1
|
Milholland KL, Waddey BT, Velázquez-Marrero KG, Lihon MV, Danzeisen EL, Naughton NH, Adams TJ, Schwartz JL, Liu X, Hall MC. Cdc14 phosphatases use an intramolecular pseudosubstrate motif to stimulate and regulate catalysis. J Biol Chem 2024; 300:107644. [PMID: 39122012 PMCID: PMC11407943 DOI: 10.1016/j.jbc.2024.107644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Cdc14 phosphatases are related structurally and mechanistically to protein tyrosine phosphatases (PTPs) but evolved a unique specificity for phosphoSer-Pro-X-Lys/Arg sites primarily deposited by cyclin-dependent kinases. This specialization is widely conserved in eukaryotes. The evolutionary reconfiguration of the Cdc14 active site to selectively accommodate phosphoSer-Pro likely required modification to the canonical PTP catalytic cycle. While studying Saccharomyces cerevisiae Cdc14, we discovered a short sequence in the disordered C terminus, distal to the catalytic domain, which mimics an optimal substrate. Kinetic analyses demonstrated this pseudosubstrate binds the active site and strongly stimulates rate-limiting phosphoenzyme hydrolysis, and we named it "substrate-like catalytic enhancer" (SLiCE). The SLiCE motif is found in all Dikarya fungal Cdc14 orthologs and contains an invariant glutamine, which we propose is positioned via substrate-like contacts to assist orientation of the hydrolytic water, similar to a conserved active site glutamine in other PTPs that Cdc14 lacks. AlphaFold2 predictions revealed vertebrate Cdc14 orthologs contain a conserved C-terminal alpha helix bound to the active site. Although apparently unrelated to the fungal sequence, this motif also makes substrate-like contacts and has an invariant glutamine in the catalytic pocket. Altering these residues in human Cdc14A and Cdc14B demonstrated that it functions by the same mechanism as the fungal motif. However, the fungal and vertebrate SLiCE motifs were not functionally interchangeable, illuminating potential active site differences during catalysis. Finally, we show that the fungal SLiCE motif is a target for phosphoregulation of Cdc14 activity. Our study uncovered evolution of an unusual stimulatory pseudosubstrate motif in Cdc14 phosphatases.
Collapse
Affiliation(s)
| | - Benjamin T Waddey
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | | | - Michelle V Lihon
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Emily L Danzeisen
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Noelle H Naughton
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Timothy J Adams
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Jack L Schwartz
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Xing Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA; Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA; Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA; Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, USA; Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
2
|
Milholland KL, Gregor JB, Hoda S, Píriz-Antúnez S, Dueñas-Santero E, Vu BG, Patel KP, Moye-Rowley WS, Vázquez de Aldana CR, Correa-Bordes J, Briggs SD, Hall MC. Rapid, efficient auxin-inducible protein degradation in Candida pathogens. mSphere 2023; 8:e0028323. [PMID: 37594261 PMCID: PMC10597344 DOI: 10.1128/msphere.00283-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/30/2023] [Indexed: 08/19/2023] Open
Abstract
A variety of inducible protein degradation (IPD) systems have been developed as powerful tools for protein functional characterization. IPD systems provide a convenient mechanism for rapid inactivation of almost any target protein of interest. Auxin-inducible degradation (AID) is one of the most common IPD systems and has been established in diverse eukaryotic research model organisms. Thus far, IPD tools have not been developed for use in pathogenic fungal species. Here, we demonstrate that the original AID and the second generation, AID2, systems work efficiently and rapidly in the human pathogenic yeasts, Candida albicans and Candida glabrata. We developed a collection of plasmids that support AID system use in laboratory strains of these pathogens. These systems can induce >95% degradation of target proteins within minutes. In the case of AID2, maximal degradation was achieved at low nanomolar concentrations of the synthetic auxin analog 5-adamantyl-indole-3-acetic acid. Auxin-induced target degradation successfully phenocopied gene deletions in both species. The system should be readily adaptable to other fungal species and to clinical pathogen strains. Our results define the AID system as a powerful and convenient functional genomics tool for protein characterization in fungal pathogens. IMPORTANCE Life-threatening fungal infections are an escalating human health problem, complicated by limited treatment options and the evolution of drug resistant pathogen strains. Identification of new targets for therapeutics to combat invasive fungal infections, including those caused by Candida species, is an urgent need. In this report, we establish and validate an inducible protein degradation methodology in Candida albicans and Candida glabrata that provides a new tool for protein functional characterization in these, and likely other, fungal pathogen species. We expect this tool will ultimately be useful for the identification and characterization of promising drug targets and factors involved in virulence and drug resistance.
Collapse
Affiliation(s)
| | - Justin B. Gregor
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Smriti Hoda
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | | | - Encarnación Dueñas-Santero
- Institute of Functional Biology and Genomics, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), Salamanca, Spain
| | - Bao Gia Vu
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Krishna P. Patel
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - W. Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Carlos R. Vázquez de Aldana
- Institute of Functional Biology and Genomics, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), Salamanca, Spain
| | - Jaime Correa-Bordes
- Department of Biomedical Sciences, Universidad de Extremadura, Badajoz, Spain
| | - Scott D. Briggs
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
- Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Mark C. Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
- Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
3
|
Milholland KL, Gregor JB, Hoda S, Píriz-Antúnez S, Dueñas-Santero E, Vu BG, Patel KP, Moye-Rowley WS, de Aldana CRV, Correa-Bordes J, Briggs SD, Hall MC. Rapid, efficient auxin-inducible protein degradation in Candida pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541235. [PMID: 37293017 PMCID: PMC10245712 DOI: 10.1101/2023.05.17.541235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A variety of inducible protein degradation (IPD) systems have been developed as powerful tools for protein functional characterization. IPD systems provide a convenient mechanism for rapid inactivation of almost any target protein of interest. Auxin-inducible degradation (AID) is one of the most common IPD systems and has been established in diverse eukaryotic research model organisms. Thus far, IPD tools have not been developed for use in pathogenic fungal species. Here, we demonstrate that the original AID and the second generation AID2 systems work efficiently and rapidly in the human pathogenic yeasts Candida albicans and Candida glabrata . We developed a collection of plasmids that support AID system use in laboratory strains of these pathogens. These systems can induce >95% degradation of target proteins within minutes. In the case of AID2, maximal degradation was achieved at low nanomolar concentrations of the synthetic auxin analog 5-adamantyl-indole-3-acetic acid (5-Ad-IAA). Auxin-induced target degradation successfully phenocopied gene deletions in both species. The system should be readily adaptable to other fungal species and to clinical pathogen strains. Our results define the AID system as a powerful and convenient functional genomics tool for protein characterization in fungal pathogens.
Collapse
Affiliation(s)
- Kedric L. Milholland
- Department of Biochemistry and Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Justin B. Gregor
- Department of Biochemistry and Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Smriti Hoda
- Department of Biochemistry and Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | | | - Encarnación Dueñas-Santero
- Institute of Functional Biology and Genomics, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), Salamanca, Spain
| | - Bao Gia Vu
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Krishna P. Patel
- Department of Biochemistry and Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - W. Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Carlos R. Vázquez de Aldana
- Institute of Functional Biology and Genomics, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), Salamanca, Spain
| | - Jaime Correa-Bordes
- Department of Biomedical Sciences, Universidad de Extremadura, Badajoz, Spain
| | - Scott D. Briggs
- Department of Biochemistry and Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Mark C. Hall
- Department of Biochemistry and Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
4
|
Milholland KL, AbdelKhalek A, Baker KM, Hoda S, DeMarco AG, Naughton NH, Koeberlein AN, Lorenz GR, Anandasothy K, Esperilla-Muñoz A, Narayanan SK, Correa-Bordes J, Briggs SD, Hall MC. Cdc14 phosphatase contributes to cell wall integrity and pathogenesis in Candida albicans. Front Microbiol 2023; 14:1129155. [PMID: 36876065 PMCID: PMC9977832 DOI: 10.3389/fmicb.2023.1129155] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
The Cdc14 phosphatase family is highly conserved in fungi. In Saccharomyces cerevisiae, Cdc14 is essential for down-regulation of cyclin-dependent kinase activity at mitotic exit. However, this essential function is not broadly conserved and requires only a small fraction of normal Cdc14 activity. Here, we identified an invariant motif in the disordered C-terminal tail of fungal Cdc14 enzymes that is required for full enzyme activity. Mutation of this motif reduced Cdc14 catalytic rate and provided a tool for studying the biological significance of high Cdc14 activity. A S. cerevisiae strain expressing the reduced-activity hypomorphic mutant allele (cdc14hm ) as the sole source of Cdc14 proliferated like the wild-type parent strain but exhibited an unexpected sensitivity to cell wall stresses, including chitin-binding compounds and echinocandin antifungal drugs. Sensitivity to echinocandins was also observed in Schizosaccharomyces pombe and Candida albicans strains lacking CDC14, suggesting this phenotype reflects a novel and conserved function of Cdc14 orthologs in mediating fungal cell wall integrity. In C. albicans, the orthologous cdc14hm allele was sufficient to elicit echinocandin hypersensitivity and perturb cell wall integrity signaling. It also caused striking abnormalities in septum structure and the same cell separation and hyphal differentiation defects previously observed with cdc14 gene deletions. Since hyphal differentiation is important for C. albicans pathogenesis, we assessed the effect of reduced Cdc14 activity on virulence in Galleria mellonella and mouse models of invasive candidiasis. Partial reduction in Cdc14 activity via cdc14hm mutation severely impaired C. albicans virulence in both assays. Our results reveal that high Cdc14 activity is important for C. albicans cell wall integrity and pathogenesis and suggest that Cdc14 may be worth future exploration as an antifungal drug target.
Collapse
Affiliation(s)
- Kedric L Milholland
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Ahmed AbdelKhalek
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Kortany M Baker
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Smriti Hoda
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Andrew G DeMarco
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Noelle H Naughton
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Angela N Koeberlein
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Gabrielle R Lorenz
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Kartikan Anandasothy
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | | | - Sanjeev K Narayanan
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Jaime Correa-Bordes
- Department of Biomedical Sciences, Universidad de Extremadura, Badajoz, Spain
| | - Scott D Briggs
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States.,Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States.,Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
5
|
Jaitly P, Legrand M, Das A, Patel T, Chauvel M, Maufrais C, d’Enfert C, Sanyal K. A phylogenetically-restricted essential cell cycle progression factor in the human pathogen Candida albicans. Nat Commun 2022; 13:4256. [PMID: 35869076 PMCID: PMC9307598 DOI: 10.1038/s41467-022-31980-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Chromosomal instability caused by cell division errors is associated with antifungal drug resistance in fungal pathogens. Here, we identify potential mechanisms underlying such instability by conducting an overexpression screen monitoring chromosomal stability in the human fungal pathogen Candida albicans. Analysis of ~1000 genes uncovers six chromosomal stability (CSA) genes, five of which are related to cell division genes of other organisms. The sixth gene, CSA6, appears to be present only in species belonging to the CUG-Ser clade, which includes C. albicans and other human fungal pathogens. The protein encoded by CSA6 localizes to the spindle pole bodies, is required for exit from mitosis, and induces a checkpoint-dependent metaphase arrest upon overexpression. Thus, Csa6 is an essential cell cycle progression factor that is restricted to the CUG-Ser fungal clade, and could therefore be explored as a potential antifungal target. Chromosomal instability caused by cell division errors is associated with antifungal drug resistance in fungal pathogens. Here, Jaitly et al. identify several genes involved in chromosomal stability in Candida albicans, including a phylogenetically restricted gene encoding an essential cell-cycle progression factor.
Collapse
|
6
|
Nicoletti G, White K. The Anti-Fungal Activity of Nitropropenyl Benzodioxole (NPBD), a Redox-Thiol Oxidant and Tyrosine Phosphatase Inhibitor. Antibiotics (Basel) 2022; 11:antibiotics11091188. [PMID: 36139967 PMCID: PMC9495065 DOI: 10.3390/antibiotics11091188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Phylogenetically diverse fungal species are an increasing cause of severe disease and mortality. Identification of new targets and development of new fungicidal drugs are required to augment the effectiveness of current chemotherapy and counter increasing resistance in pathogens. Nitroalkenyl benzene derivatives are thiol oxidants and inhibitors of cysteine-based molecules, which show broad biological activity against microorganisms. Nitropropenyl benzodioxole (NPBD), one of the most active antimicrobial derivatives, shows high activity in MIC assays for phylogenetically diverse saprophytic, commensal and parasitic fungi. NPBD was fungicidal to all species except the dermatophytic fungi, with an activity profile comparable to that of Amphotericin B and Miconazole. NPBD showed differing patterns of dynamic kill rates under different growth conditions for Candida albicans and Aspergillus fumigatus and was rapidly fungicidal for non-replicating vegetative forms and microconidia. It did not induce resistant or drug tolerant strains in major pathogens on long term exposure. A literature review highlights the complexity and interactivity of fungal tyrosine phosphate and redox signaling pathways, their differing metabolic effects in fungal species and identifies some targets for inhibition. A comparison of the metabolic activities of Amphotericin B, Miconazole and NPBD highlights the multiple cellular functions of these agents and the complementarity of many mechanisms. The activity profile of NPBD illustrates the functional diversity of fungal tyrosine phosphatases and thiol-based redox active molecules and contributes to the validation of tyrosine phosphatases and redox thiol molecules as related and complementary selective targets for antimicrobial drug development. NPBD is a selective antifungal agent with low oral toxicity which would be suitable for local treatment of skin and mucosal infections.
Collapse
|
7
|
Chow EWL, Pang LM, Wang Y. From Jekyll to Hyde: The Yeast-Hyphal Transition of Candida albicans. Pathogens 2021; 10:pathogens10070859. [PMID: 34358008 PMCID: PMC8308684 DOI: 10.3390/pathogens10070859] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans, accounting for 15% of nosocomial infections with an estimated attributable mortality of 47%. C. albicans is usually a benign member of the human microbiome in healthy people. Under constant exposure to highly dynamic environmental cues in diverse host niches, C. albicans has successfully evolved to adapt to both commensal and pathogenic lifestyles. The ability of C. albicans to undergo a reversible morphological transition from yeast to filamentous forms is a well-established virulent trait. Over the past few decades, a significant amount of research has been carried out to understand the underlying regulatory mechanisms, signaling pathways, and transcription factors that govern the C. albicans yeast-to-hyphal transition. This review will summarize our current understanding of well-elucidated signal transduction pathways that activate C. albicans hyphal morphogenesis in response to various environmental cues and the cell cycle machinery involved in the subsequent regulation and maintenance of hyphal morphogenesis.
Collapse
Affiliation(s)
- Eve Wai Ling Chow
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore;
| | - Li Mei Pang
- National Dental Centre Singapore, National Dental Research Institute Singapore (NDRIS), 5 Second Hospital Ave, Singapore 168938, Singapore;
| | - Yue Wang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
- Correspondence:
| |
Collapse
|
8
|
Szabó K, Miskei M, Farkas I, Dombrádi V. The phosphatome of opportunistic pathogen Candida species. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2020.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
DeMarco AG, Milholland KL, Pendleton AL, Whitney JJ, Zhu P, Wesenberg DT, Nambiar M, Pepe A, Paula S, Chmielewski J, Wisecaver JH, Tao WA, Hall MC. Conservation of Cdc14 phosphatase specificity in plant fungal pathogens: implications for antifungal development. Sci Rep 2020; 10:12073. [PMID: 32694511 PMCID: PMC7374715 DOI: 10.1038/s41598-020-68921-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/24/2020] [Indexed: 11/08/2022] Open
Abstract
Cdc14 protein phosphatases play an important role in plant infection by several fungal pathogens. This and other properties of Cdc14 enzymes make them an intriguing target for development of new antifungal crop treatments. Active site architecture and substrate specificity of Cdc14 from the model fungus Saccharomyces cerevisiae (ScCdc14) are well-defined and unique among characterized phosphatases. Cdc14 appears absent from some model plants. However, the extent of conservation of Cdc14 sequence, structure, and specificity in fungal plant pathogens is unknown. We addressed this by performing a comprehensive phylogenetic analysis of the Cdc14 family and comparing the conservation of active site structure and specificity among a sampling of plant pathogen Cdc14 homologs. We show that Cdc14 was lost in the common ancestor of angiosperm plants but is ubiquitous in ascomycete and basidiomycete fungi. The unique substrate specificity of ScCdc14 was invariant in homologs from eight diverse species of dikarya, suggesting it is conserved across the lineage. A synthetic substrate mimetic inhibited diverse fungal Cdc14 homologs with similar low µM Ki values, but had little effect on related phosphatases. Our results justify future exploration of Cdc14 as a broad spectrum antifungal target for plant protection.
Collapse
Affiliation(s)
- Andrew G DeMarco
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Kedric L Milholland
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Amanda L Pendleton
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - John J Whitney
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Peipei Zhu
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Daniel T Wesenberg
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Monessha Nambiar
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Antonella Pepe
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | - Stefan Paula
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemistry, California State University, 6000 J Street, Sacramento, CA, 95819, USA
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Jennifer H Wisecaver
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
10
|
The Multiple Roles of the Cdc14 Phosphatase in Cell Cycle Control. Int J Mol Sci 2020; 21:ijms21030709. [PMID: 31973188 PMCID: PMC7038166 DOI: 10.3390/ijms21030709] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/20/2022] Open
Abstract
The Cdc14 phosphatase is a key regulator of mitosis in the budding yeast Saccharomyces cerevisiae. Cdc14 was initially described as playing an essential role in the control of cell cycle progression by promoting mitotic exit on the basis of its capacity to counteract the activity of the cyclin-dependent kinase Cdc28/Cdk1. A compiling body of evidence, however, has later demonstrated that this phosphatase plays other multiple roles in the regulation of mitosis at different cell cycle stages. Here, we summarize our current knowledge about the pivotal role of Cdc14 in cell cycle control, with a special focus in the most recently uncovered functions of the phosphatase.
Collapse
|
11
|
Sparapani S, Bachewich C. Characterization of a novel separase-interacting protein and candidate new securin, Eip1p, in the fungal pathogen Candida albicans. Mol Biol Cell 2019; 30:2469-2489. [PMID: 31411946 PMCID: PMC6743357 DOI: 10.1091/mbc.e18-11-0696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 07/03/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Proper chromosome segregation is crucial for maintaining genomic stability and dependent on separase, a conserved and essential cohesin protease. Securins are key regulators of separases, but remain elusive in many organisms due to sequence divergence. Here, we demonstrate that the separase homologue Esp1p in the ascomycete Candida albicans, an important pathogen of humans, is essential for chromosome segregation. However, C. albicans lacks a sequence homologue of securins found in model ascomycetes. We sought a functional homologue through identifying Esp1p interacting factors. Affinity purification of Esp1p and mass spectrometry revealed Esp1p-Interacting Protein1 (Eip1p)/Orf19.955p, an uncharacterized protein specific to Candida species. Functional analyses demonstrated that Eip1p is important for chromosome segregation but not essential, and modulated in an APCCdc20-dependent manner, similar to securins. Eip1p is strongly enriched in response to methyl methanesulfate (MMS) or hydroxyurea (HU) treatment, and its depletion partially suppresses an MMS or HU-induced metaphase block. Further, Eip1p depletion reduces Mcd1p/Scc1p, a cohesin subunit and separase target. Thus, Eip1p may function as a securin. However, other defects in Eip1p-depleted cells suggest additional roles. Overall, the results introduce a candidate new securin, provide an approach for identifying these divergent proteins, reveal a putative anti-fungal therapeutic target, and highlight variations in mitotic regulation in eukaryotes.
Collapse
Affiliation(s)
- Samantha Sparapani
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | | |
Collapse
|
12
|
The phosphatase gene MaCdc14 negatively regulates UV-B tolerance by mediating the transcription of melanin synthesis-related genes and contributes to conidiation in Metarhizium acridum. Curr Genet 2019; 66:141-153. [PMID: 31256233 DOI: 10.1007/s00294-019-01008-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 10/26/2022]
Abstract
Reversible phosphorylation of proteins regulated by protein kinases and phosphatases mediate multiple biological events in eukaryotes. In this study, a dual-specificity cell division cycle 14 phosphatase, MaCdc14, was functionally characterized in Metarhizium acridum. Deletion of MaCdc14 decreased branch numbers, affected septum formation and resulted in multiple nuclei in each hyphal compartment, indicating nuclear division and cytokinesis defects. The spore production capacity was severely impaired with decreased conidial yield and delayed conidiation in MaCdc14-deletion mutant (ΔMaCdc14). The transcription levels of conidiation-related genes were significantly changed after MaCdc14 inactivation. The morphology of conidia was uneven in size and the germination rate of conidia was increased in ΔMaCdc14. In addition, ΔMaCdc14 displayed significantly enhanced conidial tolerance to ultraviolet (UV) irradiation but had no significant effect on the thermotolerance, the sensitivities to cell wall damage reagents, osmotic and oxidative stresses, and virulence compared to the wild-type strain and complementary transformant. Furthermore, the pigmentation of ΔMaCdc14 was increased by the upregulated expression of melanin synthesis-related genes, which may result in the enhanced UV-B tolerance of ΔMaCdc14. In summary, MaCdc14 negatively regulated UV-B tolerance by mediating the transcription of melanin synthesis-related genes, contributed to conidiation by regulating the expression levels of conidiation-related genes and also played important roles in cytokinesis and morphogenesis in Metarhizium acridum.
Collapse
|
13
|
Proteins that physically interact with the phosphatase Cdc14 in Candida albicans have diverse roles in the cell cycle. Sci Rep 2019; 9:6258. [PMID: 31000734 PMCID: PMC6472416 DOI: 10.1038/s41598-019-42530-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 03/29/2019] [Indexed: 01/08/2023] Open
Abstract
The chromosome complement of the human fungal pathogen Candida albicans is unusually unstable, suggesting that the process of nuclear division is error prone. The Cdc14 phosphatase plays a key role in organising the intricate choreography of mitosis and cell division. In order to understand the role of Cdc14 in C. albicans we used quantitative proteomics to identify proteins that physically interact with Cdc14. To distinguish genuine Cdc14-interactors from proteins that bound non-specifically to the affinity matrix, we used a substrate trapping mutant combined with mass spectrometry analysis using Stable Isotope Labelling with Amino Acids in Cell Culture (SILAC). The results identified 126 proteins that interact with Cdc14 of which 80% have not previously been identified as Cdc14 interactors in C. albicans or S. cerevisiae. In this set, 55 proteins are known from previous research in S. cerevisiae and S. pombe to play roles in the cell cycle, regulating the attachment of the mitotic spindle to kinetochores, mitotic exit, cytokinesis, licensing of DNA replication by re-activating pre-replication complexes, and DNA repair. Five Cdc14-interacting proteins with previously unknown functions localised to the Spindle Pole Bodies (SPBs). Thus, we have greatly increased the number of proteins that physically interact with Cdc14 in C. albicans.
Collapse
|
14
|
Candida albicans Cdc15 is essential for mitotic exit and cytokinesis. Sci Rep 2018; 8:8899. [PMID: 29891974 PMCID: PMC5995815 DOI: 10.1038/s41598-018-27157-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/30/2018] [Indexed: 12/21/2022] Open
Abstract
Candida albicans displays a variety of morphological forms, and the ability to switch forms must be linked with cell cycle control. In budding yeast the Mitotic Exit Network (MEN) acts to drive mitotic exit and signal for cytokinesis and cell separation. However, previous reports on the MEN in C. albicans have raised questions on its role in this organism, with the components analysed to date demonstrating differing levels of importance in the processes of mitotic exit, cytokinesis and cell separation. This work focuses on the role of the Cdc15 kinase in C. albicans and demonstrates that, similar to Saccharomyces cerevisiae, it plays an essential role in signalling for mitotic exit and cytokinesis. Cells depleted of Cdc15 developed into elongated filaments, a common response to cell cycle arrest in C. albicans. These filaments emerged exclusively from large budded cells, contained two nuclear bodies and exhibited a hyper-extended spindle, all characteristic of these cells failing to exit mitosis. Furthermore these filaments displayed a clear cytokinesis defect, and CDC15 over-expression led to aberrant cell separation following hyphal morphogenesis. Together, these results are consistent with Cdc15 playing an essential role in signalling for mitotic exit, cytokinesis and cell separation in C. albicans.
Collapse
|
15
|
Yang G, Hu Y, Fasoyin OE, Yue Y, Chen L, Qiu Y, Wang X, Zhuang Z, Wang S. The Aspergillus flavus Phosphatase CDC14 Regulates Development, Aflatoxin Biosynthesis and Pathogenicity. Front Cell Infect Microbiol 2018; 8:141. [PMID: 29868497 PMCID: PMC5950752 DOI: 10.3389/fcimb.2018.00141] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/18/2018] [Indexed: 12/24/2022] Open
Abstract
Reversible protein phosphorylation is known to play important roles in the regulation of various cellular processes in eukaryotes. Phosphatase-mediated dephosphorylation are integral components of cellular signal pathways by counteracting the phosphorylation action of kinases. In this study, we characterized the functions of CDC14, a dual-specificity phosphatase in the development, secondary metabolism and crop infection of Aspergillus flavus. Deletion of AflCDC14 resulted in a growth defect and abnormal conidium morphology. Inactivation of AflCDC14 caused defective septum and failure to generate sclerotia. Additionally, the AflCDC14 deletion mutant (ΔCDC14) displayed increased sensitivity to osmotic and cell wall integrity stresses. Importantly, it had a significant increase in aflatoxin production, which was consistent with the up-regulation of the expression levels of aflatoxin biosynthesis related genes in ΔCDC14 mutant. Furthermore, seeds infection assays suggested that AflCDC14 was crucial for virulence of A. flavus. It was also found that the activity of amylase was decreased in ΔCDC14 mutant. AflCDC14-eRFP mainly localized to the cytoplasm and vesicles during coidial germination and mycelial development stages. Taken together, these results not only reveal the importance of the CDC14 phosphatase in the regulation of development, aflatoxin biosynthesis and virulence in A. flavus, but may also provide a potential target for controlling crop infections of this fungal pathogen.
Collapse
Affiliation(s)
- Guang Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yule Hu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Opemipo E Fasoyin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuewei Yue
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lijie Chen
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yue Qiu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiuna Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
16
|
Li C, Cao S, Zhang C, Zhang Y, Zhang Q, Xu J, Wang C. MoCDC14 is important for septation during conidiation and appressorium formation in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2018; 19:328-340. [PMID: 27935243 PMCID: PMC6638023 DOI: 10.1111/mpp.12523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/21/2016] [Accepted: 11/24/2016] [Indexed: 05/09/2023]
Abstract
As a typical foliar pathogen, appressorium formation and penetration are critical steps in the infection cycle of Magnaporthe oryzae. Because appressorium formation and penetration are closely co-regulated with the cell cycle, and Cdc14 phosphatases have an antagonistic relationship with cyclin-dependent kinases (CDKs) on proteins related to mitotic exit and cytokinesis, in this study, we functionally characterized the MoCDC14 gene in M. oryzae. The Mocdc14 deletion mutant showed significantly reduced growth rate and conidiation. It was also defective in septum formation and nuclear distribution. Septation was irregular in Mocdc14 hyphae and hyphal compartments became multi-nucleate. Mutant conidia often showed incomplete septa or lacked any septum. During appressorium formation, the septum delimiting appressoria from the rest of the germ tubes was often formed far away from the neck of the appressoria or not formed at all. Unlike the wild-type, some mutant appressoria had more than one nucleus at 24 h. In addition to appressoria, melanization occurred on parts of the germ tubes and conidia, depending on the irregular position of the appressorium-delimiting septum. The Mocdc14 mutant was also defective in glycogen degradation during appressorium formation and appressorial penetration of intact plant cells. Similar defects in septum formation, melanization and penetration were observed with appressorium-like structures formed at hyphal tips in the Mocdc14 mutant. Often a long fragment of mutant hyphae was melanized, together with the apical appressorium-like structures. These results indicate that MoCDC14 plays a critical role in septation, nuclear distribution and pathogenesis in M. oryzae, and correct septum formation during conidiogenesis and appressorium formation requires the MoCdc14 phosphatase.
Collapse
Affiliation(s)
- Chaohui Li
- NWAFU‐PU Joint Research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Shulin Cao
- NWAFU‐PU Joint Research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Chengkang Zhang
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN47907USA
| | - Yonghui Zhang
- NWAFU‐PU Joint Research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Qiang Zhang
- NWAFU‐PU Joint Research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Jin‐Rong Xu
- NWAFU‐PU Joint Research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN47907USA
| | - Chenfang Wang
- NWAFU‐PU Joint Research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
17
|
Basso V, d'Enfert C, Znaidi S, Bachellier-Bassi S. From Genes to Networks: The Regulatory Circuitry Controlling Candida albicans Morphogenesis. Curr Top Microbiol Immunol 2018; 422:61-99. [PMID: 30368597 DOI: 10.1007/82_2018_144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Candida albicans is a commensal yeast of most healthy individuals, but also one of the most prevalent human fungal pathogens. During adaptation to the mammalian host, C. albicans encounters different niches where it is exposed to several types of stress, including oxidative, nitrosative (e.g., immune system), osmotic (e.g., kidney and oral cavity) stresses and pH variation (e.g., gastrointestinal (GI) tract and vagina). C. albicans has developed the capacity to respond to the environmental changes by modifying its morphology, which comprises the yeast-to-hypha transition, white-opaque switching, and chlamydospore formation. The yeast-to-hypha transition has been very well characterized and was shown to be modulated by several external stimuli that mimic the host environment. For instance, temperature above 37 ℃, serum, alkaline pH, and CO2 concentration are all reported to enhance filamentation. The transition is characterized by the activation of an intricate regulatory network of signaling pathways, involving many transcription factors. The regulatory pathways that control either the stress response or morphogenesis are required for full virulence and promote survival of C. albicans in the host. Many of these transcriptional circuitries have been characterized, highlighting the complexity and the interconnections between the different pathways. Here, we present the major signaling pathways and the main transcription factors involved in the yeast-to-hypha transition. Furthermore, we describe the role of heat shock transcription factors in the morphogenetic transition, providing an edifying example of the complex cross talk between pathways involved in morphogenesis and stress response.
Collapse
Affiliation(s)
- Virginia Basso
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France.,Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, 25 Rue Du Docteur Roux, Paris, France.,Department of Pathology and Laboratory Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France
| | - Sadri Znaidi
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France. .,Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, 13 Place Pasteur, 1002, Tunis-Belvédère, Tunisia.
| | - Sophie Bachellier-Bassi
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, INRA, 25 Rue Du Docteur Roux, 75015, Paris, France.
| |
Collapse
|
18
|
Powers BL, Hall MC. Re-examining the role of Cdc14 phosphatase in reversal of Cdk phosphorylation during mitotic exit. J Cell Sci 2017; 130:2673-2681. [PMID: 28663385 DOI: 10.1242/jcs.201012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 06/26/2017] [Indexed: 01/12/2023] Open
Abstract
Inactivation of cyclin-dependent kinase (Cdk) and reversal of Cdk phosphorylation are universally required for mitotic exit. In budding yeast (Saccharomyces cerevisiae), Cdc14 is essential for both and thought to be the major Cdk-counteracting phosphatase. However, Cdc14 is not required for mitotic exit in many eukaryotes, despite highly conserved biochemical properties. The question of how similar enzymes could have such disparate influences on mitotic exit prompted us to re-examine the contribution of budding yeast Cdc14. By using an auxin-inducible degron, we show that severe Cdc14 depletion has no effect on the kinetics of mitotic exit and bulk Cdk substrate dephosphorylation, but causes a cell separation defect and is ultimately lethal. Phosphoproteomic analysis revealed that Cdc14 is highly selective for distinct Cdk sites in vivo and does not catalyze widespread Cdk substrate dephosphorylation. We conclude that additional phosphatases likely contribute substantially to Cdk substrate dephosphorylation and coordination of mitotic exit in budding yeast, similar to in other eukaryotes, and the critical mitotic exit functions of Cdc14 require trace amounts of enzyme. We propose that Cdc14 plays very specific, and often different, roles in counteracting Cdk phosphorylation in all species.
Collapse
Affiliation(s)
- Brendan L Powers
- Department of Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Mark C Hall
- Department of Biochemistry and Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
19
|
Au Yong JY, Wang YM, Wang Y. The Nim1 kinase Gin4 has distinct domains crucial for septin assembly, phospholipid binding and mitotic exit. J Cell Sci 2016; 129:2744-56. [PMID: 27231094 PMCID: PMC4958294 DOI: 10.1242/jcs.183160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/20/2016] [Indexed: 12/29/2022] Open
Abstract
In fungi, the Nim1 protein kinases, such as Gin4, are important regulators of multiple cell cycle events, including the G2–M transition, septin assembly, polarized growth and cytokinesis. Compelling evidence has linked some key functions of Gin4 with the large C-terminal non-kinase region which, however, is poorly defined. By systematically dissecting and functionally characterizing the non-kinase region of Gin4 in the human fungal pathogen Candida albicans, we report the identification of three new domains with distinct functions: a lipid-binding domain (LBD), a septin-binding domain (SBD) and a nucleolus-associating domain (NAD). The LBD and SBD are indispensable for the function of Gin4, and they alone could sufficiently restore septin ring assembly in GIN4-null mutants. The NAD localizes to the periphery of the nucleolus and physically associates with Cdc14, the ultimate effector of the mitotic exit network. Gin4 mutants that lack the NAD are defective in spindle orientation and exit mitosis prematurely. Furthermore, we show that Gin4 is a substrate of Cdc14. These findings provide novel insights into the roles and mechanisms of Nim1 kinases in the regulation of some crucial cell cycle events. Summary: Systematic dissection of the Gin4 kinase in the human pathogenic fungus Candida albicans uncovers three new functional domains that interact with distinct cellular components.
Collapse
Affiliation(s)
- Jie Ying Au Yong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore 138673
| | - Yan-Ming Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore 138673
| | - Yue Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore 138673 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| |
Collapse
|
20
|
Wang ZK, Wang J, Liu J, Ying SH, Peng XJ, Feng MG. Proteomic and Phosphoproteomic Insights into a Signaling Hub Role for Cdc14 in Asexual Development and Multiple Stress Responses in Beauveria bassiana. PLoS One 2016; 11:e0153007. [PMID: 27055109 PMCID: PMC4824431 DOI: 10.1371/journal.pone.0153007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/22/2016] [Indexed: 11/18/2022] Open
Abstract
Cdc14 is a dual-specificity phosphatase that regulates nuclear behavior by dephosphorylating phosphotyrosine and phosphoserine/phosphothreonine in fungi. Previously, Cdc14 was shown to act as a positive regulator of cytokinesis, asexual development and multiple stress responses in Beauveria bassiana, a fungal insect pathogen. This study seeks to gain deep insight into a pivotal role of Cdc14 in the signaling network of B. bassiana by analyzing the Cdc14-specific proteome and phosphoproteome generated by the 8-plex iTRAQ labeling and MS/MS analysis of peptides and phosphopeptides. Under normal conditions, 154 proteins and 86 phosphorylation sites in 67 phosphoproteins were upregulated in Δcdc14 versus wild-type, whereas 117 proteins and 85 phosphorylation sites in 58 phosphoproteins were significantly downregulated. Co-cultivation of Δcdc14 with NaCl (1 M), H2O2 (3 mM) and Congo red (0.15 mg/ml) resulted in the upregulation / downregulation of 23/63, 41/39 and 79/79 proteins and of 127/112, 52/47 and 105/226 phosphorylation sites in 85/92, 45/36 and 79/146 phosphoproteins, respectively. Bioinformatic analyses revealed that Cdc14 could participate in many biological and cellular processes, such as carbohydrate metabolism, glycerophospholipid metabolism, the MAP Kinase signaling pathway, and DNA conformation, by regulating protein expression and key kinase phosphorylation in response to different environmental cues. These indicate that in B. bassiana, Cdc14 is a vital regulator of not only protein expression but also many phosphorylation events involved in developmental and stress-responsive pathways. Fourteen conserved and novel motifs were identified in the fungal phosphorylation events.
Collapse
Affiliation(s)
- Zhi-Kang Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jie Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Liu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Jun Peng
- Jingjie PTM Biolabs (Hangzhou) Co., Ltd., Hangzhou, 310018, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- * E-mail:
| |
Collapse
|
21
|
Li C, Melesse M, Zhang S, Hao C, Wang C, Zhang H, Hall MC, Xu JR. FgCDC14 regulates cytokinesis, morphogenesis, and pathogenesis in Fusarium graminearum. Mol Microbiol 2015; 98:770-86. [PMID: 26256689 DOI: 10.1111/mmi.13157] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2015] [Indexed: 12/20/2022]
Abstract
Members of Cdc14 phosphatases are common in animals and fungi, but absent in plants. Although its orthologs are conserved in plant pathogenic fungi, their functions during infection are not clear. In this study, we showed that the CDC14 ortholog is important for pathogenesis and morphogenesis in Fusarium graminearum. FgCDC14 is required for normal cell division and septum formation and FgCdc14 possesses phosphatase activity with specificity for a subset of Cdk-type phosphorylation sites. The Fgcdc14 mutant was reduced in growth, conidiation, and ascospore formation. It was defective in ascosporogenesis and pathogenesis. Septation in Fgcdc14 was reduced and hyphal compartments contained multiple nuclei, indicating defects in the coordination between nuclear division and cytokinesis. Interestingly, foot cells of mutant conidia often differentiated into conidiogenous cells, resulting in the production of inter-connected conidia. In the interphase, FgCdc14-GFP localized to the nucleus and spindle-pole-body. Taken together, our results indicate that Cdc14 phosphatase functions in cell division and septum formation in F. graminearum, likely by counteracting Cdk phosphorylation, and is required for plant infection.
Collapse
Affiliation(s)
- Chaohui Li
- NWAFU-PU Joint research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Michael Melesse
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Shijie Zhang
- NWAFU-PU Joint research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - ChaoFeng Hao
- NWAFU-PU Joint research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chenfang Wang
- NWAFU-PU Joint research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hongchang Zhang
- NWAFU-PU Joint research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mark C Hall
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Jin-Rong Xu
- NWAFU-PU Joint research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
22
|
Calderón-Noreña DM, González-Novo A, Orellana-Muñoz S, Gutiérrez-Escribano P, Arnáiz-Pita Y, Dueñas-Santero E, Suárez MB, Bougnoux ME, del Rey F, Sherlock G, d’Enfert C, Correa-Bordes J, de Aldana CRV. A single nucleotide polymorphism uncovers a novel function for the transcription factor Ace2 during Candida albicans hyphal development. PLoS Genet 2015; 11:e1005152. [PMID: 25875512 PMCID: PMC4398349 DOI: 10.1371/journal.pgen.1005152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/17/2015] [Indexed: 01/10/2023] Open
Abstract
Candida albicans is a major invasive fungal pathogen in humans. An important virulence factor is its ability to switch between the yeast and hyphal forms, and these filamentous forms are important in tissue penetration and invasion. A common feature for filamentous growth is the ability to inhibit cell separation after cytokinesis, although it is poorly understood how this process is regulated developmentally. In C. albicans, the formation of filaments during hyphal growth requires changes in septin ring dynamics. In this work, we studied the functional relationship between septins and the transcription factor Ace2, which controls the expression of enzymes that catalyze septum degradation. We found that alternative translation initiation produces two Ace2 isoforms. While full-length Ace2, Ace2L, influences septin dynamics in a transcription-independent manner in hyphal cells but not in yeast cells, the use of methionine-55 as the initiation codon gives rise to Ace2S, which functions as the nuclear transcription factor required for the expression of cell separation genes. Genetic evidence indicates that Ace2L influences the incorporation of the Sep7 septin to hyphal septin rings in order to avoid inappropriate activation of cell separation during filamentous growth. Interestingly, a natural single nucleotide polymorphism (SNP) present in the C. albicans WO-1 background and other C. albicans commensal and clinical isolates generates a stop codon in the ninth codon of Ace2L that mimics the phenotype of cells lacking Ace2L. Finally, we report that Ace2L and Ace2S interact with the NDR kinase Cbk1 and that impairing activity of this kinase results in a defect in septin dynamics similar to that of hyphal cells lacking Ace2L. Together, our findings identify Ace2L and the NDR kinase Cbk1 as new elements of the signaling system that modify septin ring dynamics in hyphae to allow cell-chain formation, a feature that appears to have evolved in specific C. albicans lineages.
Collapse
Affiliation(s)
- Diana M. Calderón-Noreña
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca (USAL), Salamanca, Spain
| | - Alberto González-Novo
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca (USAL), Salamanca, Spain
| | - Sara Orellana-Muñoz
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca (USAL), Salamanca, Spain
| | - Pilar Gutiérrez-Escribano
- Departamento de Ciencias Biomédicas, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Yolanda Arnáiz-Pita
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca (USAL), Salamanca, Spain
| | - Encarnación Dueñas-Santero
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca (USAL), Salamanca, Spain
| | - M. Belén Suárez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca (USAL), Salamanca, Spain
| | - Marie-Elisabeth Bougnoux
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Mycologie, Paris, France
- INRA, USC2019, Paris, France
| | - Francisco del Rey
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca (USAL), Salamanca, Spain
| | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Christophe d’Enfert
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Mycologie, Paris, France
- INRA, USC2019, Paris, France
| | - Jaime Correa-Bordes
- Departamento de Ciencias Biomédicas, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Carlos R. Vázquez de Aldana
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca (USAL), Salamanca, Spain
| |
Collapse
|
23
|
Ppg1, a PP2A-type protein phosphatase, controls filament extension and virulence in Candida albicans. EUKARYOTIC CELL 2014; 13:1538-47. [PMID: 25326520 DOI: 10.1128/ec.00199-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Candida albicans, a major human fungal pathogen, is the primary cause of invasive candidiasis in a wide array of immunocompromised patients. C. albicans virulence requires the ability to undergo a reversible morphological transition from yeast to filaments in response to a variety of host environmental cues. These cues are sensed by the pathogen and activate multiple signal transduction pathways to induce filamentation. Reversible phosphorylation events are critical for regulation of many of these pathways. While a variety of protein kinases are known to function as components of C. albicans filamentous growth signal transduction pathways, considerably little is known about the role of phosphatases. Here we demonstrate that PPG1, encoding a putative type 2A-related protein phosphatase, is important for C. albicans filament extension, invasion, and virulence in a mouse model of systemic candidiasis. PPG1 is also important for downregulation of NRG1, a key transcriptional repressor of C. albicans filamentous growth, and is shown to affect the expression of several filament-specific target genes. An epistasis analysis suggests that PPG1 controls C. albicans filamentation via the cyclic AMP-protein kinase A (cAMP-PKA) signaling pathway. We demonstrate that Ppg1 possesses phosphatase activity and that a ppg1 catalytic mutant shows nearly equivalent filamentation, invasion, and virulence defects compared to those of a ppg1Δ/Δ strain. Overall, our results suggest that phosphatases, such as Ppg1, play critical roles in controlling and fine-tuning C. albicans filament extension and virulence as well as signal transduction pathways, transcriptional regulators, and target genes associated with these processes.
Collapse
|
24
|
Role of Candida albicans Tem1 in mitotic exit and cytokinesis. Fungal Genet Biol 2014; 69:84-95. [PMID: 24973462 DOI: 10.1016/j.fgb.2014.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 11/20/2022]
Abstract
Candida albicans demonstrates three main growth morphologies: yeast, pseudohyphal and true hyphal forms. Cell separation is distinct in these morphological forms and the process of separation is closely linked to the completion of mitosis and cytokinesis. In Saccharomyces cerevisiae the small GTPase Tem1 is known to initiate the mitotic exit network, a signalling pathway involved in signalling the end of mitosis and initiating cytokinesis and cell separation. Here we have characterised the role of Tem1 in C. albicans, and demonstrate that it is essential for mitotic exit and cytokinesis, and that this essential function is signalled through the kinase Cdc15. Cells depleted of Tem1 displayed highly polarised growth but ultimately failed to both complete cytokinesis and re-enter the cell cycle following nuclear division. Consistent with its role in activating the mitotic exit network Tem1 localises to spindle pole bodies in a cell cycle-dependent manner. Ultimately, the mitotic exit network in C. albicans appears to co-ordinate the sequential processes of mitotic exit, cytokinesis and cell separation.
Collapse
|
25
|
Phosphoregulation of Nap1 plays a role in septin ring dynamics and morphogenesis in Candida albicans. mBio 2014; 5:e00915-13. [PMID: 24496790 PMCID: PMC3950511 DOI: 10.1128/mbio.00915-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nap1 has long been identified as a potential septin regulator in yeasts. However, its function and regulation remain poorly defined. Here, we report functional characterization of Nap1 in the human-pathogenic fungus Candida albicans. We find that deletion of NAP1 causes constitutive filamentous growth and changes of septin dynamics. We present evidence that Nap1’s cellular localization and function are regulated by phosphorylation. Phos-tag gel electrophoresis revealed that Nap1 phosphorylation is cell cycle dependent, exhibiting the lowest level around the time of bud emergence. Mass spectrometry identified 10 phosphoserine and phosphothreonine residues in a cluster near the N terminus, and mutation of these residues affected Nap1’s localization to the septin ring and cellular function. Nap1 phosphorylation involves two septin ring-associated kinases, Cla4 and Gin4, and its dephosphorylation occurs at the septin ring in a manner dependent on the phosphatases PP2A and Cdc14. Furthermore, the nap1Δ/Δ mutant and alleles carrying mutations of the phosphorylation sites exhibited greatly reduced virulence in a mouse model of systemic candidiasis. Together, our findings not only provide new mechanistic insights into Nap1’s function and regulation but also suggest the potential to target Nap1 in future therapeutic design. Septins are conserved filament-forming GTPases involved in a wide range of cellular events, such as cytokinesis, exocytosis, and morphogenesis. In Candida albicans, the most prevalent human fungal pathogen, septin functions are indispensable for its virulence. However, the molecular mechanisms by which septin structures are regulated are poorly understood. In this study, we deleted NAP1, a gene encoding a putative septin regulator, in C. albicans and found that cells lacking NAP1 showed abnormalities in morphology, invasive growth, and septin ring dynamics. We identified a conserved N-terminal phosphorylation cluster on Nap1 and demonstrated that phosphorylation at these sites regulates Nap1 localization and function. Importantly, deletion of NAP1 or mutation in the N-terminal phosphorylation cluster strongly reduced the virulence of C. albicans in a mouse model of systemic infection. Thus, this study not only provides mechanistic insights into septin regulation but also suggests Nap1 as a potential antifungal target.
Collapse
|
26
|
Wang J, Liu J, Hu Y, Ying SH, Feng MG. Cytokinesis-required Cdc14 is a signaling hub of asexual development and multi-stress tolerance in Beauveria bassiana. Sci Rep 2013; 3:3086. [PMID: 24169500 PMCID: PMC3812655 DOI: 10.1038/srep03086] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/14/2013] [Indexed: 12/16/2022] Open
Abstract
A dual-specificity, paralogue-free Cdc14 phosphatase was located in the nuclei of Beauveria bassiana (filamentous entomopathogen) and functionally characterized. Inactivation of cdc14 caused defective cytokinesis due to multinucleate cells formed in Δcdc14 and 89% decrease of blastospore production, followed by slower growth and a loss of ≥ 96% conidial yield under normal conditions. These defects coincided well with drastic down-regulation of 25 genes required for mitosis and conidiation. Moreover, Δcdc14 became hypersensitive to oxidative, osmotic, and cell wall and mitosis perturbing stresses, and lost 41−70% of conidial thermotolerance, UV-B resistance and virulence, accompanied with transcriptional down-regualtion of various signaling factors and stress-responsive effectors and depressed phosphorylation signals of Hog1 and Slt2 in high-osmolarity glycerol and cell-wall integrity pathways. All changes were well restored by rescuing cdc14. Our findings indicate that Cdc14 vital for the fungal cytokinesis acts as a signaling hub in regulating not only asexual development but multi-stress responses and virulence.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, People's Republic of China
| | | | | | | | | |
Collapse
|
27
|
Abstract
Productive cell proliferation involves efficient and accurate splitting of the dividing cell into two separate entities. This orderly process reflects coordination of diverse cytological events by regulatory systems that drive the cell from mitosis into G1. In the budding yeast Saccharomyces cerevisiae, separation of mother and daughter cells involves coordinated actomyosin ring contraction and septum synthesis, followed by septum destruction. These events occur in precise and rapid sequence once chromosomes are segregated and are linked with spindle organization and mitotic progress by intricate cell cycle control machinery. Additionally, critical paarts of the mother/daughter separation process are asymmetric, reflecting a form of fate specification that occurs in every cell division. This chapter describes central events of budding yeast cell separation, as well as the control pathways that integrate them and link them with the cell cycle.
Collapse
|
28
|
Abstract
The regulation of Ace2 and morphogenesis (RAM) network is a protein kinase signaling pathway conserved among eukaryotes from yeasts to humans. Among fungi, the RAM network has been most extensively studied in the model yeast Saccharomyces cerevisiae and has been shown to regulate a range of cellular processes, including daughter cell-specific gene expression, cell cycle regulation, cell separation, mating, polarized growth, maintenance of cell wall integrity, and stress signaling. Increasing numbers of recent studies on the role of the RAM network in pathogenic fungal species have revealed that this network also plays an important role in the biology and pathogenesis of these organisms. In addition to providing a brief overview of the RAM network in S. cerevisiae, we summarize recent developments in the understanding of RAM network function in the human fungal pathogens Candida albicans, Candida glabrata, Cryptococcus neoformans, Aspergillus fumigatus, and Pneumocystis spp.
Collapse
|
29
|
Senn H, Shapiro RS, Cowen LE. Cdc28 provides a molecular link between Hsp90, morphogenesis, and cell cycle progression in Candida albicans. Mol Biol Cell 2011; 23:268-83. [PMID: 22090345 PMCID: PMC3258172 DOI: 10.1091/mbc.e11-08-0729] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The molecular chaperone Hsp90 regulates morphogenesis of the leading human fungal pathogen Candida albicans. Hsp90 inhibition induces filaments with a delay in mitotic exit mediated by the checkpoint protein Bub2. Hsp90 depletion destabilizes the cyclin-dependent kinase Cdc28, providing a link between Hsp90, cell cycle regulation, and morphogenesis. The trimorphic fungus Candida albicans is the leading cause of systemic candidiasis, a disease with poor prognosis affecting immunocompromised individuals. The capacity of C. albicans to transition between morphological states is a key determinant of its ability to cause life-threatening infection. Recently the molecular chaperone heat shock protein 90 (Hsp90) was implicated as a major regulator of temperature-dependent C. albicans morphogenesis; compromising Hsp90 function induces filamentation and relieves repression of Ras1–protein kinase A (PKA) signaling, although the mechanism involved remains unknown. Here we demonstrate that filaments generated by compromise of Hsp90 function are neither pseudohyphae nor hyphae but closely resemble filaments formed in response to cell cycle arrest. Closer examination revealed that these filaments exhibit a delay in mitotic exit mediated by the checkpoint protein Bub2. Furthermore, Hsp90 inhibition also led to a distinct morphology with defects in cytokinesis. We found that the cyclin-dependent kinase Cdc28 was destabilized in response to depletion of Hsp90 and that Cdc28 physically interacts with Hsp90, implicating this major cell cycle regulator as a novel Hsp90 client protein in C. albicans. Taken together, our results suggest that Hsp90 is instrumental in the regulation of cell division during yeast-form growth in C. albicans and exerts its major effects during late cell cycle events.
Collapse
Affiliation(s)
- Heather Senn
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | | |
Collapse
|
30
|
|
31
|
Gutiérrez-Escribano P, González-Novo A, Suárez MB, Li CR, Wang Y, de Aldana CRV, Correa-Bordes J. CDK-dependent phosphorylation of Mob2 is essential for hyphal development in Candida albicans. Mol Biol Cell 2011; 22:2458-69. [PMID: 21593210 PMCID: PMC3135472 DOI: 10.1091/mbc.e11-03-0205] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In yeast, CDKs and the NDR kinase Cbk1 are regulators of polarized growth. It is found that the CDK Cdc28 regulates the function of Cbk1 in response to hypha-inducing conditions by direct phosphorylation of Mob2, a conserved regulatory subunit of Cbk1. Nuclear Dbf2-related (NDR) protein kinases are essential components of regulatory pathways involved in cell morphogenesis, cell cycle control, and viability in eukaryotic cells. For their activity and function, these kinases require interaction with Mob proteins. However, little is known about how the Mob proteins are regulated. In Candida albicans, the cyclin-dependent kinase (CDK) Cdc28 and the NDR kinase Cbk1 are required for hyphal growth. Here we demonstrate that Mob2, the Cbk1 activator, undergoes a Cdc28-dependent differential phosphorylation on hyphal induction. Mutations in the four CDK consensus sites in Mob2 to Ala significantly impaired hyphal development. The mutant cells produced short hyphae with enlarged tips that displayed an illicit activation of cell separation. We also show that Cdc28 phosphorylation of Mob2 is essential for the maintenance of polarisome components at hyphal tips but not at bud tips during yeast growth. Thus we have found a novel signaling pathway by which Cdc28 controls Cbk1 through the regulatory phosphorylation of Mob2, which is crucial for normal hyphal development.
Collapse
|
32
|
Orthologues of the anaphase-promoting complex/cyclosome coactivators Cdc20p and Cdh1p are important for mitotic progression and morphogenesis in Candida albicans. EUKARYOTIC CELL 2011; 10:696-709. [PMID: 21398510 DOI: 10.1128/ec.00263-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The conserved anaphase-promoting complex/cyclosome (APC/C) system mediates protein degradation during mitotic progression. Conserved coactivators Cdc20p and Cdh1p regulate the APC/C during early to late mitosis and G(1) phase. Candida albicans is an important fungal pathogen of humans, and it forms highly polarized cells when mitosis is blocked through depletion of the polo-like kinase Cdc5p or other treatments. However, the mechanisms governing mitotic progression and associated polarized growth in the pathogen are poorly understood. In order to gain insights into these processes, we characterized C. albicans orthologues of Cdc20p and Cdh1p. Cdc20p-depleted cells were blocked in early or late mitosis with elevated levels of Cdc5p and the mitotic cyclin Clb2p, suggesting that Cdc20p is essential and has some conserved functions during mitosis. However, the yeast cells formed highly polarized buds in contrast to the large doublets of S. cerevisiae cdc20 mutants, implying a distinct role in morphogenesis. In comparison, cdh1Δ/cdh1Δ cells were viable but showed enrichment of Clb2p and Cdc5p, suggesting that Cdh1p may influence mitotic exit. The cdh1Δ/cdh1Δ phenotype was pleiotropic, consisting of normal or enlarged yeast, pseudohyphae, and some elongated buds, whereas S. cerevisiae cdh1Δ yeast cells were reduced in size. Thus, C. albicans Cdh1p may have some distinct functions. Finally, absence of Cdh1p or Cdc20p had a minor or no effect on hyphal development, respectively. Overall, the results suggest that Cdc20p and Cdh1p may be APC/C activators that are important for mitosis but also morphogenesis in C. albicans. Their novel features imply additional variations in function and underscore rewiring in the emerging mitotic regulatory networks of the pathogen.
Collapse
|
33
|
Mitotic exit control of the Saccharomyces cerevisiae Ndr/LATS kinase Cbk1 regulates daughter cell separation after cytokinesis. Mol Cell Biol 2010; 31:721-35. [PMID: 21135117 DOI: 10.1128/mcb.00403-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Saccharomyces cerevisiae cell division ends with destruction of a septum deposited during cytokinesis; this must occur only after the structure's construction is complete. Genes involved in septum destruction are induced by the transcription factor Ace2, which is activated by the kinase Cbk1, an Ndr/LATS-related protein that functions in a system related to metazoan hippo pathways. Phosphorylation of a conserved hydrophobic motif (HM) site regulates Cbk1; at peak levels in late mitosis we found that approximately 3% of Cbk1 carries this modification. HM site phosphorylation prior to mitotic exit occurs in response to activation of the FEAR (Cdc fourteen early anaphase release) pathway. However, HM site phosphorylation is not sufficient for Cbk1 to act on Ace2: the kinase is also negatively regulated prior to cytokinesis, likely by cyclin-dependent kinase (CDK) phosphorylation. Cbk1 cannot phosphorylate Ace2 until after mitotic exit network (MEN)-initiated release of the phosphatase Cdc14. Treatment of Cbk1 with Cdc14 in vitro does not increase its intrinsic enzymatic activity, but Cdc14 is required for Cbk1 function in vivo. Thus, we propose that Cdc14 coordinates cell separation with mitotic exit via FEAR-initiated phosphorylation of the Cbk1 HM site and MEN-activated reversal of mitotic CDK phosphorylations that block both Cbk1 and Ace2 function.
Collapse
|
34
|
Papadopoulou K, Chen JS, Mead E, Feoktistova A, Petit C, Agarwal M, Jamal M, Malik A, Spanos A, Sedgwick SG, Karagiannis J, Balasubramanian MK, Gould KL, McInerny CJ. Regulation of cell cycle-specific gene expression in fission yeast by the Cdc14p-like phosphatase Clp1p. J Cell Sci 2010; 123:4374-81. [PMID: 21098641 DOI: 10.1242/jcs.073056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Regulated gene expression makes an important contribution to cell cycle control mechanisms. In fission yeast, a group of genes is coordinately expressed during a late stage of the cell cycle (M phase and cytokinesis) that is controlled by common cis-acting promoter motifs named pombe cell cycle boxes (PCBs), which are bound by a trans-acting transcription factor complex, PCB binding factor (PBF). PBF contains at least three transcription factors, a MADS box protein Mbx1p and two forkhead transcription factors, Sep1p and Fkh2p. Here we show that the fission yeast Cdc14p-like phosphatase Clp1p (Flp1p) controls M-G1 specific gene expression through PBF. Clp1p binds in vivo both to Mbx1p, a MADS box-like transcription factor, and to the promoters of genes transcribed at this cell cycle time. Because Clp1p dephosphorylates Mbx1p in vitro, and is required for Mbx1p cell cycle-specific dephosphorylation in vivo, our observations suggest that Clp1p controls cell cycle-specific gene expression through binding to and dephosphorylating Mbx1p.
Collapse
Affiliation(s)
- Kyriaki Papadopoulou
- Division of Molecular and Cellular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Correia I, Alonso-Monge R, Pla J. MAPK cell-cycle regulation in Saccharomyces cerevisiae and Candida albicans. Future Microbiol 2010; 5:1125-41. [DOI: 10.2217/fmb.10.72] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cell cycle is the sequential set of events that living cells undergo in order to duplicate. This process must be tightly regulated as alterations may lead to diseases such as cancer. The molecular events that control the cell cycle are directional and involve regulatory molecules such as cyclins and cyclin-dependent kinases (CDKs). The budding yeast Saccharomyces cerevisiae has become a model to study this complex system since it shares several mechanisms with higher eukaryotes. Signal transduction pathways are biochemical mechanisms that sense environmental changes and there is recent evidence that they control the progression through the cell cycle in response to several stimuli. In response to pheromone, the budding yeast arrests the cell cycle in the G1 phase at the START stage. Activation of the pheromone response pathway leads to the phosphorylation of Far1, which inhibits the function of complexes formed by G1 cyclins (Cln1 and Cln2) and the CDK (Cdc28), blocking the transition to the S phase. This response prepares the cells to fuse cytoplasms and nuclei to generate a diploid cell. Activation of the Hog1 MAP kinase in response to osmotic stress or arsenite leads to the transient arrest of the cell cycle in G1 phase, which is mediated by direct phosphorylation of the CDK inhibitor, Sic1, and by downregulation of cyclin expression. Osmotic stress also induces a delay in G2 phase by direct phosphorylation of Hsl7 via Hog1, which results in the accumulation of Swe1. As a consequence, cell cycle arrest allows cells to survive upon stress. Finally, cell wall damage can induce cell cycle arrest at G2 via the cell integrity MAPK Slt2. By linking MAPK signal transduction pathways to the cell cycle machinery, a tight and precise control of the cell division takes place in response to environmental changes. Research into similar MAPK-mediated cell cycle regulation in the opportunistic pathogen Candida albicans may result in the development of new antifungal therapies.
Collapse
Affiliation(s)
- Inês Correia
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Rebeca Alonso-Monge
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | | |
Collapse
|
36
|
Treuner-Lange A. The phosphatomes of the multicellular myxobacteria Myxococcus xanthus and Sorangium cellulosum in comparison with other prokaryotic genomes. PLoS One 2010; 5:e11164. [PMID: 20567509 PMCID: PMC2887360 DOI: 10.1371/journal.pone.0011164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 05/04/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Analysis of the complete genomes from the multicellular myxobacteria Myxococcus xanthus and Sorangium cellulosum identified the highest number of eukaryotic-like protein kinases (ELKs) compared to all other genomes analyzed. High numbers of protein phosphatases (PPs) could therefore be anticipated, as reversible protein phosphorylation is a major regulation mechanism of fundamental biological processes. METHODOLOGY Here we report an intensive analysis of the phosphatomes of M. xanthus and S. cellulosum in which we constructed phylogenetic trees to position these sequences relative to PPs from other prokaryotic organisms. PRINCIPAL FINDINGS PREDOMINANT OBSERVATIONS WERE: (i) M. xanthus and S. cellulosum possess predominantly Ser/Thr PPs; (ii) S. cellulosum encodes the highest number of PP2c-type phosphatases so far reported for a prokaryotic organism; (iii) in contrast to M. xanthus only S. cellulosum encodes high numbers of SpoIIE-like PPs; (iv) there is a significant lack of synteny among M. xanthus and S. cellulosum, and (v) the degree of co-organization between kinase and phosphatase genes is extremely low in these myxobacterial genomes. CONCLUSIONS We conclude that there has been a greater expansion of ELKs than PPs in multicellular myxobacteria.
Collapse
Affiliation(s)
- Anke Treuner-Lange
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität, Giessen, Germany.
| |
Collapse
|
37
|
Abstract
AbstractSeptins are a conserved family of GTP-binding proteins found in living organisms ranging from yeasts to mammals. They are able to polymerize and form hetero-oligomers that assemble into higher-order structures whose detailed molecular architecture has recently been described in different organisms. In Saccharomyces cerevisiae, septins exert numerous functions throughout the cell cycle, serving as scaffolds for many different proteins or as diffusion barriers at the bud neck. In other fungi, septins are required for the proper completion of diverse functions such as polarized growth or pathogenesis. Recent results from several fungi have revealed important differences in septin organization and regulation as compared with S. cerevisiae, especially during Candida albicans hyphal growth and in Ashbya gossypii. Here we focus on these recent findings, their relevance in the biology of these eukaryotes and in consequence the “renaissance” of the study of septin structures in cells showing a different kind of morphological behaviour.
Collapse
|
38
|
Hyphal chain formation in Candida albicans: Cdc28-Hgc1 phosphorylation of Efg1 represses cell separation genes. Mol Cell Biol 2009; 29:4406-16. [PMID: 19528234 DOI: 10.1128/mcb.01502-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cell chain formation is a characteristic of filamentous growth in fungi. How it is regulated developmentally in multimorphic fungi is not known. In Candida albicans, degradation of septa during yeast growth is accomplished by enzymes encoded by Ace2 activated genes expressed in G(1). We found that phosphorylation of a conserved developmental regulator, Efg1, by the cyclin-dependent kinase Cdc28-Hgc1 (hypha-specific G(1) cyclin) downregulates Ace2 target genes during hyphal growth in G(1). A strain containing a threonine-to-alanine mutation at a conserved Cdc28 phosphorylation site of Efg1 displays a loss of hypha-specific repression of these genes and impaired cell chain formation, mimicking the hgc1 deletion, whereas a strain containing the threonine to aspartic acid mutation leads to a downregulation of these genes and cell chain formation during yeast growth. Furthermore, the phosphomimic mutation can suppress cell separation defects of hgc1. Efg1 also displays preferential association with Ace2 target gene promoters during hyphal growth. We show that convergent regulation of Ace2 and Efg1 defines the transcriptional program of cell chain formation.
Collapse
|
39
|
González-Novo A, Labrador L, Pablo-Hernando ME, Correa-Bordes J, Sánchez M, Jiménez J, Vázquez de Aldana CR. Dbf2 is essential for cytokinesis and correct mitotic spindle formation in Candida albicans. Mol Microbiol 2009; 72:1364-78. [PMID: 19460099 DOI: 10.1111/j.1365-2958.2009.06729.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have characterized the DBF2 gene, encoding a protein kinase of the NDR family in Candida albicans, and demonstrate that this gene is essential for cell viability. Conditional mutants were constructed by using the MET3 promoter to analyse the phenotype of cells lacking this kinase. The absence of Dbf2 resulted in cells arrested as large-budded pairs that failed to contract the actomyosin ring, a function similar to that described for its Saccharomyces cerevisiae orthologue. In addition to its role in cytokinesis, Dbf2 regulates mitotic spindle organization and nuclear segregation as Dbf2-depleted cells have abnormal microtubules and severe defects in nuclear migration to the daughter cell, which results in a cell cycle block during mitosis. Taken together, these results imply that Dbf2 performs several functions during exit from mitosis and cytokinesis. Consistent with a role in spindle organization, the protein localizes to the mitotic spindle during anaphase, and it interacts physically with tubulin, as indicated by immunoprecipitation experiments. Finally, DBF2 depletion also resulted in impaired true hyphal growth.
Collapse
Affiliation(s)
- Alberto González-Novo
- Dpto. Microbiología y Genética, Instituto de Microbiología Bioquímica, Universidad de Salamanca/CSIC, Avda. Doctores de la Reina s/n. 37007 Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
Identification of the putative protein phosphatase gene PTC1 as a virulence-related gene using a silkworm model of Candida albicans infection. EUKARYOTIC CELL 2008; 7:1640-8. [PMID: 18708562 DOI: 10.1128/ec.00129-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein phosphatases are critical for the regulation of many cellular processes. Null mutants of 21 putative protein phosphatases of Candida albicans were constructed by consecutive allele replacement using the URA3 and ARG4 marker genes. A simple silkworm model of C. albicans infection was used to screen the panel of mutants. Four null mutant (cmp1Delta, yvh1Delta, sit4Delta, and ptc1Delta) strains showed attenuated virulence in the silkworm model relative to that of control and parental strains. Three of the mutants, the cmp1Delta, yvh1Delta, and sit4Delta mutants, had previously been identified as affecting virulence in a conventional mouse model, indicating the validity of the silkworm model screen. Disruption of the putative protein phosphatase gene PTC1 of C. albicans, which has 52% identity to the Saccharomyces cerevisiae type 2C protein phosphatase PTC1, significantly reduced virulence in the silkworm model. The mutant was also avirulent in a mouse model of disseminated candidiasis. Reintroducing either of the C. albicans PTC1 alleles into the disruptant strain, using a cassette containing either allele under the control of a constitutive ACT1 promoter, restored virulence in both infection models. Characterization of ptc1Delta revealed other phenotypic traits, including reduced hyphal growth in vitro and in vivo, and reduced extracellular proteolytic activity. We conclude that PTC1 may contribute to pathogenicity in C. albicans.
Collapse
|
41
|
González-Novo A, Correa-Bordes J, Labrador L, Sánchez M, Vázquez de Aldana CR, Jiménez J. Sep7 is essential to modify septin ring dynamics and inhibit cell separation during Candida albicans hyphal growth. Mol Biol Cell 2008; 19:1509-18. [PMID: 18234840 DOI: 10.1091/mbc.e07-09-0876] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
When Candida albicans yeast cells receive the appropriate stimulus, they switch to hyphal growth, characterized by continuous apical elongation and the inhibition of cell separation. The molecular basis of this inhibition is poorly known, despite its crucial importance for hyphal development. In C. albicans, septins are important for hypha formation and virulence. Here, we used fluorescence recovery after photobleaching analysis to characterize the dynamics of septin rings during yeast and hyphal growth. On hyphal induction, septin rings are converted to a hyphal-specific state, characterized by the presence of a frozen core formed by Sep7/Shs1, Cdc3 and Cdc12, whereas Cdc10 is highly dynamic and oscillates between the ring and the cytoplasm. Conversion of septin rings to the hyphal-specific state inhibits the translocation of Cdc14 phosphatase, which controls cell separation, to the hyphal septum. Modification of septin ring dynamics during hyphal growth is dependent on Sep7 and the hyphal-specific cyclin Hgc1, which partially controls Sep7 phosphorylation status and protein levels. Our results reveal a link between the cell cycle machinery and septin cytoskeleton dynamics, which inhibits cell separation in the filaments and is essential for hyphal morphogenesis.
Collapse
Affiliation(s)
- Alberto González-Novo
- Departmento Microbiología y Genética, Instituto de Microbiología Bioquímica, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, 37007 Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Wang J, Yan Z, Shen SH, Whiteway M, Jiang L. Expression ofCaPTC7is developmentally regulated during serum-induced morphogenesis in the human fungal pathogen Candida albicans. Can J Microbiol 2007; 53:237-44. [PMID: 17496972 DOI: 10.1139/w06-125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type 2C protein phosphatases (PP2C) represent a diversified protein phosphatase family and play various roles in cells. We previously identified and characterized a novel PP2C phosphatase encoded by the CaPTC7 gene in the human fungal pathogen Candida albicans . The CaPtc7p has 365 amino acids with a PP2C core domain at the C terminus and an additional 116-residue N-terminal sequence containing a mitochondrion-targeting sequence. Here, we show that CaPtc7p is indeed localized in the mitochondrion, the only eukaryotic PP2C phosphatase that has been directly shown to reside in the mitochondrion, suggesting its potential role in the regulation of mitochondrial physiology. Furthermore, we show that the expression of CaPTC7 at both transcriptional and protein levels is developmentally regulated during the serum-induced morphogenesis of C. albicans cells. However, disruption of the two alleles of CaPTC7 does not affect cell viability or filamentous development in C. albicans.
Collapse
Affiliation(s)
- Jihong Wang
- Department of Molecular and Cellular Pharmacology, College of Pharmaceuticals and Biotechnology, Tianjin University, Tianjin 300072, China
| | | | | | | | | |
Collapse
|
43
|
Wang A, Lane S, Tian Z, Sharon A, Hazan I, Liu H. Temporal and spatial control of HGC1 expression results in Hgc1 localization to the apical cells of hyphae in Candida albicans. EUKARYOTIC CELL 2006; 6:253-61. [PMID: 17172437 PMCID: PMC1797949 DOI: 10.1128/ec.00380-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The human fungal pathogen Candida albicans can undergo a morphological transition from a unicellular yeast growth form to a multicellular hyphal growth form. During hyphal growth, cell division is asymmetric. Only the apical cell divides, whereas subapical cells remain in G(1), and cell surface growth is highly restricted to the tip of the apical cell. Hgc1, a hypha-specific, G(1) cyclin-like protein, is essential for hyphal development. Here, we report, using indirect immunofluorescence, that Hgc1 is preferentially localized to the dividing apical cells of hyphae. Hgc1 protein is rapidly degraded in a cell cycle-independent manner, and the protein turnover likely occurs in both the apical and the subapical cells of hyphae. In addition to rapid protein turnover, the HGC1 transcript is also dynamically regulated during cell cycle progression in hyphal growth. It is induced upon germ tube formation in early G(1); the transcript level is reduced during the G(1)/S transition and peaks again around the G(2)/M phase in the subsequent cell cycles. Transcription from the HGC1 promoter is essential for its apical cell localization, as Hgc1 no longer exhibits preferential apical localization when expressed under the MAL2 promoter. Using fluorescence in situ hybridization, the HGC1 transcript is detected only in the apical cells of hyphae, suggesting that HGC1 is transcribed in the apical cell. Therefore, the preferential localization of Hgc1 to the apical cells of hyphae results from the dynamic temporal and spatial control of HGC1 expression.
Collapse
Affiliation(s)
- Allen Wang
- Department of Biological Chemistry, University of California, Irvine, CA 92697-1700, USA
| | | | | | | | | | | |
Collapse
|
44
|
Mulhern SM, Logue ME, Butler G. Candida albicans transcription factor Ace2 regulates metabolism and is required for filamentation in hypoxic conditions. EUKARYOTIC CELL 2006; 5:2001-13. [PMID: 16998073 PMCID: PMC1694816 DOI: 10.1128/ec.00155-06] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Accepted: 09/13/2006] [Indexed: 11/20/2022]
Abstract
Ace2 transcription factor family genes are found in many fungal genomes and are required for regulation of expression of genes involved in cell separation. We used transcriptional profiling to identify the targets of Ace2 in Candida albicans, and we show that these include several cell wall components, such as glucanases and glycosylphosphatidylinositol-anchored proteins. Expression is downregulated in ace2 deletion mutants in both yeast and hyphal cells. In addition, deleting ace2 results in dramatic changes in expression of metabolic pathways. Expression of glycolytic enzymes is reduced, while expression of respiratory genes (including those involved in the tricarboxylic acid cycle, oxidative phosphorylation, and ATP synthesis) is increased. Similar changes occur in both yeast and hyphal cells. In contrast, genes required for acetyl-coenzyme A and lipid metabolism are upregulated in an ace2 deletion mutant grown predominantly as yeast cells but are downregulated in hyphae. These results suggest that in wild-type strains, Ace2 acts to increase glycolysis and reduce respiration. This is supported by the observation that deleting ace2 results in increased resistance to antimycin A, a drug that inhibits respiration. We also show that Ace2 is required for filamentation in response to low oxygen concentrations (hypoxia). We suggest that filamentation is induced in wild-type cells by reducing respiration (using low oxygen or respiratory drugs) and that mutants with increased respiratory activity fail to undergo filamentation under these conditions.
Collapse
Affiliation(s)
- Siobhan M Mulhern
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
45
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
46
|
Abstract
Candida albicans, an opportunistic human pathogen, displays three modes of growth: yeast, pseudohyphae and true hyphae, all of which differ both in morphology and in aspects of cell cycle progression. In particular, in hyphal cells, polarized growth becomes uncoupled from other cell cycle events. Yeast or pseudohyphae that undergo a cell cycle delay also exhibit polarized growth, independent of cell cycle progression. The Spitzenkörper, an organelle composed of vesicles associated with hyphal tips, directs continuous hyphal elongation in filamentous fungal species and also in C. albicans hyphae. A polarisome mediates cell cycle dependent growth in yeast and pseudohyphae. Regulation of morphogenesis and cell cycle progression is dependent upon specific cyclins, all of which affect morphogenesis and some of which function specifically in yeast or hyphal cells. Future work will probably focus on the cell cycle checkpoints involved in connecting morphogenesis to cell cycle progression.
Collapse
Affiliation(s)
- Judith Berman
- Department of Genetics, Cell Biology and Development, 6-160 Jackson Hall, 321 Church Street SE, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|