1
|
Perez-Moreno E, Ortega-Hernández V, Zavala VA, Gamboa J, Fernández W, Carvallo P. Suppression of breast cancer metastatic behavior by microRNAs targeting EMT transcription factors. A relevant participation of miR-196a-5p and miR-22-3p in ZEB1 expression. Breast Cancer Res Treat 2025:10.1007/s10549-025-07723-5. [PMID: 40382762 DOI: 10.1007/s10549-025-07723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 05/06/2025] [Indexed: 05/20/2025]
Abstract
PURPOSE Metastasis, the leading cause of cancer-associated deaths, is promoted by transcription factors SNAIL, SLUG, ZEB1 and TWIST through the activation of epithelial-mesenchymal transition (EMT). MicroRNAs can suppress EMT, emerging as candidate molecular biomarkers and novel therapeutic targets. Herein, we evaluated microRNAs downregulated in breast cancer (BC) tissues expressing EMT transcription factors, to find new potential regulators of EMT. METHODS Candidate microRNAs were selected from microarray data by their inversely correlated expression with SNAIL, SLUG, ZEB1 and TWIST, evaluated in BC tissues through immunohistochemistry. We selected eight microRNAs predicted in silico as probable modulators of SNAIL, SLUG, ZEB1 and TWIST, and validate their interaction through the 3'UTR region in luciferase reporter gene assays. MDA-MB-231 cells were transfected with selected microRNAs to perform migration, invasion and cell proliferation assays, and western blot was used to evaluate protein levels. RESULTS MiR-30a-5p, miR-1271-5p, miR-196a-5p, miR-202-3p, miR-210-3p, miR-22-3p and miR-331-3p decreased luciferase activity through SNAIL, SLUG, ZEB1 and/or TWIST 3'UTR. These microRNAs, including miR-34b-3p, decreased migration, invasion and cell proliferation in MDA-MB-231 cells. MiR-30a-5p, miR-202-3p and miR-22-3p decreased vimentin expression, whereas miR-196a-5p and miR-22-3p decreased endogenous ZEB1 levels. MiR-196a-5p, miR-202-3p and miR-30a-5p also decreased CCR7 expression, a chemokine receptor involved in lymph node metastasis. CONCLUSION microRNAs selected in this work can regulate gene expression trough 3'UTR region of EMT-transcription factors. In BC cells, miR-196a-5p and miR-22-3p decrease ZEB1 levels, being novel modulators of EMT. Also, the eight evaluated microRNAs, reduced the metastatic hallmarks in BC cells.
Collapse
Affiliation(s)
- Elisa Perez-Moreno
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Victoria Ortega-Hernández
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina A Zavala
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Gamboa
- Unidad de Patología Mamaria, Hospital Clínico San Borja Arriarán, Santiago, Chile
| | - Wanda Fernández
- Unidad de Anatomía Patológica, Hospital Clínico San Borja Arriarán, Santiago, Chile
| | - Pilar Carvallo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Qiu J, Zhang X, Shi Q, Yang Y, Zhou R, Xiang J, Gu J, Xu J, Hong J, Shan K. METTL3-m 6A-mediated TGF-β signaling promotes Fuchs endothelial corneal dystrophy via regulating corneal endothelial-to-mesenchymal transition. Cell Death Discov 2025; 11:104. [PMID: 40089501 PMCID: PMC11910554 DOI: 10.1038/s41420-025-02384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is the leading cause of vision-threatening corneal endothelial dystrophy without pharmacologic treatments. Corneal endothelial-mesenchymal transition (cEndMT), a specific cellular phenotypic transition, is implicated in the vicious cycle in FECD pathogenesis. Here, we investigated the reversible epigenetic regulation of N6-methyladenosine (m6A) during cEndMT process and FECD progression. The m6A writer methyltransferase-like 3 (METTL3) was significantly upregulated in FECD models and induced transcriptomic hypermethylation, including TGFB2 mRNA. METTL3 promoted the translation of hypermethylated TGFB2 mRNA in an YTHDF1-dependent manner, resulting in upregulation of TGF-β2 protein and activation of TGF-β signaling. Intervention of METTL3 expression or catalytic activity could suppress TGF-β signaling activation, subsequently ameliorate cEndMT process and FECD progression. This study reveals unique METTL3-m6A-mediated mechanism in regulating cEndMT process, suggesting the prevailing role of m6A in cellular phenotypic transition. Targeting METTL3/m6A is a promising strategy for FECD treatment. Schematic representation of METTL3-m6A-TGF-β signaling regulating FCED. In the context of environmental stress, METTL3 is upregulated in corneal endothelium, which in turn leads to increased m6A level of TGFB2 mRNA, upregulation of TGF-β2 protein via YTHDF1 mechanism, and activation of TGF-β signaling pathway. The regulation of these mechanisms results in the progressive irreversible transition of corneal endothelial cells from their specific phenotype to a mesenchymal phenotype, which accelerates the progression of FECD.
Collapse
Affiliation(s)
- Jini Qiu
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
- NHC Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, 200031, China
| | - Xueling Zhang
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
- NHC Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, 200031, China
| | - Qian Shi
- Department of Ophthalmology, Yixing Eye Hospital, Wuxi School of Medicine, Jiangnan University, Yixing, 214200, Jiangsu, China
| | - Yujing Yang
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
- NHC Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, 200031, China
| | - Rongmei Zhou
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
- NHC Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, 200031, China
| | - Jun Xiang
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
- NHC Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, 200031, China
| | - Jiayu Gu
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
- NHC Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, 200031, China
| | - Jianjiang Xu
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China
- NHC Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, 200031, China
| | - Jiaxu Hong
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China.
- NHC Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, 200031, China.
- Shanghai Key Laboratory of Rare Disease Gene Editing and Cell Therapy, Shanghai Engineering Research Center of Synthetic Immunology, Shanghai, 200032, China.
- Department of Ophthalmology, Children's Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, 201102, China.
| | - Kun Shan
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China.
- NHC Key laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, 200031, China.
| |
Collapse
|
3
|
Amancherla K, Taravella Oill AM, Bledsoe X, Williams AL, Chow N, Zhao S, Sheng Q, Bearl DW, Hoffman RD, Menachem JN, Siddiqi HK, Brinkley DM, Mee ED, Hadad N, Agrawal V, Schmeckpepper J, Rali AS, Tsai S, Farber-Eger EH, Wells QS, Freedman JE, Tucker NR, Schlendorf KH, Gamazon ER, Shah RV, Banovich N. Dynamic responses to rejection in the transplanted human heart revealed through spatial transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640852. [PMID: 40093136 PMCID: PMC11908199 DOI: 10.1101/2025.02.28.640852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Allograft rejection following solid-organ transplantation is a major cause of graft dysfunction and mortality. Current approaches to diagnosis rely on histology, which exhibits wide diagnostic variability and lacks access to molecular phenotypes that may stratify therapeutic response. Here, we leverage image-based spatial transcriptomics at sub-cellular resolution in longitudinal human cardiac biopsies to characterize transcriptional heterogeneity in 62 adult and pediatric heart transplant (HT) recipients during and following histologically-diagnosed rejection. Across 28 cell types, we identified significant differences in abundance in CD4 + and CD8 + T cells, fibroblasts, and endothelial cells across different biological classes of rejection (cellular, mixed, antibody-mediated). We observed a broad overlap in cellular transcriptional states across histologic rejection severity and biological class and significant heterogeneity within rejection severity grades that would qualify for immunomodulatory treatment. Individuals who had resolved rejection after therapy had a distinct transcriptomic profile relative to those with persistent rejection, including 216 genes across 6 cell types along pathways of inflammation, IL6-JAK-STAT3 signaling, IFNα/IFNγ response, and TNFα signaling. Spatial transcriptomics also identified genes linked to long-term prognostic outcomes post-HT. These results underscore importance of subtyping immunologic states during rejection to stratify immune-cardiac interactions following HT that are therapeutically relevant to short- and long-term rejection-related outcomes.
Collapse
|
4
|
Nakagawa T, Honda T, Yuasa T, Nishiuchi G, Sato M, Tokunaga A, Nakahara M, Tourtas T, Schlötzer-Schrehardt U, Kruse F, Padmanabhan P, Chatterjee A, Sathe G, Ghose V, Janakiraman N, Blake DJ, Koizumi N, Elchuri S, Okumura N. The TCF4 Gene Regulates Apoptosis of Corneal Endothelial Cells in Fuchs Endothelial Corneal Dystrophy. Invest Ophthalmol Vis Sci 2025; 66:16. [PMID: 40048186 PMCID: PMC11895853 DOI: 10.1167/iovs.66.3.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Purpose Fuchs endothelial corneal dystrophy (FECD) is a progressive corneal disorder characterized by excessive extracellular matrix (ECM) accumulation and corneal endothelial cell death. CTG trinucleotide repeat expansion in the transcription factor 4 (TCF4) gene represents the most significant genetic risk factor. This study aimed to elucidate the role of TCF4 in FECD pathogenesis through comprehensive proteomic analysis. Methods Corneal endothelial cells isolated from patients with FECD harboring TCF4 trinucleotide repeat expansion were immortalized to establish an FECD cell model (iFECD). CRISPR/Cas9-mediated genome editing was employed to generate TCF4-knockout iFECD cells. Whole-cell proteome analysis was performed using liquid chromatography-mass spectrometry, followed by pathway enrichment analysis of differentially expressed proteins (DEPs). The effects of TCF4 deletion on TGF-β-mediated protein aggregation and cell death were evaluated using Western blot analysis, flow cytometry, and aggresome detection assays. Results Proteomic analysis identified 88 DEPs among 6510 detected proteins. Pathway analysis revealed significant enrichment in ECM-associated pathways, oxidative stress responses, and cellular motility. TCF4 deletion attenuated TGF-β-induced cell death in iFECD cells. Concordantly, Western blot analysis demonstrated that TCF4 deletion suppressed TGF-β2-mediated cleavage of caspase-3 and poly (ADP-ribose) polymerase. Flow cytometric analysis of Annexin V-positive cells confirmed reduced apoptosis in TCF4-deleted cells following TGF-β2 treatment. Additionally, aggresome detection assays revealed that TCF4 deletion diminished TGF-β2-induced protein aggregation. Conclusions This study demonstrates a crucial role for TCF4 in FECD pathogenesis, particularly in ECM regulation and protein aggregation-induced cell death.
Collapse
Affiliation(s)
- Tatsuya Nakagawa
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Tetsuro Honda
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Taichi Yuasa
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Go Nishiuchi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Masakazu Sato
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Ayumi Tokunaga
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Makiko Nakahara
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Theofilos Tourtas
- Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Friedrich Kruse
- Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Prema Padmanabhan
- Department of Cornea and Refractive Surgery, Sankara Nethralaya, Chennai, India
| | - Amit Chatterjee
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya Campus, Chennai, India
| | | | - Vivek Ghose
- Institute of Bioinformatics, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Narayanan Janakiraman
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya Campus, Chennai, India
| | - Derek J. Blake
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Noriko Koizumi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Sailaja Elchuri
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya Campus, Chennai, India
| | - Naoki Okumura
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
5
|
Tao T, Zhang Y, Guan C, Wang S, Liu X, Wang M. Ubiquitin Ligase TRIM22 Inhibits Ovarian Cancer Malignancy via TCF4 Degradation. Mol Cancer Res 2024; 22:943-956. [PMID: 38842601 DOI: 10.1158/1541-7786.mcr-23-0962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/27/2023] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Ovarian cancer is one of the most common malignancies in women. Tripartite motif-containing protein 22 (TRIM22) plays an important role in the initiation and progression of malignant tumors. Similarly, the transcription factor 4 (TCF4) is an essential factor involved in the initiation and progression of many tumors. However, it is still unclear whether TRIM22 can affect TCF4 in ovarian cancer. Therefore, this study aims to investigate the mechanism related to TRIM22 and TCF4 in ovarian cancer. TRIM22 protein and mRNA levels were analyzed in samples from clinical and cell lines. The effects of TRIM22 knockdown and overexpression on cell proliferation, colony formation, migration, invasion, and related biomarkers were evaluated. In addition, the role of ubiquitination-mediated degradation of TCF4 was investigated by qRT-PCR and Western blotting. The association between TRIM22 and TCF4 was evaluated by Western blotting, coimmunoprecipitation, proliferation, colony formation, invasion, migration, and related biomarkers. The results showed that the expression of TRIM22 was minimal in ovarian cancer tissues. Furthermore, upregulation of TRIM22 significantly inhibited ovarian cancer cell proliferation, colony formation, migration, and invasion. In addition, TRIM22 was observed to regulate the degradation of TCF4 through the ubiquitination pathway. TCF4 can reverse the effects of TRIM22 on proliferation, colony formation, migration, and invasion in ovarian cancer cells. TRIM22-mediated ubiquitination of TCF4 at K48 is facilitated by the RING domain. Implications: In conclusion, ubiquitination of TCF4 protein in ovarian cancer is regulated by TRIM22, which has the potential to limit the proliferation, migration, and invasion of ovarian cancer.
Collapse
Affiliation(s)
- Tao Tao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongqi Zhang
- Department of Gynecology, The Red Cross Center Hospital of Harbin, Harbin, China
| | | | - Shuxiang Wang
- Department of Gynecology, The Red Cross Center Hospital of Harbin, Harbin, China
| | - Xiaoli Liu
- Department of Gynecology, The Red Cross Center Hospital of Harbin, Harbin, China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Cao Y. Lack of basic rationale in epithelial-mesenchymal transition and its related concepts. Cell Biosci 2024; 14:104. [PMID: 39164745 PMCID: PMC11334496 DOI: 10.1186/s13578-024-01282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is defined as a cellular process during which epithelial cells acquire mesenchymal phenotypes and behavior following the downregulation of epithelial features. EMT and its reversed process, the mesenchymal-epithelial transition (MET), and the special form of EMT, the endothelial-mesenchymal transition (EndMT), have been considered as mainstream concepts and general rules driving developmental and pathological processes, particularly cancer. However, discrepancies and disputes over EMT and EMT research have also grown over time. EMT is defined as transition between two cellular states, but it is unanimously agreed by EMT researchers that (1) neither the epithelial and mesenchymal states nor their regulatory networks have been clearly defined, (2) no EMT markers or factors can represent universally epithelial and mesenchymal states, and thus (3) EMT cannot be assessed on the basis of one or a few EMT markers. In contrast to definition and proposed roles of EMT, loss of epithelial feature does not cause mesenchymal phenotype, and EMT does not contribute to embryonic mesenchyme and neural crest formation, the key developmental events from which the EMT concept was derived. EMT and MET, represented by change in cell shapes or adhesiveness, or symbolized by EMT factors, are biased interpretation of the overall change in cellular property and regulatory networks during development and cancer progression. Moreover, EMT and MET are consequences rather than driving factors of developmental and pathological processes. The true meaning of EMT in some developmental and pathological processes, such as fibrosis, needs re-evaluation. EMT is believed to endow malignant features, such as migration, stemness, etc., to cancer cells. However, the core property of cancer (tumorigenic) cells is neural stemness, and the core EMT factors are components of the regulatory networks of neural stemness. Thus, EMT in cancer progression is misattribution of the roles of neural stemness to the unknown mesenchymal state. Similarly, neural crest EMT is misattribution of intrinsic property of neural crest cells to the unknown mesenchymal state. Lack of basic rationale in EMT and related concepts urges re-evaluation of their significance as general rules for understanding developmental and pathological processes, and re-evaluation of their significance in scientific research.
Collapse
Affiliation(s)
- Ying Cao
- The MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing, 210061, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen, China.
| |
Collapse
|
7
|
Yan J, Mehta S, Patel K, Dhupar N, Little N, Ong Tone S. Transcription factor 4 promotes increased corneal endothelial cellular migration by altering microtubules in Fuchs endothelial corneal dystrophy. Sci Rep 2024; 14:10276. [PMID: 38704483 PMCID: PMC11069521 DOI: 10.1038/s41598-024-61170-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a complex corneal disease characterized by the progressive decline and morphological changes of corneal endothelial cells (CECs) that leads to corneal edema and vision loss. The most common mutation in FECD is an intronic CTG repeat expansion in transcription factor 4 (TCF4) that leads to its altered expression. Corneal endothelial wound healing occurs primarily through cell enlargement and migration, and FECD CECs have been shown to display increased migration speeds. In this study, we aim to determine whether TCF4 can promote cellular migration in FECD CECs. We generated stable CEC lines derived from FECD patients that overexpressed different TCF4 isoforms and investigated epithelial-to-mesenchymal (EMT) expression, morphological analysis and cellular migration speeds. We found that full length TCF4-B isoform overexpression promotes cellular migration in FECD CECs in an EMT-independent manner. RNA-sequencing identified several pathways including the negative regulation of microtubules, with TUBB4A (tubulin beta 4A class IVa) as the top upregulated gene. TUBB4A expression was increased in FECD ex vivo specimens, and there was altered expression of cytoskeleton proteins, tubulin and actin, compared to normal healthy donor ex vivo specimens. Additionally, there was increased acetylation and detyrosination of microtubules in FECD supporting that microtubule stability is altered in FECD and could promote cellular migration. Future studies could be aimed at investigating if targeting the cytoskeleton and microtubules would have therapeutic potential for FECD by promoting cellular migration and regeneration.
Collapse
Affiliation(s)
- Judy Yan
- Sunnybrook Health Sciences Center and Sunnybrook Research Institute, 2075 Bayview Avenue, M-wing, 1st Floor, Toronto, ON, M4N 3M5, Canada
| | - Shanti Mehta
- Sunnybrook Health Sciences Center and Sunnybrook Research Institute, 2075 Bayview Avenue, M-wing, 1st Floor, Toronto, ON, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Keya Patel
- Sunnybrook Health Sciences Center and Sunnybrook Research Institute, 2075 Bayview Avenue, M-wing, 1st Floor, Toronto, ON, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Narisa Dhupar
- Sunnybrook Health Sciences Center and Sunnybrook Research Institute, 2075 Bayview Avenue, M-wing, 1st Floor, Toronto, ON, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Ness Little
- Sunnybrook Health Sciences Center and Sunnybrook Research Institute, 2075 Bayview Avenue, M-wing, 1st Floor, Toronto, ON, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Stephan Ong Tone
- Sunnybrook Health Sciences Center and Sunnybrook Research Institute, 2075 Bayview Avenue, M-wing, 1st Floor, Toronto, ON, M4N 3M5, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada.
| |
Collapse
|
8
|
Khan AQ, Hasan A, Mir SS, Rashid K, Uddin S, Steinhoff M. Exploiting transcription factors to target EMT and cancer stem cells for tumor modulation and therapy. Semin Cancer Biol 2024; 100:1-16. [PMID: 38503384 DOI: 10.1016/j.semcancer.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Transcription factors (TFs) are essential in controlling gene regulatory networks that determine cellular fate during embryogenesis and tumor development. TFs are the major players in promoting cancer stemness by regulating the function of cancer stem cells (CSCs). Understanding how TFs interact with their downstream targets for determining cell fate during embryogenesis and tumor development is a critical area of research. CSCs are increasingly recognized for their significance in tumorigenesis and patient prognosis, as they play a significant role in cancer initiation, progression, metastasis, and treatment resistance. However, traditional therapies have limited effectiveness in eliminating this subset of cells, allowing CSCs to persist and potentially form secondary tumors. Recent studies have revealed that cancer cells and tumors with CSC-like features also exhibit genes related to the epithelial-to-mesenchymal transition (EMT). EMT-associated transcription factors (EMT-TFs) like TWIST and Snail/Slug can upregulate EMT-related genes and reprogram cancer cells into a stem-like phenotype. Importantly, the regulation of EMT-TFs, particularly through post-translational modifications (PTMs), plays a significant role in cancer metastasis and the acquisition of stem cell-like features. PTMs, including phosphorylation, ubiquitination, and SUMOylation, can alter the stability, localization, and activity of EMT-TFs, thereby modulating their ability to drive EMT and stemness properties in cancer cells. Although targeting EMT-TFs holds potential in tackling CSCs, current pharmacological approaches to do so directly are unavailable. Therefore, this review aims to explore the role of EMT- and CSC-TFs, their connection and impact in cellular development and cancer, emphasizing the potential of TF networks as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Khalid Rashid
- Department of Urology,Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, IL 60611, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India; Laboratory Animal Research Center, Qatar University, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
9
|
Pozniak J, Pedri D, Landeloos E, Van Herck Y, Antoranz A, Vanwynsberghe L, Nowosad A, Roda N, Makhzami S, Bervoets G, Maciel LF, Pulido-Vicuña CA, Pollaris L, Seurinck R, Zhao F, Flem-Karlsen K, Damsky W, Chen L, Karagianni D, Cinque S, Kint S, Vandereyken K, Rombaut B, Voet T, Vernaillen F, Annaert W, Lambrechts D, Boecxstaens V, Saeys Y, van den Oord J, Bosisio F, Karras P, Shain AH, Bosenberg M, Leucci E, Paschen A, Rambow F, Bechter O, Marine JC. A TCF4-dependent gene regulatory network confers resistance to immunotherapy in melanoma. Cell 2024; 187:166-183.e25. [PMID: 38181739 DOI: 10.1016/j.cell.2023.11.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 08/23/2023] [Accepted: 11/29/2023] [Indexed: 01/07/2024]
Abstract
To better understand intrinsic resistance to immune checkpoint blockade (ICB), we established a comprehensive view of the cellular architecture of the treatment-naive melanoma ecosystem and studied its evolution under ICB. Using single-cell, spatial multi-omics, we showed that the tumor microenvironment promotes the emergence of a complex melanoma transcriptomic landscape. Melanoma cells harboring a mesenchymal-like (MES) state, a population known to confer resistance to targeted therapy, were significantly enriched in early on-treatment biopsies from non-responders to ICB. TCF4 serves as the hub of this landscape by being a master regulator of the MES signature and a suppressor of the melanocytic and antigen presentation transcriptional programs. Targeting TCF4 genetically or pharmacologically, using a bromodomain inhibitor, increased immunogenicity and sensitivity of MES cells to ICB and targeted therapy. We thereby uncovered a TCF4-dependent regulatory network that orchestrates multiple transcriptional programs and contributes to resistance to both targeted therapy and ICB in melanoma.
Collapse
Affiliation(s)
- Joanna Pozniak
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Dennis Pedri
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium; Laboratory for Membrane Trafficking, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Ewout Landeloos
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium; Department of General Medical Oncology, UZ Leuven, Leuven, Belgium
| | | | - Asier Antoranz
- Laboratory of Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Lukas Vanwynsberghe
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ada Nowosad
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Niccolò Roda
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Samira Makhzami
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Greet Bervoets
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Lucas Ferreira Maciel
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Carlos Ariel Pulido-Vicuña
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Lotte Pollaris
- Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Ruth Seurinck
- Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Fang Zhao
- Laboratory of Molecular Tumor Immunology, Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany
| | - Karine Flem-Karlsen
- Department of Dermatology, Yale University, 15 York Street, New Haven, CT 05610, USA
| | - William Damsky
- Departments of Dermatology and Pathology, Yale University, 15 York Street, New Haven, CT 05610, USA
| | - Limin Chen
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Despoina Karagianni
- Immune Regulation and Tumor Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, UCL Cancer Institute, London WC1E 6DD, UK
| | - Sonia Cinque
- Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sam Kint
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
| | - Katy Vandereyken
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
| | - Benjamin Rombaut
- Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Thierry Voet
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
| | | | - Wim Annaert
- Laboratory for Membrane Trafficking, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB, Leuven, Belgium; Center for Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Yvan Saeys
- Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Joost van den Oord
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, UZ Leuven, Leuven, Belgium
| | - Francesca Bosisio
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, UZ Leuven, Leuven, Belgium
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - A Hunter Shain
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Marcus Bosenberg
- Departments of Dermatology, Pathology and Immunobiology, Yale University, New Haven, CT 05610, USA
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Annette Paschen
- Laboratory of Molecular Tumor Immunology, Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany
| | - Florian Rambow
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium; Department of Applied Computational Cancer Research, Institute for AI in Medicine (IKIM), University Hospital Essen, Essen, Germany; University Duisburg-Essen, Essen, Germany.
| | - Oliver Bechter
- Department of General Medical Oncology, UZ Leuven, Leuven, Belgium.
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
10
|
Haerinck J, Goossens S, Berx G. The epithelial-mesenchymal plasticity landscape: principles of design and mechanisms of regulation. Nat Rev Genet 2023; 24:590-609. [PMID: 37169858 DOI: 10.1038/s41576-023-00601-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/13/2023]
Abstract
Epithelial-mesenchymal plasticity (EMP) enables cells to interconvert between several states across the epithelial-mesenchymal landscape, thereby acquiring hybrid epithelial/mesenchymal phenotypic features. This plasticity is crucial for embryonic development and wound healing, but also underlies the acquisition of several malignant traits during cancer progression. Recent research using systems biology and single-cell profiling methods has provided novel insights into the main forces that shape EMP, which include the microenvironment, lineage specification and cell identity, and the genome. Additionally, key roles have emerged for hysteresis (cell memory) and cellular noise, which can drive stochastic transitions between cell states. Here, we review these forces and the distinct but interwoven layers of regulatory control that stabilize EMP states or facilitate epithelial-mesenchymal transitions (EMTs) and discuss the therapeutic potential of manipulating the EMP landscape.
Collapse
Affiliation(s)
- Jef Haerinck
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Unit for Translational Research in Oncology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
11
|
Park H. Unraveling the Molecular Puzzle: Exploring Gene Networks across Diverse EMT Status of Cell Lines. Int J Mol Sci 2023; 24:12784. [PMID: 37628965 PMCID: PMC10454379 DOI: 10.3390/ijms241612784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Understanding complex disease mechanisms requires a comprehensive understanding of the gene regulatory networks, as complex diseases are often characterized by the dysregulation and dysfunction of molecular networks, rather than abnormalities in single genes. Specifically, the exploration of cell line-specific gene networks can provide essential clues for precision medicine, as this methodology can uncover molecular interplays specific to particular cell line statuses, such as drug sensitivity, cancer progression, etc. In this article, we provide a comprehensive review of computational strategies for cell line-specific gene network analysis: (1) cell line-specific gene regulatory network estimation and analysis of gene networks under varying epithelial-mesenchymal transition (EMT) statuses of cell lines; and (2) an explainable artificial intelligence approach for interpreting the estimated massive multiple EMT-status-specific gene networks. The objective of this review is to help readers grasp the concept of computational network biology, which holds significant implications for precision medicine by offering crucial clues.
Collapse
Affiliation(s)
- Heewon Park
- School of Mathematics, Statistics and Data Science, Sungshin Women's University, Seoul 02844, Republic of Korea
| |
Collapse
|
12
|
Guo M, Niu Y, Xie M, Liu X, Li X. Notch signaling, hypoxia, and cancer. Front Oncol 2023; 13:1078768. [PMID: 36798826 PMCID: PMC9927648 DOI: 10.3389/fonc.2023.1078768] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Notch signaling is involved in cell fate determination and deregulated in human solid tumors. Hypoxia is an important feature in many solid tumors, which activates hypoxia-induced factors (HIFs) and their downstream targets to promote tumorigenesis and cancer development. Recently, HIFs have been shown to trigger the Notch signaling pathway in a variety of organisms and tissues. In this review, we focus on the pro- and anti-tumorigenic functions of Notch signaling and discuss the crosstalk between Notch signaling and cellular hypoxic response in cancer pathogenesis, including epithelia-mesenchymal transition, angiogenesis, and the maintenance of cancer stem cells. The pharmacological strategies targeting Notch signaling and hypoxia in cancer are also discussed in this review.
Collapse
Affiliation(s)
- Mingzhou Guo
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Pulmonary Diseases of National Health Commission, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Yang Niu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Pulmonary Diseases of National Health Commission, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Min Xie
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Pulmonary Diseases of National Health Commission, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xiansheng Liu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Pulmonary Diseases of National Health Commission, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xiaochen Li
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Key Laboratory of Pulmonary Diseases of National Health Commission, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China,*Correspondence: Xiaochen Li,
| |
Collapse
|
13
|
Xu TT, Baratz KH, Fautsch MP, Hodge DO, Mahr MA. Cancer Risk in Patients With Fuchs Endothelial Corneal Dystrophy. Cornea 2022; 41:1088-1093. [PMID: 35588167 PMCID: PMC9120714 DOI: 10.1097/ico.0000000000002864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/15/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of this study is to quantify cancer risk in patients with Fuchs endothelial corneal dystrophy (FECD). METHODS Using the 2014 to 2016 Medicare Limited 5% Data Sets-Carrier Line File, US Medicare fee-for-service beneficiaries (aged 65 years or older) with FECD and cancer were identified through International Classification of Diseases , ninth and 10th Revision diagnostic codes from January 1, 2014, to December 31, 2016. The main outcome measures were odds ratios (ORs) of cancer at various anatomic locations in patients with versus without FECD. RESULTS Of the 1,462,740 Medicare beneficiaries, 15,534 patients (1.1%) had an International Classification of Disease code for FECD. Compared with US Medicare beneficiaries without FECD, patients with FECD were at increased risk for the following malignancies: breast [OR: 1.32; 95% confidence interval (CI): 1.22-1.43; P < 0.001], cutaneous basal cell (OR: 1.42; 95% CI: 1.35-1.49; P < 0.001), cutaneous melanoma (OR: 1.20; 95% CI: 1.03-1.40; P = 0.02), cutaneous squamous cell (OR: 1.45; 95% CI: 1.38-1.53; P < 0.001), ovarian (OR: 1.84; 95% CI: 1.48-2.30; P < 0.001), and thyroid (OR: 1.32; 95% CI: 1.04-1.68; P = 0.02). By contrast, FECD cases were at lower odds of having lung (OR: 0.81; 95% CI: 0.71-0.93; P = 0.003) and prostate cancer diagnoses (OR: 0.88; 95% CI: 0.81-0.96; P = 0.002). CONCLUSIONS Patients with FECD aged 65 years or older may be at increased risk for cancer at several anatomic locations. Follow-up studies are needed to further explore the association of FECD and malignancy, elucidate potential disease mechanisms, and identify genetic and/or environmental risk factors.
Collapse
Affiliation(s)
- Timothy T. Xu
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, USA
| | - Keith H. Baratz
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - David O. Hodge
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida, USA
| | - Michael A. Mahr
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
14
|
Polygonum cuspidatum Extract (Pc-Ex) Containing Emodin Suppresses Lung Cancer-Induced Cachexia by Suppressing TCF4/TWIST1 Complex-Induced PTHrP Expression. Nutrients 2022; 14:nu14071508. [PMID: 35406121 PMCID: PMC9002362 DOI: 10.3390/nu14071508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/18/2022] Open
Abstract
Cachexia, which is characterised by the wasting of fat and skeletal muscles, is the most common risk factor for increased mortality rates among patients with advanced lung cancer. PTHLH (parathyroid hormone-like hormone) is reported to be involved in the pathogenesis of cancer cachexia. However, the molecular mechanisms underlying the regulation of PTHLH expression and the inhibitors of PTHLH have not yet been identified. The PTHLH mRNA levels were measured using quantitative real-time polymerase chain reaction, while the PTHrP (parathyroid hormone-related protein) expression levels were measured using Western blotting and enzyme-linked immunosorbent assay. The interaction between TCF4 (Transcription Factor 4) and TWIST1 and the binding of the TCF4–TWIST1 complex to the PTHLH promoter were analysed using co-immunoprecipitation and chromatin immunoprecipitation. The results of the mammalian two-hybrid luciferase assay revealed that emodin inhibited TCF4–TWIST1 interaction. The effects of Polygonum cuspidatum extract (Pc-Ex), which contains emodin, on cachexia were investigated in vivo using A549 tumour-bearing mice. Ectopic expression of TCF4 upregulated PTHLH expression. Conversely, TCF4 knockdown downregulated PTHLH expression in lung cancer cells. The expression of PTHLH was upregulated in cells ectopically co-expressing TCF4 and TWIST1 when compared with that in cells expressing TCF4 or TWIST1 alone. Emodin inhibited the interaction between TCF4 and TWIST1 and consequently suppressed the TCF4/TWIST1 complex-induced upregulated mRNA and protein levels of PTHLH and PTHrP. Meanwhile, emodin-containing Pc-Ex significantly alleviated skeletal muscle atrophy and downregulated fat browning-related genes in A549 tumour-bearing mice. Emodin-containing Pc-Ex exerted therapeutic effects on lung cancer-associated cachexia by inhibiting TCF4/TWIST1 complex-induced PTHrP expression.
Collapse
|
15
|
Transcriptional and post-transcriptional control of epithelial-mesenchymal plasticity: why so many regulators? Cell Mol Life Sci 2022; 79:182. [PMID: 35278142 PMCID: PMC8918127 DOI: 10.1007/s00018-022-04199-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022]
Abstract
The dynamic transition between epithelial-like and mesenchymal-like cell states has been a focus for extensive investigation for decades, reflective of the importance of Epithelial-Mesenchymal Transition (EMT) through development, in the adult, and the contributing role EMT has to pathologies including metastasis and fibrosis. Not surprisingly, regulation of the complex genetic networks that underlie EMT have been attributed to multiple transcription factors and microRNAs. What is surprising, however, are the sheer number of different regulators (hundreds of transcription factors and microRNAs) for which critical roles have been described. This review seeks not to collate these studies, but to provide a perspective on the fundamental question of whether it is really feasible that so many regulators play important roles and if so, what does this tell us about EMT and more generally, the genetic machinery that controls complex biological processes.
Collapse
|
16
|
Sirp A, Roots K, Nurm K, Tuvikene J, Sepp M, Timmusk T. Functional consequences of TCF4 missense substitutions associated with Pitt-Hopkins syndrome, mild intellectual disability, and schizophrenia. J Biol Chem 2021; 297:101381. [PMID: 34748727 PMCID: PMC8648840 DOI: 10.1016/j.jbc.2021.101381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 11/24/2022] Open
Abstract
Transcription factor 4 (TCF4) is a basic helix-loop-helix transcription factor essential for neurocognitive development. The aberrations in TCF4 are associated with neurodevelopmental disorders including schizophrenia, intellectual disability, and Pitt-Hopkins syndrome, an autism-spectrum disorder characterized by developmental delay. Several disease-associated missense mutations in TCF4 have been shown to interfere with TCF4 function, but for many mutations, the impact remains undefined. Here, we tested the effects of 12 functionally uncharacterized disease-associated missense mutations and variations in TCF4 using transient expression in mammalian cells, confocal imaging, in vitro DNA-binding assays, and reporter assays. We show that Pitt-Hopkins syndrome-associated missense mutations within the basic helix-loop-helix domain of TCF4 and a Rett-like syndrome-associated mutation in a transcription activation domain result in altered DNA-binding and transcriptional activity of the protein. Some of the missense variations found in schizophrenia patients slightly increase TCF4 transcriptional activity, whereas no effects were detected for missense mutations linked to mild intellectual disability. We in addition find that the outcomes of several disease-related mutations are affected by cell type, TCF4 isoform, and dimerization partner, suggesting that the effects of TCF4 mutations are context-dependent. Together with previous work, this study provides a basis for the interpretation of the functional consequences of TCF4 missense variants.
Collapse
Affiliation(s)
- Alex Sirp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kaisa Roots
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kaja Nurm
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia; Protobios LLC, Tallinn, Estonia
| | - Mari Sepp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia; Protobios LLC, Tallinn, Estonia.
| |
Collapse
|
17
|
Homodimeric and Heterodimeric Interactions among Vertebrate Basic Helix-Loop-Helix Transcription Factors. Int J Mol Sci 2021; 22:ijms222312855. [PMID: 34884664 PMCID: PMC8657788 DOI: 10.3390/ijms222312855] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 01/01/2023] Open
Abstract
The basic helix–loop–helix transcription factor (bHLH TF) family is involved in tissue development, cell differentiation, and disease. These factors have transcriptionally positive, negative, and inactive functions by combining dimeric interactions among family members. The best known bHLH TFs are the E-protein homodimers and heterodimers with the tissue-specific TFs or ID proteins. These cooperative and dynamic interactions result in a complex transcriptional network that helps define the cell’s fate. Here, the reported dimeric interactions of 67 vertebrate bHLH TFs with other family members are summarized in tables, including specifications of the experimental techniques that defined the dimers. The compilation of these extensive data underscores homodimers of tissue-specific bHLH TFs as a central part of the bHLH regulatory network, with relevant positive and negative transcriptional regulatory roles. Furthermore, some sequence-specific TFs can also form transcriptionally inactive heterodimers with each other. The function, classification, and developmental role for all vertebrate bHLH TFs in four major classes are detailed.
Collapse
|
18
|
Liu X, Zheng T, Zhao C, Zhang Y, Liu H, Wang L, Liu P. Genetic mutations and molecular mechanisms of Fuchs endothelial corneal dystrophy. EYE AND VISION 2021; 8:24. [PMID: 34130750 PMCID: PMC8204469 DOI: 10.1186/s40662-021-00246-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 05/18/2021] [Indexed: 11/10/2022]
Abstract
Background Fuchs endothelial corneal dystrophy is a hereditary disease and the most frequent cause of corneal transplantation in the worldwide. Its main clinical signs are an accelerated decrease in the number of endothelial cells, thickening of Descemet’s membrane and formation of guttae in the extracellular matrix. The cornea’s ability to maintain stromal dehydration is impaired, causing painful epithelial bullae and loss of vision at the point when the amount of corneal endothelial cells cannot be compensated. At present, apart from corneal transplantation, there is no other effective treatment that prevents blindness. Main text In this review, we first summarized the mutations of COL8A2, TCF4, TCF8, SLC4A11 and AGBL1 genes in Fuchs endothelial corneal dystrophy. The molecular mechanisms associated with Fuchs endothelial corneal dystrophy, such as endoplasmic reticulum stress and unfolded protein response pathway, oxidative stress, mitochondrial dysregulation pathway, apoptosis pathway, mitophagy, epithelial-mesenchymal transition pathway, RNA toxicity and repeat-associated non-ATG translation, and other pathogenesis, were then explored. Finally, we discussed several potential treatments related to the pathogenesis of Fuchs endothelial corneal dystrophy, which may be the focus of future research. Conclusions The pathogenesis of Fuchs endothelial corneal dystrophy is very complicated. Currently, corneal transplantation is an important method in the treatment of Fuchs endothelial corneal dystrophy. It is necessary to continuously explore the pathogenesis of Fuchs endothelial corneal dystrophy and establish the scientific foundations for the development of next-generation corneal therapeutics.
Collapse
Affiliation(s)
- Xuerui Liu
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Tao Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chuchu Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hanruo Liu
- The Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Liyuan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Ping Liu
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
19
|
Pedri D, Karras P, Landeloos E, Marine JC, Rambow F. Epithelial-to-mesenchymal-like transition events in melanoma. FEBS J 2021; 289:1352-1368. [PMID: 33999497 DOI: 10.1111/febs.16021] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 11/30/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT), a process through which epithelial tumor cells acquire mesenchymal phenotypic properties, contributes to both metastatic dissemination and therapy resistance in cancer. Accumulating evidence indicates that nonepithelial tumors, including melanoma, can also gain mesenchymal-like properties that increase their metastatic propensity and decrease their sensitivity to therapy. In this review, we discuss recent findings, illustrating the striking similarities-but also knowledge gaps-between the biology of mesenchymal-like state(s) in melanoma and mesenchymal state(s) from epithelial cancers. Based on this comparative analysis, we suggest hypothesis-driven experimental approaches to further deepen our understanding of the EMT-like process in melanoma and how such investigations may pave the way towards the identification of clinically relevant biomarkers for prognosis and new therapeutic strategies.
Collapse
Affiliation(s)
- Dennis Pedri
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium.,Laboratory of Membrane Trafficking, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| | - Ewout Landeloos
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| | - Florian Rambow
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| |
Collapse
|
20
|
Addison JB, Voronkova MA, Fugett JH, Lin CC, Linville NC, Trinh B, Livengood RH, Smolkin MB, Schaller MD, Ruppert JM, Pugacheva EN, Creighton CJ, Ivanov AV. Functional Hierarchy and Cooperation of EMT Master Transcription Factors in Breast Cancer Metastasis. Mol Cancer Res 2021; 19:784-798. [PMID: 33500360 PMCID: PMC8137545 DOI: 10.1158/1541-7786.mcr-20-0532] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/23/2020] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
Several master transcription factors (TF) can activate the epithelial-to-mesenchymal transition (EMT). However, their individual and combinatorial contributions to EMT in breast cancer are not defined. We show that overexpression of EMT-TFs individually in epithelial cells upregulated endogenous SNAI2, ZEB1/2, TCF4, and TWIST1/2 as a result of positive feedback mediated in part by suppression of their negative regulator miRNAs miR200s/203/205. We identified TCF4 as a potential new target of miR200s. Expression of ZEB1/2 strongly correlated with the mesenchymal phenotype in breast cancer cells, with the CD24-/CD44+ stemness profile, and with lower expression of core epithelial genes in human breast tumors. Knockdown of EMT-TFs identified the key role of ZEB1 and its functional cooperation with other EMT-TFs in the maintenance of the mesenchymal state. Inducible ZEB1+2 knockdown in xenograft models inhibited pulmonary metastasis, emphasizing their critical role in dissemination from primary site and in extravasation. However, ZEB1+2 depletion one-week after intravenous injection did not inhibit lung colonization, suggesting that ZEB1/2 and EMT are not essential for macrometastatic outgrowth. These results provide strong evidence that EMT is orchestrated by coordinated expression of several EMT-TFs and establish ZEB1 as a key master regulator of EMT and metastasis in breast cancer. IMPLICATIONS: The EMT program is orchestrated by coordinated expression of multiple EMT transcription factors, whereas ZEB1 integrates the EMT master regulatory network and plays the major role in promoting EMT and metastasis.
Collapse
Affiliation(s)
- Joseph B Addison
- WVU Cancer Institute and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Maria A Voronkova
- WVU Cancer Institute and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - James H Fugett
- WVU Cancer Institute and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Chen-Chung Lin
- WVU Cancer Institute and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Nathaniel C Linville
- WVU Cancer Institute and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Brandon Trinh
- WVU Cancer Institute and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Ryan H Livengood
- Department of Pathology, West Virginia University, Morgantown, West Virginia
| | - Matthew B Smolkin
- Department of Pathology, West Virginia University, Morgantown, West Virginia
| | - Michael D Schaller
- WVU Cancer Institute and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - J Michael Ruppert
- WVU Cancer Institute and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Elena N Pugacheva
- WVU Cancer Institute and Department of Biochemistry, West Virginia University, Morgantown, West Virginia
| | - Chad J Creighton
- Department of Medicine and Dan L. Duncan Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, Texas
| | - Alexey V Ivanov
- WVU Cancer Institute and Department of Biochemistry, West Virginia University, Morgantown, West Virginia.
| |
Collapse
|
21
|
PGC1α Loss Promotes Lung Cancer Metastasis through Epithelial-Mesenchymal Transition. Cancers (Basel) 2021; 13:cancers13081772. [PMID: 33917757 PMCID: PMC8068195 DOI: 10.3390/cancers13081772] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/25/2022] Open
Abstract
PGC1α oppositely regulates cancer metastasis in melanoma, breast, and pancreatic cancer; however, little is known about its impact on lung cancer metastasis. Transcriptome and in vivo xenograft analysis show that a decreased PGC1α correlates with the epithelial-mesenchymal transition (EMT) and lung cancer metastasis. The deletion of a single Pgc1α allele in mice promotes bone metastasis of KrasG12D-driven lung cancer. Mechanistically, PGC1α predominantly activates ID1 expression, which interferes with TCF4-TWIST1 cooperation during EMT. Bioinformatic and clinical studies have shown that PGC1α and ID1 are downregulated in lung cancer, and correlate with a poor survival rate. Our study indicates that TCF4-TWIST1-mediated EMT, which is regulated by the PGC1α-ID1 transcriptional axis, is a potential diagnostic and therapeutic target for metastatic lung cancer.
Collapse
|
22
|
Ong Tone S, Wylegala A, Böhm M, Melangath G, Deshpande N, Jurkunas UV. Increased Corneal Endothelial Cell Migration in Fuchs Endothelial Corneal Dystrophy: A Live Cell Imaging Study. OPHTHALMOLOGY SCIENCE 2021; 1:100006. [PMID: 36246012 PMCID: PMC9559113 DOI: 10.1016/j.xops.2021.100006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/09/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
Purpose To investigate if corneal endothelial cells (CECs) in Fuchs endothelial corneal dystrophy (FECD) have altered cellular migration compared with normal controls. Design Comparative analysis. Materials Descemet's membrane and CECs derived from patients with FECD undergoing endothelial keratoplasty or normal cadaveric donors. Methods Ex vivo specimens were used for live cell imaging and generation of immortalized cell lines. Live imaging was performed on FECD and normal CECs and on ex vivo specimens transfected with green fluorescent protein. Migration speeds were determined as a function of cellular density using automated cell tracking. Ex vivo specimens were classified as either FECD or normal low cell density (nonconfluent) or high cell density (confluent). Scratch assay was performed on CECs seeded at high confluence to determine migration speed. Genetic analysis from blood samples or CECs was performed to detect a CTG repeat expansion in the TCF4 gene. Main Outcome Measures Mean cell migration speed. Results Fuchs endothelial corneal dystrophy CECs in low cell density areas displayed increased mean speed (0.391 ± 0.005 μm/minute vs. 0.364 ± 0.005 μm/minute; P < 0.001) and mean maximum speed (0.961 ± 0.010 μm/minute vs. 0.787 ± 0.011 μm/minute; P < 0.001) compared with normal CECs, and increased mean maximum speed (0.778 ± 0.014 μm/minute vs. 0.680 ± 0.011 μm/minute; P < 0.001) in high cell density areas ex vivo. Similarly, FECD CECs displayed increased mean speed compared with normal CECs (1.958 ± 0.020 μm/minute vs. 2.227 ± 0.021 μm/minute vs. 1.567 ± 0.019 μm/minute; P < 0.001) under nonconfluent conditions in vitro. Moreover, FECD CECs also displayed increased mean speed compared with normal CECs under high confluent conditions as detected by scratch assay (37.2 ± 1.1% vs. 44.3 ± 4.1% vs. 70.7 ± 5.2%; P < 0.001). Morphologic analysis showed that FECD CECs displayed an increased fibroblastic phenotype as detected by filamentous-actin labeling. Conclusions Fuchs endothelial corneal dystrophy CECs demonstrated increased migration speed compared with normal CECs. Further investigation into the mechanisms of heightened cell migration in FECD is needed and may provide insight into its pathogenesis, as well as having implications on descemetorhexis without endothelial keratoplasty.
Collapse
Key Words
- CE, corneal endothelium
- CEC, corneal endothelial cell
- Cell migration
- Corneal endothelium
- DM, Descemet’s membrane
- DMEK, Descemet's membrane endothelial keratoplasty
- DWEK, descemetorhexis without endothelial keratoplasty
- Descemetorhexis without endothelial keratoplasty
- Descemet’s stripping only
- ECD, endothelial cell density
- ECM, extracellular matrix
- EMT, endothelial-to-mesenchymal transition
- FECD, Fuchs endothelial corneal dystrophy
- Fuchs endothelial corneal dystrophy
- GFP, green fluorescent protein
- LNP, lipid nanoparticle
- PBS, phosphate-buffered saline
- TCF4, transcription factor 4
Collapse
Affiliation(s)
- Stephan Ong Tone
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, Canada
- Department of Ophthalmology, University of Toronto, Toronto, Canada
| | - Adam Wylegala
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Myriam Böhm
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Geetha Melangath
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Neha Deshpande
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Ula V. Jurkunas
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
23
|
Ong Tone S, Kocaba V, Böhm M, Wylegala A, White TL, Jurkunas UV. Fuchs endothelial corneal dystrophy: The vicious cycle of Fuchs pathogenesis. Prog Retin Eye Res 2021; 80:100863. [PMID: 32438095 PMCID: PMC7648733 DOI: 10.1016/j.preteyeres.2020.100863] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is the most common primary corneal endothelial dystrophy and the leading indication for corneal transplantation worldwide. FECD is characterized by the progressive decline of corneal endothelial cells (CECs) and the formation of extracellular matrix (ECM) excrescences in Descemet's membrane (DM), called guttae, that lead to corneal edema and loss of vision. FECD typically manifests in the fifth decades of life and has a greater incidence in women. FECD is a complex and heterogeneous genetic disease where interaction between genetic and environmental factors results in cellular apoptosis and aberrant ECM deposition. In this review, we will discuss a complex interplay of genetic, epigenetic, and exogenous factors in inciting oxidative stress, auto(mito)phagy, unfolded protein response, and mitochondrial dysfunction during CEC degeneration. Specifically, we explore the factors that influence cellular fate to undergo apoptosis, senescence, and endothelial-to-mesenchymal transition. These findings will highlight the importance of abnormal CEC-DM interactions in triggering the vicious cycle of FECD pathogenesis. We will also review clinical characteristics, diagnostic tools, and current medical and surgical management options for FECD patients. These new paradigms in FECD pathogenesis present an opportunity to develop novel therapeutics for the treatment of FECD.
Collapse
Affiliation(s)
- Stephan Ong Tone
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Viridiana Kocaba
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Myriam Böhm
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Adam Wylegala
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Tomas L White
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Ula V Jurkunas
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
24
|
Trufanov SV, Fisenko NV. [Molecular genetic aspects of Fuchs' endothelial corneal dystrophy pathogenesis]. Vestn Oftalmol 2020; 136:260-267. [PMID: 33063975 DOI: 10.17116/oftalma2020136052260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fuchs' corneal dystrophy (FCD) is a common bilateral non-inflammatory endothelial pathology. It is a multigenic disorder with various expressivity, penetrance and population prevalence. This review discusses corneal endothelium pump function, FCD pathogenesis and its known genetic factors.
Collapse
Affiliation(s)
- S V Trufanov
- Research Institute of Eye Diseases, Moscow, Russia
| | - N V Fisenko
- Research Institute of Eye Diseases, Moscow, Russia
| |
Collapse
|
25
|
Fautsch MP, Wieben ED, Baratz KH, Bhattacharyya N, Sadan AN, Hafford-Tear NJ, Tuft SJ, Davidson AE. TCF4-mediated Fuchs endothelial corneal dystrophy: Insights into a common trinucleotide repeat-associated disease. Prog Retin Eye Res 2020; 81:100883. [PMID: 32735996 PMCID: PMC7988464 DOI: 10.1016/j.preteyeres.2020.100883] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/24/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a common cause for heritable visual loss in the elderly. Since the first description of an association between FECD and common polymorphisms situated within the transcription factor 4 (TCF4) gene, genetic and molecular studies have implicated an intronic CTG trinucleotide repeat (CTG18.1) expansion as a causal variant in the majority of FECD patients. To date, several non-mutually exclusive mechanisms have been proposed that drive and/or exacerbate the onset of disease. These mechanisms include (i) TCF4 dysregulation; (ii) toxic gain-of-function from TCF4 repeat-containing RNA; (iii) toxic gain-of-function from repeat-associated non-AUG dependent (RAN) translation; and (iv) somatic instability of CTG18.1. However, the relative contribution of these proposed mechanisms in disease pathogenesis is currently unknown. In this review, we summarise research implicating the repeat expansion in disease pathogenesis, define the phenotype-genotype correlations between FECD and CTG18.1 expansion, and provide an update on research tools that are available to study FECD as a trinucleotide repeat expansion disease. Furthermore, ongoing international research efforts to develop novel CTG18.1 expansion-mediated FECD therapeutics are highlighted and we provide a forward-thinking perspective on key unanswered questions that remain in the field. FECD is a common, age-related corneal dystrophy. The majority of cases are associated with expansion of a CTG repeat (CTG18.1). FECD is the most common trinucleotide repeat expansion disease in humans. Evidence supports multiple molecular mechanisms underlying the pathophysiology. Novel CTG18.1-targeted therapeutics are in development.
Collapse
Affiliation(s)
- Michael P Fautsch
- Department of Ophthalmology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Eric D Wieben
- Department of Biochemistry and Molecular Biology, 200 1st St SW, Mayo Clinic, Rochester, MN, USA.
| | - Keith H Baratz
- Department of Ophthalmology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA.
| | | | - Amanda N Sadan
- University College London Institute of Ophthalmology, London, ECIV 9EL, UK.
| | | | - Stephen J Tuft
- University College London Institute of Ophthalmology, London, ECIV 9EL, UK; Moorfields Eye Hospital, London, EC1V 2PD, UK.
| | - Alice E Davidson
- University College London Institute of Ophthalmology, London, ECIV 9EL, UK.
| |
Collapse
|
26
|
Georgakopoulos-Soares I, Chartoumpekis DV, Kyriazopoulou V, Zaravinos A. EMT Factors and Metabolic Pathways in Cancer. Front Oncol 2020; 10:499. [PMID: 32318352 PMCID: PMC7154126 DOI: 10.3389/fonc.2020.00499] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) represents a biological program during which epithelial cells lose their cell identity and acquire a mesenchymal phenotype. EMT is normally observed during organismal development, wound healing and tissue fibrosis. However, this process can be hijacked by cancer cells and is often associated with resistance to apoptosis, acquisition of tissue invasiveness, cancer stem cell characteristics, and cancer treatment resistance. It is becoming evident that EMT is a complex, multifactorial spectrum, often involving episodic, transient or partial events. Multiple factors have been causally implicated in EMT including transcription factors (e.g., SNAIL, TWIST, ZEB), epigenetic modifications, microRNAs (e.g., miR-200 family) and more recently, long non-coding RNAs. However, the relevance of metabolic pathways in EMT is only recently being recognized. Importantly, alterations in key metabolic pathways affect cancer development and progression. In this review, we report the roles of key EMT factors and describe their interactions and interconnectedness. We introduce metabolic pathways that are involved in EMT, including glycolysis, the TCA cycle, lipid and amino acid metabolism, and characterize the relationship between EMT factors and cancer metabolism. Finally, we present therapeutic opportunities involving EMT, with particular focus on cancer metabolic pathways.
Collapse
Affiliation(s)
- Ilias Georgakopoulos-Soares
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States.,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
| | - Dionysios V Chartoumpekis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Division of Endocrinology, Department of Internal Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Venetsana Kyriazopoulou
- Division of Endocrinology, Department of Internal Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Apostolos Zaravinos
- College of Medicine, Member of QU Health, Qatar University, Doha, Qatar.,Department of Life Sciences European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
27
|
microRNA: The Impact on Cancer Stemness and Therapeutic Resistance. Cells 2019; 9:cells9010008. [PMID: 31861404 PMCID: PMC7016867 DOI: 10.3390/cells9010008] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer ranks as the second leading cause of death worldwide, causing a large social and economic burden. However, most anti-cancer treatments face the problems of tumor recurrence and metastasis. Therefore, finding an effective cure for cancer needs to be solved urgently. Recently, the discovery of cancer stem cells (CSCs) provides a new orientation for cancer research and therapy. CSCs share main characteristics with stem cells and are able to generate an entire tumor. Besides, CSCs usually escape from current anti-cancer therapies, which is partly responsible for tumor recurrence and poor prognosis. microRNAs (miRNAs) belong to small noncoding RNA and regulate gene post-transcriptional expression. The dysregulation of miRNAs leads to plenty of diseases, including cancer. The aberrant miRNA expression in CSCs enhances stemness maintenance. In this review, we summarize the role of miRNAs on CSCs in the eight most common cancers, hoping to bridge the research of miRNAs and CSCs with clinical applications. We found that miRNAs can act as tumor promoter or suppressor. The dysregulation of miRNAs enhances cell stemness and contributes to tumor metastasis and therapeutic resistance via the formation of feedback loops and constitutive activation of carcinogenic signaling pathways. More importantly, some miRNAs may be potential targets for diagnosis, prognosis, and cancer treatments.
Collapse
|
28
|
Effects of Laminaria Japonica Polysaccharides on the Survival of Non-Small-Cell Lung Cancer A549 Cells. INT J POLYM SCI 2019. [DOI: 10.1155/2019/7929535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective. To investigate the effect of Laminaria japonica polysaccharides (LJP) on the survival of non-small-cell lung cancer (NSCLC) A549 cells and its mechanism. Methods. In vitro: the cells were randomly divided into control group, LJP (5 mg/ml) group, LJP (10 mg/ml) group, and LJP (20 mg/ml) group. After corresponding treatment, the survival rate and the expression of proteins related to proliferation, apoptosis, epithelial-mesenchymal transition (EMT), and signaling pathway were detected by CCK8 assay and Western blot, respectively. In vivo: a xenograft model was established to detect the tumor volume and mass and the expression of the above pathway proteins. Results. Compared with the control group, LJP decreased the survival rate of A549 cells (P<0.05), inhibited the protein expression of Ki67 and PCNA (P<0.05), downregulated the expression of Bcl-2 while upregulated the expression of Bax, cl-caspase-3, and cl-caspase-9 (P<0.05), upregulated the expression of E-cadherin, downregulated the expression of vascular endothelial growth factor (VEGF) and N-cadherin (P<0.05), and downregulated β-catenin, transcription factor-4 (TCF4), and c-Myc protein expression levels (P<0.05). In vivo: LJP decreased the volume and mass of the xenograft tumors and downregulated β-catenin, TCF4, and c-Myc protein expression levels compared with the control group (P<0.05). Conclusion. LJP can inhibit the survival of non-small-cell lung cancer A549 cells in vitro, and its mechanism is related to the inhibition of activation of β-catenin/TCF4 pathway activation.
Collapse
|
29
|
The subcellular localization of bHLH transcription factor TCF4 is mediated by multiple nuclear localization and nuclear export signals. Sci Rep 2019; 9:15629. [PMID: 31666615 PMCID: PMC6821749 DOI: 10.1038/s41598-019-52239-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/11/2019] [Indexed: 01/10/2023] Open
Abstract
Transcription factor 4 (TCF4) is a class I basic helix-loop-helix (bHLH) transcription factor which regulates the neurogenesis and specialization of cells. TCF4 also plays an important role in the development and functioning of the immune system. Additionally, TCF4 regulates the development of Sertoli cells and pontine nucleus neurons, myogenesis, melanogenesis and epithelial-mesenchymal transition. The ability of transcription factors to fulfil their function often depends on their intracellular trafficking between the nucleus and cytoplasm of the cell. The trafficking is regulated by specific sequences, i.e. the nuclear localization signal (NLS) and the nuclear export signal (NES). We performed research on the TCF4 trafficking regulating sequences by mapping and detailed characterization of motifs potentially acting as the NLS or NES. We demonstrate that the bHLH domain of TCF4 contains an NLS that overlaps two NESs. The results of in silico analyses show high conservation of the sequences, especially in the area of the NLS and NESs. This high conservation is not only between mouse and human TCF4, but also between TCF4 and other mammalian E proteins, indicating the importance of these sequences for the functioning of bHLH class I transcription factors.
Collapse
|
30
|
Okumura N, Puangsricharern V, Jindasak R, Koizumi N, Komori Y, Ryousuke H, Nakahara M, Nakano M, Adachi H, Tashiro K, Yoshii K, Chantaren P, Ittiwut R, Shotelersuk V, Suphapeetiporn K. Trinucleotide repeat expansion in the transcription factor 4 (TCF4) gene in Thai patients with Fuchs endothelial corneal dystrophy. Eye (Lond) 2019; 34:880-885. [PMID: 31554942 DOI: 10.1038/s41433-019-0595-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 06/10/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To evaluate the association of single nucleotide polymorphisms (SNPs) and the intronic expansion of a trinucleotide repeat (TNR) in the TCF4 gene with Fuchs endothelial corneal dystrophy (FECD) in a Thai population. METHODS In total, 54 Thai FECD patients and 54 controls were recruited for the study. Five SNPs (rs613872, rs2123392, rs17089887, rs1452787, and rs1348047), previously reported to be associated with FECD, were genotyped by direct sequencing. The repeat length was determined by direct sequencing of PCR-amplified DNA (a short tandem repeat; STR assay) and by triplet repeat primed PCR (TP-PCR). RESULTS Only one of the 54 patients with FECD harboured rs613872 (1.9%). Four SNPs (rs2123392, rs17089887, rs1452787, and rs1348047), which are not rare polymorphisms in the Thai population, were found in approximately half of the patients. Of the 54 patients, 21 (1 homozygous and 20 heterozygous patients; 39%) harboured a TNR ≥ 40, while 33 patients (61%) harboured a TNR < 40. CONCLUSIONS The association of TNR expansion in TCF4 with FECD is shown for the first time in the Thai population. The intronic TNR expansion identified in various ethnic groups underlines the importance of expansion as a potent pathophysiological cause of FECD.
Collapse
Affiliation(s)
- Naoki Okumura
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Vilavun Puangsricharern
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand. .,Excellence Center for Cornea and Limbal Stem Cell Transplantation, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand.
| | - Raina Jindasak
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Noriko Koizumi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Yuya Komori
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Hayashi Ryousuke
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Makiko Nakahara
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Masakazu Nakano
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroko Adachi
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kei Tashiro
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kengo Yoshii
- Department of Mathematics and Statistics in Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Patchima Chantaren
- Excellence Center for Cornea and Limbal Stem Cell Transplantation, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Rungnapa Ittiwut
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.,Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.,Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.,Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| |
Collapse
|
31
|
Abstract
Fuchs' endothelial corneal dystrophy (FECD) is a common disease resulting from corneal endothelial cell dysfunction. It is inherited in an autosomal dominant fashion with incomplete penetrance, and with a female bias. Approximately half of cases occur sporadically, and the remainder are familial. Early and late-onset forms of the disease exist. A review of the literature has revealed more than 15 genes harbouring mutations and/or single nucleotide polymorphisms associated with FECD. The proteins encoded by these genes cover a wide range of endothelial function, including transcription regulation, DNA repair, mitochondrial DNA mutations, targeting of proteins to the cell membrane, deglutamylation of proteins, extracellular matrix secretion, formation of cell-cell and cell-extracellular matrix junctions, water pump, and apoptosis. These genetic variations will form the platform for the further understanding of the pathological basis of the disease, and the development of targeted treatments. This review aims to summarise known genetic variations associated with FECD, discuss any known molecular effects of the variations, how these provide opportunities for targeted therapies, and what therapies are currently in development.
Collapse
|
32
|
Roles of the Phosphorylation of Transcriptional Factors in Epithelial-Mesenchymal Transition. JOURNAL OF ONCOLOGY 2019; 2019:5810465. [PMID: 31275381 PMCID: PMC6582791 DOI: 10.1155/2019/5810465] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/03/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is the first step in the development of the invasive and migratory properties of cancer metastasis. Since the transcriptional reprogramming of a number of genes occurs in EMT, the regulation of EMT transcription factors has been intensively investigated. EMT transcriptional factors are commonly classified by the direct or indirect repression of E-cadherin because one of hallmarks of EMT is the loss of E-cadherin. This facilitates the expression of genes for EMT, tumor invasion, and metastasis. The posttranslational modification of EMT transcriptional factors, such as Snail and Slug, directly regulates their functions, including their stability, nuclear localization, protein-protein interaction, and ubiquitination for the promotion or termination of EMT at the specific points. Here, we discuss how posttranslational modifications regulate gene expression in a dynamic and reversible manner by modifying upstream signaling pathways, focusing in particular on the posttranslational modifications of Snail, Slug, ZEB1, ZEB2, and TWIST1. This review demonstrates that EMT transcription factors regulate metastasis through their posttranslational modifications and that the flexibility and reversibility of EMT can be modified by phosphorylation.
Collapse
|
33
|
Ma X, Liu J, Li J, Li Y, Le VM, Li S, Liang X, Liu L, Liu J. miR-139-5p reverses stemness maintenance and metastasis of colon cancer stem-like cells by targeting E2-2. J Cell Physiol 2019; 234:22703-22718. [PMID: 31120140 DOI: 10.1002/jcp.28836] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 12/20/2022]
Abstract
Colon cancer stem cells (CCSCs) stand for a critical subpopulation of colon cancer cells that possess self-renewal and multilineage differentiation potentials and drive tumorigenicity. Due to their impact on treatment tolerance, CCSCs have been a hot research topic in the past few years. We have previously reported that miR-139-5p is a vital tumor repressive noncoding RNA whose level decreases in the clinical colon cancer samples with the increase of tumor malignancy. This research discovered that miR-139-5p targets the Wnt/β-catenin/TCF7L2 downstream effector E2-2 in CCSCs. E2-2 is a pivot molecule in the negative feedback loop of miR-139-5p/Wnt/β-catenin/TCF7L2. Its small interfering RNA reverses the stemness maintenance and epithelial-mesenchymal transition of colon cancer CSCs. This study provides a theoretical foundation for the clinical diagnosis and medical treatment of recurrent or metastatic colon cancer with miR-139-5p and its target E2-2.
Collapse
Affiliation(s)
- Xiaoying Ma
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jiajun Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jiyu Li
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yueqi Li
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Van Minh Le
- Research Center of Ginseng and Medicinal Materials, National Institute of Medicinal Materials, Ho Chi Minh City, Vietnam
| | - Shaoyu Li
- Department of Clinical Laboratory, The Third Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Lingshuang Liu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
34
|
Effect of Codonopsis pilosula Polysaccharides on the Growth and Motility of Hepatocellular Carcinoma HepG2 Cells by Regulating β-Catenin/TCF4 Pathway. INT J POLYM SCI 2019. [DOI: 10.1155/2019/7068437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Objective. To study the effect of Codonopsis pilosula polysaccharide (CPP) on the growth and motility of HepG2 cells and its possible mechanism. Methods. Cells were randomly divided into Control group, CPP (5 μM) group, CPP (10 μM) group, and CPP (20 μM) group. The proliferation, invasion, migration ability, and expression of proteins involved in the epithelial-mesenchymal transition (EMT) and signaling pathway of HepG2 cells were detected by CCK8 assay, BrdU staining, Transwell, Scratch test, and Western blot, respectively. Results. Codonopsis pilosula polysaccharide inhibited the proliferation of HepG2 cells cultured in vitro along with the expression level of Ki67 and PCNA protein (P<0.05), decreased the number of invasive cells (P<0.05), and reduced the scratch closure rate (P<0.05). It also adjusted the expression of vascular endothelial growth factor (VEGF), E-cadherin, and N-cadherin (P<0.05). Other than that, downregulation of β-catenin, TCF4, and c-Myc protein expression (P<0.05) was observed as well. Conclusion. Codonopsis pilosula polysaccharide can inhibit the proliferation and motility of HepG2 cells cultured in vitro, and the underlying mechanism is proposed to be related to the inhibition of the β-catenin/TCF4 pathway.
Collapse
|
35
|
Okumura N, Hayashi R, Nakano M, Yoshii K, Tashiro K, Sato T, Blake DJ, Aleff R, Butz M, Highsmith EW, Wieben ED, Fautsch MP, Baratz KH, Komori Y, Nakahara M, Tourtas T, Schlötzer-Schrehardt U, Kruse F, Koizumi N. Effect of Trinucleotide Repeat Expansion on the Expression of TCF4 mRNA in Fuchs' Endothelial Corneal Dystrophy. Invest Ophthalmol Vis Sci 2019; 60:779-786. [PMID: 30811544 PMCID: PMC6392475 DOI: 10.1167/iovs.18-25760] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Purpose CTG trinucleotide repeat (TNR) expansion is frequently found in transcription factor 4 (TCF4) in Fuchs' endothelial corneal dystrophy (FECD), though the effect of TNR expansion on FECD pathophysiology remains unclear. The purpose of this study was to evaluate the effect of TNR expansion on TCF4 expression in corneal endothelium of patients with FECD. Methods Peripheral blood DNA and Descemet membrane with corneal endothelium were obtained from 203 German patients with FECD. The CTG TNR repeat length in TCF4 was determined by short tandem repeat (STR) assays and Southern blotting using genomic DNA. Genotyping of rs613872 in TCF4 was performed by PCR. TCF4 mRNA levels in corneal endothelium were evaluated by quantitative PCR using three different probes. Control corneal endothelial samples were obtained from 35 non-FECD subjects. Results The STR assay and Southern blotting showed that 162 of the 203 patients with FECD (80%) harbored CTG trinucleotide repeat lengths larger than 50. Quantitative PCR using all three probes demonstrated that TCF4 mRNA is significantly upregulated in the corneal endothelium of patients with FECD, regardless of the presence of TNR expansion. However, the length of the TNR tended to show a positive correlation with TCF4 expression level. No correlation was shown between the genotype of TCF4 SNP, rs613872, and the level of TCF4 expression. Conclusions Our findings showed that TCF4 mRNA is upregulated in the corneal endothelium of patients with FECD. Further studies on the effects of TCF4 upregulation on corneal endothelial cell function will aid in understanding the pathophysiology of FECD.
Collapse
Affiliation(s)
- Naoki Okumura
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Ryosuke Hayashi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Masakazu Nakano
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kengo Yoshii
- Department of Mathematics and Statistics in Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kei Tashiro
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiko Sato
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Derek J Blake
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, United Kingdom
| | - Ross Aleff
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States
| | - Malinda Butz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States
| | - Edward W Highsmith
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States
| | - Eric D Wieben
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael P Fautsch
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - Keith H Baratz
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States
| | - Yuya Komori
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Makiko Nakahara
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Theofilos Tourtas
- Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Friedrich Kruse
- Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Noriko Koizumi
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
36
|
Chistiakov DA, Chekhonin VP. Circulating tumor cells and their advances to promote cancer metastasis and relapse, with focus on glioblastoma multiforme. Exp Mol Pathol 2018; 105:166-174. [DOI: 10.1016/j.yexmp.2018.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/01/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022]
|
37
|
Le Dréau G, Escalona R, Fueyo R, Herrera A, Martínez JD, Usieto S, Menendez A, Pons S, Martinez-Balbas MA, Marti E. E proteins sharpen neurogenesis by modulating proneural bHLH transcription factors' activity in an E-box-dependent manner. eLife 2018; 7:37267. [PMID: 30095408 PMCID: PMC6126921 DOI: 10.7554/elife.37267] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/09/2018] [Indexed: 12/18/2022] Open
Abstract
Class II HLH proteins heterodimerize with class I HLH/E proteins to regulate transcription. Here, we show that E proteins sharpen neurogenesis by adjusting the neurogenic strength of the distinct proneural proteins. We find that inhibiting BMP signaling or its target ID2 in the chick embryo spinal cord, impairs the neuronal production from progenitors expressing ATOH1/ASCL1, but less severely that from progenitors expressing NEUROG1/2/PTF1a. We show this context-dependent response to result from the differential modulation of proneural proteins’ activity by E proteins. E proteins synergize with proneural proteins when acting on CAGSTG motifs, thereby facilitating the activity of ASCL1/ATOH1 which preferentially bind to such motifs. Conversely, E proteins restrict the neurogenic strength of NEUROG1/2 by directly inhibiting their preferential binding to CADATG motifs. Since we find this mechanism to be conserved in corticogenesis, we propose this differential co-operation of E proteins with proneural proteins as a novel though general feature of their mechanism of action. The brain and spinal cord are made up of a range of cell types that carry out different roles within the central nervous system. Each type of neuron is uniquely specialized to do its job. Neurons are produced early during development, when they differentiate from a group of cells called neural progenitor cells. Within these groups, molecules called proneural proteins control which types of neurons will develop from the neural progenitor cells, and how many of them. Proneural proteins work by binding to specific patterns in the DNA, called E-boxes, with the help of E proteins. E proteins are typically understood to be passive partners, working with each different proneural protein indiscriminately. However, Le Dréau, Escalona et al. discovered that E proteins in fact have a much more active role to play. Using chick embryos, it was found that E proteins influence the way different proneural proteins bind to DNA. The E proteins have preferences for certain E-boxes in the DNA, just like proneural proteins do. The E proteins enhanced the activity of the proneural proteins that share their E-box preference, and reined in the activity of proneural proteins that prefer other E-boxes. As a result, the E proteins controlled the ability of these proteins to instruct neural progenitor cells to produce specific, specialized neurons, and thus ensured that the distinct types of neurons were produced in appropriate amounts. These findings will help shed light on the roles E proteins play in the development of the central nervous system, and the processes that control growth and lead to cell diversity. The results may also have applications in the field of regenerative medicine, as proneural proteins play an important role in cell reprogramming.
Collapse
Affiliation(s)
- Gwenvael Le Dréau
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | - René Escalona
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | - Raquel Fueyo
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | - Antonio Herrera
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | - Juan D Martínez
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | - Susana Usieto
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | - Anghara Menendez
- Department of Cell Biology, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | - Sebastian Pons
- Department of Cell Biology, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | - Marian A Martinez-Balbas
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| | - Elisa Marti
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
Sherwood DR, Plastino J. Invading, Leading and Navigating Cells in Caenorhabditis elegans: Insights into Cell Movement in Vivo. Genetics 2018; 208:53-78. [PMID: 29301948 PMCID: PMC5753875 DOI: 10.1534/genetics.117.300082] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022] Open
Abstract
Highly regulated cell migration events are crucial during animal tissue formation and the trafficking of cells to sites of infection and injury. Misregulation of cell movement underlies numerous human diseases, including cancer. Although originally studied primarily in two-dimensional in vitro assays, most cell migrations in vivo occur in complex three-dimensional tissue environments that are difficult to recapitulate in cell culture or ex vivo Further, it is now known that cells can mobilize a diverse repertoire of migration modes and subcellular structures to move through and around tissues. This review provides an overview of three distinct cellular movement events in Caenorhabditis elegans-cell invasion through basement membrane, leader cell migration during organ formation, and individual cell migration around tissues-which together illustrate powerful experimental models of diverse modes of movement in vivo We discuss new insights into migration that are emerging from these in vivo studies and important future directions toward understanding the remarkable and assorted ways that cells move in animals.
Collapse
Affiliation(s)
- David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Durham, North Carolina 27705
| | - Julie Plastino
- Institut Curie, PSL Research University, CNRS, UMR 168, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 168, F-75005 Paris, France
| |
Collapse
|
39
|
Epithelial Mesenchymal Transition in Embryonic Development, Tissue Repair and Cancer: A Comprehensive Overview. J Clin Med 2017; 7:jcm7010001. [PMID: 29271928 PMCID: PMC5791009 DOI: 10.3390/jcm7010001] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/30/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022] Open
Abstract
The epithelial mesenchymal transition (EMT) plays a central role in both normal physiological events (e.g., embryonic development) and abnormal pathological events (e.g., tumor formation and metastasis). The processes that occur in embryonic development are often reactivated under pathological conditions such as oncogenesis. Therefore, defining the regulatory networks (both gene and protein levels) involved in the EMT during embryonic development will be fundamental in understanding the regulatory networks involved in tumor development, as well as metastasis. There are many molecules, factors, mediators and signaling pathways that are involved in the EMT process. Although the EMT is a very old topic with numerous publications, recent new technologies and discoveries give this research area some new perspective and direction. It is now clear that these important processes are controlled by a network of transcriptional and translational regulators in addition to post-transcriptional and post-translational modifications that amplify the initial signals. In this review article, we will discuss some key concepts, historical findings, as well as some recent progresses in the EMT research field.
Collapse
|
40
|
Human cancer stem cells are a target for cancer prevention using (-)-epigallocatechin gallate. J Cancer Res Clin Oncol 2017; 143:2401-2412. [PMID: 28942499 PMCID: PMC5693978 DOI: 10.1007/s00432-017-2515-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 08/31/2017] [Indexed: 02/06/2023]
Abstract
Purpose Our previous experiments show that the main constituent of green-tea catechins, (−)-epigallocatechin gallate (EGCG), completely prevents tumor promotion on mouse skin initiated with 7,12-dimethylbenz(a)anthracene followed by okadaic acid and that EGCG and green tea extract prevent cancer development in a wide range of target organs in rodents. Therefore, we focused our attention on human cancer stem cells (CSCs) as targets of cancer prevention and treatment with EGCG. Methods The numerous reports concerning anticancer activity of EGCG against human CSCs enriched from cancer cell lines were gathered from a search of PubMed, and we hope our review of the literatures will provide a broad selection for the effects of EGCG on various human CSCs. Results Based on our theoretical study, we discuss the findings as follows: (1) Compared with the parental cells, human CSCs express increased levels of the stemness markers Nanog, Oct4, Sox2, CD44, CD133, as well as the EMT markers, Twist, Snail, vimentin, and also aldehyde dehydrogenase. They showed decreased levels of E-cadherin and cyclin D1. (2) EGCG inhibits the transcription and translation of genes encoding stemness markers, indicating that EGCG generally inhibits the self-renewal of CSCs. (3) EGCG inhibits the expression of the epithelial-mesenchymal transition phenotypes of human CSCs. (4) The inhibition of EGCG of the stemness of CSCs was weaker compared with parental cells. (5) The weak inhibitory activity of EGCG increased synergistically in combination with anticancer drugs. Conclusions Green tea prevents human cancer, and the combination of EGCG and anticancer drugs confers cancer treatment with tissue-agnostic efficacy.
Collapse
|
41
|
Cox B, Roose H, Vennekens A, Vankelecom H. Pituitary stem cell regulation: who is pulling the strings? J Endocrinol 2017; 234:R135-R158. [PMID: 28615294 DOI: 10.1530/joe-17-0083] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/14/2017] [Indexed: 12/28/2022]
Abstract
The pituitary gland plays a pivotal role in the endocrine system, steering fundamental processes of growth, metabolism, reproduction and coping with stress. The adult pituitary contains resident stem cells, which are highly quiescent in homeostatic conditions. However, the cells show marked signs of activation during processes of increased cell remodeling in the gland, including maturation at neonatal age, adaptation to physiological demands, regeneration upon injury and growth of local tumors. Although functions of pituitary stem cells are slowly but gradually uncovered, their regulation largely remains virgin territory. Since postnatal stem cells in general reiterate embryonic developmental pathways, attention is first being given to regulatory networks involved in pituitary embryogenesis. Here, we give an overview of the current knowledge on the NOTCH, WNT, epithelial-mesenchymal transition, SHH and Hippo pathways in the pituitary stem/progenitor cell compartment during various (activation) conditions from embryonic over neonatal to adult age. Most information comes from expression analyses of molecular components belonging to these networks, whereas functional extrapolation is still very limited. From this overview, it emerges that the 'big five' embryonic pathways are indeed reiterated in the stem cells of the 'lazy' homeostatic postnatal pituitary, further magnified en route to activation in more energetic, physiological and pathological remodeling conditions. Increasing the knowledge on the molecular players that pull the regulatory strings of the pituitary stem cells will not only provide further fundamental insight in postnatal pituitary homeostasis and activation, but also clues toward the development of regenerative ideas for improving treatment of pituitary deficiency and tumors.
Collapse
Affiliation(s)
- Benoit Cox
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| | - Heleen Roose
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| | - Annelies Vennekens
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| | - Hugo Vankelecom
- Department of Development and RegenerationCluster of Stem Cell and Developmental Biology, Unit of Stem Cell Research, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
42
|
Foja S, Luther M, Hoffmann K, Rupprecht A, Gruenauer-Kloevekorn C. CTG18.1 repeat expansion may reduce TCF4 gene expression in corneal endothelial cells of German patients with Fuchs' dystrophy. Graefes Arch Clin Exp Ophthalmol 2017; 255:1621-1631. [PMID: 28608272 DOI: 10.1007/s00417-017-3697-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/28/2017] [Accepted: 05/15/2017] [Indexed: 12/19/2022] Open
Abstract
PURPOSE It was the aim of this investigation to elucidate the functional effects of CTG18.1 trinucleotide repeat expansion and the polymorphism rs613872 in the transcription factor 4 (TCF4) in corneas of patients affected by Fuchs' endothelial corneal dystrophy (FECD). METHODS Sixty-one unrelated German patients with FECD and 113 unaffected controls were investigated and genotyped for the CTG18.1 locus by triplet primed PCR (TP-PCR) and the rs613872 polymorphism via Sanger sequencing and by employing genomic DNA from peripheral blood leucocytes. DNA and RNA retrieved from human corneal endothelial explants were examined for alterations in the gene expression of TCF4, ZEB1, E-cadherin, N-cadherin, as well as the CTG18.1 locus. RESULTS The CTG18.1 trinucleotide repeat expansion (>50 repeats) was detected in the peripheral blood in 77% of affected FECD patients and 11.5% of the healthy volunteers. Applying the TP-PCR method, the length of CTG18.1 repeat expansions correlates in the blood and corneal cells. We noted that the CTG18.1 trinucleotide repeat expansion was associated with reduced TCF4 and ZEB1 gene expression, especially in the explanted corneal endothelial cells. While E-cadherin gene expression was not detected in any corneal endothelial cells, expression of CDH2 (N-cadherin) was detected in FECD-affected endothelium and in our controls. CONCLUSIONS The CTG18.1 repeat expansion may reduce gene expression of TCF4 and ZEB1, suggesting that a mechanism triggering a loss of function may contribute to FECD. The correlation of CTG18.1 repeat expansion from blood and the cornea may represent the first step toward investigating the potential relevance of testing the blood of cornea donors to minimize the risk of transplanting grafts potentially affected with FECD.
Collapse
Affiliation(s)
- Sabine Foja
- Department of Human Genetics, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle, Germany.
| | - Mirjam Luther
- Department of Human Genetics, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle, Germany
| | - Katrin Hoffmann
- Department of Human Genetics, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle, Germany
| | - Andreas Rupprecht
- Opthalmic Surgery, Augenärzte am Markt, Halle; in affilation with Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Claudia Gruenauer-Kloevekorn
- Opthalmic Surgery, Augenärzte am Markt, Halle; in affilation with Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
43
|
Li H, Batth IS, Qu X, Xu L, Song N, Wang R, Liu Y. IGF-IR signaling in epithelial to mesenchymal transition and targeting IGF-IR therapy: overview and new insights. Mol Cancer 2017; 16:6. [PMID: 28137302 PMCID: PMC5282886 DOI: 10.1186/s12943-016-0576-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/19/2016] [Indexed: 01/06/2023] Open
Abstract
The insulin-like growth factor-I (IGF-I) signaling induces epithelial to mesenchymal transition (EMT) program and contributes to metastasis and drug resistance in several subtypes of tumors. In preclinical studies, targeting of the insulin-like growth factor-I receptor (IGF-IR) showed promising anti-tumor effects. Unfortunately, high expectations for anti-IGF-IR therapy encountered challenge and disappointment in numerous clinical trials. This review summarizes the regulation of EMT by IGF-I/IGF-IR signaling pathway and drug resistance mechanisms of targeting IGF-IR therapy. Most importantly, we address several factors in the regulation of IGF-I/IGF-IR-associated EMT progression that may be potential predictive biomarkers in targeted therapy.
Collapse
Affiliation(s)
- Heming Li
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China.,Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Izhar Singh Batth
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China
| | - Ling Xu
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China
| | - Na Song
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China
| | - Ruoyu Wang
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China.
| | - Yunpeng Liu
- Department of Medical Oncology, the First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City, 110001, China.
| |
Collapse
|
44
|
Rambow F, Bechadergue A, Luciani F, Gros G, Domingues M, Bonaventure J, Meurice G, Marine JC, Larue L. Regulation of Melanoma Progression through the TCF4/miR-125b/NEDD9 Cascade. J Invest Dermatol 2016; 136:1229-1237. [PMID: 26968260 DOI: 10.1016/j.jid.2016.02.803] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/21/2016] [Accepted: 02/01/2016] [Indexed: 01/25/2023]
Abstract
Melanoma progression from a primary lesion to a distant metastasis is a complex process associated with genetic alterations, epigenetic modifications, and phenotypic switches. Elucidation of these phenomena may indicate how to interfere with this fatal disease. The role of microRNAs as key negative regulators of gene expression, controlling all cellular processes including cell migration and invasion, is now being recognized. Here, we used in silico analysis of microRNA expression profiles of primary and metastatic melanomas and functional experiments to show that microRNA-125b (miR-125b) is a determinant candidate of melanoma progression: (i) miR-125b is more strongly expressed in aggressive metastatic than primary melanomas, (ii) there is an inverse correlation between the amount of miR-125b and overall patient survival, (iii) invasion/migration potentials in vitro are inversely correlated with the amount of miR-125b in a series of human melanoma cell lines, and (iv) inhibition of miR-125b reduces migratory and invasive potentials without affecting cell proliferation in vitro. Furthermore, we show that neural precursor cell expressed developmentally down-regulated protein 9 (i.e., NEDD9) is a direct target of miR-125b and is involved in modulating melanoma cell migration and invasion. Also, transcription factor 4, associated with epithelial-mesenchymal transition and invasion, induces the transcription of miR-125b-1. In conclusion, the transcription factor 4/miR-125b/NEDD9 cascade promotes melanoma cell migration/invasion.
Collapse
Affiliation(s)
- Florian Rambow
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France; Université Paris-Sud, Université Paris-Saclay, CNRS UMR 3347, Orsay, France; Equipe Labellisée Ligue Contre le Cancer, Orsay, France
| | - Audrey Bechadergue
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France; Université Paris-Sud, Université Paris-Saclay, CNRS UMR 3347, Orsay, France; Equipe Labellisée Ligue Contre le Cancer, Orsay, France
| | - Flavie Luciani
- Laboratory for Molecular Cancer Biology, Center for Human Genetics, University of Leuven, 3000 Leuven, Belgium; VIB Center for the Biology of Disease, 3000 Leuven, Belgium
| | - Gwendoline Gros
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France; Université Paris-Sud, Université Paris-Saclay, CNRS UMR 3347, Orsay, France; Equipe Labellisée Ligue Contre le Cancer, Orsay, France
| | - Melanie Domingues
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France; Université Paris-Sud, Université Paris-Saclay, CNRS UMR 3347, Orsay, France; Equipe Labellisée Ligue Contre le Cancer, Orsay, France
| | - Jacky Bonaventure
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France; Université Paris-Sud, Université Paris-Saclay, CNRS UMR 3347, Orsay, France; Equipe Labellisée Ligue Contre le Cancer, Orsay, France
| | - Guillaume Meurice
- Plateforme de Bioinformatique, UMS AMMICA, Gustave-Roussy, Villejuif, France
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Human Genetics, University of Leuven, 3000 Leuven, Belgium; VIB Center for the Biology of Disease, 3000 Leuven, Belgium
| | - Lionel Larue
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France; Université Paris-Sud, Université Paris-Saclay, CNRS UMR 3347, Orsay, France; Equipe Labellisée Ligue Contre le Cancer, Orsay, France.
| |
Collapse
|
45
|
Wang N, Wang Q, Shen D, Sun X, Cao X, Wu D. Downregulation of microRNA-122 promotes proliferation, migration, and invasion of human hepatocellular carcinoma cells by activating epithelial-mesenchymal transition. Onco Targets Ther 2016; 9:2035-47. [PMID: 27103830 PMCID: PMC4827919 DOI: 10.2147/ott.s92378] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective To investigate the effects of microRNA-122 (miR-122) on proliferation, migration, and invasion in human hepatocellular carcinoma (HCC) cells by activating epithelial–mesenchymal transition (EMT) pathways. Methods miR-122 mimics, miR-122 inhibitors, relevant control oligonucleotides, and Wnt1 were transfected into HepG2 and huh7 cell lines which were then divided into six groups: miR-122 group, anti-miR-122 group, miR-negative control (NC) group, anti-miR-NC group, miR-122 + Wnt1 group, and miR-122 + vector group. The miR-122 expressions and mRNA expressions of Wnt1 and EMT-related genes (E-cadherin, vimentin, β-cadherin, and N-cadherin) were quantified by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression levels of Wnt1, E-cadherin, vimentin, β-cadherin, and N-cadherin were measured by Western blot. Cell proliferation, migration, and invasion were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, wound-healing assay, and Transwell assay, respectively. Results Dual luciferase reporter gene results showed that Wnt1 is a direct target gene of miR-122 in both HepG2 and huh7 cell lines. Compared to miR-NC, anti-miR-NC, and miR-122 + Wnt1 groups, miR-122 expression was markedly higher in the miR-122 group and miR-122 + vector group, but was sharply decreased in anti-miR-122 group (both P<0.05), and the mRNA and protein levels of Wnt1, vimentin, β-cadherin, and N-cadherin decreased significantly; also E-cadherin increased, and cell proliferation, migration, and invasion decreased in the miR-122 group and miR-122 + vector group (all P<0.05), but the situation was totally reversed in the anti-miR-122 group (all P<0.05). Conclusion Downregulation of miR-122 promoted proliferation, migration, and invasion of human HCC cells by targeting Wnt1 and regulating Wnt/β-catenin pathway which activated the EMT pathways.
Collapse
Affiliation(s)
- Nanyao Wang
- Department of Oncology, The Affiliated Jiangyin Hospital, School of Medicine, Southeast University, Jiangyin, Jiangsu, People's Republic of China
| | - Qiong Wang
- Department of Oncology, The Affiliated Jiangyin Hospital, School of Medicine, Southeast University, Jiangyin, Jiangsu, People's Republic of China
| | - Dong Shen
- Department of Oncology, The Affiliated Jiangyin Hospital, School of Medicine, Southeast University, Jiangyin, Jiangsu, People's Republic of China
| | - Xia Sun
- Department of Oncology, The Affiliated Jiangyin Hospital, School of Medicine, Southeast University, Jiangyin, Jiangsu, People's Republic of China
| | - Xiangming Cao
- Department of Oncology, The Affiliated Jiangyin Hospital, School of Medicine, Southeast University, Jiangyin, Jiangsu, People's Republic of China
| | - Dan Wu
- Department of Oncology, The Affiliated Jiangyin Hospital, School of Medicine, Southeast University, Jiangyin, Jiangsu, People's Republic of China
| |
Collapse
|
46
|
Zhang L, Yu Y, Xia X, Ma Y, Chen XW, Ni ZH, Wang H. Transcription factor E2-2 inhibits the proliferation of endothelial progenitor cells by suppressing autophagy. Int J Mol Med 2016; 37:1254-62. [PMID: 26986900 PMCID: PMC4829128 DOI: 10.3892/ijmm.2016.2521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 02/24/2016] [Indexed: 12/17/2022] Open
Abstract
Endothelial progenitor cells (EPCs) play a key role in repairing the injured vascular endothelium by differentiating into mature endothelial cells (ECs) or secreting cytokines in a paracrine manner to promote proliferation of existing ECs. However, the mechanisms underlying the proliferation of EPCs were not fully understood. In order to investigate the mechanisms of EPC proliferation, we isolated EPCs from mononuclear cells of mouse spleens. By manipulating E2-2 expression in vitro, we observed that E2-2 negatively regulated the proliferation of EPCs. Moreover, we noted that E2-2 negatively regulated the autophagy of EPCs by studying the expression of LC3II and p62. We also demonstrated that an autophagy inhibitor chloroquine (CQ) decreased the proliferation of EPCs in a concentration-dependent manner. Interestingly, CQ reversed the increase in cell proliferation and autophagy in the E2-2 knockdown group. Furthermore, we detected the expression of autophagy‑related protein ATG7 in EPCs which had been transfected with small interfering (siRNA)‑E2-2 and siRNA‑autophagy related 7 (ATG7) or were untransfected. Our study revealed that E2-2 regulated EPC autophagy via mediating ATG7 expression. We conclude that E2-2 inhibited EPC proliferation via suppressing their autophagy, and E2-2 regulated EPC autophagy by mediating the expression of ATG7.
Collapse
Affiliation(s)
- Li Zhang
- Department of Postgraduate, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yang Yu
- Department of Cardiology, Institute of Cardiovascular Science of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xi Xia
- Department of Geriatrics, Kunming General Hospital of Chengdu Military Area, Kunming, Yunnan 650032, P.R. China
| | - Yang Ma
- Department of Geriatrics, Kunming General Hospital of Chengdu Military Area, Kunming, Yunnan 650032, P.R. China
| | - Xie-Wan Chen
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zhen-Hong Ni
- Department of Biochemistry, Third Military Medical University, Chongqing 400038, P.R. China
| | - Hong Wang
- Department of Geriatrics, Kunming General Hospital of Chengdu Military Area, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
47
|
Abstract
Fuchs endothelial corneal dystrophy (FECD) is the most common corneal dystrophy and frequently results in vision loss. Hallmarks of the disease include loss of corneal endothelial cells and formation of excrescences of Descemet's membrane. Later stages involve all layers of the cornea. Impairment of endothelial barrier and pump function and cell death from oxidative and unfolded protein stress contribute to disease progression. The genetic basis of FECD includes numerous genes and chromosomal loci, although alterations in the transcription factor 4 gene are associated with the majority of cases. Definitive treatment of FECD is corneal transplantation. In this paper, we highlight advances that have been made in understanding FECD's clinical features, pathophysiology, and genetics. We also discuss recent advances in endothelial keratoplasty and potential future treatments.
Collapse
Affiliation(s)
- Gustavo Vedana
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | - Albert S Jun
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
48
|
Díaz VM, de Herreros AG. F-box proteins: Keeping the epithelial-to-mesenchymal transition (EMT) in check. Semin Cancer Biol 2016; 36:71-9. [DOI: 10.1016/j.semcancer.2015.10.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/01/2015] [Accepted: 10/17/2015] [Indexed: 12/22/2022]
|
49
|
Kaller M, Hermeking H. Interplay Between Transcription Factors and MicroRNAs Regulating Epithelial-Mesenchymal Transitions in Colorectal Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 937:71-92. [DOI: 10.1007/978-3-319-42059-2_4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Wei XL, Dou XW, Bai JW, Luo XR, Qiu SQ, Xi DD, Huang WH, Du CW, Man K, Zhang GJ. ERα inhibits epithelial-mesenchymal transition by suppressing Bmi1 in breast cancer. Oncotarget 2015; 6:21704-17. [PMID: 26023734 PMCID: PMC4673297 DOI: 10.18632/oncotarget.3966] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/30/2015] [Indexed: 02/05/2023] Open
Abstract
In human breast cancer, estrogen receptor-α (ERα) suppresses epithelial-mesenchymal transition (EMT) and stemness, two crucial parameters for tumor metastasis; however, the underlying mechanism by which ERα regulates these two processes remains largely unknown. Bmi1, the polycomb group protein B lymphoma Mo-MLV insertion region 1 homolog, regulates EMT transition, maintains the self-renewal capacity of stem cells, and is frequently overexpressed in human cancers. In the present study, ERα upregulated the expression of the epithelial marker, E-cadherin, in breast cancer cells through the transcriptional down-regulation of Bmi1. Furthermore, ERα overexpression suppressed the migration, invasion, and EMT of breast cancer cells. Notably, overexpression of ERα significantly decreased the CD44high/CD24low cell population and inhibited the capacity for mammosphere formation in ERα-negative breast cancer cells. In addition, overexpression of Bmi1 attenuated the ERα-mediated suppression of EMT and cell stemness. Immunohistochemistry revealed an inverse association of ERα and Bmi1 expression in human breast cancer tissue. Taken together, our findings suggest that ERα inhibits EMT and stemness through the downregulation of Bmi1.
Collapse
Affiliation(s)
- Xiao-Long Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou 515031, China
- Changjiang Scholar's Laboratory and Cancer Research Center, Shantou University Medical College, Shantou 515031, China
| | - Xiao-Wei Dou
- Changjiang Scholar's Laboratory and Cancer Research Center, Shantou University Medical College, Shantou 515031, China
| | - Jing-Wen Bai
- Changjiang Scholar's Laboratory and Cancer Research Center, Shantou University Medical College, Shantou 515031, China
| | - Xiang-Rong Luo
- Changjiang Scholar's Laboratory and Cancer Research Center, Shantou University Medical College, Shantou 515031, China
| | - Si-Qi Qiu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515031, China
| | - Di-Di Xi
- Changjiang Scholar's Laboratory and Cancer Research Center, Shantou University Medical College, Shantou 515031, China
| | - Wen-He Huang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515031, China
| | - Cai-Wen Du
- Department of Breast Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, China
| | - Kwan Man
- Department of Surgery and Transplantation, Li Ka Shing Faculty of Medicine, Hong Kong University, Hong Kong 999077, China
| | - Guo-Jun Zhang
- Changjiang Scholar's Laboratory and Cancer Research Center, Shantou University Medical College, Shantou 515031, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515031, China
| |
Collapse
|