1
|
Doerr S, Zhou P, Ragkousi K. Origin and development of primary animal epithelia. Bioessays 2024; 46:e2300150. [PMID: 38009581 PMCID: PMC11164562 DOI: 10.1002/bies.202300150] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Epithelia are the first organized tissues that appear during development. In many animal embryos, early divisions give rise to a polarized monolayer, the primary epithelium, rather than a random aggregate of cells. Here, we review the mechanisms by which cells organize into primary epithelia in various developmental contexts. We discuss how cells acquire polarity while undergoing early divisions. We describe cases where oriented divisions constrain cell arrangement to monolayers including organization on top of yolk surfaces. We finally discuss how epithelia emerge in embryos from animals that branched early during evolution and provide examples of epithelia-like arrangements encountered in single-celled eukaryotes. Although divergent and context-dependent mechanisms give rise to primary epithelia, here we trace the unifying principles underlying their formation.
Collapse
Affiliation(s)
- Sophia Doerr
- Department of Biology, Amherst College, Amherst, Massachusetts, USA
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, USA
| | - Phillip Zhou
- Department of Biology, Amherst College, Amherst, Massachusetts, USA
| | | |
Collapse
|
2
|
Carvalho JE, Lahaye F, Yong LW, Croce JC, Escrivá H, Yu JK, Schubert M. An Updated Staging System for Cephalochordate Development: One Table Suits Them All. Front Cell Dev Biol 2021; 9:668006. [PMID: 34095136 PMCID: PMC8174843 DOI: 10.3389/fcell.2021.668006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022] Open
Abstract
Chordates are divided into three subphyla: Vertebrata, Tunicata, and Cephalochordata. Phylogenetically, the Cephalochordata, more commonly known as lancelets or amphioxus, constitute the sister group of Vertebrata and Tunicata. Lancelets are small, benthic, marine filter feeders, and their roughly three dozen described species are divided into three genera: Branchiostoma, Epigonichthys, and Asymmetron. Due to their phylogenetic position and their stereotypical chordate morphology and genome architecture, lancelets are key models for understanding the evolutionary history of chordates. Lancelets have thus been studied by generations of scientists, with the first descriptions of adult anatomy and developmental morphology dating back to the 19th century. Today, several different lancelet species are used as laboratory models, predominantly for developmental, molecular and genomic studies. Surprisingly, however, a universal staging system and an unambiguous nomenclature for developing lancelets have not yet been adopted by the scientific community. In this work, we characterized the development of the European lancelet (Branchiostoma lanceolatum) using confocal microscopy and compiled a streamlined developmental staging system, from fertilization through larval life, including an unambiguous stage nomenclature. By tracing growth curves of the European lancelet reared at different temperatures, we were able to show that our staging system permitted an easy conversion of any developmental time into a specific stage name. Furthermore, comparisons of embryos and larvae from the European lancelet (B. lanceolatum), the Florida lancelet (Branchiostoma floridae), two Asian lancelets (Branchiostoma belcheri and Branchiostoma japonicum), and the Bahamas lancelet (Asymmetron lucayanum) demonstrated that our staging system could readily be applied to other lancelet species. Although the detailed staging description was carried out on developing B. lanceolatum, the comparisons with other lancelet species thus strongly suggested that both staging and nomenclature are applicable to all extant lancelets. We conclude that this description of embryonic and larval development will be of great use for the scientific community and that it should be adopted as the new standard for defining and naming developing lancelets. More generally, we anticipate that this work will facilitate future studies comparing representatives from different chordate lineages.
Collapse
Affiliation(s)
- João E. Carvalho
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - François Lahaye
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Luok Wen Yong
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jenifer C. Croce
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Hector Escrivá
- Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Sorbonne Université, CNRS, Banyuls-sur-Mer, France
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| |
Collapse
|
3
|
Godard BG, Dumollard R, Munro E, Chenevert J, Hebras C, McDougall A, Heisenberg CP. Apical Relaxation during Mitotic Rounding Promotes Tension-Oriented Cell Division. Dev Cell 2020; 55:695-706.e4. [PMID: 33207225 DOI: 10.1016/j.devcel.2020.10.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/09/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
Global tissue tension anisotropy has been shown to trigger stereotypical cell division orientation by elongating mitotic cells along the main tension axis. Yet, how tissue tension elongates mitotic cells despite those cells undergoing mitotic rounding (MR) by globally upregulating cortical actomyosin tension remains unclear. We addressed this question by taking advantage of ascidian embryos, consisting of a small number of interphasic and mitotic blastomeres and displaying an invariant division pattern. We found that blastomeres undergo MR by locally relaxing cortical tension at their apex, thereby allowing extrinsic pulling forces from neighboring interphasic blastomeres to polarize their shape and thus division orientation. Consistently, interfering with extrinsic forces by reducing the contractility of interphasic blastomeres or disrupting the establishment of asynchronous mitotic domains leads to aberrant mitotic cell division orientations. Thus, apical relaxation during MR constitutes a key mechanism by which tissue tension anisotropy controls stereotypical cell division orientation.
Collapse
Affiliation(s)
- Benoit G Godard
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France; Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Rémi Dumollard
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Janet Chenevert
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Céline Hebras
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Alex McDougall
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | | |
Collapse
|
4
|
Salinas-Saavedra M, Martindale MQ. Par protein localization during the early development of Mnemiopsis leidyi suggests different modes of epithelial organization in the metazoa. eLife 2020; 9:54927. [PMID: 32716297 PMCID: PMC7441587 DOI: 10.7554/elife.54927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
In bilaterians and cnidarians, epithelial cell-polarity is regulated by the interactions between Par proteins, Wnt/PCP signaling pathway, and cell-cell adhesion. Par proteins are highly conserved across Metazoa, including ctenophores. But strikingly, ctenophore genomes lack components of the Wnt/PCP pathway and cell-cell adhesion complexes raising the question if ctenophore cells are polarized by mechanisms involving Par proteins. Here, by using immunohistochemistry and live-cell imaging of specific mRNAs, we describe for the first time the subcellular localization of selected Par proteins in blastomeres and epithelial cells during the embryogenesis of the ctenophore Mnemiopsis leidyi. We show that these proteins distribute differently compared to what has been described for other animals, even though they segregate in a host-specific fashion when expressed in cnidarian embryos. This differential localization might be related to the emergence of different junctional complexes during metazoan evolution.
Collapse
Affiliation(s)
- Miguel Salinas-Saavedra
- The Whitney Laboratory for Marine Bioscience, and the Department of Biology, University of Florida, St. Augustine, United States
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, and the Department of Biology, University of Florida, St. Augustine, United States
| |
Collapse
|
5
|
Abstract
Tunicates are a diverse group of invertebrate marine chordates that includes the larvaceans, thaliaceans, and ascidians. Because of their unique evolutionary position as the sister group of the vertebrates, tunicates are invaluable as a comparative model and hold the promise of revealing both conserved and derived features of chordate gastrulation. Descriptive studies in a broad range of tunicates have revealed several important unifying traits that make them unique among the chordates, including invariant cell lineages through gastrula stages and an overall morphological simplicity. Gastrulation has only been studied in detail in ascidians such as Ciona and Phallusia, where it involves a simple cup-shaped gastrula driven primarily by endoderm invagination. This appears to differ significantly from vertebrate models, such as Xenopus, in which mesoderm convergent extension and epidermal epiboly are major contributors to involution. These differences may reflect the cellular simplicity of the ascidian embryo.
Collapse
Affiliation(s)
- Konner M Winkley
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Matthew J Kourakis
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, United States
| | - Anthony W DeTomaso
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, United States
| | - Michael T Veeman
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - William C Smith
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, United States.
| |
Collapse
|
6
|
Transgenic Techniques for Investigating Cell Biology During Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29542088 DOI: 10.1007/978-981-10-7545-2_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ascidians are increasingly being used as a system for investigating cell biology during development. The extreme genetic and cellular simplicity of ascidian embryos in combination with superior experimental tractability make this an ideal system for in vivo analysis of dynamic cellular processes. Transgenic approaches to cellular and sub-cellular analysis of ascidian development have begun to yield new insights into the mechanisms regulating developmental signaling and morphogenesis. This chapter focuses on the targeted expression of fusion proteins in ascidian embryos and how this technique is being deployed to garner new insights into the cell biology of development.
Collapse
|
7
|
Costache V, Hebras C, Pruliere G, Besnardeau L, Failla M, Copley RR, Burgess D, Chenevert J, McDougall A. Kif2 localizes to a subdomain of cortical endoplasmic reticulum that drives asymmetric spindle position. Nat Commun 2017; 8:917. [PMID: 29030551 PMCID: PMC5640700 DOI: 10.1038/s41467-017-01048-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/16/2017] [Indexed: 12/22/2022] Open
Abstract
Asymmetric positioning of the mitotic spindle is a fundamental process responsible for creating sibling cell size asymmetry; however, how the cortex causes the depolymerization of astral microtubules during asymmetric spindle positioning has remained elusive. Early ascidian embryos possess a large cortical subdomain of endoplasmic reticulum (ER) that causes asymmetric spindle positioning driving unequal cell division. Here we show that the microtubule depolymerase Kif2 localizes to this subdomain of cortical ER. Rapid live-cell imaging reveals that microtubules are less abundant in the subdomain of cortical ER. Inhibition of Kif2 function prevents the development of mitotic aster asymmetry and spindle pole movement towards the subdomain of cortical ER, whereas locally increasing microtubule depolymerization causes exaggerated asymmetric spindle positioning. This study shows that the microtubule depolymerase Kif2 is localized to a cortical subdomain of endoplasmic reticulum that is involved in asymmetric spindle positioning during unequal cell division. Early ascidian embryos have a cortical subdomain of endoplasmic reticulum (ER) that controls asymmetric spindle positioning driving unequal cell division. Here the authors show that the microtubule depolymerase Kif2 is localized to a cortical subdomain of the ER that is involved in asymmetric spindle positioning.
Collapse
Affiliation(s)
- Vlad Costache
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, Villefranche sur-mer, 06230, France
| | - Celine Hebras
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, Villefranche sur-mer, 06230, France
| | - Gerard Pruliere
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, Villefranche sur-mer, 06230, France
| | - Lydia Besnardeau
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, Villefranche sur-mer, 06230, France
| | - Margaux Failla
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, Villefranche sur-mer, 06230, France
| | - Richard R Copley
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, Villefranche sur-mer, 06230, France
| | - David Burgess
- Boston College, Biology Department, 528 Higgins Hall, 140 Commonwealth Ave, Chestnut Hill, MA, 0246, USA
| | - Janet Chenevert
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, Villefranche sur-mer, 06230, France.
| | - Alex McDougall
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanologique, Villefranche sur-mer, 06230, France.
| |
Collapse
|
8
|
Eritano AS, Altamirano A, Beyeler S, Gaytan N, Velasquez M, Riggs B. The endoplasmic reticulum is partitioned asymmetrically during mitosis before cell fate selection in proneuronal cells in the early Drosophila embryo. Mol Biol Cell 2017; 28:1530-1538. [PMID: 28381427 PMCID: PMC5449151 DOI: 10.1091/mbc.e16-09-0690] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 11/19/2022] Open
Abstract
In the early Drosophila embryo, epithelial cells begin to adopt a cell fate. At gastrulation, there is an asymmetric partitioning of the endoplasmic reticulum in a symmetrically dividing cell population before cell fate selection. These results highlight the changes in organelle distribution before asymmetric divisions. Asymmetric cell division is the primary mechanism to generate cellular diversity, and it relies on the correct partitioning of cell fate determinants. However, the mechanism by which these determinants are delivered and positioned is poorly understood, and the upstream signal to initiate asymmetric cell division is unknown. Here we report that the endoplasmic reticulum (ER) is asymmetrically partitioned during mitosis in epithelial cells just before delamination and selection of a proneural cell fate in the early Drosophila embryo. At the start of gastrulation, the ER divides asymmetrically into a population of asynchronously dividing cells at the anterior end of the embryo. We found that this asymmetric division of the ER depends on the highly conserved ER membrane protein Jagunal (Jagn). RNA inhibition of jagn just before the start of gastrulation disrupts this asymmetric division of the ER. In addition, jagn-deficient embryos display defects in apical-basal spindle orientation in delaminated embryonic neuroblasts. Our results describe a model in which an organelle is partitioned asymmetrically in an otherwise symmetrically dividing cell population just upstream of cell fate determination and updates previous models of spindle-based selection of cell fate during mitosis.
Collapse
Affiliation(s)
- Anthony S Eritano
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Arturo Altamirano
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Sarah Beyeler
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Norma Gaytan
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Mark Velasquez
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Blake Riggs
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| |
Collapse
|
9
|
Dumollard R, Minc N, Salez G, Aicha SB, Bekkouche F, Hebras C, Besnardeau L, McDougall A. The invariant cleavage pattern displayed by ascidian embryos depends on spindle positioning along the cell's longest axis in the apical plane and relies on asynchronous cell divisions. eLife 2017; 6. [PMID: 28121291 PMCID: PMC5319837 DOI: 10.7554/elife.19290] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/24/2017] [Indexed: 12/24/2022] Open
Abstract
The ascidian embryo is an ideal system to investigate how cell position is determined during embryogenesis. Using 3D timelapse imaging and computational methods we analyzed the planar cell divisions in ascidian early embryos and found that spindles in every cell tend to align at metaphase in the long length of the apical surface except in cells undergoing unequal cleavage. Furthermore, the invariant and conserved cleavage pattern of ascidian embryos was found to consist in alternate planar cell divisions between ectoderm and endomesoderm. In order to test the importance of alternate cell divisions we manipulated zygotic transcription induced by β-catenin or downregulated wee1 activity, both of which abolish this cell cycle asynchrony. Crucially, abolishing cell cycle asynchrony consistently disrupted the spindle orienting mechanism underpinning the invariant cleavage pattern. Our results demonstrate how an evolutionary conserved cell cycle asynchrony maintains the invariant cleavage pattern driving morphogenesis of the ascidian blastula. DOI:http://dx.doi.org/10.7554/eLife.19290.001 The position of cells within an embryo early in development determines what type of cells they will become in the fully formed embryo. The embryos of ascidians, commonly known as sea squirts, are ideal for studying what influences cell positioning. These embryos consist of a small number of cells that divide according to an “invariant cleavage pattern”, which means that the positioning and timing of the cell divisions is identical between different individuals of the same species. The pattern of cell division is also largely the same across different ascidian species, which raises questions about how it is controlled. When a cell divides, a structure called the spindle forms inside it to distribute copies of the cell’s genetic material between the new cells. The orientation of the spindle determines the direction in which the cell will divide. Now, by combining 3D imaging of living ascidian embryos with computational modeling, Dumollard et al. show that the spindles in every equally dividing cell tend to all align in the long length of the cell’s “apical” surface. Such alignment allows the cells to be on the outside of the embryo and implements the ascidian invariant cleavage pattern. The cells in the embryo do not all divide at the same time. Indeed, the shape of the cells (and especially their apical surface) depends on two layers of cells in the embryo not dividing at the same time; instead, periods of cell division alternate between the layers. A network of genes in the embryo regulates the timing of these cell divisions and makes it possible for the cells to divide according to an invariant cleavage pattern. However, this network of genes is not the only control mechanism that shapes the early embryo. A structure found in egg cells (and hence produced by the embryo’s mother) causes cells at the rear of the embryo to divide unequally, and this influences the shape of all the cells in the embryo. Thus it appears that maternal mechanisms work alongside the embryo’s gene network to shape the early embryo. The next step will be to determine how physical forces – for example, from the cells pressing against each other – influence the position of the embryo’s cells. How do gene networks relay the biomechanical properties of the embryo to help it take shape? DOI:http://dx.doi.org/10.7554/eLife.19290.002
Collapse
Affiliation(s)
- Rémi Dumollard
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| | - Nicolas Minc
- Institut Jacques Monod, UMR7592 CNRS, Paris, France
| | - Gregory Salez
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| | - Sameh Ben Aicha
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| | - Faisal Bekkouche
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| | - Céline Hebras
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| | - Lydia Besnardeau
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| | - Alex McDougall
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV) UMR7009, Sorbonne Universités, Université Pierre-et-Marie-Curie, CNRS, Villefranche sur mer, France
| |
Collapse
|
10
|
Abstract
Asymmetric cell division during embryogenesis contributes to cell diversity by generating daughter cells that adopt distinct developmental fates. In this chapter, we summarize current knowledge of three examples of asymmetric cell division occurring in ascidian early embryos: (1) Three successive cell divisions that are asymmetric in terms of cell fate and unequal in cell size in the germline lineage at the embryo posterior pole. A subcellular structure, the centrosome-attracting body (CAB), and maternal PEM mRNAs localized within it control both the positioning of the cell division planes and segregation of the germ cell fates. (2) Asymmetric cell divisions involving endoderm and mesoderm germ layer separation. Asymmetric partitioning of zygotically expressed mRNA for Not, a homeodomain transcription factor, promotes the mesoderm fate and suppresses the endoderm fate. This asymmetric partitioning is mediated by transient nuclear migration toward the mesodermal pole of the mother cell, where the mRNA is delivered. In this case, there is no special regulation of cleavage plane orientation. (3) Asymmetric cell divisions in the marginal region of the vegetal hemisphere. The directed extracellular FGF and ephrin signals polarize the mother cells, inducing distinct fates in a pair of daughter cells (nerve versus notochord and mesenchyme versus muscle). The directions of cell division are regulated and oriented but independently of FGF and ephrin signaling. In these examples, polarization of the mother cells is facilitated by localized maternal factors, by delivery of transcripts from the nucleus to one pole of each cell, and by directed extracellular signals. Two cellular processes-asymmetric fate allocation and orientation of the cell division plane-are coupled by a single factor in the first example, but these processes are regulated independently in the third example. Thus, various modes of asymmetric cell division operate even at the early developmental stages in this single type of organism.
Collapse
Affiliation(s)
- Takefumi Negishi
- Division of Morphogenesis, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-Cho, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
11
|
Pallesi-Pocachard E, Bazellieres E, Viallat-Lieutaud A, Delgrossi MH, Barthelemy-Requin M, Le Bivic A, Massey-Harroche D. Hook2, a microtubule-binding protein, interacts with Par6α and controls centrosome orientation during polarized cell migration. Sci Rep 2016; 6:33259. [PMID: 27624926 PMCID: PMC5021942 DOI: 10.1038/srep33259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 08/23/2016] [Indexed: 12/12/2022] Open
Abstract
Polarity protein complexes function during polarized cell migration and a subset of these proteins localizes to the reoriented centrosome during this process. Despite these observations, the mechanisms behind the recruitment of these polarity complexes such as the aPKC/PAR6α complex to the centrosome are not well understood. Here we identify Hook2 as an interactor for the aPKC/PAR6α complex that functions to localize this complex at the centrosome. We first demonstrate that Hook2 is essential for the polarized Golgi re-orientation towards the migration front. Depletion of Hook2 results in a decrease of PAR6α at the centrosome during cell migration, while overexpression of Hook2 in cells induced the formation of aggresomes with the recruitment of PAR6α, aPKC and PAR3. In addition, we demonstrate that the interaction between the C-terminal domain of Hook2 and the aPKC-binding domain of PAR6α localizes PAR6α to the centrosome during cell migration. Our data suggests that Hook2, a microtubule binding protein, plays an important role in the regulation of PAR6α recruitment to the centrosome to bridge microtubules and the aPKC/PAR complex. This data reveals how some of the polarity protein complexes are recruited to the centrosome and might regulate pericentriolar and microtubule organization and potentially impact on polarized migration.
Collapse
Affiliation(s)
- Emilie Pallesi-Pocachard
- Aix-Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), case 907, 13288 Marseille, cedex 09, France
| | - Elsa Bazellieres
- Aix-Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), case 907, 13288 Marseille, cedex 09, France
| | - Annelise Viallat-Lieutaud
- Aix-Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), case 907, 13288 Marseille, cedex 09, France
| | - Marie-Hélène Delgrossi
- Aix-Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), case 907, 13288 Marseille, cedex 09, France
| | - Magali Barthelemy-Requin
- Aix-Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), case 907, 13288 Marseille, cedex 09, France
| | - André Le Bivic
- Aix-Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), case 907, 13288 Marseille, cedex 09, France
| | - Dominique Massey-Harroche
- Aix-Marseille Univ, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), case 907, 13288 Marseille, cedex 09, France
| |
Collapse
|
12
|
Moorhouse KS, Gudejko HF, McDougall A, Burgess DR. Influence of cell polarity on early development of the sea urchin embryo. Dev Dyn 2015; 244:1469-84. [PMID: 26293695 PMCID: PMC4715636 DOI: 10.1002/dvdy.24337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 08/11/2015] [Accepted: 08/13/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Establishment and maintenance of cell polarity is critical for normal embryonic development. Previously, it was thought that the echinoderm embryo remained relatively unpolarized until the first asymmetric division at the 16-cell stage. Here, we analyzed roles of the cell polarity regulators, the PAR complex proteins, and how their disruption in early development affects later developmental milestones. RESULTS We found that PAR6, aPKC, and CDC42 localize to the apical cortex as early as the 2-cell stage and that this localization is retained through the gastrula stage. Of interest, PAR1 also colocalizes with these apical markers through the gastrula stage. Additionally, PAR1 was found to be in complex with aPKC, but not PAR6. PAR6, aPKC, and CDC42 are anchored in the cortical actin cytoskeleton by assembled myosin. Furthermore, assembled myosin was found to be necessary to maintain proper PAR6 localization through subsequent cleavage divisions. Interference with myosin assembly prevented the embryos from reaching the blastula stage, while transient disruptions of either actin or microtubules did not have this effect. CONCLUSIONS These observations suggest that disruptions of the polarity in the early embryo can have a significant impact on the ability of the embryo to reach later critical stages in development.
Collapse
Affiliation(s)
- Kathleen S. Moorhouse
- Department of Biology, Boston College, Chestnut Hill, Massachusetts
- Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Heather F.M. Gudejko
- Department of Biology, Boston College, Chestnut Hill, Massachusetts
- Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Alex McDougall
- UMR 7009, UPMC Sorbonne Universités, Centre National de la Recherche (CNRS), Observatoire Océanologique, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
| | - David R. Burgess
- Department of Biology, Boston College, Chestnut Hill, Massachusetts
- Marine Biological Laboratory, Woods Hole, Massachusetts
| |
Collapse
|
13
|
Salinas-Saavedra M, Stephenson TQ, Dunn CW, Martindale MQ. Par system components are asymmetrically localized in ectodermal epithelia, but not during early development in the sea anemone Nematostella vectensis. EvoDevo 2015; 6:20. [PMID: 26101582 PMCID: PMC4476184 DOI: 10.1186/s13227-015-0014-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/12/2015] [Indexed: 11/10/2022] Open
Abstract
Background The evolutionary origins of cell polarity in metazoan embryos are unclear. In most bilaterian animals, embryonic and cell polarity are set up during embryogenesis with the same molecules being utilized to regulate tissue polarity at different life stages. Atypical protein kinase C (aPKC), lethal giant larvae (Lgl), and Partitioning-defective (Par) proteins are conserved components of cellular polarization, and their role in establishing embryonic asymmetry and tissue polarity have been widely studied in model bilaterian groups. However, the deployment and role of these proteins in animals outside Bilateria has not been studied. We address this by characterizing the localization of different components of the Par system during early development of the sea anemone Nematostella vectensis, a member of the clade Cnidaria, the sister group to bilaterian animals. Results Immunostaining using specific N. vectensis antibodies and the overexpression of mRNA-reporter constructs show that components of the N. vectensis Par system (NvPar-1, NvPar-3, NvPar-6, NvaPKC, and NvLgl) distribute throughout the microtubule cytoskeleton of eggs and early embryos without clear polarization along any embryonic axis. However, they become asymmetrically distributed at later stages, when the embryo forms an ectodermal epithelial layer. NvLgl and NvPar-1 localize in the basolateral cortex, and NvaPKC, NvPar-6, and NvPar-3 at the apical zone of the cell in a manner seen in bilaterian animals. Conclusions The cnidarian N. vectensis exhibits clear polarity at all stages of early embryonic development, which appears to be established independent of the Par system reported in many bilaterian embryos. However, in N. vectensis, using multiple immunohistochemical and fluorescently labeled markers in vivo, components of this system are deployed to organize epithelial cell polarity at later stages of development. This suggests that Par system proteins were co-opted to organize early embryonic cell polarity at the base of the Bilateria and that, therefore, different molecular mechanisms operate in early cnidarian embryogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0014-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miguel Salinas-Saavedra
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N, Ocean Shore Blvd, St. Augustine, FL 32080-8610 USA
| | - Thomas Q Stephenson
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N, Ocean Shore Blvd, St. Augustine, FL 32080-8610 USA
| | - Casey W Dunn
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912 USA
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N, Ocean Shore Blvd, St. Augustine, FL 32080-8610 USA
| |
Collapse
|
14
|
|
15
|
Veeman M, Reeves W. Quantitative and in toto imaging in ascidians: working toward an image-centric systems biology of chordate morphogenesis. Genesis 2015; 53:143-59. [PMID: 25262824 PMCID: PMC4378666 DOI: 10.1002/dvg.22828] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/20/2014] [Accepted: 09/25/2014] [Indexed: 12/16/2022]
Abstract
Developmental biology relies heavily on microscopy to image the finely controlled cell behaviors that drive embryonic development. Most embryos are large enough that a field of view with the resolution and magnification needed to resolve single cells will not span more than a small region of the embryo. Ascidian embryos, however, are sufficiently small that they can be imaged in toto with fine subcellular detail using conventional microscopes and objectives. Unlike other model organisms with particularly small embryos, ascidians have a chordate embryonic body plan that includes a notochord, hollow dorsal neural tube, heart primordium and numerous other anatomical details conserved with the vertebrates. Here we compare the size and anatomy of ascidian embryos with those of more traditional model organisms, and relate these features to the capabilities of both conventional and exotic imaging methods. We review the emergence of Ciona and related ascidian species as model organisms for a new era of image-based developmental systems biology. We conclude by discussing some important challenges in ascidian imaging and image analysis that remain to be solved.
Collapse
Affiliation(s)
- Michael Veeman
- Division of Biology, Kansas State University, Manhattan KS, USA
| | - Wendy Reeves
- Division of Biology, Kansas State University, Manhattan KS, USA
| |
Collapse
|
16
|
Moorhouse KS, Burgess DR. How to be at the right place at the right time: the importance of spindle positioning in embryos. Mol Reprod Dev 2014; 81:884-95. [PMID: 25258000 DOI: 10.1002/mrd.22418] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 08/26/2014] [Indexed: 01/03/2023]
Abstract
Spindle positioning is an imperative cellular process that regulates a number of different developmental events throughout embryogenesis. The spindle must be properly positioned in embryos not only for the segregation of chromosomes, but also to segregate developmental determinants into different daughter blastomeres. In this review, the role of spindle positioning is explored in several different developmental model systems, which have revealed the diversity of factors that regulate spindle positioning. The C. elegans embryo, the Drosophila neuroblast, and ascidian embryos have all been utilized for the study of polarity-dependent spindle positioning, and exploration of the proteins that are required for asymmetric cell division. Work in the sea urchin embryo has examined the influence of cell shape and factors that affect secondary furrow formation. The issue of size scaling in extremely large cells, as well as the requirement for spindle positioning in developmental fate decisions in vertebrates, has been addressed by work in the Xenopus embryo. Further work in mouse oocytes has examined the roles of actin and myosin in spindle positioning. The data generated from these model organisms have made unique contributions to our knowledge of spindle positioning. Future work will address how all of these different factors work together to regulate the position of the spindle.
Collapse
|
17
|
Hashimoto N, Kurita Y, Murakami K, Wada H. Cleavage pattern and development of isolated D blastomeres in bivalves. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 324:13-21. [PMID: 25059484 DOI: 10.1002/jez.b.22585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/21/2014] [Accepted: 06/03/2014] [Indexed: 12/30/2022]
Abstract
Although bivalves develop through spiral cleavage patterns, similar to other lophotrochozoans, the cleavage pattern of D lineage blastomeres is unique, since 2d shows four rounds of stereotypic unequal cleavage before bilateral cleavage of the largest derivative of 2d: 2d(1121) . This unique modification of spiral cleavage is directly associated with the characteristic morphology of bivalves, namely, bilaterally separated shell plates, because the bilateral shell plates are thought to be derived from the bilateral derivatives of 2d(1121) . In this report, to determine whether the unique cleavage pattern of bivalves is regulated depending on the interaction with other cells or by cell autonomous mechanisms, we performed cell isolation experiments and observed subsequent cleavage patterns of isolated blastomeres. When focusing on the largest derivatives of D blastomeres, 8% of isolated D blastomeres followed the cleavage pattern of normal development up to bilateral cleavage. Importantly, the remainder of the partial embryos ended cleavage before that stage, and none of the isolated blastomeres showed abnormal cleavage patterns. We also examined the development of isolated blastomeres and found that isolated D blastomeres could develop shell plates, whereas larvae developed from AB blastomeres never had shell plates. Based on these observations, we concluded that D blastomeres control their unique cleavage pattern through intrinsic mechanisms and develop shell glands autonomously without any cell-cell interaction with other lineages.
Collapse
Affiliation(s)
- Naoki Hashimoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | | | | | | |
Collapse
|
18
|
Nakamura MJ, Hotta K, Oka K. Raman spectroscopic imaging of the whole Ciona intestinalis embryo during development. PLoS One 2013; 8:e71739. [PMID: 23977129 PMCID: PMC3748111 DOI: 10.1371/journal.pone.0071739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/02/2013] [Indexed: 11/18/2022] Open
Abstract
Intracellular composition and the distribution of bio-molecules play central roles in the specification of cell fates and morphogenesis during embryogenesis. Consequently, investigation of changes in the expression and distribution of bio-molecules, especially mRNAs and proteins, is an important challenge in developmental biology. Raman spectroscopic imaging, a non-invasive and label-free technique, allows simultaneous imaging of the intracellular composition and distribution of multiple bio-molecules. In this study, we explored the application of Raman spectroscopic imaging in the whole Ciona intestinalis embryo during development. Analysis of Raman spectra scattered from C. intestinalis embryos revealed a number of localized patterns of high Raman intensity within the embryo. Based on the observed distribution of bio-molecules, we succeeded in identifying the location and structure of differentiated muscle and endoderm within the whole embryo, up to the tailbud stage, in a label-free manner. Furthermore, during cell differentiation, we detected significant differences in cell state between muscle/endoderm daughter cells and daughter cells with other fates that had divided from the same mother cells; this was achieved by focusing on the Raman intensity of single Raman bands at 1002 or 1526 cm(-1), respectively. This study reports the first application of Raman spectroscopic imaging to the study of identifying and characterizing differentiating tissues in a whole chordate embryo. Our results suggest that Raman spectroscopic imaging is a feasible label-free technique for investigating the developmental process of the whole embryo of C. intestinalis.
Collapse
Affiliation(s)
- Mitsuru J. Nakamura
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kohoku-ku, Yokohama, Kanagawa, Japan
| | - Kohji Hotta
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kohoku-ku, Yokohama, Kanagawa, Japan
| | - Kotaro Oka
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kohoku-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
19
|
Denker E, Bocina I, Jiang D. Tubulogenesis in a simple cell cord requires the formation of bi-apical cells through two discrete Par domains. Development 2013; 140:2985-96. [PMID: 23760958 DOI: 10.1242/dev.092387] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apico-basal polarization is a crucial step in the de novo formation of biological tubes. In Ciona notochord, tubulogenesis occurs in a single file of cells in the absence of cell proliferation. This configuration presents a unique challenge for the formation of a continuous lumen. Here, we show that this geometric configuration is associated with a novel polarization strategy: the generation of bipolar epithelial cells possessing two apical/luminal domains instead of one, as in the conventional epithelium. At the molecular level, cells establish two discrete Par3/Par6/aPKC patches, and form two sets of tight junctions, in opposite points of the cells. The key molecule controlling the formation of both domains is Par3. Changing the position of the cells within the organ fundamentally changes their polarity and the number of apical domains they develop. These results reveal a new mechanism for tubulogenesis from the simplest cell arrangement, which occurs in other developmental contexts, including vertebrate vascular anastomosis.
Collapse
Affiliation(s)
- Elsa Denker
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, N-5008 Bergen, Norway
| | | | | |
Collapse
|
20
|
Ishii H, Kunihiro S, Tanaka M, Hatano K, Nishikata T. Cytosolic subunits of ATP synthase are localized to the cortical endoplasmic reticulum-rich domain of the ascidian egg myoplasm. Dev Growth Differ 2013; 54:753-66. [PMID: 23067137 DOI: 10.1111/dgd.12003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Previously, we revealed that p58, one of the ascidian maternal factors, is identical to the alpha-subunit of F1-ATP synthase (ATPα), a protein complex of the inner mitochondrial membrane. In the current study, we used immunological probes for ascidian mitochondria components to show that the ascidian ATPα is ectopically localized to the cytosol. Virtually all mitochondrial components were localized to the mitochondria-rich myoplasm. However, in detail, ATP synthase subunits and the matrix proteins showed different localization patterns. At least at the crescent stage, transmission electron microscopy (TEM) distinguished the mitochondria-less, endoplasmic reticulum (ER)-rich cortical region and the mitochondria-rich internal region. ATPα was enriched in the cortical region and MnSOD was limited to the internal region. Using subcellular fractionation, although all of the mitochondria components were highly enriched in the mitochondria-enriched fraction, a considerable amount of ATPα and F1-ATP synthase beta-subunit (ATPβ) were recovered in the insoluble cytoplasmic fraction. Even under these conditions, F1-ATP synthase gamma-subunit (ATPγ) and F0-ATP synthase subunit b (ATPb) were not recovered in the insoluble cytoplasmic fraction. This result strongly supports the exomitochondrial localization of both ATPα and ATPβ. In addition, the detergent extraction of eggs supports the idea that these cytosolic ATP synthase subunits are associated with the egg cytoskeleton. These results suggest that the subunits of ATP synthase might play dual roles at different subcellular compartments during early development.
Collapse
Affiliation(s)
- Hirokazu Ishii
- Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Kobe, Hyogo, 650-0047, Japan.
| | | | | | | | | |
Collapse
|
21
|
Chenevert J, Pruliere G, Ishii H, Sardet C, Nishikata T. Purification of mitochondrial proteins HSP60 and ATP synthase from ascidian eggs: implications for antibody specificity. PLoS One 2013; 8:e52996. [PMID: 23326373 PMCID: PMC3542361 DOI: 10.1371/journal.pone.0052996] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 11/20/2012] [Indexed: 01/25/2023] Open
Abstract
Use of antibodies is a cornerstone of biological studies and it is important to identify the recognized protein with certainty. Generally an antibody is considered specific if it labels a single band of the expected size in the tissue of interest, or has a strong affinity for the antigen produced in a heterologous system. The identity of the antibody target protein is rarely confirmed by purification and sequencing, however in many cases this may be necessary. In this study we sought to characterize the myoplasm, a mitochondria-rich domain present in eggs and segregated into tadpole muscle cells of ascidians (urochordates). The targeted proteins of two antibodies that label the myoplasm were purified using both classic immunoaffinity methods and a novel protein purification scheme based on sequential ion exchange chromatography followed by two-dimensional gel electrophoresis. Surprisingly, mass spectrometry sequencing revealed that in both cases the proteins recognized are unrelated to the original antigens. NN18, a monoclonal antibody which was raised against porcine spinal cord and recognizes the NF-M neurofilament subunit in vertebrates, in fact labels mitochondrial ATP synthase in the ascidian embryo. PMF-C13, an antibody we raised to and purified against PmMRF, which is the MyoD homolog of the ascidian Phallusia mammillata, in fact recognizes mitochondrial HSP60. High resolution immunolabeling on whole embryos and isolated cortices demonstrates localization to the inner mitochondrial membrane for both ATP synthase and HSP60. We discuss the general implications of our results for antibody specificity and the verification methods which can be used to determine unequivocally an antibody's target.
Collapse
Affiliation(s)
- Janet Chenevert
- Université Pierre et Marie Curie and CNRS, Developmental Biology Unit UMR7009, Villefranche-sur-mer, France.
| | | | | | | | | |
Collapse
|
22
|
Brown FD, Swalla BJ. Evolution and development of budding by stem cells: Ascidian coloniality as a case study. Dev Biol 2012; 369:151-62. [DOI: 10.1016/j.ydbio.2012.05.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 05/27/2012] [Accepted: 05/28/2012] [Indexed: 01/15/2023]
|
23
|
Pittman KJ, Skop AR. Anterior PAR proteins function during cytokinesis and maintain DYN-1 at the cleavage furrow in Caenorhabditis elegans. Cytoskeleton (Hoboken) 2012; 69:826-39. [PMID: 22887994 DOI: 10.1002/cm.21053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 12/25/2022]
Abstract
PAR proteins are key regulators of cellular polarity and have links to the endocytic machinery and the actin cytoskeleton. Our data suggest a unique role for PAR proteins in cytokinesis. We have found that at the onset of cytokinesis, anterior PAR-6 and posterior PAR-2 proteins are redistributed to the furrow membrane in a temporal and spatial manner. PAR-6 and PAR-2 localize to the furrow membrane during ingression but PAR-2-GFP is distinct in that it is excluded from the extreme tip of the furrow. Once the midbody has formed, PAR-2-GFP becomes restricted to the midbody region (the midbody plus the membrane flanking it). Depletion of both anterior PAR proteins, PAR-3 and PAR-6, led to an increase in multinucleate embryos, suggesting that the anterior PAR proteins are necessary during cytokinesis and that PAR-3 and PAR-6 function in cytokinesis may be partially redundant. Lastly, anterior PAR proteins play a role in the maintenance of DYN-1 in the cleavage furrow. Our data indicate that the PAR proteins are involved in the events that occur during cytokinesis and may play a role in promoting the membrane trafficking and remodeling events that occur during this time.
Collapse
Affiliation(s)
- Kelly J Pittman
- Laboratory of Genetics and Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
24
|
Makabe KW, Nishida H. Cytoplasmic localization and reorganization in ascidian eggs: role of postplasmic/PEM RNAs in axis formation and fate determination. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:501-18. [PMID: 23801532 DOI: 10.1002/wdev.54] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Localization of maternal molecules in eggs and embryos and cytoplasmic movements to relocalize them are fundamental for the orderly cellular and genetic processes during early embryogenesis. Ascidian embryos have been known as 'mosaic eggs' because of their autonomous differentiation abilities based on localized cell fate determinants. This review gives a historical overview of the concept of cytoplasmic localization, and then explains the key features such as ooplasmic movements and cell lineages that are essential to grasp the process of ascidian development mediated by localized determinant activities. These activities are partly executed by localized molecules named postplasmic/PEM RNAs, originating from approximately 50 genes, of which the muscle determinant, macho-1, is an example. The cortical domain containing these RNAs is relocalized to the posterior-vegetal region of the egg by cytoskeletal movements after fertilization, and plays crucial roles in axis formation and cell fate determination. The cortical domain contains endoplasmic reticulum and characteristic granules, and gives rise to a subcellular structure called the centrosome-attracting body (CAB), in which postplasmic/PEM RNAs are highly concentrated. The CAB is responsible for a series of unequal partitionings of the posterior-vegetal cytoplasmic domain and the postplasmic/PEM RNAs at the posterior pole during cleavage. Some components of this domain, which is rich in granules, are eventually inherited by prospective germline cells with particular postplasmic/PEM RNAs such as vasa. The postplasmic/PEM RNAs are classified into two groups according to their final cellular destinations and localization pathways. Localization of these RNAs is regulated by specific nucleotide sequences in the 3' untranslated regions (3'UTRs).
Collapse
Affiliation(s)
- Kazuhiro W Makabe
- Institute of Socio-Arts and Sciences, University of Tokushima, Tokushima, Japan
| | | |
Collapse
|
25
|
Feldman JL, Priess JR. A role for the centrosome and PAR-3 in the hand-off of MTOC function during epithelial polarization. Curr Biol 2012; 22:575-82. [PMID: 22425160 DOI: 10.1016/j.cub.2012.02.044] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 01/23/2012] [Accepted: 02/22/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND The centrosome is the major microtubule organizing center (MTOC) in dividing cells and in many postmitotic, differentiated cells. In other cell types, however, MTOC function is reassigned from the centrosome to noncentrosomal sites. Here, we analyze how MTOC function is reassigned to the apical membrane of C. elegans intestinal cells. RESULTS After the terminal intestinal cell division, the centrosomes and nuclei move near the future apical membranes, and the postmitotic centrosomes lose all, or nearly all, of their associated microtubules. We show that microtubule-nucleating proteins such as γ-tubulin and CeGrip-1 that are centrosome components in dividing cells become localized to the apical membrane, which becomes highly enriched in microtubules. Our results suggest that centrosomes are critical to specify the apical membrane as the new MTOC. First, γ-tubulin appears to redistribute directly from the migrating centrosome onto the lateral then apical membrane. Second, γ-tubulin fails to accumulate apically in wild-type cells following laser ablation of the centrosome. We show that centrosomes localize apically by first moving toward lateral foci of the conserved polarity proteins PAR-3 and PAR-6 and then move together with these foci toward the future apical surface. Embryos lacking PAR-3 fail to localize their centrosomes apically and have aberrant localization of γ-tubulin and CeGrip-1. CONCLUSIONS These data suggest that PAR proteins contribute to apical polarity in part by determining centrosome position and that the reassignment of MTOC function from centrosomes to the apical membrane is associated with a physical hand-off of nucleators of microtubule assembly.
Collapse
|
26
|
Tang AT, Campbell WB, Nithipatikom K. ROCK1 feedback regulation of the upstream small GTPase RhoA. Cell Signal 2012; 24:1375-80. [PMID: 22430126 DOI: 10.1016/j.cellsig.2012.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/01/2012] [Accepted: 03/04/2012] [Indexed: 10/28/2022]
Abstract
Rho-associated coiled-coil containing protein kinase 1 (ROCK1) is a key downstream effector of the small GTPase RhoA. Targeting ROCK1 has shown promising clinical potential in cancer, cardioprotection, hypertension, diabetes, neuronal regeneration, and stem cell biology. General working hypothesis in previous studies has centered on the function of ROCK1 as a downstream sequence in the RhoA signaling pathway. In this study, the effects of the direct inhibition of ROCK1 on the activity of upstream RhoA and Rac1 were examined using a combined pharmacological and genetic approach. We report an intriguing mechanism by which the inhibition of ROCK1 indirectly diminishes the activity of upstream RhoA through the stimulation of Tiam1-induced Rac1 activity. This novel feedback mechanism, in which ROCK1 mediates upstream Rac1 and RhoA activity, offers considerable insight into the diverse effects of ROCK1 on the functional balance of the Rho family of small GTPases, which regulates actin cytoskeleton reorganization processes and the resulting overall behavior of cells.
Collapse
Affiliation(s)
- Alan T Tang
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | | | | |
Collapse
|
27
|
Cell-Cycle Control in Oocytes and During Early Embryonic Cleavage Cycles in Ascidians. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 297:235-64. [DOI: 10.1016/b978-0-12-394308-8.00006-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
28
|
Abstract
The localization of mRNAs in developing animal cells is essential for establishing cellular polarity and setting up the body plan for subsequent development. Cellular and molecular mechanisms by which maternal mRNAs are localized during oogenesis have been extensively studied in Drosophila and Xenopus. In contrast, evidence for mechanisms used in the localization of mRNAs encoded by developmentally important genes has also been accumulating in several other organisms. This offers the opportunity to unravel the fundamental mechanisms of mRNA localization shared among many species, as well as unique mechanisms specifically acquired or retained by animals based on their developmental needs. In addition to maternal mRNAs, the localization of zygotically expressed mRNAs in the cells of cleaving embryos is also important for early development. In this review, mRNA localization dynamics in the oocytes/eggs of Drosophila and Xenopus are first summarized, and evidence for localized mRNAs in the oocytes/eggs and cleaving embryos of other organisms is then presented.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
29
|
Schulze J, Schierenberg E. Evolution of embryonic development in nematodes. EvoDevo 2011; 2:18. [PMID: 21929824 PMCID: PMC3195109 DOI: 10.1186/2041-9139-2-18] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/20/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Nematodes can be subdivided into basal Enoplea (clades 1 and 2) and more derived Chromadorea (clades 3 to 12). Embryogenesis of Caenorhabditis elegans (clade 9) has been analyzed in most detail. Their establishment of polarity and asymmetric cleavage requires the differential localization of PAR proteins. Earlier studies on selected other nematodes revealed that embryonic development of nematodes is more diverse than the essentially invariant development of C. elegans and the classic study object Ascaris had suggested. To obtain a more detailed picture of variations and evolutionary trends we compared embryonic cell lineages and pattern formation in embryos of all 12 nematode clades. METHODS The study was conducted using 4-D microscopy and 3-D modeling of developing embryos. RESULTS We found dramatic differences compared to C. elegans in Enoplea but also considerable variations among Chromadorea. We discovered 'Polarity Organizing Centers' (POCs) that orient cleavage spindles along the anterior-posterior axis in distinct cells over consecutive cell generations. The resulting lineally arranged blastomeres represent a starting point for the establishment of bilateral symmetry within individual lineages. We can discern six different early cleavage types and suggest that these variations are due to modifications in the activity of the POCs in conjunction with changes in the distribution of PAR proteins. In addition, our studies indicate that lineage complexity advanced considerably during evolution, that is we observe trends towards an increase of somatic founder cells, from monoclonal to polyclonal lineages and from a variable (position-dependent) to an invariable (lineage-dependent) way of cell fate specification. In contrast to the early phase of embryogenesis, the second half ('morphogenesis') appears similar in all studied nematodes. Comparison of early cleavage between the basal nematode Tobrilus stefanskii and the tardigrade Hypsibius dujardini revealed surprising similarities indicating that the presence of POCs is not restricted to nematode embryos. CONCLUSIONS The pattern of cleavage, spatial arrangement and differentiation of cells diverged dramatically during the history of the phylum Nematoda without corresponding changes in the phenotype. While in all studied representatives the same distinctive developmental steps need to be taken, cell behavior leading to these is not conserved.
Collapse
Affiliation(s)
- Jens Schulze
- University of Cologne, Biocenter, Zuelpicher Str. 47b 50967 Köln, Germany
| | | |
Collapse
|
30
|
Shirae-Kurabayashi M, Matsuda K, Nakamura A. Ci-Pem-1 localizes to the nucleus and represses somatic gene transcription in the germline of Ciona intestinalis embryos. Development 2011; 138:2871-81. [PMID: 21693510 DOI: 10.1242/dev.058131] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In many animal embryos, germ-cell formation depends on maternal factors located in the germ plasm. To ensure the development of germ cells, germline progenitors must be prevented from differentiating inappropriately into somatic cells. A common mechanism for this appears to be the active repression of somatic gene transcription. Species-specific germ-plasm components, such as Pgc in Drosophila and PIE-1 in C. elegans, establish germline transcriptional quiescence by inhibiting general transcriptional machineries. In the ascidian Ciona intestinalis, although transcriptional repression in the germline has been proposed, the factors and mechanisms involved have been unknown. We found that the protein products of Ci-pem-1 RNA, which is an ascidian-specific component of the postplasm (the germ plasm equivalent in ascidians), localized to the nucleus of germline blastomeres, as well as to the postplasm. Morpholino oligonucleotide-mediated Ci-pem-1 knockdown resulted in the ectopic expression of several somatic genes that are usually silent in the germline. In the Ci-pem-1 knockdown embryos, the expression of both β-catenin- and GATAa-dependent genes was derepressed in the germline blastomeres, suggesting that Ci-Pem-1 broadly represses germline mRNA transcription. Immunoprecipitation assays showed that Ci-Pem-1 could interact with two C. intestinalis homologs of Groucho, which is a general co-repressor of mRNA transcription. These results suggest that Ci-pem-1 is the C. intestinalis version of a germ-plasm RNA whose protein product represses the transcription of somatic genes during specification of the germ-cell fate, and that this repression may be operated through interactions between Ci-Pem-1 and Groucho co-repressors.
Collapse
Affiliation(s)
- Maki Shirae-Kurabayashi
- Laboratory for Germline Development, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan.
| | | | | |
Collapse
|
31
|
Paix A, Le Nguyen PN, Sardet C. Bi-polarized translation of ascidian maternal mRNA determinant pem-1 associated with regulators of the translation machinery on cortical Endoplasmic Reticulum (cER). Dev Biol 2011; 357:211-26. [PMID: 21723275 DOI: 10.1016/j.ydbio.2011.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/10/2011] [Accepted: 06/16/2011] [Indexed: 01/07/2023]
Abstract
Polarized cortical mRNA determinants such as maternal macho-1 and pem-1 in ascidians, like budding yeast mating factor ASH1 reside on the cER-mRNA domain a subdomain of cortical Endoplasmic Reticulum(ER) and are translated in its vicinity. Using high resolution imaging and isolated cortical fragments prepared from eggs and embryos we now find that macho-1 and pem-1 RNAs co-localize with phospho-protein regulators of translation initiation (MnK/4EBP/S6K). Translation of cortical pem-1 RNA follows its bi-polarized relocalization. About 10 min after fertilization or artificial activation with a calcium ionophore, PEM1 protein is detected in the vegetal cortex in the vicinity of pem-1 RNA. About 40 min after fertilization-when pem-1 RNA and P-MnK move to the posterior pole-PEM1 protein remains in place forming a network of cortical patches anchored at the level of the zygote plasma membrane before disappearing. Cortical PEM1 protein is detected again at the 4 cell stage in the posterior centrosome attracting body (CAB) region where the cER-mRNA domain harboring pem-1/P-MnK/P-4EBP/P-S6K is concentrated. Bi-polarized PEM1 protein signals are not detected when pem-1 morpholinos are injected into eggs or zygotes or when MnK is inhibited. We propose that localized translation of the pem-1 RNA determinant is triggered by the fertilization/calcium wave and that the process is controlled by phospho-protein regulators of translation initiation co-localized with the RNA determinant on a sub-domain of the cortical Endoplasmic Reticulum.
Collapse
Affiliation(s)
- Alexandre Paix
- Université Pierre et Marie Curie and Centre National de la Recherche Scientifique, BioMarCell, UMR BioDev, Observatoire Océanologique, Villefranche-sur-mer, France
| | | | | |
Collapse
|
32
|
Prulière G, Cosson J, Chevalier S, Sardet C, Chenevert J. Atypical protein kinase C controls sea urchin ciliogenesis. Mol Biol Cell 2011; 22:2042-53. [PMID: 21508313 PMCID: PMC3113769 DOI: 10.1091/mbc.e10-10-0844] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The distribution and function of aPKC are examined during sea urchin ciliogenesis. The kinase concentrates in a ring at the transition zone between the basal body and the elongating axoneme. Inhibition of aPKC results in mislocalization of the kinase and defective ciliogenesis. Thus aPKC controls the growth of motile cilia in invertebrate embryos. The atypical protein kinase C (aPKC) is part of the conserved aPKC/PAR6/PAR3 protein complex, which regulates many cell polarity events, including the formation of a primary cilium at the apical surface of epithelial cells. Cilia are highly organized, conserved, microtubule-based structures involved in motility, sensory processes, signaling, and cell polarity. We examined the distribution and function of aPKC in the sea urchin embryo, which forms a swimming blastula covered with motile cilia. We found that in the early embryo aPKC is uniformly cortical and becomes excluded from the vegetal pole during unequal cleavages at the 8- to 64-cell stages. During the blastula and gastrula stages the kinase localizes at the base of cilia, forming a ring at the transition zone between the basal body and the elongating axoneme. A dose-dependent and reversible inhibition of aPKC results in mislocalization of the kinase, defective ciliogenesis, and lack of swimming. Thus, as in the primary cilium of differentiated mammalian cells, aPKC controls the growth of motile cilia in invertebrate embryos. We suggest that aPKC might function to phosphorylate kinesin and so activate the transport of intraflagellar vesicles.
Collapse
Affiliation(s)
- Gérard Prulière
- Observatoire Océanologique, Biologie du Développement, Université Pierre et Marie Curie and CNRS, Villefranche-sur-Mer, France.
| | | | | | | | | |
Collapse
|
33
|
Tian Y, Zhang Y, Hurd L, Hannenhalli S, Liu F, Lu MM, Morrisey EE. Regulation of lung endoderm progenitor cell behavior by miR302/367. Development 2011; 138:1235-45. [PMID: 21350014 PMCID: PMC3050657 DOI: 10.1242/dev.061762] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2011] [Indexed: 11/20/2022]
Abstract
The temporal and spatial control of organ-specific endoderm progenitor development is poorly understood. miRNAs affect cell function by regulating programmatic changes in protein expression levels. We show that the miR302/367 cluster is a target of the transcription factor Gata6 in mouse lung endoderm and regulates multiple aspects of early lung endoderm progenitor development. miR302/367 is expressed at early stages of lung development, but its levels decline rapidly as development proceeds. Gain- and loss-of-function studies show that altering miR302/367 expression disrupts the balance of lung endoderm progenitor proliferation and differentiation, as well as apical-basal polarity. Increased miR302/367 expression results in the formation of an undifferentiated multi-layered lung endoderm, whereas loss of miR302/367 activity results in decreased proliferation and enhanced lung endoderm differentiation. miR302/367 coordinates the balance between proliferation and differentiation, in part, through direct regulation of Rbl2 and Cdkn1a, whereas apical-basal polarity is controlled by regulation of Tiam1 and Lis1. Thus, miR302/367 directs lung endoderm development by coordinating multiple aspects of progenitor cell behavior, including proliferation, differentiation and apical-basal polarity.
Collapse
Affiliation(s)
- Ying Tian
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuzhen Zhang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura Hurd
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sridhar Hannenhalli
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Feiyan Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Min Min Lu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E. Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Negishi T, Kumano G, Nishida H. Polo-like kinase 1 is required for localization of Posterior End Mark protein to the centrosome-attracting body and unequal cleavages in ascidian embryos. Dev Growth Differ 2011; 53:76-87. [PMID: 21261613 DOI: 10.1111/j.1440-169x.2010.01231.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In ascidian embryos, the posterior-localized maternal factor Posterior End Mark (PEM) is responsible for patterning embryos along the anterior-posterior axis with regard to both cleavage pattern involving unequal cell divisions and gene expression. Although PEM plays important roles in embryogenesis, its mechanism of action is still unclear because PEM has no known functional domain. In the present study, we explored the candidate of PEM partner proteins in Halocynthia roretzi using yeast two-hybrid screening. We isolated a homologue of Polo-like kinase 1 (Plk1), a key regulator of cell division and highly conserved in eukaryotes, as the first potential binding partner of PEM. We biochemically confirmed that interaction occurred between the Plk1 and PEM proteins. Immunostaining showed that Plk1 protein concentrates in the centrosome-attracting body (CAB) at the posterior pole, where PEM protein is also localized. The CAB is a subcellular structure that plays an important role in generating the posterior cleavage pattern. Plk1 localization to the CAB was dependent on the cell cycle phases during unequal cleavage. Inhibition of Plk1 with specific drugs resulted in failure of the nucleus to migrate towards the posterior pole and formation of a microtubule bundle between the CAB and a centrosome, similarly to inhibition of PEM function, suggesting that both proteins are involved in the same process of unequal cleavages. This interrupted nuclear migration was rescued by overexpression of PEM. In Plk1-inhibited embryos, the localization of PEM protein to the CAB was impaired, indicating that Plk1 is required for appropriate localization of PEM.
Collapse
Affiliation(s)
- Takefumi Negishi
- Department of Biological Sciences, Osaka University, Toyonaka, Japan.
| | | | | |
Collapse
|
35
|
Sardet C, McDougall A, Yasuo H, Chenevert J, Pruliere G, Dumollard R, Hudson C, Hebras C, Le Nguyen N, Paix A. Embryological methods in ascidians: the Villefranche-sur-Mer protocols. Methods Mol Biol 2011; 770:365-400. [PMID: 21805272 DOI: 10.1007/978-1-61779-210-6_14] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Ascidians (marine invertebrates: urochordates) are thought to be the closest sister groups of vertebrates. They are particularly attractive models because of their non-duplicated genome and the fast and synchronous development of large populations of eggs into simple tadpoles made of about 3,000 cells. As a result of stereotyped asymmetric cleavage patterns all blastomeres become fate restricted between the 16- and 110 cell stage through inheritance of maternal determinants and/or cellular interactions. These advantageous features have allowed advances in our understanding of the nature and role of maternal determinants, inductive interactions, and gene networks that are involved in cell lineage specification and differentiation of embryonic tissues. Ascidians have also contributed to our understanding of fertilization, cell cycle control, self-recognition, metamorphosis, and regeneration. In this chapter we provide basic protocols routinely used at the marine station in Villefranche-sur-Mer using the cosmopolitan species of reference Ciona intestinalis and the European species Phallusia mammillata. These two models present complementary advantages with regard to molecular, functional, and imaging approaches. We describe techniques for basic culture of embryos, micro-injection, in vivo labelling, micro-manipulations, fixation, and immuno-labelling. These methods allow analysis of calcium signals, reorganizations of cytoplasmic and cortical domains, meiotic and mitotic cell cycle and cleavages as well as the roles of specific genes and cellular interactions. Ascidians eggs and embryos are also an ideal material to isolate cortical fragments and to isolate and re-associate individual blastomeres. We detail the experimental manipulations which we have used to understand the structure and role of the egg cortex and of specific blastomeres during development.
Collapse
Affiliation(s)
- Christian Sardet
- Biologie du Développement, UMR 7009 CNRS/UPMC, Observatoire Océanologique, Villefranche sur Mer 06230, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Localization and anchorage of maternal mRNAs to cortical structures of ascidian eggs and embryos using high resolution in situ hybridization. Methods Mol Biol 2011; 714:49-70. [PMID: 21431734 DOI: 10.1007/978-1-61779-005-8_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
In several species, axis formation and tissue differentiation are the result of developmental cascades which begin with the localization and translation of key maternal mRNAs in eggs. Localization and anchoring of mRNAs to cortical structures can be observed with high sensitivity and resolution by fluorescent in situ hybridization coupled with labeling of membranes and macromolecular complexes. Oocytes and embryos of ascidians--marine chordates closely related to vertebrates--are ideal models to understand how maternal mRNAs pattern the simple ascidian tadpole. More than three dozen cortically localized maternal mRNAs have been identified in ascidian eggs. They include germ cell markers such as vasa or pem-3 and determinants of axis (pem-1), unequal cleavage (pem-1), and muscle cells (macho-1). High resolution localization of mRNAs, proteins, and lipids in whole eggs and embryos and their cortical fragments shows that maternal mRNA determinants pem-1 and macho-1 are anchored to cortical endoplasmic reticulum and segregate with it into small posterior somatic cells. In contrast, mRNAs such as vasa are associated with granular structures which are inherited by the same somatic cells plus adjacent germ cell precursors. In this chapter, we provide detailed protocols for simultaneous localization of mRNAs and proteins to determine their association with cellular structures in eggs and embryos. Using preparations of isolated cortical fragments with intact membranous structures allows unprecedented high resolution analysis and identification of cellular anchoring sites for key mRNAs. This information is necessary for understanding the mechanisms for localizing mRNAs and partitioning them into daughter cells after cleavage.
Collapse
|
37
|
McDougall A, Chenevert J, Lee KW, Hebras C, Dumollard R. Cell cycle in ascidian eggs and embryos. Results Probl Cell Differ 2011; 53:153-169. [PMID: 21630145 DOI: 10.1007/978-3-642-19065-0_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In ascidians the cell cycle machinery has been studied mainly in oocytes while ascidian embryos have been used to dissect the mechanism that controls asymmetric cell division (ACD). Here we overview the most specific and often exceptional points and events in cell cycle control in ascidian oocytes and early embryos. Mature stage IV eggs are arrested at metaphase I due to cytostatic factor (CSF). In vertebrates, unfertilized eggs are arrested at metaphase II by CSF. Meta II-CSF is mediated by the Mos/MEK/MAPK/Erp1 pathway, which inhibits the ubiquitin ligase APC/C(cdc20) preventing cyclin B destruction thus stabilizing MPF activity. CSF is inactivated by the fertilization Ca(2+) transient that stimulates the destruction of Erp1 thus releasing APC/C(cdc20) from inhibition. Although many of the components of CSF are conserved between the ascidian and the vertebrates, the lack of Erp1 in the ascidians (and indeed other invertebrates) is notable since the Mos/MAPK pathway nonetheless mediates Meta I-CSF. Moreover, since the fertilization Ca(2+) transient targets Erp1, it is not clear how the sperm-triggered Ca(2+) transient in ascidians (and again other invertebrates) stimulates cyclin B destruction in the absence of Erp1. Nonetheless, like mammalian eggs, sperm trigger a series of Ca(2+) oscillations that increases the rate of cyclin B destruction and the subsequent loss of MAPK activity leading to meiotic exit in ascidians. Positive feedback from MPF maintains the Ca(2+) oscillations in fertilized ascidian eggs ensuring the eventual loss of MPF stimulating the egg-to-embryo transition. Embryonic cell cycles in the ascidian are highly stereotyped where both the rate of cell division and the orientation of cell division planes are precisely controlled. Three successive rounds of ACD generate two small posterior germ cell precursors at the 64 cell stage. The centrosome-attracting body (CAB) is a macroscopic cortical structure visible by light microscopy that causes these three rounds of ACD. Entry into mitosis activates the CAB causing the whole mitotic spindle to rotate and migrate toward the cortical CAB leading to a highly ACD whereby one small cell is formed that inherits the CAB and approximately 40 maternal postplasmic/PEM RNAs including the germ cell marker vasa.
Collapse
Affiliation(s)
- Alex McDougall
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Center National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France.
| | | | | | | | | |
Collapse
|
38
|
Manneville JB, Jehanno M, Etienne-Manneville S. Dlg1 binds GKAP to control dynein association with microtubules, centrosome positioning, and cell polarity. ACTA ACUST UNITED AC 2010; 191:585-98. [PMID: 21041448 PMCID: PMC3003329 DOI: 10.1083/jcb.201002151] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The small GTPase Cdc42 regulates interactions of dynein with microtubules through the polarity protein Dlg1 and the scaffolding protein GKAP. Centrosome positioning is crucial during cell division, cell differentiation, and for a wide range of cell-polarized functions including migration. In multicellular organisms, centrosome movement across the cytoplasm is thought to result from a balance of forces exerted by the microtubule-associated motor dynein. However, the mechanisms regulating dynein-mediated forces are still unknown. We show here that during wound-induced cell migration, the small G protein Cdc42 acts through the polarity protein Dlg1 to regulate the interaction of dynein with microtubules of the cell front. Dlg1 interacts with dynein via the scaffolding protein GKAP and together, Dlg1, GKAP, and dynein control microtubule dynamics and organization near the cell cortex and promote centrosome positioning. Our results suggest that, by modulating dynein interaction with leading edge microtubules, the evolutionary conserved proteins Dlg1 and GKAP control the forces operating on microtubules and play a fundamental role in centrosome positioning and cell polarity.
Collapse
|
39
|
Oda-Ishii I, Ishii Y, Mikawa T. Eph regulates dorsoventral asymmetry of the notochord plate and convergent extension-mediated notochord formation. PLoS One 2010; 5:e13689. [PMID: 21060822 PMCID: PMC2966392 DOI: 10.1371/journal.pone.0013689] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 10/01/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The notochord is a signaling center required for the patterning of the vertebrate embryonic midline, however, the molecular and cellular mechanisms involved in the formation of this essential embryonic tissue remain unclear. The urochordate Ciona intestinalis develops a simple notochord from 40 specific postmitotic mesodermal cells. The precursors intercalate mediolaterally and establish a single array of disk-shaped notochord cells along the midline. However, the role that notochord precursor polarization, particularly along the dorsoventral axis, plays in this morphogenetic process remains poorly understood. METHODOLOGY/PRINCIPAL FINDINGS Here we show that the notochord preferentially accumulates an apical cell polarity marker, aPKC, ventrally and a basement membrane marker, laminin, dorsally. This asymmetric accumulation of apicobasal cell polarity markers along the embryonic dorsoventral axis was sustained in notochord precursors during convergence and extension. Further, of several members of the Eph gene family implicated in cellular and tissue morphogenesis, only Ci-Eph4 was predominantly expressed in the notochord throughout cell intercalation. Introduction of a dominant-negative Ci-Eph4 to notochord precursors diminished asymmetric accumulation of apicobasal cell polarity markers, leading to defective intercalation. In contrast, misexpression of a dominant-negative mutant of a planar cell polarity gene Dishevelled preserved asymmetric accumulation of aPKC and laminin in notochord precursors, although their intercalation was incomplete. CONCLUSIONS/SIGNIFICANCE Our data support a model in which in ascidian embryos Eph-dependent dorsoventral polarity of notochord precursors plays a crucial role in mediolateral cell intercalation and is required for proper notochord morphogenesis.
Collapse
Affiliation(s)
- Izumi Oda-Ishii
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Yasuo Ishii
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Takashi Mikawa
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
40
|
Prodon F, Chenevert J, Hébras C, Dumollard R, Faure E, Gonzalez-Garcia J, Nishida H, Sardet C, McDougall A. Dual mechanism controls asymmetric spindle position in ascidian germ cell precursors. Development 2010; 137:2011-21. [DOI: 10.1242/dev.047845] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mitotic spindle orientation with respect to cortical polarity cues generates molecularly distinct daughter cells during asymmetric cell division (ACD). However, during ACD it remains unknown how the orientation of the mitotic spindle is regulated by cortical polarity cues until furrowing begins. In ascidians, the cortical centrosome-attracting body (CAB) generates three successive unequal cleavages and the asymmetric segregation of 40 localized postplasmic/PEM RNAs in germ cell precursors from the 8-64 cell stage. By combining fast 4D confocal fluorescence imaging with gene-silencing and classical blastomere isolation experiments, we show that spindle repositioning mechanisms are active from prometaphase until anaphase, when furrowing is initiated in B5.2 cells. We show that the vegetal-most spindle pole/centrosome is attracted towards the CAB during prometaphase, causing the spindle to position asymmetrically near the cortex. Next, during anaphase, the opposite spindle pole/centrosome is attracted towards the border with neighbouring B5.1 blastomeres, causing the spindle to rotate (10°/minute) and migrate (3 μm/minute). Dynamic 4D fluorescence imaging of filamentous actin and plasma membrane shows that precise orientation of the cleavage furrow is determined by this second phase of rotational spindle displacement. Furthermore, in pairs of isolated B5.2 blastomeres, the second phase of rotational spindle displacement was lost. Finally, knockdown of PEM1, a protein localized in the CAB and required for unequal cleavage in B5.2 cells, completely randomizes spindle orientation. Together these data show that two separate mechanisms active during mitosis are responsible for spindle positioning, leading to precise orientation of the cleavage furrow during ACD in the cells that give rise to the germ lineage in ascidians.
Collapse
Affiliation(s)
- François Prodon
- Developmental Biology Unit UMR 7009, UPMC (University of Paris 06) and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Janet Chenevert
- Developmental Biology Unit UMR 7009, UPMC (University of Paris 06) and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Céline Hébras
- Developmental Biology Unit UMR 7009, UPMC (University of Paris 06) and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Rémi Dumollard
- Developmental Biology Unit UMR 7009, UPMC (University of Paris 06) and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Emmanuel Faure
- ISCPIF-CREA, Ecole Polytechnique–CNRS, 75015 Paris, France
| | - Jose Gonzalez-Garcia
- Department of Obstetrics and Gynaecology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Christian Sardet
- Developmental Biology Unit UMR 7009, UPMC (University of Paris 06) and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Alex McDougall
- Developmental Biology Unit UMR 7009, UPMC (University of Paris 06) and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| |
Collapse
|
41
|
Kumano G, Kawai N, Nishida H. Macho-1 regulates unequal cell divisions independently of its function as a muscle determinant. Dev Biol 2010; 344:284-92. [PMID: 20478299 DOI: 10.1016/j.ydbio.2010.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 03/30/2010] [Accepted: 05/08/2010] [Indexed: 02/05/2023]
Abstract
The anterior-posterior (A-P) axis in ascidian embryos is established through the posteriorizing activities of a localized egg region known as the posterior vegetal cortex/cytoplasm (PVC). Here we describe a novel function of macho-1, a maternally-localized muscle determinant, in establishment of the A-P axis in the Halocynthia roretzi embryo. Macho-1, in addition to its known function in the formation of posterior tissue such as muscle and mesenchyme, and suppression of the anterior-derived notochord fate, acts independently of its transcriptional activity as a regulator of posterior-specific unequal cell divisions, in cooperation with beta-catenin. Our results suggest that macho-1 and beta-catenin regulate the formation of a microtubule bundle that shortens and pulls the centrosome toward a sub-cellular cortical structure known as centrosome-attracting body (CAB), which is located at the posterior pole of the embryo during unequal cell divisions, and act upstream of PEM, a recently-identified regulator of unequal cell divisions. We also present data that suggest that PEM localization to the CAB may not be required for unequal cleavage regulation. The present study provides an important and novel insight into the role of the zinc-finger-containing transcription factor and indicates that it constitutes a major part of the PVC activity.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | | | | |
Collapse
|
42
|
Dard N, Louvet-Vallée S, Maro B. Orientation of mitotic spindles during the 8- to 16-cell stage transition in mouse embryos. PLoS One 2009; 4:e8171. [PMID: 19997595 PMCID: PMC2781390 DOI: 10.1371/journal.pone.0008171] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 11/12/2009] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Asymmetric cell divisions are involved in the divergence of the first two lineages of the pre-implantation mouse embryo. They first take place after cell polarization (during compaction) at the 8-cell stage. It is thought that, in contrast to many species, spindle orientation is random, although there is no direct evidence for this. METHODOLOGY/PRINCIPAL FINDINGS Tubulin-GFP and live imaging with a spinning disk confocal microscope were used to directly study spindle orientation in whole embryos undergoing the 8- to 16-cell stage transition. This approach allowed us to determine that there is no predetermined cleavage pattern in 8-cell compacted mouse embryos and that mitotic spindle orientation in live embryo is only modulated by the extent of cell rounding up during mitosis. CONCLUSIONS These results clearly demonstrate that spindle orientation is not controlled at the 8- to 16-cell transition, but influenced by cell bulging during mitosis, thus reinforcing the idea that pre-implantation development is highly regulative and not pre-patterned.
Collapse
Affiliation(s)
- Nicolas Dard
- CNRS, UMR7622-Laboratoire de Biologie Cellulaire du Développement, Paris, France.
| | | | | |
Collapse
|
43
|
Paix A, Yamada L, Dru P, Lecordier H, Pruliere G, Chenevert J, Satoh N, Sardet C. Cortical anchorages and cell type segregations of maternal postplasmic/PEM RNAs in ascidians. Dev Biol 2009; 336:96-111. [DOI: 10.1016/j.ydbio.2009.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 08/18/2009] [Accepted: 09/01/2009] [Indexed: 11/16/2022]
|
44
|
Actin microfilaments guide the polarized transport of nuclear pore complexes and the cytoplasmic dispersal of Vasa mRNA during GVBD in the ascidian Halocynthia roretzi. Dev Biol 2009; 330:377-88. [PMID: 19362546 DOI: 10.1016/j.ydbio.2009.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 03/30/2009] [Accepted: 04/03/2009] [Indexed: 12/16/2022]
Abstract
Meiosis reinitiation starts with the germinal vesicle breakdown (GVBD) within the gonad before spawning. Here, we have extended our previous observations and identified the formation of conspicuous actin bundles emanating from the germinal vesicle (GV) during its breakdown in the ascidian Halocynthia roretzi. Time-lapse video recordings and fluorescent labelling of microfilaments (MFs) indicate that these microfilamentous structures invariantly elongate towards the vegetal hemisphere at the estimated speed of 20 mum/min. Interestingly, the nuclear pore complex protein Nup153 accumulates at the vegetal tip of actin bundles. To determine if these structures play a role in the formation of the germ plasm, we have analyzed the localization pattern of Vasa transcript in maturing oocytes and early embryos. We found that Hr-Vasa mRNA, one of Type II postplasmic/PEM mRNAs, changes from a granular and perinuclear localization to an apparent uniform cytoplasmic distribution during oocyte maturation, and then concentrate in the centrosome-attracting body (CAB) by the eight-cell stage. In addition, treatments with Latrunculin B, but not with Nocodazole, blocked the redistribution of Nup153 and Hr-Vasa mRNA, suggesting that these mechanisms are both actin-dependant. We discuss the pleiotropic role played by MFs, and the relationship between nuclear pores, maternal Vasa mRNA and germ plasm in maturing ascidian oocytes.
Collapse
|
45
|
Alford LM, Ng MM, Burgess DR. Cell polarity emerges at first cleavage in sea urchin embryos. Dev Biol 2009; 330:12-20. [PMID: 19298809 DOI: 10.1016/j.ydbio.2009.02.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 12/26/2022]
Abstract
In protostomes, cell polarity is present after fertilization whereas most deuterostome embryos show minimal polarity during the early cleavages. We now show establishment of cell polarity as early as the first cleavage division in sea urchin embryos. We find, using the apical markers G(M1), integrins, and the aPKC-PAR6 complex, that cells are polarized upon insertion of distinct basolateral membrane at the first division. This early apical-basolateral polarity, similar to that found in much larger cleaving amphibian zygotes, reflects precocious functional epithelial cell polarity. Isolated cleavage blastomeres exhibit polarized actin-dependent fluid phase endocytosis only on the G(M1), integrin, microvillus-containing apical surface. A role for a functional PAR complex in cleavage plane determination was shown with experiments interfering with aPKC activity, which results in several spindle defects and compromised blastula development. These studies suggest that cell and embryonic polarity is established at the first cleavage, mediated in part by the Par complex of proteins, and is achieved by directed insertion of basolateral membrane in the cleavage furrow.
Collapse
Affiliation(s)
- Lea M Alford
- Biology Department, Boston College, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA
| | | | | |
Collapse
|
46
|
Nomura M, Nakajima A, Inaba K. Proteomic profiles of embryonic development in the ascidian Ciona intestinalis. Dev Biol 2009; 325:468-81. [DOI: 10.1016/j.ydbio.2008.10.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Revised: 10/24/2008] [Accepted: 10/28/2008] [Indexed: 12/24/2022]
|
47
|
Barral Y, Liakopoulos D. Role of spindle asymmetry in cellular dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:149-213. [PMID: 19815179 DOI: 10.1016/s1937-6448(09)78004-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The mitotic spindle is mostly perceived as a symmetric structure. However, in many cell divisions, the two poles of the spindle organize asters with different dynamics, associate with different biomolecules or subcellular domains, and perform different functions. In this chapter, we describe some of the most prominent examples of spindle asymmetry. These are encountered during cell-cycle progression in budding and fission yeast and during asymmetric cell divisions of stem cells and embryos. We analyze the molecular mechanisms that lead to generation of spindle asymmetry and discuss the importance of spindle-pole differentiation for the correct outcome of cell division.
Collapse
Affiliation(s)
- Yves Barral
- Institute of Biochemistry, ETH Hönggerberg, HPM, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
48
|
Abstract
Cleavage divisions in many animals form a blastula made up of a simple polarized epithelium. This simple embryonic epithelium possesses an apical surface covered with microvilli and primary cilia separated from the basolateral surfaces by cell-cell junctions. The apical membrane proteins and lipids differ from those of the basolateral on these embryonic epithelial cells, as is found in adult epithelial cells. Formation of cell polarity in embryos at fertilization, including those from both protostomes and deuterostomes, uses the same molecules and signalling machinery as do polarizing epithelial cells that polarize upon cell-cell contact. In addition, the actin-myosin cytoskeleton plays an integral role in establishment and maintenance of this early cell polarity. However, early cleaving blastomeres from higher organisms including echinoderms and vertebrates have not been considered to exhibit cell polarity until formation of junctions at the third through to the fifth cleavage divisions. The role of new membrane addition into the late cleavage furrow during the early rounds of cytokinesis may play a key role in the early establishment of cell polarity in all animal embryos.
Collapse
|
49
|
Shiomi K, Yamaguchi M. Expression patterns of three Par-related genes in sea urchin embryos. Gene Expr Patterns 2008; 8:323-30. [PMID: 18316248 DOI: 10.1016/j.gep.2008.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 01/18/2008] [Accepted: 01/22/2008] [Indexed: 11/17/2022]
Abstract
Partitioning-defective (Par) genes were originally identified in Caenorhabditis elegans and are involved in asymmetric divisions of the egg. Recently, the expression and function of Par orthologs have been elucidated in deuterostomes, including vertebrates. In this study, we isolated three Par-related genes, Par-1, Par-6, and atypical protein kinase C (aPKC), from the sea urchin Hemicentrotus pulcherrimus and examined their temporal and spatial expression patterns during embryogenesis up to the pluteus stage. All three transcripts existed maternally in eggs and were uniformly expressed in cleavage-stage embryos. From the blastula to early gastrula stages, HpPar-1 expression was transiently restricted to the vegetal plate, including the primary mesenchyme cells (PMCs); this transient reduction was followed by uniform expression. HpPar-6 was expressed uniformly throughout development. In contrast, HpaPKC expression changed dramatically during development. At the blastula stage, HpaPKC expression was restricted to the vegetal region, including PMCs and the vegetal plate. During gastrulation, expression was maintained in PMCs and the archenteron tip, but expression declined at the late gastrula stage. From the prism stage, two cell types started to express HpaPKC: ectoderm cells interspersed in the ciliary band and skeletogenic cells at the posterior end of the larva. At the pluteus stage, the stomach began to express HpaPKC, in addition to the interspersed ciliary band and skeletogenic cells.
Collapse
Affiliation(s)
- Kosuke Shiomi
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | | |
Collapse
|
50
|
Schulze J, Schierenberg E. Cellular pattern formation, establishment of polarity and segregation of colored cytoplasm in embryos of the nematode Romanomermis culicivorax. Dev Biol 2008; 315:426-36. [PMID: 18275948 DOI: 10.1016/j.ydbio.2007.12.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 12/17/2007] [Accepted: 12/31/2007] [Indexed: 01/04/2023]
Abstract
We have begun to analyze the early embryogenesis of Romanomermis culicivorax, an insect-parasitic nematode phylogenetically distant to Caenorhabditis elegans. Development of R. culicivorax differs from C. elegans in many aspects including establishment of polarity, formation of embryonic axes and the pattern of asymmetric cleavages. Here, a polarity reversal in the germline takes place already in P(1) rather than P(2), the dorsal-ventral axis appears to be inverted and gut fate is derived from the AB rather than from the EMS blastomere. So far unique for nematodes is the presence of colored cytoplasm and its segregation into one specific founder cell. Normal development observed after experimentally induced abnormal partitioning of pigment indicates that it is not involved in cell specification. Another typical feature is prominent midbodies (MB). We investigated the role of the MB region in the establishment of asymmetry. After its irradiation the potential for unequal cleavage in somatic and germline cells as well as differential distribution of pigment are lost. This indicates a crucial involvement of this region for spindle orientation, positioning, and cytoplasmic segregation. A scenario is sketched suggesting why and how during evolution the observed differences between R. culicivorax and C. elegans may have evolved.
Collapse
Affiliation(s)
- Jens Schulze
- Zoological Institute, University of Cologne, Germany
| | | |
Collapse
|