1
|
Klimovich PS, Semina EV, Karagyaur MN, Rysenkova KD, Sysoeva VY, Mironov NA, Sagaradze GD, Az'muko AA, Popov VS, Rubina KA, Tkachuk VA. Urokinase receptor regulates nerve regeneration through its interaction with α5β1-integrin. Biomed Pharmacother 2020; 125:110008. [PMID: 32187956 DOI: 10.1016/j.biopha.2020.110008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/30/2020] [Accepted: 02/12/2020] [Indexed: 10/24/2022] Open
Abstract
PURPOSE Urokinase receptor (uPAR) promotes extracellular matrix proteolysis, regulates adhesion and cell migration, transduces intracellular signals through interactions with the lateral partners. The expression of uPAR and urokinase (uPA) is significantly upregulated in peripheral nerves after injury, however, little is known about uPAR function in nerve regeneration or the molecular mechanisms involved. The purpose of this study is to investigate the role of uPAR in nerve regeneration after traumatic injury of n. Peroneus communis in uPA-/-, uPAR-/- or control mice (WT) and in neuritogenesis in an in vitro Neuro 2A cell model. RESULTS Electrophysiological analysis indicates that nerve recovery is significantly impaired in uPAR-/- mice, but not in uPA-/- mice. These data correlate with the reduced amount of NF200-positive axons in regenerating nerves from uPAR-/- mice compared to uPA-/- or control mice. There is an increase in uPAR expression and remarkable colocalization of uPAR with α5 and β1 integrin in uPA-/- mice in recovering nerves, pointing to a potential link between uPAR and its lateral partner α5β1-integrin. Using an in vitro model of neuritogenesis and α325 blocking peptide, which abrogates uPAR-α5β1 interaction in Neuro 2A cells but has no effect on their function, we have further confirmed the significance of uPAR-α5β1 interaction. CONCLUSION Taken together, we report evidence pointing to an important role of uPAR, rather than uPA, in peripheral nerve recovery and neuritogenesis.
Collapse
Affiliation(s)
- P S Klimovich
- Laboratory of Molecular Endocrinology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 3d Cherepkovskaya st. 15а, Moscow, 121552, Russia; Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 27-1, Moscow, 119991, Russia
| | - E V Semina
- Laboratory of Molecular Endocrinology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 3d Cherepkovskaya st. 15а, Moscow, 121552, Russia; Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 27-1, Moscow, 119991, Russia.
| | - M N Karagyaur
- Institute of Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovsky av. 27-10, Moscow, 119191, Russia
| | - K D Rysenkova
- Laboratory of Molecular Endocrinology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 3d Cherepkovskaya st. 15а, Moscow, 121552, Russia; Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 27-1, Moscow, 119991, Russia
| | - V Yu Sysoeva
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 27-1, Moscow, 119991, Russia
| | - N A Mironov
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 27-1, Moscow, 119991, Russia
| | - G D Sagaradze
- Institute of Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovsky av. 27-10, Moscow, 119191, Russia
| | - A A Az'muko
- Laboratory for the Synthesis of Peptides, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 3d Cherepkovskaya st. 15а, Moscow, 121552, Russia
| | - V S Popov
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 27-1, Moscow, 119991, Russia
| | - K A Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 27-1, Moscow, 119991, Russia; Laboratory of Morphogenesis and Tissue Reparation, Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 27-1, Moscow, 119991, Russia
| | - V A Tkachuk
- Laboratory of Molecular Endocrinology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 3d Cherepkovskaya st. 15а, Moscow, 121552, Russia; Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky av. 27-1, Moscow, 119991, Russia; Institute of Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovsky av. 27-10, Moscow, 119191, Russia
| |
Collapse
|
2
|
Pu W, Nassar ZD, Khabbazi S, Xie N, McMahon KA, Parton RG, Riggins GJ, Harris JM, Parat MO. Correlation of the invasive potential of glioblastoma and expression of caveola-forming proteins caveolin-1 and CAVIN1. J Neurooncol 2019; 143:207-220. [PMID: 30949900 DOI: 10.1007/s11060-019-03161-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common primary brain cancer. The average survival time for the majority of patients is approximately 15 months after diagnosis. A major feature of GBM that contributes to its poor prognosis is its high invasiveness. Caveolae are plasma membrane subdomains that participate in numerous biological functions. Caveolin-1 and Caveolae Associated Protein 1 (CAVIN1), formerly termed Polymerase I and Transcript Release Factor, are both necessary for caveola formation. We hypothesized that high expression of caveola-forming proteins in GBM promotes invasiveness via modulation of the production of matrix-degrading enzymes. METHODS The mRNA expression of caveola-forming proteins and matrix proteases in GBM samples, and survival after stratifying patients according to caveolin-1 or CAVIN1 expression, were analyzed from TCGA and REMBRANDT databases. The proteolytic profile of cell lines expressing or devoid of caveola-forming proteins was investigated using zymography and real-time qPCR. Invasion through basement membrane-like protein was investigated in vitro. RESULTS Expression of both caveolin-1 and CAVIN1 was increased in GBM compared to normal samples and correlated with expression of urokinase plasminogen activator (uPA) and gelatinases. High expression of caveola-forming proteins was associated with shorter survival time. GBM cell lines capable of forming caveolae expressed more uPA and matrix metalloproteinase-2 (MMP-2) and/or -9 (MMP-9) and were more invasive than GBM cells devoid of caveola-forming proteins. Experimental manipulation of caveolin-1 or CAVIN1 expression in GBM cells recapitulated some, but not all of these features. Caveolae modulate GBM cell invasion in part via matrix protease expression.
Collapse
Affiliation(s)
- Wenjun Pu
- PACE, University of Queensland School of Pharmacy, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Zeyad D Nassar
- School of Medicine and Freemasons Foundation Centre for Men's Health, South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| | - Samira Khabbazi
- PACE, University of Queensland School of Pharmacy, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Nan Xie
- PACE, University of Queensland School of Pharmacy, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Kerrie-Ann McMahon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Gregory J Riggins
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21213, USA
| | - Jonathan M Harris
- Institute of Health Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Marie-Odile Parat
- PACE, University of Queensland School of Pharmacy, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
3
|
Kanno Y. The Role of Fibrinolytic Regulators in Vascular Dysfunction of Systemic Sclerosis. Int J Mol Sci 2019; 20:ijms20030619. [PMID: 30709025 PMCID: PMC6387418 DOI: 10.3390/ijms20030619] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 02/08/2023] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disease of autoimmune origin characterized by vascular dysfunction and extensive fibrosis of the skin and visceral organs. Vascular dysfunction is caused by endothelial cell (EC) apoptosis, defective angiogenesis, defective vasculogenesis, endothelial-to-mesenchymal transition (EndoMT), and coagulation abnormalities, and exacerbates the disease. Fibrinolytic regulators, such as plasminogen (Plg), plasmin, α2-antiplasmin (α2AP), tissue-type plasminogen activator (tPA), urokinase-type plasminogen activator (uPA) and its receptor (uPAR), plasminogen activator inhibitor 1 (PAI-1), and angiostatin, are considered to play an important role in the maintenance of endothelial homeostasis, and are associated with the endothelial dysfunction of SSc. This review considers the roles of fibrinolytic factors in vascular dysfunction of SSc.
Collapse
Affiliation(s)
- Yosuke Kanno
- Department of Clinical Pathological Biochemistry, Faculty of Pharmaceutical Science, Doshisha Women's College of Liberal Arts, 97-1 Kodo Kyo-tanabe, Kyoto 610-0395, Japan.
| |
Collapse
|
4
|
Hwang IH, Kwon YK, Cho CK, Lee YW, Sung JS, Joo JC, Lee KB, Yoo HS, Jang IS. Modified Panax ginseng Extract Inhibits uPAR-Mediated α5β1-Integrin Signaling by Modulating Caveolin-1 to Induce Early Apoptosis in Lung Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1081-97. [PMID: 27430913 DOI: 10.1142/s0192415x16500609] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Urokinase receptor (uPAR) is enhanced in many human cancer cells and is frequently an indicator of poor prognosis. Activation of [Formula: see text]1-integrin requires caveolin-1 and is regulated by uPAR. However, the underlying molecular mechanism responsible for the interaction between uPAR and [Formula: see text]1-integrin remains obscure. We found that modified regular Panax ginseng extract (MRGX) had a negative modulating effect on the uPAR/[Formula: see text]1-integrin interaction, disrupted the uPAR/integrin interaction by modulating caveoline-1, and caused early apoptosis in cancer cells. Additionally, we found that siRNA-mediated caveoline-1 downregulation inhibited uPAR-mediated [Formula: see text]1-integrin signaling, whereas caveoline-1 up-regulation stimulated the signaling, which suppressed p53 expression, thereby indicating negative crosstalk exists between the integrin [Formula: see text]1 and the p53 pathways. Thus, these findings identify a novel mechanism whereby the inhibition of [Formula: see text]1 integrin and the activation of p53 modulate the expression of the anti-apoptotic proteins that are crucially involved in inducing apoptosis in A549 lung cancer cells. Furthermore, MRGX causes changes in the expressions of members of the Bcl-2 family (Bax and Bcl-2) in a pro-apoptotic manner. In addition, MGRX-mediated inhibition of [Formula: see text]1 integrin attenuates ERK phosphorylation (p-ERK), which up-regulates caspase-8 and Bax. Therefore, ERK may affect mitochondria through a negative regulation of caspase-8 and Bax. Taken together, these findings reveal that MRGX is involved in uPAR-[Formula: see text]1-integrin signaling by modulating caveolin-1 signaling to induce early apoptosis in A549 lung-cancer cells and strongly indicate that MRGX might be useful as a herbal medicine and may lead to the development of new herbal medicine that would suppress the growth of lung-cancer cells.
Collapse
Affiliation(s)
- In-Hu Hwang
- Department of Physiology, Korea University College of Medicine, Seoul 136-705, Republic of Korea
| | - Yong-Kyun Kwon
- East-West Cancer Center, Daejeon University, Daejeon 302-120, Republic of Korea
| | - Chong-Kwan Cho
- East-West Cancer Center, Daejeon University, Daejeon 302-120, Republic of Korea
| | - Yeon-Weol Lee
- East-West Cancer Center, Daejeon University, Daejeon 302-120, Republic of Korea
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Jong-Cheon Joo
- Department of Sasang Constitutional Medicine, Wonkwang University Oriental Medical Hospital, Jeonju 54887, Republic of Korea
| | - Kyung-Bok Lee
- Division of Bioconvergence, Korea Basic Science Institute, Daejeon 305-333, Korea
| | - Hwa-Seung Yoo
- East-West Cancer Center, Daejeon University, Daejeon 302-120, Republic of Korea
| | - Ik-Soon Jang
- Division of Bioconvergence, Korea Basic Science Institute, Daejeon 305-333, Korea
| |
Collapse
|
5
|
Lesser-Known Molecules in Ovarian Carcinogenesis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:321740. [PMID: 26339605 PMCID: PMC4538335 DOI: 10.1155/2015/321740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 06/14/2015] [Accepted: 07/07/2015] [Indexed: 12/23/2022]
Abstract
Currently, the deciphering of the signaling pathways brings about new advances in the understanding of the pathogenic mechanism of ovarian carcinogenesis, which is based on the interaction of several molecules with different biochemical structure that, consequently, intervene in cell metabolism, through their role as regulators in proliferation, differentiation, and cell death. Given that the ensemble of biomarkers in OC includes more than 50 molecules the interest of the researchers focuses on the possible validation of each one's potential as prognosis markers and/or therapeutic targets. Within this framework, this review presents three protein molecules: ALCAM, c-FLIP, and caveolin, motivated by the perspectives provided through the current limited knowledge on their role in ovarian carcinogenesis and on their potential as prognosis factors. Their structural stability, once altered, triggers the initiation of the sequences characteristic for ovarian carcinogenesis, through their role as modulators for several signaling pathways, contributing to the disruption of cellular junctions, disturbance of pro-/antiapoptotic equilibrium, and alteration of transmission of the signals specific for the molecular pathways. For each molecule, the text is built as follows: (i) general remarks, (ii) structural details, and (iii) particularities in expression, from different tumors to landmarks in ovarian carcinoma.
Collapse
|
6
|
Yoneda A. Fibronectin Matrix Assembly and Its Significant Role in Cancer Progression and Treatment. TRENDS GLYCOSCI GLYC 2015. [DOI: 10.4052/tigg.1421.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Atsuko Yoneda
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
7
|
Konkel ME, Samuelson DR, Eucker TP, Shelden EA, O'Loughlin JL. Invasion of epithelial cells by Campylobacter jejuni is independent of caveolae. Cell Commun Signal 2013; 11:100. [PMID: 24364863 PMCID: PMC3880046 DOI: 10.1186/1478-811x-11-100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 12/17/2013] [Indexed: 11/20/2022] Open
Abstract
Caveolae are 25–100 nm flask-like membrane structures enriched in cholesterol and glycosphingolipids. Researchers have proposed that Campylobacter jejuni require caveolae for cell invasion based on the finding that treatment of cells with the cholesterol-depleting compounds filipin III or methyl-β-cyclodextrin (MβCD) block bacterial internalization in a dose-dependent manner. The purpose of this study was to determine the role of caveolae and caveolin-1, a principal component of caveolae, in C. jejuni internalization. Consistent with previous work, we found that the treatment of HeLa cells with MβCD inhibited C. jejuni internalization. However, we also found that the treatment of HeLa cells with caveolin-1 siRNA, which resulted in greater than a 90% knockdown in caveolin-1 protein levels, had no effect on C. jejuni internalization. Based on this observation we performed a series of experiments that demonstrate that MβCD acts broadly, disrupting host cell lipid rafts and C. jejuni-induced cell signaling. More specifically, we found that MβCD inhibits the cellular events necessary for C. jejuni internalization, including membrane ruffling and Rac1 GTPase activation. We also demonstrate that MβCD disrupted the association of the β1 integrin and EGF receptor, which are required for the maximal invasion of epithelial cells. In agreement with these findings, C. jejuni were able to invade human Caco-2 cells, which are devoid of caveolae, at a level equal to that of HeLa cells. Taken together, the results of our study demonstrate that C. jejuni internalization occurs in a caveolae-independent manner.
Collapse
Affiliation(s)
- Michael E Konkel
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Life Sciences Bldg, Room 302c, Pullman, WA, USA.
| | | | | | | | | |
Collapse
|
8
|
Immunocytochemical and biochemical detection of the urokinase-type plasminogen activator receptor (uPAR) in the rat tooth germ and in lipid rafts of PMA-stimulated dental epithelial cells. Histochem Cell Biol 2013; 140:649-58. [DOI: 10.1007/s00418-013-1109-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2013] [Indexed: 11/25/2022]
|
9
|
Shear Stress Activates eNOS at the Endothelial Apical Surface Through β1 Containing Integrins and Caveolae. Cell Mol Bioeng 2013; 6:346-354. [PMID: 23956799 DOI: 10.1007/s12195-013-0276-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
There is now a large body of evidence demonstrating that fluid mechanical forces generated by blood flowing through the vasculature play a direct role in regulating endothelial cell structure and function. Integrin receptors that localize to the basal surface of the endothelium participate in both outside-in and inside-out signaling events that influence endothelial gene expression and morphology in response to flow. Our analyses of apical plasma membranes derived from cultured bovine aortic endothelial cells revealed that integrins are also expressed on this cell surface. Here, we tested whether these integrins participate in mechanotransduction events that are known to occur on the endothelial cell luminal/apical membrane. We found that apically expressed β1 integrins are rapidly activated in response to acute shear stress. Blockade of β1 integrin activation attenuated a shear-induced signaling cascade involving Src-family kinase, PI3-kinase, Akt and eNOS on this cell surface. In addition, β1 integrin activation and associated signaling events were dependent on the structural integrity of caveolae but not the actin cytoskeleton. Taken together, these data indicate that endothelial responses to shear stress are mediated by spatially distinct pools of integrins.
Collapse
|
10
|
Yan Q, Bach DQ, Gatla N, Sun P, Liu JW, Lu JY, Paller AS, Wang XQ. Deacetylated GM3 promotes uPAR-associated membrane molecular complex to activate p38 MAPK in metastatic melanoma. Mol Cancer Res 2013; 11:665-75. [PMID: 23525268 DOI: 10.1158/1541-7786.mcr-12-0270-t] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
GM3, the simplest ganglioside, regulates cell proliferation, migration, and invasion by influencing cell signaling at the membrane level. Although the classic N-acetylated form of GM3 (NeuAcLacCer) is commonly expressed and has been well studied, deacetylated GM3 (NeuNH2LacCer, d-GM3) has been poorly investigated, despite its presence in metastatic tumors but not in noninvasive melanomas or benign nevi. We have recently found that d-GM3 stimulates cell migration and invasion by activating urokinase plasminogen activator receptor (uPAR) signaling to augment matrix metalloproteinase-2 (MMP-2) function. However, the mechanisms by which d-GM3/uPAR increase MMP-2 expression and activation are not clear. By modifying the expression of d-GM3 genetically and biochemically, we found that decreasing d-GM3 expression inhibits, whereas overexpressing d-GM3 stimulates, p38 mitogen-activated protein kinase (MAPK) activity to influence MMP-2 expression and activation. p38 MAPK (p38) activation requires the formation of a membrane complex that contains uPAR, caveolin-1, and integrin α5β1 in membrane lipid rafts. In addition, knocking down or inhibiting focal adhesion kinase (FAK), phosphoinositide 3-kinase (PI3K), or Src kinase significantly reduces d-GM3-induced p38 phosphorylation and activation. Taken together, these results suggest that d-GM3 enhances the metastatic phenotype by activating p38 signaling through uPAR/integrin signaling with FAK, PI3K, and Src kinase as intermediates. Elucidation of the mechanisms by which d-GM3, a newly discovered, potential biomarker of metastatic melanomas, promotes cell metastasis will help us to understand the function of d-GM3 in metastatic melanomas and may lead to novel GM3-based cancer therapies.
Collapse
Affiliation(s)
- Qiu Yan
- Department of Dermatology and Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Xu K, Usary J, Kousis PC, Prat A, Wang DY, Adams JR, Wang W, Loch AJ, Deng T, Zhao W, Cardiff RD, Yoon K, Gaiano N, Ling V, Beyene J, Zacksenhaus E, Gridley T, Leong WL, Guidos CJ, Perou CM, Egan SE. Lunatic fringe deficiency cooperates with the Met/Caveolin gene amplicon to induce basal-like breast cancer. Cancer Cell 2012; 21:626-641. [PMID: 22624713 PMCID: PMC3603366 DOI: 10.1016/j.ccr.2012.03.041] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 10/31/2011] [Accepted: 03/08/2012] [Indexed: 12/17/2022]
Abstract
Basal-like breast cancers (BLBC) express a luminal progenitor gene signature. Notch receptor signaling promotes luminal cell fate specification in the mammary gland, while suppressing stem cell self-renewal. Here we show that deletion of Lfng, a sugar transferase that prevents Notch activation by Jagged ligands, enhances stem/progenitor cell proliferation. Mammary-specific deletion of Lfng induces basal-like and claudin-low tumors with accumulation of Notch intracellular domain fragments, increased expression of proliferation-associated Notch targets, amplification of the Met/Caveolin locus, and elevated Met and Igf-1R signaling. Human BL breast tumors, commonly associated with JAGGED expression, elevated MET signaling, and CAVEOLIN accumulation, express low levels of LFNG. Thus, reduced LFNG expression facilitates JAG/NOTCH luminal progenitor signaling and cooperates with MET/CAVEOLIN basal-type signaling to promote BLBC.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Calcium-Binding Proteins/metabolism
- Caveolins/genetics
- Caveolins/metabolism
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- Claudins/metabolism
- Databases, Genetic
- Female
- Gene Expression Profiling/methods
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Neoplastic
- Glycosyltransferases/deficiency
- Glycosyltransferases/genetics
- Glycosyltransferases/metabolism
- Humans
- Immunohistochemistry
- Intercellular Signaling Peptides and Proteins/metabolism
- Jagged-1 Protein
- Mammary Glands, Animal/enzymology
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/pathology
- Mammary Glands, Animal/transplantation
- Mammary Neoplasms, Experimental/enzymology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Membrane Proteins/metabolism
- Mice
- Mice, Knockout
- Middle Aged
- Neoplastic Stem Cells/enzymology
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/transplantation
- Oligonucleotide Array Sequence Analysis
- Proto-Oncogene Proteins c-met/genetics
- Proto-Oncogene Proteins c-met/metabolism
- Receptor, IGF Type 1/metabolism
- Receptors, Notch/metabolism
- Serrate-Jagged Proteins
- Signal Transduction
Collapse
Affiliation(s)
- Keli Xu
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada
| | - Jerry Usary
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Philaretos C Kousis
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada
| | - Aleix Prat
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dong-Yu Wang
- The Campbell Family Cancer Research Institute and Surgical Oncology Princess Margaret Hospital, and the Department of General Surgery, University Health Network, Toronto, ON M5S 1A1, Canada
| | - Jessica R Adams
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Wei Wang
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada
| | - Amanda J Loch
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada
| | - Tao Deng
- Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, ON M5S 1A1, Canada
| | - Wei Zhao
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Keejung Yoon
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas Gaiano
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vicki Ling
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada; Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada
| | - Joseph Beyene
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada
| | - Eldad Zacksenhaus
- Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, ON M5S 1A1, Canada
| | - Tom Gridley
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | - Wey L Leong
- The Campbell Family Cancer Research Institute and Surgical Oncology Princess Margaret Hospital, and the Department of General Surgery, University Health Network, Toronto, ON M5S 1A1, Canada
| | - Cynthia J Guidos
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, Departments of Genetics and Pathology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sean E Egan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1L7, Canada; The Campbell Family Cancer Research Institute and Surgical Oncology Princess Margaret Hospital, and the Department of General Surgery, University Health Network, Toronto, ON M5S 1A1, Canada.
| |
Collapse
|
12
|
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumor and is characterized by high invasiveness, poor prognosis, and limited therapeutic options. Biochemical and morphological experiments have shown the presence of caveolae in glioblastoma cells. Caveolae are flask-shaped plasma membrane subdomains that play trafficking, mechanosensing, and signaling roles. Caveolin-1 is a membrane protein that participates in the formation of caveolae and binds a multitude of signaling proteins, compartmentalizing them in caveolae and often directly regulating their activity via binding to its scaffolding domain. Caveolin-1 has been proposed to behave either as a tumor suppressor or as an ongogene depending on the tumor type and progress. This review discusses the existing information on the expression and function of caveolin-1 and caveolae in GBM and the role of this organelle and its defining protein on cellular signaling, growth, and invasiveness of GBM. We further analyze the available data suggesting caveolin-1 could be a target in GBM therapy.
Collapse
Affiliation(s)
- Marie-Odile Parat
- University of Queensland School of Pharmacy, PACE, 20 Cornwall St., Woollloongabba QLD 4102, Australia.
| | | |
Collapse
|
13
|
Zhang Y, Peng F, Gao B, Ingram AJ, Krepinsky JC. High glucose-induced RhoA activation requires caveolae and PKCβ1-mediated ROS generation. Am J Physiol Renal Physiol 2011; 302:F159-72. [PMID: 21975875 DOI: 10.1152/ajprenal.00749.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glomerular matrix accumulation is a hallmark of diabetic nephropathy. We previously showed that RhoA activation by high glucose in mesangial cells (MC) leads to matrix upregulation (Peng F, Wu D, Gao B, Ingram AJ, Zhang B, Chorneyko K, McKenzie R, Krepinsky JC. Diabetes 57: 1683-1692, 2008). Here, we study the mechanism whereby RhoA is activated. In primary rat MC, RhoA activation required glucose entry and metabolism. Broad PKC inhibitors (PMA, bisindolylmaleimide, Gö6976), as well as specific PKCβ blockade with an inhibitor and small interfering RNA (siRNA), prevented RhoA activation by glucose. PKCβ inhibition also abrogated reactive oxygen species (ROS) generation by glucose. The ROS scavenger N-acetylcysteine (NAC) or NADPH oxidase inhibitors apocynin and DPI prevented glucose-induced RhoA activation. RhoA and some PKC isoforms localize to caveolae. Chemical disruption of these microdomains prevented RhoA and PKCβ1 activation by glucose. In caveolin-1 knockout cells, glucose did not induce RhoA and PKCβ1 activation; these responses were rescued by caveolin-1 reexpression. Furthermore, glucose-induced ROS generation was significantly attenuated by chemical disruption of caveolae and in knockout cells. Downstream of RhoA signaling, activator protein-1 (AP-1) activation was also inhibited by disrupting caveolae, was absent in caveolin-1 knockout MC and rescued by caveolin-1 reexpression. Finally, transforming growth factor (TGF)-β1 upregulation, mediated by AP-1, was prevented by RhoA signaling inhibition and by disruption or absence of caveolae. In conclusion, RhoA activation by glucose is dependent on PKCβ1-induced ROS generation, most likely through NADPH oxidase. The activation of PKCβ1 and its downstream effects, including upregulation of TGF-β1, requires caveolae. These microdomains are thus important mediators of the profibrogenic process associated with diabetic nephropathy.
Collapse
Affiliation(s)
- Y Zhang
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
14
|
To WS, Midwood KS. Plasma and cellular fibronectin: distinct and independent functions during tissue repair. FIBROGENESIS & TISSUE REPAIR 2011; 4:21. [PMID: 21923916 PMCID: PMC3182887 DOI: 10.1186/1755-1536-4-21] [Citation(s) in RCA: 412] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 09/16/2011] [Indexed: 01/01/2023]
Abstract
Fibronectin (FN) is a ubiquitous extracellular matrix (ECM) glycoprotein that plays vital roles during tissue repair. The plasma form of FN circulates in the blood, and upon tissue injury, is incorporated into fibrin clots to exert effects on platelet function and to mediate hemostasis. Cellular FN is then synthesized and assembled by cells as they migrate into the clot to reconstitute damaged tissue. The assembly of FN into a complex three-dimensional matrix during physiological repair plays a key role not only as a structural scaffold, but also as a regulator of cell function during this stage of tissue repair. FN fibrillogenesis is a complex, stepwise process that is strictly regulated by a multitude of factors. During fibrosis, there is excessive deposition of ECM, of which FN is one of the major components. Aberrant FN-matrix assembly is a major contributing factor to the switch from normal tissue repair to misregulated fibrosis. Understanding the mechanisms involved in FN assembly and how these interplay with cellular, fibrotic and immune responses may reveal targets for the future development of therapies to regulate aberrant tissue-repair processes.
Collapse
Affiliation(s)
- Wing S To
- Department of Matrix Biology, Kennedy Institute of Rheumatology Division, Nuffield Department of Orthopedic Rheumatology and Musculoskeletal Sciences, Oxford University, 65 Aspenlea Road, London, W6 8LH, UK.
| | | |
Collapse
|
15
|
Schmitz M, Klöppner S, Klopfleisch S, Möbius W, Schwartz P, Zerr I, Althaus HH. Mutual effects of caveolin and nerve growth factor signaling in pig oligodendrocytes. J Neurosci Res 2010; 88:572-88. [PMID: 19795378 DOI: 10.1002/jnr.22235] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signaling of growth factors may depend on the recruitment of their receptors to specialized microdomains. Previous reports on PC12 cells indicated an interaction of raft-organized caveolin and TrkA signaling. Because porcine oligodendrocytes (OLs) respond to nerve growth factor (NGF), we were interested to know whether caveolin also plays a role in oligodendroglial NGF/TrkA signaling. OLs expressed caveolin at the plasma membrane but also intracellularly. This was partially organized in the classically Omega-shaped invaginations, which may represent caveolae. We could show that caveolin and TrkA colocalize by using a discontinuous sucrose gradient (Song et al. [1996] J. Biol. Chem. 271:9690-9697), MACS technology, and immunoprecipitation. However, differential extraction of caveolin and TrkA with Triton X-100 at 4 degrees C indicated that caveolin and TrkA are probably not exclusively present in detergent-resistant, caveolin-containing rafts (CCRs). NGF treatment of OLs up-regulated the expression of caveolin-1 (cav-1) and stimulated tyrosine-14 phosphorylation of cav-1. Furthermore, OLs were transfected with cav-1-specific small interfering RNA (siRNA). A knockdown of cav-1 resulted in a reduced activation of downstream components of the NGF signaling cascade, such as p21Ras and mitogen-activated protein kinase (MAPK) after NGF exposure of OLs. Subsequently, increased oligodendroglial process formation via NGF was impaired. The present study indicates that CCRs/caveolin could play a modulating role during oligodendroglial differentiation and regeneration.
Collapse
Affiliation(s)
- Matthias Schmitz
- RU Neural Regeneration, Max-Planck Institute of Experimental Medicine, Goettingen, Germany.
| | | | | | | | | | | | | |
Collapse
|