley, T. J. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 11785-11790). Hop is a co-chaperone for Hsp70 and Hsp90, which have been implicated in the negative regulation of apoptosis. We therefore hypothesized that Hop may have an anti-apoptotic function that is abolished upon cleavage, lowering the threshold for GzmB-induced apoptosis. Here, we show that Hop was cleaved directly by GzmB in vitro and in cells undergoing GzmB-induced apoptosis. Expression of the two cleavage fragments of Hop did not induce cell death. Although cleavage of Hop by GzmB destroyed Hop function in vitro, both cells overexpressing GzmB-resistant Hop and cells with a 90-95% reduction in Hop levels exhibited unaltered susceptibility to GzmB-induced death. We conclude that Hop per se does not set the threshold for susceptibility to GzmB-induced apoptosis. Although it is possible that Hop may be cleaved by GzmB as an "innocent bystander" during the induction of apoptosis, it may also act to facilitate apoptosis in concert with other GzmB substrates.
Collapse
Affiliation(s)
- Andrew J Bredemeyer
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
46
|
Moss DK, Lane JD. Microtubules: forgotten players in the apoptotic execution phase. Trends Cell Biol 2006; 16:330-8. [PMID: 16765597 DOI: 10.1016/j.tcb.2006.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 04/26/2006] [Accepted: 05/24/2006] [Indexed: 01/27/2023]
Abstract
A cell entering the execution phase of apoptosis (regulated cell death) undergoes characteristic rearrangements, in which the cytoskeleton has major roles. Historically, this reorganisation has been attributed entirely to actomyosin contractility, with microtubule and intermediate filament systems both reported to be lost at an early stage. However, recent results indicate that microtubule networks re-form during the later stages of apoptosis and assist in the dispersal of nuclear and cellular fragments--steps that are thought to be important for preventing inflammation. Here, we discuss the roles of the cytoskeleton during apoptosis and challenge current thinking that actin is the sole functional component driving all major execution phase events.
Collapse
Affiliation(s)
- David K Moss
- Department of Biochemistry, University of Bristol, School of Medical and Veterinary Sciences, University Walk, Bristol BS8 1TD, UK
| | | |
Collapse
|