1
|
Pan KW, Chen HC. Perinuclear assembly of vimentin intermediate filaments induces cancer cell nuclear dysmorphia. J Biol Chem 2024:107981. [PMID: 39542246 DOI: 10.1016/j.jbc.2024.107981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/15/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024] Open
Abstract
Nuclear dysmorphia, characterized by crumpled or lobulated polymorphic nuclear shapes, has been used as an index for the malignant grades of certain cancers. The expression of vimentin, a type-III intermediate filament protein, is a hallmark of the epithelial-to-mesenchymal transition. However, it remains unclear whether vimentin is involved in cancer cell nuclear dysmorphia. In this study, we found that vimentin intermediate filaments (VIFs) frequently accumulated at the concave of dysmorphic nucleus in breast cancer MDA-MB-231 cells. Depletion of vimentin apparently restored the nuclear shape of the cells, which was devastated by re-expression of vimentin, but not its assembly-defective Y117D mutant. Depletion of plectin, a cytoskeletal linker, partially prevented the perinuclear accumulation of VIFs and concomitantly restored the nuclear shape of the cells. In addition, depletion of vimentin in lung cancer A549 cells largely prevented nuclear dysmorphia during the epithelial-to-mesenchymal transition induced by TGFβ. Moreover, we found that VIF-mediated nuclear dysmorphia led to defects in DNA repair. Together, our results unveil a novel role of VIFs in cancer cell nuclear dysmorphia, which is associated with genome instability.
Collapse
Affiliation(s)
- Ke-Wei Pan
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hong-Chen Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
2
|
Hong Y, Rannou A, Manriquez N, Antich J, Liu W, Fournier M, Omidfar A, Rogers RG. Cardiac and skeletal muscle manifestations in the G608G mouse model of Hutchinson-Gilford progeria syndrome. Aging Cell 2024; 23:e14259. [PMID: 38961628 PMCID: PMC11464102 DOI: 10.1111/acel.14259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/16/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disorder resulting from de novo mutations in the lamin A gene. Children with HGPS typically pass away in their teenage years due to cardiovascular diseases such as atherosclerosis, myocardial infarction, heart failure, and stroke. In this study, we characterized the G608G HGPS mouse model and explored cardiac and skeletal muscle function, along with senescence-associated phenotypes in fibroblasts. Homozygous G608G HGPS mice exhibited cardiac dysfunction, including decreased cardiac output and stroke volume, and impaired left ventricle relaxation. Additionally, skeletal muscle exhibited decreased isometric tetanic torque, muscle atrophy, and increased fibrosis. HGPS fibroblasts showed nuclear abnormalities, decreased proliferation, and increased expression of senescence markers. These findings provide insights into the pathophysiology of the G608G HGPS mouse model and inform potential therapeutic strategies for HGPS.
Collapse
Affiliation(s)
- Yeojin Hong
- Smidt Heart InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Alice Rannou
- Smidt Heart InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Nancy Manriquez
- Smidt Heart InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Jack Antich
- Smidt Heart InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Weixin Liu
- Smidt Heart InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Mario Fournier
- Smidt Heart InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Ariel Omidfar
- Smidt Heart InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Russell G. Rogers
- Smidt Heart InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| |
Collapse
|
3
|
Odell J, Lammerding J. N-terminal tags impair the ability of lamin A to provide structural support to the nucleus. J Cell Sci 2024; 137:jcs262207. [PMID: 39092499 PMCID: PMC11361635 DOI: 10.1242/jcs.262207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Lamins are intermediate filament proteins that contribute to numerous cellular functions, including nuclear morphology and mechanical stability. The N-terminal head domain of lamin is crucial for higher order filament assembly and function, yet the effects of commonly used N-terminal tags on lamin function remain largely unexplored. Here, we systematically studied the effect of two differently sized tags on lamin A (LaA) function in a mammalian cell model engineered to allow for precise control of expression of tagged lamin proteins. Untagged, FLAG-tagged and GFP-tagged LaA completely rescued nuclear shape defects when expressed at similar levels in lamin A/C-deficient (Lmna-/-) MEFs, and all LaA constructs prevented increased nuclear envelope ruptures in these cells. N-terminal tags, however, altered the nuclear localization of LaA and impaired the ability of LaA to restore nuclear deformability and to recruit emerin to the nuclear membrane in Lmna-/- MEFs. Our finding that tags impede some LaA functions but not others might explain the partial loss of function phenotypes when tagged lamins are expressed in model organisms and should caution researchers using tagged lamins to study the nucleus.
Collapse
Affiliation(s)
- Jacob Odell
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Odell J, Lammerding J. N-terminal tags impair the ability of Lamin A to provide structural support to the nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590311. [PMID: 39211210 PMCID: PMC11361184 DOI: 10.1101/2024.04.19.590311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Lamins are intermediate filament proteins that contribute to numerous cellular functions, including nuclear morphology and mechanical stability. The N-terminal head domain of lamin is critical for higher order filament assembly and function, yet the effects of commonly used N-terminal tags on lamin function remain largely unexplored. Here, we systematically studied the effect of two differently sized tags on Lamin A (LaA) function in a mammalian cell model engineered to allow for precise control of expression of tagged lamin proteins. Untagged, FLAG-tagged, and GFP-tagged LaA completely rescued nuclear shape defects when expressed at similar levels in lamin A/C-deficient ( Lmna -/- ) MEFs, and all LaA constructs prevented increased nuclear envelope (NE) ruptures in these cells. N-terminal tags, however, altered the nuclear localization of LaA and impaired the ability of LaA to restore nuclear deformability and to recruit Emerin to the nuclear membrane in Lmna -/- MEFs. Our finding that tags impede some LaA functions but not others may explain the partial loss of function phenotypes when tagged lamins are expressed in model organisms and should caution researchers using tagged lamins to study the nucleus.
Collapse
|
5
|
Zhang J, Sun P, Wu Z, Wu J, Jia J, Zou H, Mo Y, Zhou Z, Liu B, Ao Y, Wang Z. Targeting CK2 eliminates senescent cells and prolongs lifespan in Zmpste24-deficient mice. Cell Death Dis 2024; 15:380. [PMID: 38816370 PMCID: PMC11139886 DOI: 10.1038/s41419-024-06760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
Senescent cell clearance is emerging as a promising strategy for treating age-related diseases. Senolytics are small molecules that promote the clearance of senescent cells; however, senolytics are uncommon and their underlying mechanisms remain largely unknown. Here, we investigated whether genomic instability is a potential target for senolytic. We screened small-molecule kinase inhibitors involved in the DNA damage response (DDR) in Zmpste24-/- mouse embryonic fibroblasts, a progeroid model characterized with impaired DDR and DNA repair. 4,5,6,7-tetrabromo-2-azabenzamidazole (TBB), which specifically inhibits casein kinase 2 (CK2), was selected and discovered to preferentially trigger apoptosis in Zmpste24-/- cells. Mechanistically, inhibition of CK2 abolished the phosphorylation of heterochromatin protein 1α (HP1α), which retarded the dynamic HP1α dissociation from repressive histone mark H3K9me3 and its relocalization with γH2AX to DNA damage sites, suggesting that disrupting heterochromatin remodeling in the initiation of DDR accelerates apoptosis in senescent cells. Furthermore, feeding Zmpste24-deficient mice with TBB alleviated progeroid features and extended their lifespan. Our study identified TBB as a new class senolytic compound that can reduce age-related symptoms and prolong lifespan in progeroid mice.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Shenzhen University, Shenzhen, 518055, China
| | - Pengfei Sun
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Zhuping Wu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Jie Wu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Jiali Jia
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Haoman Zou
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Yanzhen Mo
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Baohua Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Shenzhen University, Shenzhen, 518055, China
| | - Ying Ao
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China.
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Shenzhen University, Shenzhen, 518055, China.
| | - Zimei Wang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China.
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Tiwari V, Alam MJ, Bhatia M, Navya M, Banerjee SK. The structure and function of lamin A/C: Special focus on cardiomyopathy and therapeutic interventions. Life Sci 2024; 341:122489. [PMID: 38340979 DOI: 10.1016/j.lfs.2024.122489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Lamins are inner nuclear membrane proteins that belong to the intermediate filament family. Lamin A/C lie adjacent to the heterochromatin structure in polymer form, providing skeletal to the nucleus. Based on the localization, lamin A/C provides nuclear stability and cytoskeleton to the nucleus and modulates chromatin organization and gene expression. Besides being the structural protein making the inner nuclear membrane in polymer form, lamin A/C functions as a signalling molecule involved in gene expression as an enhancer inside the nucleus. Lamin A/C regulates various cellular pathways like autophagy and energy balance in the cytoplasm. Its expression is highly variable in differentiated tissues, higher in hard tissues like bone and muscle cells, and lower in soft tissues like the liver and brain. In muscle cells, including the heart, lamin A/C must be expressed in a balanced state. Lamin A/C mutation is linked with various diseases, such as muscular dystrophy, lipodystrophy, and cardiomyopathies. It has been observed that a good number of mutations in the LMNA gene impact cardiac activity and its function. Although several works have been published, there are still several unexplored areas left regarding the lamin A/C function and structure in the cardiovascular system and its pathological state. In this review, we focus on the structural organization, expression pattern, and function of lamin A/C, its interacting partners, and the pathophysiology associated with mutations in the lamin A/C gene, with special emphasis on cardiovascular diseases. With the recent finding on lamin A/C, we have summarized the possible therapeutic interventions to treat cardiovascular symptoms and reverse the molecular changes.
Collapse
Affiliation(s)
- Vikas Tiwari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Md Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India; Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Madhavi Bhatia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Malladi Navya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Sanjay K Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India.
| |
Collapse
|
7
|
Pande S, Ghosh DK. Nuclear proteostasis imbalance in laminopathy-associated premature aging diseases. FASEB J 2023; 37:e23116. [PMID: 37498235 DOI: 10.1096/fj.202300878r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/15/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Laminopathies are a group of rare genetic disorders with heterogeneous clinical phenotypes such as premature aging, cardiomyopathy, lipodystrophy, muscular dystrophy, microcephaly, epilepsy, and so on. The cellular phenomena associated with laminopathy invariably show disruption of nucleoskeleton of lamina due to deregulated expression, localization, function, and interaction of mutant lamin proteins. Impaired spatial and temporal tethering of lamin proteins to the lamina or nucleoplasmic aggregation of lamins are the primary molecular events that can trigger nuclear proteotoxicity by modulating differential protein-protein interactions, sequestering quality control proteins, and initiating a cascade of abnormal post-translational modifications. Clearly, laminopathic cells exhibit moderate to high nuclear proteotoxicity, raising the question of whether an imbalance in nuclear proteostasis is involved in laminopathic diseases, particularly in diseases of early aging such as HGPS and laminopathy-associated premature aging. Here, we review nuclear proteostasis and its deregulation in the context of lamin proteins and laminopathies.
Collapse
Affiliation(s)
- Shruti Pande
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Debasish Kumar Ghosh
- Enteric Disease Division, Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
8
|
Fan JR, Chang SN, Chu CT, Chen HC. AKT2-mediated nuclear deformation leads to genome instability during epithelial-mesenchymal transition. iScience 2023; 26:106992. [PMID: 37378334 PMCID: PMC10291577 DOI: 10.1016/j.isci.2023.106992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/04/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Nuclear deformation has been observed in some cancer cells for decades, but its underlying mechanism and biological significance remain elusive. To address these questions, we employed human lung cancer A549 cell line as a model in context with transforming growth factor β (TGFβ)-induced epithelial-mesenchymal transition. Here, we report that nuclear deformation induced by TGFβ is concomitant with increased phosphorylation of lamin A at Ser390, defective nuclear lamina and genome instability. AKT2 and Smad3 serve as the downstream effectors for TGFβ to induce nuclear deformation. AKT2 directly phosphorylates lamin A at Ser390, whereas Smad3 is required for AKT2 activation upon TGFβ stimulation. Expression of the lamin A mutant with a substitution of Ser390 to Ala or suppression of AKT2 or Smad3 prevents nuclear deformation and genome instability induced by TGFβ. These findings reveal a molecular mechanism for TGFβ-induced nuclear deformation and establish a role of nuclear deformation in genome instability during epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Jia-Rong Fan
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Sung-Nian Chang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Ching-Tung Chu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hong-Chen Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| |
Collapse
|
9
|
Prasad KN. A micronutrient mixture with collagen peptides, probiotics, cannabidiol, and diet may reduce aging, and development and progression of age-related alzheimer's disease, and improve its treatment. Mech Ageing Dev 2023; 210:111757. [PMID: 36460123 DOI: 10.1016/j.mad.2022.111757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
Human aging involves gradual decline in organ functions leading to organ specific age-related chronic diseases such as Alzheimer's disease (AD). Although advances in the development of new drugs, novel surgical procedures, improved diet and lifestyle, have resulted in doubling of lifespan of humans, the quality of life in many cases remains poor because of increased incidence of age-related chronic diseases. Using experimental models of accelerated aging, several cellular defects associated with aging and AD have been identified. Some cellular defects due to increased oxidative stress, chronic inflammation, autophagy defects, mitochondrial dysfunction, and imbalances in the composition probiotics in favor of harmful bacteria over beneficial bacteria are common to both aging and AD, while others such as telomere attrition, loss of collagen, elastin, and hyaluronic acid, failure of DNA repair system, and impaired immune function are unique to aging; and some such as increased production of beta-amyloids, hyperphosphorylation of tau protein, and abnormal behaviors are unique to AD. It is suggested that supplementation with a micronutrient mixture, probiotics, collagen peptides, CBD, and modifications in the diet and lifestyle may reduce the aging processes, and the development, progression of AD, and improve the treatments of this disease.
Collapse
Affiliation(s)
- Kedar N Prasad
- Engage Global, Inc. 245 El Faisan Dr., San Rafael, CA 94903, USA.
| |
Collapse
|
10
|
Elevated Levels of Lamin A Promote HR and NHEJ-Mediated Repair Mechanisms in High-Grade Ovarian Serous Carcinoma Cell Line. Cells 2023; 12:cells12050757. [PMID: 36899893 PMCID: PMC10001195 DOI: 10.3390/cells12050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Extensive research for the last two decades has significantly contributed to understanding the roles of lamins in the maintenance of nuclear architecture and genome organization which is drastically modified in neoplasia. It must be emphasized that alteration in lamin A/C expression and distribution is a consistent event during tumorigenesis of almost all tissues of human bodies. One of the important signatures of a cancer cell is its inability to repair DNA damage which befalls several genomic events that transform the cells to be sensitive to chemotherapeutic agents. This genomic and chromosomal instability is the most common feature found in cases of high-grade ovarian serous carcinoma. Here, we report elevated levels of lamins in OVCAR3 cells (high-grade ovarian serous carcinoma cell line) in comparison to IOSE (immortalised ovarian surface epithelial cells) and, consequently, altered damage repair machinery in OVCAR3. We have analysed the changes in global gene expression as a sequel to DNA damage induced by etoposide in ovarian carcinoma where lamin A is particularly elevated in expression and reported some differentially expressed genes associated with pathways conferring cellular proliferation and chemoresistance. We hereby establish the role of elevated lamin A in neoplastic transformation in the context of high-grade ovarian serous cancer through a combination of HR and NHEJ mechanisms.
Collapse
|
11
|
Shah P, McGuigan CW, Cheng S, Vanpouille-Box C, Demaria S, Weiss RS, Lammerding J. ATM Modulates Nuclear Mechanics by Regulating Lamin A Levels. Front Cell Dev Biol 2022; 10:875132. [PMID: 35721517 PMCID: PMC9198445 DOI: 10.3389/fcell.2022.875132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/13/2022] [Indexed: 12/18/2022] Open
Abstract
Ataxia-telangiectasia mutated (ATM) is one of the three main apical kinases at the crux of DNA damage response and repair in mammalian cells. ATM activates a cascade of downstream effector proteins to regulate DNA repair and cell cycle checkpoints in response to DNA double-strand breaks. While ATM is predominantly known for its role in DNA damage response and repair, new roles of ATM have recently begun to emerge, such as in regulating oxidative stress or metabolic pathways. Here, we report the surprising discovery that ATM inhibition and deletion lead to reduced expression of the nuclear envelope protein lamin A. Lamins are nuclear intermediate filaments that modulate nuclear shape, structure, and stiffness. Accordingly, inhibition or deletion of ATM resulted in increased nuclear deformability and enhanced cell migration through confined spaces, which requires substantial nuclear deformation. These findings point to a novel connection between ATM and lamin A and may have broad implications for cells with ATM mutations-as found in patients suffering from Ataxia Telangiectasia and many human cancers-which could lead to enhanced cell migration and increased metastatic potential.
Collapse
Affiliation(s)
- Pragya Shah
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States
| | - Connor W. McGuigan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States
| | - Svea Cheng
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States
| | - Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York City, NY, United States
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York City, NY, United States
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, United States
| | - Robert S. Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
12
|
Talukder P, Saha A, Roy S, Ghosh G, Dutta Roy D, Barua S. Progeria-a Rare Genetic Condition with Accelerated Ageing Process. Appl Biochem Biotechnol 2022; 195:2587-2596. [PMID: 35445924 DOI: 10.1007/s12010-021-03514-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/18/2021] [Indexed: 11/26/2022]
Abstract
Progeria is a rare genetic disease which is characterised by accelerated ageing and reduced life span. There are differing types of progeria, but the classic type is Hutchinson-Gilford progeria syndrome (HGPS). Within a year of birth, people suffering from it start showing several features such as very low weight, scleroderma, osteoporosis and loss of hair. Their life expectancy is highly reduced and the average life span is around 14.6 years. Research is going on to understand the genetic and molecular level causes of this disease. Apart from that, several studies are also going on to discover therapeutic techniques and drugs to treat this disease but the success rate is very low. To gain a better understanding about research developments of progeria more experimental models, drugs and molecular technologies are under trial. Different important aspects and recent developments in epidemiology, genetic causes, symptoms, diagnosis and treatment options of progeria are discussed in this review.
Collapse
Affiliation(s)
- Pratik Talukder
- Department of Biotechnology, University of Engineering and Management, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal, 700156, India.
| | - Arunima Saha
- Department of Biotechnology, University of Engineering and Management, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal, 700156, India
| | - Sohini Roy
- Department of Biotechnology, University of Engineering and Management, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal, 700156, India
| | - Gargi Ghosh
- Department of Biotechnology, University of Engineering and Management, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal, 700156, India
| | - Debshikha Dutta Roy
- Department of Biotechnology, University of Engineering and Management, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal, 700156, India
| | - Snejuti Barua
- Department of Biotechnology, University of Engineering and Management, University Area, Plot, Street Number 03, Action Area III, B/5, Newtown, Kolkata, West Bengal, 700156, India
| |
Collapse
|
13
|
Kural Mangit E, Boustanabadimaralan Düz N, Dinçer P. A cytoplasmic escapee: desmin is going nuclear. Turk J Biol 2022; 45:711-719. [PMID: 35068951 PMCID: PMC8733954 DOI: 10.3906/biy-2107-54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/04/2021] [Indexed: 11/03/2022] Open
Abstract
It has been a long time since researchers have focused on the cytoskeletal proteins' unconventional functions in the nucleus. Subcellular localization of a protein not only affects its functions but also determines the accessibility for cellular processes. Desmin is a muscle-specific, cytoplasmic intermediate filament protein, the cytoplasmic roles of which are defined. Yet, there is some evidence pointing out nuclear functions for desmin. In silico and wet lab analysis shows that desmin can enter and function in the nucleus. Furthermore, the candidate nuclear partners of desmin support the notion that desmin can serve as a transcriptional regulator inside the nucleus. Uncovering the nuclear functions and partners of desmin will provide a new insight into the biological significance of desmin.
Collapse
Affiliation(s)
- Ecem Kural Mangit
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara Turkey.,Laboratory Animals Research and Application Centre, Hacettepe University, Ankara Turkey
| | | | - Pervin Dinçer
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara Turkey
| |
Collapse
|
14
|
Moriel-Carretero M. The Many Faces of Lipids in Genome Stability (and How to Unmask Them). Int J Mol Sci 2021; 22:12930. [PMID: 34884734 PMCID: PMC8657548 DOI: 10.3390/ijms222312930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Deep efforts have been devoted to studying the fundamental mechanisms ruling genome integrity preservation. A strong focus relies on our comprehension of nucleic acid and protein interactions. Comparatively, our exploration of whether lipids contribute to genome homeostasis and, if they do, how, is severely underdeveloped. This disequilibrium may be understood in historical terms, but also relates to the difficulty of applying classical lipid-related techniques to a territory such as a nucleus. The limited research in this domain translates into scarce and rarely gathered information, which with time further discourages new initiatives. In this review, the ways lipids have been demonstrated to, or very likely do, impact nuclear transactions, in general, and genome homeostasis, in particular, are explored. Moreover, a succinct yet exhaustive battery of available techniques is proposed to tackle the study of this topic while keeping in mind the feasibility and habits of "nucleus-centered" researchers.
Collapse
Affiliation(s)
- María Moriel-Carretero
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, CEDEX 5, 34293 Montpellier, France
| |
Collapse
|
15
|
Rosenthal SM, Misra T, Abdouni H, Branon TC, Ting AY, Scott IC, Gingras AC. A Toolbox for Efficient Proximity-Dependent Biotinylation in Zebrafish Embryos. Mol Cell Proteomics 2021; 20:100128. [PMID: 34332124 PMCID: PMC8383115 DOI: 10.1016/j.mcpro.2021.100128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding how proteins are organized in compartments is essential to elucidating their function. While proximity-dependent approaches such as BioID have enabled a massive increase in information about organelles, protein complexes, and other structures in cell culture, to date there have been only a few studies on living vertebrates. Here, we adapted proximity labeling for protein discovery in vivo in the vertebrate model organism, zebrafish. Using lamin A (LMNA) as bait and green fluorescent protein (GFP) as a negative control, we developed, optimized, and benchmarked in vivo TurboID and miniTurbo labeling in early zebrafish embryos. We developed both an mRNA injection protocol and a transgenic system in which transgene expression is controlled by a heat shock promoter. In both cases, biotin is provided directly in the egg water, and we demonstrate that 12 h of labeling are sufficient for biotinylation of prey proteins, which should permit time-resolved analysis of development. After statistical scoring, we found that the proximal partners of LMNA detected in each system were enriched for nuclear envelope and nuclear membrane proteins and included many orthologs of human proteins identified as proximity partners of lamin A in mammalian cell culture. The tools and protocols developed here will allow zebrafish researchers to complement genetic tools with powerful proteomics approaches.
Collapse
Affiliation(s)
- Shimon M Rosenthal
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Tvisha Misra
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hala Abdouni
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Tess C Branon
- Department of Genetics, Stanford University, Stanford, California, USA; Department of Biology, Stanford University, Stanford, California, USA; Department of Chemistry, Stanford University, Stanford, California, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alice Y Ting
- Department of Genetics, Stanford University, Stanford, California, USA; Department of Biology, Stanford University, Stanford, California, USA; Department of Chemistry, Stanford University, Stanford, California, USA; Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Ian C Scott
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Ovejero S, Soulet C, Moriel-Carretero M. The Alkylating Agent Methyl Methanesulfonate Triggers Lipid Alterations at the Inner Nuclear Membrane That Are Independent from Its DNA-Damaging Ability. Int J Mol Sci 2021; 22:7461. [PMID: 34299079 PMCID: PMC8305661 DOI: 10.3390/ijms22147461] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/03/2021] [Accepted: 07/08/2021] [Indexed: 02/05/2023] Open
Abstract
In order to tackle the study of DNA repair pathways, the physical and chemical agents creating DNA damage, the genotoxins, are frequently employed. Despite their utility, their effects are rarely restricted to DNA, and therefore simultaneously harm other cell biomolecules. Methyl methanesulfonate (MMS) is an alkylating agent that acts on DNA by preferentially methylating guanine and adenine bases. It is broadly used both in basic genome stability research and as a model for mechanistic studies to understand how alkylating agents work, such as those used in chemotherapy. Nevertheless, MMS exerts additional actions, such as oxidation and acetylation of proteins. In this work, we introduce the important notion that MMS also triggers a lipid stress that stems from and affects the inner nuclear membrane. The inner nuclear membrane plays an essential role in virtually all genome stability maintenance pathways. Thus, we want to raise awareness that the relative contribution of lipid and genotoxic stresses when using MMS may be difficult to dissect and will matter in the conclusions drawn from those studies.
Collapse
Affiliation(s)
- Sara Ovejero
- Institut de Génétique Humaine (IGH), Université de Montpellier-Centre National de la Recherche Scientifique, 34396 Montpellier, France;
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France
| | - Caroline Soulet
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier-Centre National de la Recherche Scientifique, 34293 Montpellier, France;
| | - María Moriel-Carretero
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier-Centre National de la Recherche Scientifique, 34293 Montpellier, France;
| |
Collapse
|
17
|
Rahman MM, Ferdous KS, Ahmed M, Islam MT, Khan MR, Perveen A, Ashraf GM, Uddin MS. Hutchinson-Gilford Progeria Syndrome: An Overview of the Molecular Mechanism, Pathophysiology and Therapeutic Approach. Curr Gene Ther 2021; 21:216-229. [PMID: 33655857 DOI: 10.2174/1566523221666210303100805] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/29/2022]
Abstract
Lamin A/C encoded by the LMNA gene is an essential component for maintaining the nuclear structure. Mutation in the lamin A/C leads to a group of inherited disorders is known as laminopathies. In the human body, there are several mutations in the LMNA gene that have been identified. It can affect diverse organs or tissues or can be systemic, causing different diseases. In this review, we mainly focused on one of the most severe laminopathies, Hutchinson-Gilford progeria syndrome (HGPS). HGPS is an immensely uncommon, deadly, metameric ill-timed laminopathies caused by the abnormal splicing of the LMNA gene and production of an aberrant protein known as progerin. Here, we also presented the currently available data on the molecular mechanism, pathophysiology, available treatment, and future approaches to this deadly disease. Due to the production of progerin, an abnormal protein leads to an abnormality in nuclear structure, defects in DNA repair, shortening of telomere, and impairment in gene regulation which ultimately results in aging in the early stage of life. Now some treatment options are available for this disease, but a proper understanding of the molecular mechanism of this disease will help to develop a more appropriate treatment which makes it an emerging area of research.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Kazi Sayma Ferdous
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mohammad Touhidul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md Robin Khan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| |
Collapse
|
18
|
Sferra A, Fortugno P, Motta M, Aiello C, Petrini S, Ciolfi A, Cipressa F, Moroni I, Leuzzi V, Pieroni L, Marini F, Boespflug Tanguy O, Eymard-Pierre E, Danti FR, Compagnucci C, Zambruno G, Brusco A, Santorelli FM, Chiapparini L, Francalanci P, Loizzo AL, Tartaglia M, Cestra G, Bertini E. Biallelic mutations in RNF220 cause laminopathies featuring leukodystrophy, ataxia and deafness. Brain 2021; 144:3020-3035. [PMID: 33964137 DOI: 10.1093/brain/awab185] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/14/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Leukodystrophies are a heterogeneous group of rare inherited disorders that involve preferentially the white matter of the central nervous system (CNS). These conditions are characterized by a primary glial cell and myelin sheath pathology of variable etiology, which causes secondary axonal degeneration, generally emerging with disease progression. Whole exome sequencing performed in 5 large consanguineous nuclear families allowed to identify homozygosity for two recurrent missense variants affecting highly conserved residues of RNF220 as the causative event underlying a novel form of leukodystrophy with ataxia and sensorineural deafness. We report on two homozygous missense variants (p.R363Q and p.R365Q) in the ubiquitin E3 ligase RNF220 as the cause underlying a novel form of leukodystrophy with ataxia and sensorineural deafness having fibrotic cardiomyopathy and hepatopathy as associated features, in seven consanguineous families. Mass spectrometry analysis identified lamin B1 as RNF220 binding protein and co-immunoprecipitation experiments demonstrated reduced binding of both RNF220 mutants to lamin B1. We demonstrate that RNF220 silencing in Drosophila melanogaster specifically affects proper localization of lamin Dm0, the fly lamin B1 orthologue, promotes its aggregation, and causes a neurodegenerative phenotype, strongly supporting the functional link between RNF220 and lamin B1. Finally, we demonstrate that RNF220 plays a crucial role in the maintenance of nuclear morphology: mutations primary skin fibroblasts determine nuclear abnormalities such as blebs, herniations and invaginations, which are typically observed in cells of patients affected by laminopathies. Overall, our data identify RNF220 as a gene implicated in leukodystrophy with ataxia and sensorineural deafness, and document a critical role of RNF220 in the regulation of nuclear lamina. Our findings provide further evidence on the direct link between nuclear lamina dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Antonella Sferra
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Paola Fortugno
- Department of Life, Health and Environmental Sciences University of L'Aquila, 00167 Rome, Italy.,Human Functional Genomics, IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Marialetizia Motta
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Chiara Aiello
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Francesca Cipressa
- University of Rome "Sapienza", Department of Biology and Biotechnology, 00185 Rome, Italy
| | - Isabella Moroni
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University, 00185 Rome, Italy
| | | | - Federica Marini
- Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.,Department of Laboratory Diagnostic and Infectious Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Odile Boespflug Tanguy
- Service de Neurologie Pédiatrique, Centre de reference leucodystrophies et leucoencephalopathies de cause rare (LEUKOFRANCE), APHP Hopital Robert-Debré, 75019 Paris, France.,Université de Paris, NeuroDiderot, UMR 1141 INSERM 75651 Paris, France
| | - Eleonore Eymard-Pierre
- Service de Cytogénétique Médicale CHU de Clermont Ferrand, Hopital ESTAING 63003 CLERMONT FERRAND, France
| | - Federica Rachele Danti
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Giovanna Zambruno
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, 10124 Turin, Italy
| | | | - Luisa Chiapparini
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Paola Francalanci
- Department of Laboratories, Pathology Unit, IRCCS Bambino Gesù Children's Hospital, 00165 Rome, Italy
| | - Anna Livia Loizzo
- DIDASCO Società Cooperativa Sociale- Centro di riabilitazione, 00185 Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Gianluca Cestra
- University of Rome "Sapienza", Department of Biology and Biotechnology, 00185 Rome, Italy.,Santa Lucia IRCCS Foundation, 00179 Rome, Italy.,Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.,Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) 00185 Rome, Italy
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| |
Collapse
|
19
|
Kural-Mangıt E, Dinçer PR. Physical evidence on desmin-lamin B interaction. Cytoskeleton (Hoboken) 2021; 78:14-17. [PMID: 33475247 DOI: 10.1002/cm.21651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/31/2020] [Accepted: 01/14/2021] [Indexed: 01/22/2023]
Abstract
Desmin is a muscle specific intermediate filament protein located in cytoplasm. Lamin B, on the other hand, is a nuclear intermediate filament protein. There are studies suggesting a possible interaction between desmin and lamin B yet there is no physical evidence. In the present study, we have shown for the first time a physical interaction between desmin and lamin B via reciprocal co-immunoprecipitation from muscle tissue of wild type AB zebrafish (Danio rerio, Hamilton). The interaction between desmin and lamin B might be a lead on a novel nucleocytoplasmic communication network.
Collapse
Affiliation(s)
- Ecem Kural-Mangıt
- Faculty of Medicine, Department of Medical Biology, Hacettepe University, Ankara, Turkey.,Laboratory Animals Research and Application Center, Hacettepe University, Ankara, Turkey
| | - Pervin Rukiye Dinçer
- Faculty of Medicine, Department of Medical Biology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
20
|
Emerging roles of lamins and DNA damage repair mechanisms in ovarian cancer. Biochem Soc Trans 2020; 48:2317-2333. [DOI: 10.1042/bst20200713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Lamins are type V intermediate filament proteins which are ubiquitously present in all metazoan cells providing a platform for binding of chromatin and related proteins, thereby serving a wide range of nuclear functions including DNA damage repair. Altered expression of lamins in different subtypes of cancer is evident from researches worldwide. But whether cancer is a consequence of this change or this change is a consequence of cancer is a matter of future investigation. However changes in the expression levels of lamins is reported to have direct or indirect association with cancer progression or have regulatory roles in common neoplastic symptoms like higher nuclear deformability, increased genomic instability and reduced susceptibility to DNA damaging agents. It has already been proved that loss of A type lamin positively regulates cathepsin L, eventually leading to degradation of several DNA damage repair proteins, hence impairing DNA damage repair pathways and increasing genomic instability. It is established in ovarian cancer, that the extent of alteration in nuclear morphology can determine the degree of genetic changes and thus can be utilized to detect low to high form of serous carcinoma. In this review, we have focused on ovarian cancer which is largely caused by genomic alterations in the DNA damage response pathways utilizing proteins like RAD51, BRCA1, 53BP1 which are regulated by lamins. We have elucidated the current understanding of lamin expression in ovarian cancer and its implications in the regulation of DNA damage response pathways that ultimately result in telomere deformation and genomic instability.
Collapse
|
21
|
Ignatieva EV, Ivanova OA, Komarova MY, Khromova NV, Polev DE, Kostareva AA, Sergushichev A, Dmitrieva RI. LMNA Mutations G232E and R482L Cause Dysregulation of Skeletal Muscle Differentiation, Bioenergetics, and Metabolic Gene Expression Profile. Genes (Basel) 2020; 11:E1057. [PMID: 32906763 PMCID: PMC7563596 DOI: 10.3390/genes11091057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Laminopathies are a family of monogenic multi-system diseases resulting from mutations in the LMNA gene which include a wide range of neuromuscular disorders. Although lamins are expressed in most types of differentiated cells, LMNA mutations selectively affect only specific tissues by mechanisms that remain largely unknown. We have employed the combination of functional in vitro experiments and transcriptome analysis in order to determine how two LMNA mutations associated with different phenotypes affect skeletal muscle development and metabolism. We used a muscle differentiation model based on C2C12 mouse myoblasts genetically modified with lentivirus constructs bearing wild-type human LMNA (WT-LMNA) or R482L-LMNA/G232E-LMNA mutations, linked to familial partial lipodystrophy of the Dunnigan type and muscular dystrophy phenotype accordingly. We have shown that both G232E/R482L-LMNA mutations cause dysregulation in coordination of pathways that control cell cycle dynamics and muscle differentiation. We have also found that R482/G232E-LMNA mutations induce mitochondrial uncoupling and a decrease in glycolytic activity in differentiated myotubes. Both types of alterations may contribute to mutation-induced muscle tissue pathology.
Collapse
Affiliation(s)
- Elena V. Ignatieva
- National Almazov Medical Research Centre, Institute of Molecular Biology and Genetics, 197341 Saint-Petersburg, Russia; (E.V.I.); (O.A.I.); (M.Y.K.); (N.V.K.); (A.A.K.)
| | - Oksana A. Ivanova
- National Almazov Medical Research Centre, Institute of Molecular Biology and Genetics, 197341 Saint-Petersburg, Russia; (E.V.I.); (O.A.I.); (M.Y.K.); (N.V.K.); (A.A.K.)
- ITMO University, Information Technologies and Programming Faculty, International Laboratory of Bioinformatics and Genomics, 197101 St. Petersburg, Russia;
| | - Margarita Y. Komarova
- National Almazov Medical Research Centre, Institute of Molecular Biology and Genetics, 197341 Saint-Petersburg, Russia; (E.V.I.); (O.A.I.); (M.Y.K.); (N.V.K.); (A.A.K.)
| | - Natalia V. Khromova
- National Almazov Medical Research Centre, Institute of Molecular Biology and Genetics, 197341 Saint-Petersburg, Russia; (E.V.I.); (O.A.I.); (M.Y.K.); (N.V.K.); (A.A.K.)
| | - Dmitrii E. Polev
- Research Resource Center “Biobank”, St Petersburg State University, 199034 Saint-Petersburg, Russia;
| | - Anna A. Kostareva
- National Almazov Medical Research Centre, Institute of Molecular Biology and Genetics, 197341 Saint-Petersburg, Russia; (E.V.I.); (O.A.I.); (M.Y.K.); (N.V.K.); (A.A.K.)
| | - Alexey Sergushichev
- ITMO University, Information Technologies and Programming Faculty, International Laboratory of Bioinformatics and Genomics, 197101 St. Petersburg, Russia;
| | - Renata I. Dmitrieva
- National Almazov Medical Research Centre, Institute of Molecular Biology and Genetics, 197341 Saint-Petersburg, Russia; (E.V.I.); (O.A.I.); (M.Y.K.); (N.V.K.); (A.A.K.)
| |
Collapse
|
22
|
Xiong L, Zhao K, Cao Y, Guo HH, Pan JX, Yang X, Ren X, Mei L, Xiong WC. Linking skeletal muscle aging with osteoporosis by lamin A/C deficiency. PLoS Biol 2020; 18:e3000731. [PMID: 32479501 PMCID: PMC7310860 DOI: 10.1371/journal.pbio.3000731] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/23/2020] [Accepted: 05/14/2020] [Indexed: 01/19/2023] Open
Abstract
The nuclear lamina protein lamin A/C is a key component of the nuclear envelope. Mutations in the lamin A/C gene (LMNA) are identified in patients with various types of laminopathy-containing diseases, which have features of accelerated aging and osteoporosis. However, the underlying mechanisms for laminopathy-associated osteoporosis remain largely unclear. Here, we provide evidence that loss of lamin A/C in skeletal muscles, but not osteoblast (OB)-lineage cells, results in not only muscle aging-like deficit but also trabecular bone loss, a feature of osteoporosis. The latter is due in large part to elevated bone resorption. Further cellular studies show an increase of osteoclast (OC) differentiation in cocultures of bone marrow macrophages/monocytes (BMMs) and OBs after treatment with the conditioned medium (CM) from lamin A/C-deficient muscle cells. Antibody array screening analysis of the CM proteins identifies interleukin (IL)-6, whose expression is markedly increased in lamin A/C-deficient muscles. Inhibition of IL-6 by its blocking antibody in BMM-OB cocultures diminishes the increase of osteoclastogenesis. Knockout (KO) of IL-6 in muscle lamin A/C-KO mice diminishes the deficits in trabecular bone mass but not muscle. Further mechanistic studies reveal an elevation of cellular senescence marked by senescence-associated beta-galactosidase (SA-β-gal), p16Ink4a, and p53 in lamin A/C-deficient muscles and C2C12 muscle cells, and the p16Ink4a may induce senescence-associated secretory phenotype (SASP) and IL-6 expression. Taken together, these results suggest a critical role for skeletal muscle lamin A/C to prevent cellular senescence, IL-6 expression, hyperosteoclastogenesis, and trabecular bone loss, uncovering a pathological mechanism underlying the link between muscle aging/senescence and osteoporosis.
Collapse
Affiliation(s)
- Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Louis Stoke VA Medical Center, Cleveland, Ohio, United States of America
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Kai Zhao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Yu Cao
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Hao-Han Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jin-Xiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Louis Stoke VA Medical Center, Cleveland, Ohio, United States of America
| | - Xiao Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Louis Stoke VA Medical Center, Cleveland, Ohio, United States of America
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Louis Stoke VA Medical Center, Cleveland, Ohio, United States of America
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| |
Collapse
|
23
|
Harhouri K, Frankel D, Bartoli C, Roll P, De Sandre-Giovannoli A, Lévy N. An overview of treatment strategies for Hutchinson-Gilford Progeria syndrome. Nucleus 2019; 9:246-257. [PMID: 29619863 PMCID: PMC5973194 DOI: 10.1080/19491034.2018.1460045] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a sporadic, autosomal dominant disorder characterized by premature and accelerated aging symptoms leading to death at the mean age of 14.6 years usually due to cardiovascular complications. HGPS is caused by a de novo point mutation in the LMNA gene encoding the intermediate filament proteins lamins A and C which are structural components of the nuclear lamina. This mutation leads to the production of a truncated toxic form of lamin A, issued from aberrant splicing and called progerin. Progerin accumulates in HGPS cells' nuclei and is a hallmark of the disease. Small amounts of progerin are also produced during normal aging. HGPS cells and animal preclinical models have provided insights into the molecular and cellular pathways that underlie the disease and have also highlighted possible mechanisms involved in normal aging. This review reports recent medical advances and treatment approaches for patients affected with HGPS.
Collapse
Affiliation(s)
- Karim Harhouri
- a Aix Marseille Univ, INSERM, MMG - U1251 , Marseille , France
| | - Diane Frankel
- a Aix Marseille Univ, INSERM, MMG - U1251 , Marseille , France.,b APHM, Hôpital la Timone, Service de Biologie Cellulaire , Marseille , France
| | | | - Patrice Roll
- a Aix Marseille Univ, INSERM, MMG - U1251 , Marseille , France.,b APHM, Hôpital la Timone, Service de Biologie Cellulaire , Marseille , France
| | - Annachiara De Sandre-Giovannoli
- a Aix Marseille Univ, INSERM, MMG - U1251 , Marseille , France.,c APHM, Hôpital la Timone , Département de Génétique Médicale , Marseille , France
| | - Nicolas Lévy
- a Aix Marseille Univ, INSERM, MMG - U1251 , Marseille , France.,c APHM, Hôpital la Timone , Département de Génétique Médicale , Marseille , France
| |
Collapse
|
24
|
Wang Q, Huang WR, Chih WY, Chuang KP, Chang CD, Wu Y, Huang Y, Liu HJ. Cdc20 and molecular chaperone CCT2 and CCT5 are required for the Muscovy duck reovirus p10.8-induced cell cycle arrest and apoptosis. Vet Microbiol 2019; 235:151-163. [PMID: 31282373 DOI: 10.1016/j.vetmic.2019.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 01/22/2023]
Abstract
This study demonstrates that the Muscovy duck reovirus (MDRV) p10.8 protein is one of many viral non-structural proteins that induces both cell cycle arrest and apoptosis. The p10.8 but not σC is a nuclear targeting protein that shuttles between the nucleus and the cytoplasm. Our results reveal that p10.8-induced apoptosis in cultured cells occurs by the nucleoporin Tpr/p53-dependent and Fas/caspase 8-mediated pathways. Furthermore, a compelling finding from this study is that the p10.8 and σC proteins of MDRV facilitate CDK2 and CDK4 degradation via the ubiquitin-proteasome pathway. We found that depletion of Cdc20 reversed the p10.8- and σC- mediated CDK4 degradation and p10.8-induced apoptosis, suggesting that Cdc20 plays a critical role in modulating p10.8-mediated cell cycle and apoptosis. Furthermore, we found that depletion of chaperonin-containing tailless complex polypeptide 1 (CCT) 2 and CCT5 reduced the level of Cdc20 and reversed the p10.8- and σC-mediated CDK4 degradation and p10.8-induced apoptosis, indicating that molecular chaperone CCT2 and CCT5 are required for stabilization of Ccd20 for mediating both cell cycle arrest and apoptosis. This study provides mechanistic insights into how p10.8 induces both cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Quanxi Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wei-Ru Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | - Wan-Yi Chih
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | - Kuo-Pin Chuang
- Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Ching-Dong Chang
- Department of Veterinary medicine, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan
| | - Yijian Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yifan Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Ph. D Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
25
|
Khromova NV, Perepelina KI, Ivanova OA, Malashicheva AB, Kostareva AA, Dmitrieva RI. R482L Mutation of the LMNA Gene Affects Dynamics of C2C12 Myogenic Differentiation and Stimulates Formation of Intramuscular Lipid Droplets. BIOCHEMISTRY (MOSCOW) 2019; 84:241-249. [DOI: 10.1134/s0006297919030064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Dworak N, Makosa D, Chatterjee M, Jividen K, Yang CS, Snow C, Simke WC, Johnson IG, Kelley JB, Paschal BM. A nuclear lamina-chromatin-Ran GTPase axis modulates nuclear import and DNA damage signaling. Aging Cell 2019; 18:e12851. [PMID: 30565836 PMCID: PMC6351833 DOI: 10.1111/acel.12851] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 08/16/2018] [Accepted: 09/09/2018] [Indexed: 12/25/2022] Open
Abstract
The Ran GTPase regulates nuclear import and export by controlling the assembly state of transport complexes. This involves the direct action of RanGTP, which is generated in the nucleus by the chromatin‐associated nucleotide exchange factor, RCC1. Ran interactions with RCC1 contribute to formation of a nuclear:cytoplasmic (N:C) Ran protein gradient in interphase cells. In previous work, we showed that the Ran protein gradient is disrupted in fibroblasts from Hutchinson–Gilford progeria syndrome (HGPS) patients. The Ran gradient disruption in these cells is caused by nuclear membrane association of a mutant form of Lamin A, which induces a global reduction in heterochromatin marked with Histone H3K9me3 and Histone H3K27me3. Here, we have tested the hypothesis that heterochromatin controls the Ran gradient. Chemical inhibition and depletion of the histone methyltransferases (HMTs) G9a and GLP in normal human fibroblasts reduced heterochromatin levels and caused disruption of the Ran gradient, comparable to that observed previously in HGPS fibroblasts. HMT inhibition caused a defect in nuclear localization of TPR, a high molecular weight protein that, owing to its large size, displays a Ran‐dependent import defect in HGPS. We reasoned that pathways dependent on nuclear import of large proteins might be compromised in HGPS. We found that nuclear import of ATM requires the Ran gradient, and disruption of the Ran gradient in HGPS causes a defect in generating nuclear γ‐H2AX in response to ionizing radiation. Our data suggest a lamina–chromatin–Ran axis is important for nuclear transport regulation and contributes to the DNA damage response.
Collapse
Affiliation(s)
- Natalia Dworak
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
| | - Dawid Makosa
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
| | - Mandovi Chatterjee
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
| | - Kasey Jividen
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
| | - Chun-Song Yang
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
| | - Chelsi Snow
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
- Department of Biochemistry and Molecular Genetics; University of Virginia; Charlottesville Virginia
| | - William C. Simke
- Department of Molecular and Biomedical Sciences; University of Maine; Orono Maine
| | - Isaac G. Johnson
- Department of Molecular and Biomedical Sciences; University of Maine; Orono Maine
| | - Joshua B. Kelley
- Department of Molecular and Biomedical Sciences; University of Maine; Orono Maine
| | - Bryce M. Paschal
- Center for Cell Signaling; University of Virginia; Charlottesville Virginia
- Department of Biochemistry and Molecular Genetics; University of Virginia; Charlottesville Virginia
| |
Collapse
|
27
|
Heindl A, Khan AM, Rodrigues DN, Eason K, Sadanandam A, Orbegoso C, Punta M, Sottoriva A, Lise S, Banerjee S, Yuan Y. Microenvironmental niche divergence shapes BRCA1-dysregulated ovarian cancer morphological plasticity. Nat Commun 2018. [PMID: 30254278 DOI: 10.1038/s41467-018-06130-3] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
How tumor microenvironmental forces shape plasticity of cancer cell morphology is poorly understood. Here, we conduct automated histology image and spatial statistical analyses in 514 high grade serous ovarian samples to define cancer morphological diversification within the spatial context of the microenvironment. Tumor spatial zones, where cancer cell nuclei diversify in shape, are mapped in each tumor. Integration of this spatially explicit analysis with omics and clinical data reveals a relationship between morphological diversification and the dysregulation of DNA repair, loss of nuclear integrity, and increased disease mortality. Within the Immunoreactive subtype, spatial analysis further reveals significantly lower lymphocytic infiltration within diversified zones compared with other tumor zones, suggesting that even immune-hot tumors contain cells capable of immune escape. Our findings support a model whereby a subpopulation of morphologically plastic cancer cells with dysregulated DNA repair promotes ovarian cancer progression through positive selection by immune evasion.
Collapse
Affiliation(s)
- Andreas Heindl
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK.,Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Adnan Mujahid Khan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK.,Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Daniel Nava Rodrigues
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Katherine Eason
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Anguraj Sadanandam
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK.,Centre for Molecular Pathology, Royal Marsden Hospital, London, SM2 5NG, UK
| | - Cecilia Orbegoso
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | - Marco Punta
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Stefano Lise
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Susana Banerjee
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK.,Division of Clinical Studies, the Institute of Cancer Research, London, UK, SM2 5NG
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK. .,Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK.
| |
Collapse
|
28
|
Heindl A, Khan AM, Rodrigues DN, Eason K, Sadanandam A, Orbegoso C, Punta M, Sottoriva A, Lise S, Banerjee S, Yuan Y. Microenvironmental niche divergence shapes BRCA1-dysregulated ovarian cancer morphological plasticity. Nat Commun 2018; 9:3917. [PMID: 30254278 PMCID: PMC6156340 DOI: 10.1038/s41467-018-06130-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/15/2018] [Indexed: 12/22/2022] Open
Abstract
How tumor microenvironmental forces shape plasticity of cancer cell morphology is poorly understood. Here, we conduct automated histology image and spatial statistical analyses in 514 high grade serous ovarian samples to define cancer morphological diversification within the spatial context of the microenvironment. Tumor spatial zones, where cancer cell nuclei diversify in shape, are mapped in each tumor. Integration of this spatially explicit analysis with omics and clinical data reveals a relationship between morphological diversification and the dysregulation of DNA repair, loss of nuclear integrity, and increased disease mortality. Within the Immunoreactive subtype, spatial analysis further reveals significantly lower lymphocytic infiltration within diversified zones compared with other tumor zones, suggesting that even immune-hot tumors contain cells capable of immune escape. Our findings support a model whereby a subpopulation of morphologically plastic cancer cells with dysregulated DNA repair promotes ovarian cancer progression through positive selection by immune evasion.
Collapse
Affiliation(s)
- Andreas Heindl
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Adnan Mujahid Khan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Daniel Nava Rodrigues
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Katherine Eason
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Anguraj Sadanandam
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
- Centre for Molecular Pathology, Royal Marsden Hospital, London, SM2 5NG, UK
| | - Cecilia Orbegoso
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | - Marco Punta
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Stefano Lise
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Susana Banerjee
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
- Division of Clinical Studies, the Institute of Cancer Research, London, UK, SM2 5NG
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK.
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK.
| |
Collapse
|
29
|
Microenvironmental niche divergence shapes BRCA1-dysregulated ovarian cancer morphological plasticity. Nat Commun 2018. [PMID: 30254278 DOI: 10.1038/s41467-018-06130-3]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
How tumor microenvironmental forces shape plasticity of cancer cell morphology is poorly understood. Here, we conduct automated histology image and spatial statistical analyses in 514 high grade serous ovarian samples to define cancer morphological diversification within the spatial context of the microenvironment. Tumor spatial zones, where cancer cell nuclei diversify in shape, are mapped in each tumor. Integration of this spatially explicit analysis with omics and clinical data reveals a relationship between morphological diversification and the dysregulation of DNA repair, loss of nuclear integrity, and increased disease mortality. Within the Immunoreactive subtype, spatial analysis further reveals significantly lower lymphocytic infiltration within diversified zones compared with other tumor zones, suggesting that even immune-hot tumors contain cells capable of immune escape. Our findings support a model whereby a subpopulation of morphologically plastic cancer cells with dysregulated DNA repair promotes ovarian cancer progression through positive selection by immune evasion.
Collapse
|
30
|
Krishnamoorthy V, Khanna R, Parnaik VK. E3 ubiquitin ligase HECW2 targets PCNA and lamin B1. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:1088-1104. [PMID: 29753763 DOI: 10.1016/j.bbamcr.2018.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/20/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022]
Abstract
Lamins constitute the major architectural proteins of the nuclear lamina that help in maintaining nuclear organization. Mutations in lamins are associated with diverse degenerative diseases, collectively termed laminopathies. HECW2, a HECT-type E3 ubiquitin ligase, is transcriptionally upregulated in HeLa cells expressing Emery-Dreifuss muscular dystrophy-causing-lamin A mutants. However, the role of HECW2 upregulation in mediating downstream effects in lamin mutant-expressing cells was previously unexplored. Here, we show that HECW2 interacts with two lamin A-binding proteins, proliferating cell nuclear antigen (PCNA), via a canonical PCNA-interacting protein (PIP) motif, and lamin B1. HECW2 mediates their ubiquitination and targets them for proteasomal degradation. Cells expressing lamin A mutants G232E and Q294P, in which HECW2 is upregulated, show increased proteasomal degradation of PCNA and lamin B1 most likely mediated by HECW2. Our findings establish HECW2 as an E3 ubiquitin ligase for PCNA and lamin B1 which regulates their levels in laminopathic cells. We also found that HECW2 interacts with wild-type lamin A and ubiquitinates it and this interaction is reduced in case of lamin mutants G232E and Q294P. Our findings suggest that interplay among HECW2, lamin A, PCNA, and lamin B1 determines their respective homeostatic levels in the cell and dysregulation of these interactions may contribute to the pathogenicity of laminopathies.
Collapse
Affiliation(s)
| | - Richa Khanna
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Veena K Parnaik
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India.
| |
Collapse
|
31
|
Finley J. Cellular stress and AMPK activation as a common mechanism of action linking the effects of metformin and diverse compounds that alleviate accelerated aging defects in Hutchinson-Gilford progeria syndrome. Med Hypotheses 2018; 118:151-162. [PMID: 30037605 DOI: 10.1016/j.mehy.2018.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder characterized by an accelerated aging phenotype that typically leads to death via stroke or myocardial infarction at approximately 14.6 years of age. Most cases of HGPS have been linked to the extensive use of a cryptic splice donor site located in the LMNA gene due to a de novo mutation, generating a truncated and toxic protein known as progerin. Progerin accumulation in the nuclear membrane and within the nucleus distorts the nuclear architecture and negatively effects nuclear processes including DNA replication and repair, leading to accelerated cellular aging and premature senescence. The serine-arginine rich splicing factor SRSF1 (also known as ASF/SF2) has recently been shown to modulate alternative splicing of the LMNA gene, with SRSF1 inhibition significantly reducing progerin at both the mRNA and protein levels. In 2014, we hypothesized for the first time that compounds including metformin that induce activation of AMP-activated protein kinase (AMPK), a master metabolic regulator activated by cellular stress (e.g. increases in intracellular calcium, reactive oxygen species, and/or an AMP(ADP)/ATP ratio increase, etc.), will beneficially alter gene splicing in progeria cells by inhibiting SRSF1, thus lowering progerin levels and altering the LMNA pre-mRNA splicing ratio. Recent evidence has substantiated this hypothesis, with metformin significantly reducing the mRNA and protein levels of both SRSF1 and progerin, activating AMPK, and alleviating pathological defects in HGPS cells. Metformin has also recently been shown to beneficially alter gene splicing in normal humans. Interestingly, several chemically distinct compounds, including rapamycin, methylene blue, all-trans retinoic acid, MG132, 1α,25-dihydroxyvitamin D3, sulforaphane, and oltipraz have each been shown to alleviate accelerated aging defects in patient-derived HGPS cells. Each of these compounds has also been independently shown to induce AMPK activation. Because these compounds improve accelerated aging defects in HGPS cells either by enhancing mitochondrial functionality, increasing Nrf2 activity, inducing autophagy, or by altering gene splicing and because AMPK activation beneficially modulates each of the aforementioned processes, it is our hypothesis that cellular stress-induced AMPK activation represents an indirect yet common mechanism of action linking such chemically diverse compounds with the beneficial effects of those compounds observed in HGPS cells. As normal humans also produce progerin at much lower levels through a similar mechanism, compounds that safely induce AMPK activation may have wide-ranging implications for both normal and pathological aging.
Collapse
|
32
|
Khanna R, Krishnamoorthy V, Parnaik VK. E3 ubiquitin ligase RNF123 targets lamin B1 and lamin-binding proteins. FEBS J 2018; 285:2243-2262. [PMID: 29676528 DOI: 10.1111/febs.14477] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 03/26/2018] [Accepted: 04/13/2018] [Indexed: 12/27/2022]
Abstract
Lamins are key nuclear proteins which are important for maintaining nuclear structure and function. Mutations in lamins cause a spectrum of genetic diseases termed as laminopathies. RING finger containing E3 ubiquitin ligase, RNF123, is transcriptionally upregulated in cells expressing rod domain lamin A mutations. However, the functional relevance of RNF123 in laminopathic cells is not clear. Using a mass spectrometry-based approach, we identified lamins and lamin-binding proteins retinoblastoma protein (pRb), lamina-associated polypeptide 2α (LAP2α), and emerin as RNF123-interacting proteins. We determined that RNF123 mediated the ubiquitination of these proteins and caused the proteasomal degradation of pRb, LAP2α, and lamin B1. Furthermore, these proteins were also targeted for proteasomal degradation in cells expressing lamin A rod domain mutants G232E, Q294P, and R386K. Overexpression of RNF123 resulted in delayed transit through the S-phase which was alleviated by coexpression of pRb or LAP2α. Our findings imply that RNF123-mediated ubiquitination of lamin-binding proteins may contribute to disease-causing mechanisms in laminopathies by depletion of key nuclear proteins and defects in cell cycle kinetics.
Collapse
Affiliation(s)
- Richa Khanna
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Veena K Parnaik
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
33
|
DuBose AJ, Lichtenstein ST, Petrash NM, Erdos MR, Gordon LB, Collins FS. Everolimus rescues multiple cellular defects in laminopathy-patient fibroblasts. Proc Natl Acad Sci U S A 2018; 115:4206-4211. [PMID: 29581305 PMCID: PMC5910873 DOI: 10.1073/pnas.1802811115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
LMNA encodes the A-type lamins that are part of the nuclear scaffold. Mutations in LMNA can cause a variety of disorders called laminopathies, including Hutchinson-Gilford progeria syndrome (HGPS), atypical Werner syndrome, and Emery-Dreifuss muscular dystrophy. Previous work has shown that treatment of HGPS cells with the mTOR inhibitor rapamycin or with the rapamycin analog everolimus corrects several of the phenotypes seen at the cellular level-at least in part by increasing autophagy and reducing the amount of progerin, the toxic form of lamin A that is overproduced in HGPS patients. Since other laminopathies also result in production of abnormal and potentially toxic lamin proteins, we hypothesized that everolimus would also be beneficial in those disorders. To test this, we applied everolimus to fibroblast cell lines from six laminopathy patients, each with a different mutation in LMNA Everolimus treatment increased proliferative ability and delayed senescence in all cell lines. In several cell lines, we observed that with treatment, there is a significant improvement in nuclear blebbing, which is a cellular hallmark of HGPS and other lamin disorders. These preclinical results suggest that everolimus might have clinical benefit for multiple laminopathy syndromes.
Collapse
Affiliation(s)
- Amanda J DuBose
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Stephen T Lichtenstein
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Noreen M Petrash
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Michael R Erdos
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Leslie B Gordon
- Department of Pediatrics, Hasbro Children's Hospital and Warren Alpert Medical School of Brown University, Providence, RI 02903
- Department of Anesthesia, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115
| | - Francis S Collins
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
34
|
Maraldi NM. The lamin code. Biosystems 2018; 164:68-75. [DOI: 10.1016/j.biosystems.2017.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 12/24/2022]
|
35
|
A 3-gene panel improves the prediction of left ventricular dysfunction after acute myocardial infarction. Int J Cardiol 2018; 254:28-35. [PMID: 29407108 DOI: 10.1016/j.ijcard.2017.10.109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/16/2017] [Accepted: 10/31/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Identification of patients at risk of poor outcome after acute myocardial infarction (MI) would allow tailoring healthcare to each individual. However, lack of prognostication tools renders this task challenging. Previous investigations suggested that blood transcriptome analysis may inform about prognosis after MI. We aim to independently confirm the value of gene expression profiles in the blood to predict left ventricular (LV) dysfunction after MI. METHODS AND RESULTS Five genes (LMNB1, MMP9, TGFBR1, LTBP4 and TNXB) selected from previous studies were measured in peripheral blood samples obtained at reperfusion in 449 MI patients. 79 patients had LV dysfunction as attested by an ejection fraction (EF) ≤40% at 4-month follow-up and 370 patients had a preserved LV function (EF>40%). LMNB1, MMP9 and TGFBR1 were up-regulated in patients with LV dysfunction and LTBP4 was down-regulated, as compared with patients with preserved LV function. The 5 genes were significant univariate predictors of LV dysfunction. In multivariable analyses adjusted with traditional risk factors and corrected for model overfitting, a panel of 3 genes - TNXB, TGFBR1 and LTBP4 - improved the prediction of a clinical model (p=0.00008) and provided a net reclassification index of 0.45 [0.23-0.69], p=0.0002 and an integrated discrimination improvement of 0.05 [0.02-0.09], p=0.001. Bootstrap internal validation confirmed the incremental predictive value of the 3-gene panel. CONCLUSION A 3-gene panel can aid to predict LV dysfunction after MI. Further independent validation is required before considering these findings for molecular diagnostic assay development.
Collapse
|
36
|
Ahmed MS, Ikram S, Bibi N, Mir A. Hutchinson-Gilford Progeria Syndrome: A Premature Aging Disease. Mol Neurobiol 2017; 55:4417-4427. [PMID: 28660486 DOI: 10.1007/s12035-017-0610-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/10/2017] [Indexed: 12/15/2022]
Abstract
Progeria is sporadic, very rare, autosomal dominant, deadly childhood disorder. It is one of the progeroid syndromes also known as Hutchinson-Gilford progeria syndrome (HGPS). Aging is a developmental process that begins with fertilization and ends up with death involving a lot of environmental and genetic factors. The disease firstly involves premature aging and then death from complications of atherosclerosis such as myocardial infarction, stroke, atherosclerosis, or heart failure. The lifespan of the patient is normally up to teen age or early twenties. It is usually not inherited because a patient normally dies before the age of reproduction. The most important genetic linkage between progeria and aging is shortening of telomere ends with each replication cycle. The patients are normally observed to have extremely short telomeres. Currently, 90% of the patients are said to have de novo point mutations in the LMNA gene that substitute cytosine with thymine and have been found in individuals with HGPS. Lmna encodes lamins A and C, and the A-type lamins have important structural function in the nuclear envelope. The most common type of HGPS mutation is located at codon 608 (G608G). It could not be diagnosed at birth, but after the age of 2 years, visible, prominent symptoms can be observed. Still, lot of research is needed to solve this mystery; hopefully, future research on HGPS would provide important clues for progeria and other fatal age-related disorders.
Collapse
Affiliation(s)
- Muhammad Saad Ahmed
- Department of Bioinformatics and Biotechnology, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad, Pakistan.,Department of Biological Engineering/Institute of Biotransformation and Synthetic Biosystem, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Sana Ikram
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), 11 Fucheng Road, Beijing, 100048, People's Republic of China
| | - Nousheen Bibi
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan.,National Center for Bioinformatics, Quaid-e-Azam University, Islamabad, Pakistan
| | - Asif Mir
- Department of Bioinformatics and Biotechnology, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad, Pakistan.
| |
Collapse
|
37
|
Hilton BA, Liu J, Cartwright BM, Liu Y, Breitman M, Wang Y, Jones R, Tang H, Rusinol A, Musich PR, Zou Y. Progerin sequestration of PCNA promotes replication fork collapse and mislocalization of XPA in laminopathy-related progeroid syndromes. FASEB J 2017; 31:3882-3893. [PMID: 28515154 DOI: 10.1096/fj.201700014r] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder that is caused by a point mutation in the LMNA gene, resulting in production of a truncated farnesylated-prelamin A protein (progerin). We previously reported that XPA mislocalized to the progerin-induced DNA double-strand break (DSB) sites, blocking DSB repair, which led to DSB accumulation, DNA damage responses, and early replication arrest in HGPS. In this study, the XPA mislocalization to DSBs occurred at stalled or collapsed replication forks, concurrent with a significant loss of PCNA at the forks, whereas PCNA efficiently bound to progerin. This PCNA sequestration likely exposed ds-ssDNA junctions at replication forks for XPA binding. Depletion of XPA or progerin each significantly restored PCNA at replication forks. Our results suggest that although PCNA is much more competitive than XPA in binding replication forks, PCNA sequestration by progerin may shift the equilibrium to favor XPA binding. Furthermore, we demonstrated that progerin-induced apoptosis could be rescued by XPA, suggesting that XPA-replication fork binding may prevent apoptosis in HGPS cells. Our results propose a mechanism for progerin-induced genome instability and accelerated replicative senescence in HGPS.-Hilton, B. A., Liu, J., Cartwright, B. M., Liu, Y., Breitman, M., Wang, Y., Jones, R., Tang, H., Rusinol, A., Musich, P. R., Zou, Y. Progerin sequestration of PCNA promotes replication fork collapse and mislocalization of XPA in laminopathy-related progeroid syndromes.
Collapse
Affiliation(s)
- Benjamin A Hilton
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Ji Liu
- Department of Biochemistry and Molecular Biology, West China Center of Medical Sciences, Sichuan University, Chengdu, China
| | - Brian M Cartwright
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Yiyong Liu
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Maya Breitman
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Youjie Wang
- Ministry of Education (MOE) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rowdy Jones
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Hui Tang
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Antonio Rusinol
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Phillip R Musich
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Yue Zou
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA;
| |
Collapse
|
38
|
Cobb AM, Murray TV, Warren DT, Liu Y, Shanahan CM. Disruption of PCNA-lamins A/C interactions by prelamin A induces DNA replication fork stalling. Nucleus 2017; 7:498-511. [PMID: 27676213 PMCID: PMC5120601 DOI: 10.1080/19491034.2016.1239685] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The accumulation of prelamin A is linked to disruption of cellular homeostasis, tissue degeneration and aging. Its expression is implicated in compromised genome stability and increased levels of DNA damage, but to date there is no complete explanation for how prelamin A exerts its toxic effects. As the nuclear lamina is important for DNA replication we wanted to investigate the relationship between prelamin A expression and DNA replication fork stability. In this study we report that the expression of prelamin A in U2OS cells induced both mono-ubiquitination of proliferating cell nuclear antigen (PCNA) and subsequent induction of Pol η, two hallmarks of DNA replication fork stalling. Immunofluorescence microscopy revealed that cells expressing prelamin A presented with high levels of colocalisation between PCNA and γH2AX, indicating collapse of stalled DNA replication forks into DNA double-strand breaks. Subsequent protein-protein interaction assays showed prelamin A interacted with PCNA and that its presence mitigated interactions between PCNA and the mature nuclear lamina. Thus, we propose that the cytotoxicity of prelamin A arises in part, from it actively competing against mature lamin A to bind PCNA and that this destabilises DNA replication to induce fork stalling which in turn contributes to genomic instability.
Collapse
Affiliation(s)
- Andrew M Cobb
- a King's College London , The James Black Center , London , United Kingdom
| | - Thomas V Murray
- a King's College London , The James Black Center , London , United Kingdom
| | - Derek T Warren
- a King's College London , The James Black Center , London , United Kingdom
| | - Yiwen Liu
- a King's College London , The James Black Center , London , United Kingdom
| | | |
Collapse
|
39
|
Verma AD, Parnaik VK. Heart-specific expression of laminopathic mutations in transgenic zebrafish. Cell Biol Int 2017; 41:809-819. [DOI: 10.1002/cbin.10784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/28/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Ajay D. Verma
- CSIR-Centre for Cellular and Molecular Biology; Uppal Road Hyderabad 500007 India
| | - Veena K. Parnaik
- CSIR-Centre for Cellular and Molecular Biology; Uppal Road Hyderabad 500007 India
| |
Collapse
|
40
|
Expression of progerin does not result in an increased mutation rate. Chromosome Res 2017; 25:227-239. [PMID: 28477268 PMCID: PMC5662688 DOI: 10.1007/s10577-017-9556-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 04/08/2017] [Accepted: 04/13/2017] [Indexed: 12/22/2022]
Abstract
In the premature ageing disease Hutchinson-Gilford progeria syndrome (HGPS), the underlying genetic defect in the lamin A gene leads to accumulation at the nuclear lamina of progerin—a mutant form of lamin A that cannot be correctly processed. This has been reported to result in defects in the DNA damage response and in DNA repair, leading to the hypothesis that, as in normal ageing and in other progeroid syndromes caused by mutation of genes of the DNA repair and DNA damage response pathways, increased DNA damage may be responsible for the premature ageing phenotypes in HGPS patients. However, this hypothesis is based upon the study of markers of the DNA damage response, rather than measurement of DNA damage per se or the consequences of unrepaired DNA damage—mutation. Here, using a mutation reporter cell line, we directly compared the inherent and induced mutation rates in cells expressing wild-type lamin A or progerin. We find no evidence for an elevated mutation rate in progerin-expressing cells. We conclude that the cellular defect in HGPS cells does not lie in the repair of DNA damage per se.
Collapse
|
41
|
Wang X, Zabell A, Koh W, Tang WHW. Lamin A/C Cardiomyopathies: Current Understanding and Novel Treatment Strategies. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2017; 19:21. [PMID: 28299614 DOI: 10.1007/s11936-017-0520-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OPINION STATEMENT Dilated cardiomyopathy (DCM) is the third leading cause of heart failure in the USA. A major gene associated with DCM with cardiac conduction system disease is lamin A/C (LMNA) gene. Lamins are type V filaments that serve a variety of roles, including nuclear structure support, DNA repair, cell signaling pathway mediation, and chromatin organization. In 1999, LMNA was found responsible for Emery-Dreifuss muscular dystrophy (EDMD) and, since then, has been found in association with a wide spectrum of diseases termed laminopathies, including LMNA cardiomyopathy. Patients with LMNA mutations have a poor prognosis and a higher risk for sudden cardiac death, along with other cardiac effects like dysrhythmias, development of congestive heart failure, and potential need of a pacemaker or ICD. As of now, there is no specific treatment for laminopathies, including LMNA cardiomyopathy, because the mechanism of LMNA mutations in humans is still unclear. This review discusses LMNA mutations and how they relate to DCM, the necessity for further investigation to better understand LMNA mutations, and potential treatment options ranging from clinical and therapeutic to cellular and molecular techniques.
Collapse
Affiliation(s)
- Xi Wang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH, USA
| | - Allyson Zabell
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH, USA
| | - Wonshill Koh
- Children's Hospital of Pittsburgh, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - W H Wilson Tang
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH, USA. .,Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA. .,Center for Clinical Genomics, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
42
|
Temsirolimus Partially Rescues the Hutchinson-Gilford Progeria Cellular Phenotype. PLoS One 2016; 11:e0168988. [PMID: 28033363 PMCID: PMC5199099 DOI: 10.1371/journal.pone.0168988] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 12/10/2016] [Indexed: 01/31/2023] Open
Abstract
Hutchinson-Gilford syndrome (HGPS, OMIM 176670, a rare premature aging disorder that leads to death at an average age of 14.7 years due to myocardial infarction or stroke, is caused by mutations in the LMNA gene. Lamins help maintain the shape and stability of the nuclear envelope in addition to regulating DNA replication, DNA transcription, proliferation and differentiation. The LMNA mutation results in the deletion of 50 amino acids from the carboxy-terminal region of prelamin A, producing the truncated, farnesylated protein progerin. The accumulation of progerin in HGPS nuclei causes numerous morphological and functional changes that lead to premature cellular senescence. Attempts to reverse this HGPS phenotype have identified rapamycin, an inhibitor of mammalian target of rapamycin (mTOR), as a drug that is able to rescue the HGPS cellular phenotype by promoting autophagy and reducing progerin accumulation. Rapamycin is an obvious candidate for the treatment of HGPS disease but is difficult to utilize clinically. To further assess rapamycin's efficacy with regard to proteostasis, mitochondrial function and the degree of DNA damage, we tested temsirolimus, a rapamycin analog with a more favorable pharmacokinetic profile than rapamycin. We report that temsirolimus decreases progerin levels, increases proliferation, reduces misshapen nuclei, and partially ameliorates DNA damage, but does not improve proteasome activity or mitochondrial dysfunction. Our findings suggest that future therapeutic strategies should identify new drug combinations and treatment regimens that target all the dysfunctional hallmarks that characterize HGPS cells.
Collapse
|
43
|
Zhang H, Sun L, Wang K, Wu D, Trappio M, Witting C, Cao K. Loss of H3K9me3 Correlates with ATM Activation and Histone H2AX Phosphorylation Deficiencies in Hutchinson-Gilford Progeria Syndrome. PLoS One 2016; 11:e0167454. [PMID: 27907109 PMCID: PMC5131972 DOI: 10.1371/journal.pone.0167454] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022] Open
Abstract
Compelling evidence suggests that defective DNA damage response (DDR) plays a key role in the premature aging phenotypes in Hutchinson-Gilford progeria syndrome (HGPS). Studies document widespread alterations in histone modifications in HGPS cells, especially, the global loss of histone H3 trimethylated on lysine 9 (H3K9me3). In this study, we explore the potential connection(s) between H3K9me3 loss and the impaired DDR in HGPS. When cells are exposed to a DNA-damaging agent Doxorubicin (Dox), double strand breaks (DSBs) are generated that result in the phosphorylation of histone H2A variant H2AX (gammaH2AX) within an hour. We find that the intensities of gammaH2AX foci appear significantly weaker in the G0/G1 phase HGPS cells compared to control cells. This reduction is associated with a delay in the recruitment of essential DDR factors. We further demonstrate that ataxia-telangiectasia mutated (ATM) is responsible for the amplification of gammaH2AX signals at DSBs during G0/G1 phase, and its activation is inhibited in the HGPS cells that display significant loss of H3K9me3. Moreover, methylene (MB) blue treatment, which is known to save heterochromatin loss in HGPS, restores H3K9me3, stimulates ATM activity, increases gammaH2AX signals and rescues deficient DDR. In summary, this study demonstrates an early DDR defect of attenuated gammaH2AX signals in G0/G1 phase HGPS cells and provides a plausible connection between H3K9me3 loss and DDR deficiency.
Collapse
Affiliation(s)
- Haoyue Zhang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States of America
| | - Linlin Sun
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States of America
| | - Kun Wang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, United States of America
| | - Di Wu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States of America
| | - Mason Trappio
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States of America
| | - Celeste Witting
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States of America
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States of America
- * E-mail:
| |
Collapse
|
44
|
Abstract
The nucleus is separated from the cytosol by the nuclear envelope, which is a double lipid bilayer composed of the outer nuclear membrane and the inner nuclear membrane. The intermediate filament proteins lamin A, lamin B, and lamin C form a network underlying the inner nuclear membrane. This proteinaceous network provides the nucleus with its strength, rigidity, and elasticity. Positioned within the inner nuclear membrane are more than 150 inner nuclear membrane proteins, many of which interact directly with lamins and require lamins for their inner nuclear membrane localization. Inner nuclear membrane proteins and the nuclear lamins define the nuclear lamina. These inner nuclear membrane proteins have tissue-specific expression and diverse functions including regulating cytoskeletal organization, nuclear architecture, cell cycle dynamics, and genomic organization. Loss or mutations in lamins and inner nuclear membrane proteins cause a wide spectrum of diseases. Here, I will review the functions of the well-studied nuclear lamina proteins and the diseases associated with loss or mutations in these proteins. © 2016 American Physiological Society. Compr Physiol 6:1655-1674, 2016.
Collapse
Affiliation(s)
- James M. Holaska
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, Pennsylvania, USA
| |
Collapse
|
45
|
Motegi SI, Uchiyama A, Yamada K, Ogino S, Yokoyama Y, Perera B, Takeuchi Y, Ishikawa O. Increased susceptibility to oxidative stress- and ultraviolet A-induced apoptosis in fibroblasts in atypical progeroid syndrome/atypical Werner syndrome with LMNA
mutation. Exp Dermatol 2016; 25 Suppl 3:20-7. [DOI: 10.1111/exd.13086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Sei-ichiro Motegi
- Department of Dermatology; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Akihiko Uchiyama
- Department of Dermatology; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Kazuya Yamada
- Department of Dermatology; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Sachiko Ogino
- Department of Dermatology; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Yoko Yokoyama
- Department of Dermatology; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Buddhini Perera
- Department of Dermatology; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Yuko Takeuchi
- Department of Dermatology; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Osamu Ishikawa
- Department of Dermatology; Gunma University Graduate School of Medicine; Maebashi Japan
| |
Collapse
|
46
|
The effect of the lamin A and its mutants on nuclear structure, cell proliferation, protein stability, and mobility in embryonic cells. Chromosoma 2016; 126:501-517. [PMID: 27534416 PMCID: PMC5509783 DOI: 10.1007/s00412-016-0610-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 07/11/2016] [Accepted: 08/02/2016] [Indexed: 01/26/2023]
Abstract
LMNA gene encodes for nuclear intermediate filament proteins lamin A/C. Mutations in this gene lead to a spectrum of genetic disorders, collectively referred to as laminopathies. Lamin A/C are widely expressed in most differentiated somatic cells but not in early embryos and some undifferentiated cells. To investigate the role of lamin A/C in cell phenotype maintenance and differentiation, which could be a determinant of the pathogenesis of laminopathies, we examined the role played by exogenous lamin A and its mutants in differentiated cell lines (HeLa, NHDF) and less-differentiated HEK 293 cells. We introduced exogenous wild-type and mutated (H222P, L263P, E358K D446V, and ∆50) lamin A into different cell types and analyzed proteins’ impact on proliferation, protein mobility, and endogenous nuclear envelope protein distribution. The mutants give rise to a broad spectrum of nuclear phenotypes and relocate lamin C. The mutations ∆50 and D446V enhance proliferation in comparison to wild-type lamin A and control cells, but no changes in exogenous protein mobility measured by FRAP were observed. Interestingly, although transcripts for lamins A and C are at similar level in HEK 293 cells, only lamin C protein is detected in western blots. Also, exogenous lamin A and its mutants, when expressed in HEK 293 cells underwent posttranscriptional processing. Overall, our results provide new insight into the maintenance of lamin A in less-differentiated cells. Embryonic cells are very sensitive to lamin A imbalance, and its upregulation disturbs lamin C, which may influence gene expression and many regulatory pathways.
Collapse
|
47
|
Ghosh S, Sinha JK, Raghunath M. Epigenomic maintenance through dietary intervention can facilitate DNA repair process to slow down the progress of premature aging. IUBMB Life 2016; 68:717-21. [PMID: 27364681 DOI: 10.1002/iub.1532] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/15/2016] [Indexed: 12/27/2022]
Abstract
DNA damage caused by various sources remains one of the most researched topics in the area of aging and neurodegeneration. Increased DNA damage causes premature aging. Aging is plastic and is characterised by the decline in the ability of a cell/organism to maintain genomic stability. Lifespan can be modulated by various interventions like calorie restriction, a balanced diet of macro and micronutrients or supplementation with nutrients/nutrient formulations such as Amalaki rasayana, docosahexaenoic acid, resveratrol, curcumin, etc. Increased levels of DNA damage in the form of double stranded and single stranded breaks are associated with decreased longevity in animal models like WNIN/Ob obese rats. Erroneous DNA repair can result in accumulation of DNA damage products, which in turn result in premature aging disorders such as Hutchinson-Gilford progeria syndrome. Epigenomic studies of the aging process have opened a completely new arena for research and development of drugs and therapeutic agents. We propose here that agents or interventions that can maintain epigenomic stability and facilitate the DNA repair process can slow down the progress of premature aging, if not completely prevent it. © 2016 IUBMB Life, 68(9):717-721, 2016.
Collapse
Affiliation(s)
- Shampa Ghosh
- Endocrinology and Metabolism Division, National Institute of Nutrition (NIN), Indian Council of Medical Research (ICMR), Hyderabad, 500007, India
| | - Jitendra Kumar Sinha
- Endocrinology and Metabolism Division, National Institute of Nutrition (NIN), Indian Council of Medical Research (ICMR), Hyderabad, 500007, India.,Epigenetics and Neuropsychiatric Disease Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500007, India
| | - Manchala Raghunath
- Endocrinology and Metabolism Division, National Institute of Nutrition (NIN), Indian Council of Medical Research (ICMR), Hyderabad, 500007, India
| |
Collapse
|
48
|
Wood AM, Laster K, Rice EL, Kosak ST. A beginning of the end: new insights into the functional organization of telomeres. Nucleus 2016; 6:172-8. [PMID: 25961132 PMCID: PMC4615733 DOI: 10.1080/19491034.2015.1048407] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ever since the first demonstration of their repetitive sequence and unique replication pathway, telomeres have beguiled researchers with how they function in protecting chromosome ends. Of course much has been learned over the years, and we now appreciate that telomeres are comprised of the multimeric protein/DNA shelterin complex and that the formation of t-loops provides protection from DNA damage machinery. Deriving their name from D-loops, t-loops are generated by the insertion of the 3′ overhang into telomeric repeats facilitated by the binding of TRF2. Recent studies have uncovered novel forms of chromosome end-structure that may implicate telomere organization in cellular processes beyond its essential role in telomere protection and homeostasis. In particular, we have recently described that t-loops form in a TRF2-dependent manner at interstitial telomere repeat sequences, which we termed interstitial telomere loops (ITLs). These structures are also dependent on association of lamin A/C, a canonical component of the nucleoskeleton that is mutated in myriad human diseases, including human segmental progeroid syndromes. Since ITLs are associated with telomere stability and require functional lamin A/C, our study suggests a mechanistic link between cellular aging (replicative senescence induced by telomere shortening) and organismal aging (modeled by Hutchinson Gilford Progeria Syndrome). Here we speculate on other potential ramifications of ITL formation, from gene expression to genome stability to chromosome structure.
Collapse
Affiliation(s)
- Ashley M Wood
- a Department of Cell and Molecular Biology; Feinberg School of Medicine; Northwestern University ; Chicago , IL , USA
| | | | | | | |
Collapse
|
49
|
Role of Intermediate Filaments in Vesicular Traffic. Cells 2016; 5:cells5020020. [PMID: 27120621 PMCID: PMC4931669 DOI: 10.3390/cells5020020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/13/2016] [Accepted: 04/20/2016] [Indexed: 12/28/2022] Open
Abstract
Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway.
Collapse
|
50
|
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare premature aging disease presenting many features resembling the normal aging process. HGPS patients die before the age of 20 years due to cardiovascular problems and heart failure. HGPS is linked to mutations in the LMNA gene encoding the intermediate filament protein lamin A. Lamin A is a major component of the nuclear lamina, a scaffold structure at the nuclear envelope that defines mechanochemical properties of the nucleus and is involved in chromatin organization and epigenetic regulation. Lamin A is also present in the nuclear interior where it fulfills lamina-independent functions in cell signaling and gene regulation. The most common LMNA mutation linked to HGPS leads to mis-splicing of the LMNA mRNA and produces a mutant lamin A protein called progerin that tightly associates with the inner nuclear membrane and affects the dynamic properties of lamins. Progerin expression impairs many important cellular processes providing insight into potential disease mechanisms. These include changes in mechanosignaling, altered chromatin organization and impaired genome stability, and changes in signaling pathways, leading to impaired regulation of adult stem cells, defective extracellular matrix production and premature cell senescence. In this review, we discuss these pathways and their potential contribution to the disease pathologies as well as therapeutic approaches used in preclinical and clinical tests.
Collapse
Affiliation(s)
- Sandra Vidak
- Max F. Perutz Laboratories (MFPL), Department of Medical Biochemistry, Vienna Biocenter (VBC), Medical University Vienna, Dr. Bohr-Gasse 9/3, 1030, Vienna, Austria
| | - Roland Foisner
- Max F. Perutz Laboratories (MFPL), Department of Medical Biochemistry, Vienna Biocenter (VBC), Medical University Vienna, Dr. Bohr-Gasse 9/3, 1030, Vienna, Austria.
| |
Collapse
|