1
|
Seiler S, Rudolf F, Gomes FR, Pavlovic A, Nebel J, Seidenbecher CI, Foo LC. Astrocyte-derived factors regulate CNS myelination. Glia 2024; 72:2038-2060. [PMID: 39092473 DOI: 10.1002/glia.24596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
The role that astrocytes play in central nervous system (CNS) myelination is poorly understood. We investigated the contribution of astrocyte-derived factors to myelination and revealed a substantial overlap in the secretomes of human and rat astrocytes. Using in vitro myelinating co-cultures of primary retinal ganglion cells and cortical oligodendrocyte precursor cells, we discovered that factors secreted by resting astrocytes, but not reactive astrocytes, facilitated myelination. Soluble brevican emerged as a new enhancer of developmental myelination in vivo, CNS and its absence was linked to remyelination deficits following an immune-mediated damage in an EAE mouse model. The observed reduction of brevican expression in reactive astrocytes and human MS lesions suggested a potential link to the compromised remyelination characteristic of neurodegenerative diseases. Our findings suggested brevican's role in myelination may be mediated through interactions with binding partners such as contactin-1 and tenascin-R. Proteomic analysis of resting versus reactive astrocytes highlighted a shift in protein expression profiles, pinpointing candidates that either facilitate or impede CNS repair, suggesting that depending on their reactivity state, astrocytes play a dual role during myelination.
Collapse
Affiliation(s)
- Sybille Seiler
- F. Hoffmann-La Roche, pRED, Neuroscience, Discovery & Translational Area (NRD), Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Franziska Rudolf
- F. Hoffmann-La Roche, pRED, Neuroscience, Discovery & Translational Area (NRD), Basel, Switzerland
| | - Filipa Ramilo Gomes
- F. Hoffmann-La Roche, pRED, Neuroscience, Discovery & Translational Area (NRD), Basel, Switzerland
| | - Anto Pavlovic
- F. Hoffmann-La Roche, pRED, Neuroscience, Discovery & Translational Area (NRD), Basel, Switzerland
| | - Jana Nebel
- Department Neurochemistry & Molecular Biology, Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Constanze I Seidenbecher
- Department Neurochemistry & Molecular Biology, Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Lynette C Foo
- F. Hoffmann-La Roche, pRED, Neuroscience, Discovery & Translational Area (NRD), Basel, Switzerland
| |
Collapse
|
2
|
Kasemeier-Kulesa JC, Morrison JA, McKinney S, Li H, Gogol M, Hall K, Chen S, Wang Y, Perera A, McLennan R, Kulesa PM. Cell-type profiling of the sympathetic nervous system using spatial transcriptomics and spatial mapping of mRNA. Dev Dyn 2023. [PMID: 36840366 DOI: 10.1002/dvdy.577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/03/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND The molecular identification of neural progenitor cell populations that connect to establish the sympathetic nervous system (SNS) remains unclear. This is due to technical limitations in the acquisition and spatial mapping of molecular information to tissue architecture. RESULTS To address this, we applied Slide-seq spatial transcriptomics to intact fresh frozen chick trunk tissue transversely cryo-sectioned at the developmental stage prior to SNS formation. In parallel, we performed age- and location-matched single cell (sc) RNA-seq and 10× Genomics Visium to inform our analysis. Downstream bioinformatic analyses led to the unique molecular identification of neural progenitor cells within the peripheral sympathetic ganglia (SG) and spinal cord preganglionic neurons (PGNs). We then successfully applied the HiPlex RNAscope fluorescence in situ hybridization and multispectral confocal microscopy to visualize 12 gene targets in stage-, age- and location-matched chick trunk tissue sections. CONCLUSIONS Together, these data demonstrate a robust strategy to acquire and integrate single cell and spatial transcriptomic information, resulting in improved resolution of molecular heterogeneities in complex neural tissue architectures. Successful application of this strategy to the developing SNS provides a roadmap for functional studies of neural connectivity and platform to address complex questions in neural development and regeneration.
Collapse
Affiliation(s)
| | - Jason A Morrison
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Hua Li
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Madelaine Gogol
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Kate Hall
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Shiyuan Chen
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Yongfu Wang
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Anoja Perera
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | | | - Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, Missouri, USA.,Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, USA
| |
Collapse
|
3
|
Steinman L, Patarca R, Haseltine W. Experimental encephalomyelitis at age 90, still relevant and elucidating how viruses trigger disease. J Exp Med 2023; 220:213807. [PMID: 36652203 PMCID: PMC9880878 DOI: 10.1084/jem.20221322] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/28/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
20 yr ago, a tribute appeared in this journal on the 70th anniversary of an animal model of disseminated encephalomyelitis, abbreviated EAE for experimental autoimmune encephalomyelitis. "Observations on Attempts to Produce Disseminated Encephalomyelitis in Monkeys" appeared in the Journal of Experimental Medicine on February 21, 1933. Rivers and colleagues were trying to understand what caused neurological reactions to viral infections like smallpox, vaccinia, and measles, and what triggered rare instances of encephalomyelitis to smallpox vaccines. The animal model known as EAE continues to display its remarkable utility. Recent research, since the 70th-anniversary tribute, helps explain how Epstein-Barr virus triggers multiple sclerosis via molecular mimicry to a protein known as GlialCAM. Proteins with multiple domains similar to GlialCAM, tenascin, neuregulin, contactin, and protease kinase C inhibitors are present in the poxvirus family. These observations take us a full circle back to Rivers' first paper on EAE, 90 yr ago.
Collapse
Affiliation(s)
- Lawrence Steinman
- Department of Neurology and Neurological Sciences and Pediatrics, Stanford University, Stanford, CA, USA,Correspondence to Lawrence Steinman:
| | | | | |
Collapse
|
4
|
Chaves Filho AJM, Mottin M, Lós DB, Andrade CH, Macedo DS. The tetrapartite synapse in neuropsychiatric disorders: Matrix metalloproteinases (MMPs) as promising targets for treatment and rational drug design. Biochimie 2022; 201:79-99. [PMID: 35931337 DOI: 10.1016/j.biochi.2022.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/26/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023]
Abstract
Inflammation and an exacerbated immune response are widely accepted contributing mechanisms to the genesis and progression of major neuropsychiatric disorders. However, despite the impressive advances in understanding the neurobiology of these disorders, there is still no approved drug directly linked to the regulation of inflammation or brain immune responses. Importantly, matrix metalloproteinases (MMPs) comprise a group of structurally related endopeptidases primarily involved in remodeling extracellular matrix (ECM). In the central nervous system (CNS), these proteases control synaptic plasticity and strength, patency of the blood-brain barrier, and glia-neuron interactions through cleaved and non-cleaved mediators. Several pieces of evidence have pointed to a complex scenario of MMPs dysregulation triggered by neuroinflammation. Furthermore, major psychiatric disorders' affective symptoms and neurocognitive abnormalities are related to MMPs-mediated ECM changes and neuroglia activation. In the past decade, research efforts have been directed to broad-spectrum MMPs inhibitors with frustrating clinical results. However, in the light of recent advances in combinatorial chemistry and drug design technologies, specific and CNS-oriented MMPs modulators have been proposed as a new frontier of therapy for regulating ECM properties in the CNS. Therefore, here we aim to discuss the state of the art of MMPs and ECM abnormalities in major neuropsychiatric disorders, namely depression, bipolar disorder, and schizophrenia, the possible neuro-immune interactions involved in this complex scenario of MMPs dysregulation and propose these endopeptidases as promising targets for rational drug design.
Collapse
Affiliation(s)
- Adriano José Maia Chaves Filho
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Laboratory for Molecular Modeling and Drug Design - LabMol, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | - Melina Mottin
- Laboratory for Molecular Modeling and Drug Design - LabMol, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Deniele Bezerra Lós
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Carolina Horta Andrade
- Laboratory for Molecular Modeling and Drug Design - LabMol, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Danielle S Macedo
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
5
|
Bauch J, Ort SV, Ulc A, Faissner A. Tenascins Interfere With Remyelination in an Ex Vivo Cerebellar Explant Model of Demyelination. Front Cell Dev Biol 2022; 10:819967. [PMID: 35372366 PMCID: PMC8965512 DOI: 10.3389/fcell.2022.819967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/24/2022] [Indexed: 01/02/2023] Open
Abstract
Oligodendrocytes form myelin membranes and thereby secure the insulation of axons and the rapid conduction of action potentials. Diseases such as multiple sclerosis highlight the importance of this glial cell population for brain function. In the adult brain, efficient remyelination following the damage to oligodendrocytes is compromised. Myelination is characterized by proliferation, migration, and proper integration of oligodendrocyte precursor cells (OPCs). These processes are among others controlled by proteins of the extracellular matrix (ECM). As a prominent representative ECM molecule, tenascin-C (Tnc) exerts an inhibitory effect on the migration and differentiation of OPCs. The structurally similar paralogue tenascin-R (Tnr) is known to promote the differentiation of oligodendrocytes. The model of lysolecithin-induced demyelination of cerebellar slice cultures represents an important tool for the analysis of the remyelination process. Ex vivo cerebellar explant cultures of Tnc−/− and Tnr−/− mouse lines displayed enhanced remyelination by forming thicker myelin membranes upon exposure to lysolecithin. The inhibitory effect of tenascins on remyelination could be confirmed when demyelinated wildtype control cultures were exposed to purified Tnc or Tnr protein. In that approach, the remyelination efficiency decreased in a dose-dependent manner with increasing concentrations of ECM molecules added. In order to examine potential roles in a complex in vivo environment, we successfully established cuprizone-based acute demyelination to analyze the remyelination behavior after cuprizone withdrawal in SV129, Tnc−/−, and Tnr−/− mice. In addition, we documented by immunohistochemistry in the cuprizone model the expression of chondroitin sulfate proteoglycans that are inhibitory for the differentiation of OPCs. In conclusion, inhibitory properties of Tnc and Tnr for myelin membrane formation could be demonstrated by using an ex vivo approach.
Collapse
|
6
|
Li W, Yang L, Tang C, Liu K, Lu Y, Wang H, Yan K, Qiu Z, Zhou W. Mutations of CNTNAP1 led to defects in neuronal development. JCI Insight 2020; 5:135697. [PMID: 33148880 PMCID: PMC7710280 DOI: 10.1172/jci.insight.135697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/30/2020] [Indexed: 12/20/2022] Open
Abstract
Mutations of CNTNAP1 were associated with myelination disorders, suggesting the role of CNTNAP1 in myelination processes. Whether CNTNAP1 may have a role in early cortical neuronal development is largely unknown. In this study, we identified 4 compound heterozygous mutations of CNTNAP1 in 2 Chinese families. Using mouse models, we found that CNTNAP1 is highly expressed in neurons and is located predominantly in MAP2+ neurons during the early developmental stage. Importantly, Cntnap1 deficiency results in aberrant dendritic growth and spine development in vitro and in vivo, and it delayed migration of cortical neurons during early development. Finally, we found that the number of parvalbumin+ neurons in the cortex and hippocampus of Cntnap1–/– mice is strikingly increased by P15, suggesting that excitation/inhibition balance is impaired. Together, this evidence elucidates a critical function of CNTNAP1 in cortical development, providing insights underlying molecular and circuit mechanisms of CNTNAP1-related disease. Deficiency of CNTNAP1 causes severe cortical developmental deficits, leading to human lethal perinatal symptoms.
Collapse
Affiliation(s)
| | - Lin Yang
- Key Laboratory of Birth Defects.,Division of Endocrinology, Genetics and Metabolic Disease, and
| | - Chuanqing Tang
- Stem Cell Research Center, Institute of Pediatrics, Children's Hospital, Fudan University, Shanghai, China
| | | | | | | | | | - Zilong Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience.,CAS Center for Excellence in Brain Science and Intelligence Technology.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology.,Chinese Academy of Sciences, and.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenhao Zhou
- Division of Neonatology.,Key Laboratory of Birth Defects.,Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
7
|
Roll L, Faissner A. Tenascins in CNS lesions. Semin Cell Dev Biol 2019; 89:118-124. [DOI: 10.1016/j.semcdb.2018.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/03/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023]
|
8
|
Hillen AEJ, Burbach JPH, Hol EM. Cell adhesion and matricellular support by astrocytes of the tripartite synapse. Prog Neurobiol 2018; 165-167:66-86. [PMID: 29444459 DOI: 10.1016/j.pneurobio.2018.02.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/25/2017] [Accepted: 02/07/2018] [Indexed: 12/18/2022]
Abstract
Astrocytes contribute to the formation, function, and plasticity of synapses. Their processes enwrap the neuronal components of the tripartite synapse, and due to this close interaction they are perfectly positioned to modulate neuronal communication. The interaction between astrocytes and synapses is facilitated by cell adhesion molecules and matricellular proteins, which have been implicated in the formation and functioning of tripartite synapses. The importance of such neuron-astrocyte integration at the synapse is underscored by the emerging role of astrocyte dysfunction in synaptic pathologies such as autism and schizophrenia. Here we review astrocyte-expressed cell adhesion molecules and matricellular molecules that play a role in integration of neurons and astrocytes within the tripartite synapse.
Collapse
Affiliation(s)
- Anne E J Hillen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Department of Pediatrics/Child Neurology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; Department of Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Wu ZQ, Li D, Huang Y, Chen XP, Huang W, Liu CF, Zhao HQ, Xu RX, Cheng M, Schachner M, Ma QH. Caspr Controls the Temporal Specification of Neural Progenitor Cells through Notch Signaling in the Developing Mouse Cerebral Cortex. Cereb Cortex 2017; 27:1369-1385. [PMID: 26740489 DOI: 10.1093/cercor/bhv318] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The generation of layer-specific neurons and astrocytes by radial glial cells during development of the cerebral cortex follows a precise temporal sequence, which is regulated by intrinsic and extrinsic factors. The molecular mechanisms controlling the timely generation of layer-specific neurons and astrocytes remain not fully understood. In this study, we show that the adhesion molecule contactin-associated protein (Caspr), which is involved in the maintenance of the polarized domains of myelinated axons, is essential for the timing of generation of neurons and astrocytes in the developing mouse cerebral cortex. Caspr is expressed by radial glial cells, which are neural progenitor cells that generate both neurons and astrocytes. Absence of Caspr in neural progenitor cells delays the production cortical neurons and induces precocious formation of cortical astrocytes, without affecting the numbers of progenitor cells. At the molecular level, Caspr cooperates with the intracellular domain of Notch to repress transcription of the Notch effector Hes1. Suppression of Notch signaling via a Hes1 shRNA rescues the abnormal neurogenesis and astrogenesis in Caspr-deficient mice. These findings establish Caspr as a novel key regulator that controls the temporal specification of cell fate in radial glial cells of the developing cerebral cortex through Notch signaling.
Collapse
Affiliation(s)
- Zhi-Qiang Wu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Di Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Ya Huang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Xi-Ping Chen
- Department of Forensic Medicine, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Wenhui Huang
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg D-66421, Germany
| | - Chun-Feng Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - He-Qing Zhao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Ru-Xiang Xu
- Affiliated Bayi Brain Hospital, Beijing Military Hospital, Southern Medical University, Beijing 100070, China
| | - Mei Cheng
- Binzhou Medical University, Yantai, Shandong Province 264000, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province 515041, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province 215123, China
| |
Collapse
|
10
|
Malik AR, Liszewska E, Jaworski J. Matricellular proteins of the Cyr61/CTGF/NOV (CCN) family and the nervous system. Front Cell Neurosci 2015; 9:237. [PMID: 26157362 PMCID: PMC4478388 DOI: 10.3389/fncel.2015.00237] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 06/12/2015] [Indexed: 12/22/2022] Open
Abstract
Matricellular proteins are secreted proteins that exist at the border of cells and the extracellular matrix (ECM). However, instead of playing a role in structural integrity of the ECM, these proteins, that act as modulators of various surface receptors, have a regulatory function and instruct a multitude of cellular responses. Among matricellular proteins are members of the Cyr61/CTGF/NOV (CCN) protein family. These proteins exert their activity by binding directly to integrins and heparan sulfate proteoglycans and activating multiple intracellular signaling pathways. CCN proteins also influence the activity of growth factors and cytokines and integrate their activity with integrin signaling. At the cellular level, CCN proteins regulate gene expression and cell survival, proliferation, differentiation, senescence, adhesion, and migration. To date, CCN proteins have been extensively studied in the context of osteo- and chondrogenesis, angiogenesis, and carcinogenesis, but the expression of these proteins is also observed in a variety of tissues. The role of CCN proteins in the nervous system has not been systematically studied or described. Thus, the major aim of this review is to introduce the CCN protein family to the neuroscience community. We first discuss the structure, interactions, and cellular functions of CCN proteins and then provide a detailed review of the available data on the neuronal expression and contribution of CCN proteins to nervous system development, function, and pathology.
Collapse
Affiliation(s)
- Anna R Malik
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology Warsaw, Poland
| | - Ewa Liszewska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology Warsaw, Poland
| | - Jacek Jaworski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology Warsaw, Poland
| |
Collapse
|
11
|
Tsai HL, Chiu WT, Fang CL, Hwang SM, Renshaw PF, Lai WFT. Different forms of tenascin-C with tenascin-R regulate neural differentiation in bone marrow-derived human mesenchymal stem cells. Tissue Eng Part A 2015; 20:1908-21. [PMID: 24829055 DOI: 10.1089/ten.tea.2013.0188] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are currently thought to transdifferentiate into neural lineages under specific microenvironments. Studies have reported that the tenascin family members, tenascin-C (TnC) and tenascin-R (TnR), regulate differentiation and migration, in addition to neurite outgrowth and survival in numerous types of neurons and mesenchymal progenitor cells. However, the mechanisms by which TnC and TnR affect neuronal differentiation are not well understood. In this study, we hypothesized that different forms of tenascin might regulate the neural transdifferentiation of human bone marrow-derived mesenchymal stem cells. Human MSCs were cultured in media incorporated with soluble tenascins, or on precoated tenascins. In a qualitative polymerase chain reaction analysis, adding a soluble TnC and TnR mixture to the medium significantly enhanced the expression of neuronal and glial markers, whereas no synaptic markers were expressed. Conversely, in groups of cells treated with coated TnC, hMSCs showed neurite outgrowth and synaptic marker expression. After being treated with coated TnR, hMSCs exhibited neuronal differentiation; however, it inhibited neurite outgrowth and synaptic marker expression. A combination of TnC and TnR significantly promoted hMSC differentiation in neurons or oligodendrocytes, induced neurite formation, and inhibited differentiation into astrocytes. Furthermore, the effect of the tenascin mixture showed dose-dependent effects, and a mixture ratio of 1:1 to 1:2 (TnC:TnR) provided the most obvious differentiation of neurons and oligodendrocytes. In a functional blocking study, integrin α7 and α9β1-blocking antibodies inhibited, respectively, 80% and 20% of mRNA expression by hMSCs in the coated tenascin mixture. In summary, the coated combination of TnC and TnR appeared to regulate neural differentiation signaling through integrin α7 and α9β1 in bone marrow-derived hMSCs. Our findings demonstrate novel mechanisms by which tenascin regulates neural differentiation, and enable the use of cell therapy to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Hung-Li Tsai
- 1 Graduate Institute of Medical Sciences, Taipei Medical University , Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
12
|
Morawski M, Dityatev A, Hartlage-Rübsamen M, Blosa M, Holzer M, Flach K, Pavlica S, Dityateva G, Grosche J, Brückner G, Schachner M. Tenascin-R promotes assembly of the extracellular matrix of perineuronal nets via clustering of aggrecan. Philos Trans R Soc Lond B Biol Sci 2014; 369:20140046. [PMID: 25225104 PMCID: PMC4173296 DOI: 10.1098/rstb.2014.0046] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Perineuronal nets (PNs) in the brains of tenascin-R-deficient (tn-r(-/-)) mice develop in temporal concordance with those of wild-type (tn-r(+/+)) mice. However, the histological appearance of PNs is abnormal in adult tn-r(-/-) mice. Here, we investigated whether similar defects are also seen in dissociated and organotypic cultures from hippocampus and forebrain of tn-r(-/-) mice and whether the structure of PNs could be normalized. In tn-r(-/-) cultures, accumulations of several extracellular matrix molecules were mostly associated with somata, whereas dendrites were sparsely covered, compared with tn-r(+/+) mice. Experiments to normalize the structure of PNs in tn-r(-/-) organotypic slice cultures by depolarization of neurons, or by co-culturing tn-r(+/+) and tn-r(-/-) brain slices failed to restore a normal PN phenotype. However, formation of dendritic PNs in cultures was improved by the application of tenascin-R protein and rescued by polyclonal antibodies to aggrecan and a bivalent, but not monovalent form of the lectin Wisteria floribunda agglutinin. These results show that tenascin-R and aggrecan are decisive contributors to formation and stabilization of PNs and that tenascin-R may implement these functions by clustering of aggrecan. Proposed approaches for restoration of normal PN structure are noteworthy in the context of PN abnormalities in neurological disorders, such as epilepsy, schizophrenia and addiction.
Collapse
Affiliation(s)
- Markus Morawski
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Alexander Dityatev
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg - Eppendorf, Martinistr. 52, 20246 Hamburg, Germany Department of Neuroscience and Brain Technologies, Italian Institute of Technology, via Morego 30, Genoa, Italy Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Maike Hartlage-Rübsamen
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Maren Blosa
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Max Holzer
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Katharina Flach
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Sanja Pavlica
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Galina Dityateva
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg - Eppendorf, Martinistr. 52, 20246 Hamburg, Germany Department of Neuroscience and Brain Technologies, Italian Institute of Technology, via Morego 30, Genoa, Italy
| | - Jens Grosche
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Gert Brückner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | - Melitta Schachner
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg - Eppendorf, Martinistr. 52, 20246 Hamburg, Germany Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou 515041, People's Republic of China Keck Center for Collaborative Neuroscience and Department of Cell Biology, Rutgers University, 604 Allison Road, Piscataway, NJ 08554, USA
| |
Collapse
|
13
|
Deng WP, Yang CC, Yang LY, Chen CWD, Chen WH, Yang CB, Chen YH, Lai WFT, Renshaw PF. Extracellular matrix-regulated neural differentiation of human multipotent marrow progenitor cells enhances functional recovery after spinal cord injury. Spine J 2014; 14:2488-99. [PMID: 24792783 PMCID: PMC4692164 DOI: 10.1016/j.spinee.2014.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 04/01/2014] [Accepted: 04/15/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Recent advanced studies have demonstrated that cytokines and extracellular matrix (ECM) could trigger various types of neural differentiation. However, the efficacy of differentiation and in vivo transplantation has not yet thoroughly been investigated. PURPOSE To highlight the current understanding of the effects of ECM on neural differentiation of human bone marrow-derived multipotent progenitor cells (MPCs), regarding state-of-art cure for the animal with acute spinal cord injury (SCI), and explore future treatments aimed at neural repair. STUDY DESIGN A selective overview of the literature pertaining to the neural differentiation of the MSCs and experimental animals aimed at improved repair of SCI. METHODS Extracellular matrix proteins, tenascin-cytotactin (TN-C), tenascin-restrictin (TN-R), and chondroitin sulfate (CS), with the cytokines, nerve growth factor (NGF)/brain-derived neurotrophic factor (BDNF)/retinoic acid (RA) (NBR), were incorporated to induce transdifferentiation of human MPCs. Cells were treated with NBR for 7 days, and then TN-C, TN-R, or CS was added for 2 days. The medium was changed every 2 days. Twenty-four animals were randomly assigned to four groups with six animals in each group: one experimental and three controls. Animals received two (bilateral) injections of vehicle, MPCs, NBR-induced MPCs, or NBR/TN-C-induced MPCs into the lesion sites after SCI. Functional assessment was measured using the Basso, Beattie, and Bresnahan locomotor rating score. Data were analyzed using analysis of variance followed by Student-Newman-Keuls (SNK) post hoc tests. RESULTS Results showed that MPCs with the transdifferentiation of human MPCs to neurons were associated with increased messenger-RNA (mRNA) expression of neuronal markers including nestin, microtubule-associated protein (MAP) 2, glial fibrillary acidic protein, βIII tubulin, and NGF. Greater amounts of neuronal morphology appeared in cultures incorporated with TN-C and TN-R than those with CS. The addition of TN-C enhanced mRNA expressions of MAP2, βIII tubulin, and NGF, whereas TN-R did not significantly change. Conversely, CS exposure decreased MAP2, βIII tubulin, and NGF expressions. The TN-C-treated MSCs significantly and functionally repaired SCI-induced rats at Day 42. Present results indicate that ECM components, such as tenascins and CS in addition to cytokines, may play functional roles in regulating neurogenesis by human MPCs. CONCLUSIONS These findings suggest that the combined use of TN-C, NBR, and human MPCs offers a new feasible method for nerve repair.
Collapse
Affiliation(s)
- Win-Ping Deng
- Graduate Institute of Biomedical Materials and Engineering, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan
| | - Chi-Chiang Yang
- Department of Neurology, Tungs’ Taichung Metroharbor Hospital, 699 Taiwan Blvd. 8 Sec., Taitung, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan
| | - Chun-Wei D. Chen
- Human Oncology & Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, 415 E. 68th Street, New York 10065, NY, USA
| | - Wei-Hong Chen
- Graduate Institute of Biomedical Materials and Engineering, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan
| | - Charn-Bing Yang
- Orthopedic Section Department, New Taipei City Hospital, 198 Yin-His Rd., Banquiao District, New Taipei City, Taiwan
| | - Yu-Hsin Chen
- Department of Physiology, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan
| | - Wen-Fu T. Lai
- Human Oncology & Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, 415 E. 68th Street, New York 10065, NY, USA,International Center of Nano Biomedicine Research, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan,Brain McLean Imaging Center, McLean Hospital/Harvard Medical School, 115 Mill Strret, Belmont 02115, MA, USA,Corresponding author. Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan. Tel.: (886)2-23916632; fax: (886)2-23967262. (W.-F.T. Lai)
| | - Perry F. Renshaw
- The Brain Institute, The University of Utah, 201 Presidents Cir, Salt Lake City 84112, UT, USA
| |
Collapse
|
14
|
Gaudet AD, Popovich PG. Extracellular matrix regulation of inflammation in the healthy and injured spinal cord. Exp Neurol 2014; 258:24-34. [PMID: 25017885 DOI: 10.1016/j.expneurol.2013.11.020] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 02/06/2023]
Abstract
Throughout the body, the extracellular matrix (ECM) provides structure and organization to tissues and also helps regulate cell migration and intercellular communication. In the injured spinal cord (or brain), changes in the composition and structure of the ECM undoubtedly contribute to regeneration failure. Less appreciated is how the native and injured ECM influences intraspinal inflammation and, conversely, how neuroinflammation affects the synthesis and deposition of ECM after CNS injury. In all tissues, inflammation can be initiated and propagated by ECM disruption. Molecules of ECM newly liberated by injury or inflammation include hyaluronan fragments, tenascins, and sulfated proteoglycans. These act as "damage-associated molecular patterns" or "alarmins", i.e., endogenous proteins that trigger and subsequently amplify inflammation. Activated inflammatory cells, in turn, further damage the ECM by releasing degradative enzymes including matrix metalloproteinases (MMPs). After spinal cord injury (SCI), destabilization or alteration of the structural and chemical compositions of the ECM affects migration, communication, and survival of all cells - neural and non-neural - that are critical for spinal cord repair. By stabilizing ECM structure or modifying their ability to trigger the degradative effects of inflammation, it may be possible to create an environment that is more conducive to tissue repair and axon plasticity after SCI.
Collapse
Affiliation(s)
- Andrew D Gaudet
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, College of Medicine, The Ohio State University, 670 Biomedical Research Tower, 460 West 12th Ave., Columbus, OH 43210, USA.
| | - Phillip G Popovich
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, College of Medicine, The Ohio State University, 670 Biomedical Research Tower, 460 West 12th Ave., Columbus, OH 43210, USA.
| |
Collapse
|
15
|
Burnside ER, Bradbury EJ. Review: Manipulating the extracellular matrix and its role in brain and spinal cord plasticity and repair. Neuropathol Appl Neurobiol 2014; 40:26-59. [DOI: 10.1111/nan.12114] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/20/2013] [Indexed: 12/17/2022]
Affiliation(s)
- E. R. Burnside
- King's College London; Regeneration Group; The Wolfson Centre for Age-Related Diseases; Guy's Campus; London UK
| | - E. J. Bradbury
- King's College London; Regeneration Group; The Wolfson Centre for Age-Related Diseases; Guy's Campus; London UK
| |
Collapse
|
16
|
Inflammation modulates expression of laminin in the central nervous system following ischemic injury. J Neuroinflammation 2012; 9:159. [PMID: 22759265 PMCID: PMC3414761 DOI: 10.1186/1742-2094-9-159] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/03/2012] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Ischemic stroke induces neuronal death in the core of the infarct within a few hours and the secondary damage in the surrounding regions over a long period of time. Reduction of inflammation using pharmacological reagents has become a target of research for the treatment of stroke. Cyclooxygenase 2 (COX-2), a marker of inflammation, is induced during stroke and enhances inflammatory reactions through the release of enzymatic products, such as prostaglandin (PG) E2. METHODS Wild-type (WT) and COX-2 knockout (COX-2KO) mice were subjected to middle cerebral artery occlusion (MCAO). Additionally, brain slices derived from these mice or brain microvascular endothelial cells (BMECs) were exposed to oxygen-glucose deprivation (OGD) conditions. The expression levels of extracellular matrix (ECM) proteins were assessed and correlated with the state of inflammation. RESULTS We found that components of the ECM, and specifically laminin, are transiently highly upregulated on endothelial cells after MCAO or OGD. This upregulation is not observed in COX-2KO mice or WT mice treated with COX-2 inhibitor, celecoxib, suggesting that COX-2 is associated with changes in the levels of laminins. CONCLUSIONS Taken together, we report that transient ECM remodeling takes place early after stroke and suggest that this increase in ECM protein expression may constitute an effort to revascularize and oxygenate the tissue.
Collapse
|
17
|
Meng F, Hlady V, Tresco PA. Inducing alignment in astrocyte tissue constructs by surface ligands patterned on biomaterials. Biomaterials 2011; 33:1323-35. [PMID: 22100982 DOI: 10.1016/j.biomaterials.2011.10.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 10/13/2011] [Indexed: 11/24/2022]
Abstract
Planar substrates with patterned ligands were used to induce astrocyte alignment whereas substrates with uniform fields of ligand were used to produce random cell orientation. DRG neurons plated on top of oriented astrocyte monolayers exhibited directional outgrowth along aligned astrocytes, demonstrating that purely biological cues provided by the oriented astrocytes were sufficient to provide guidance cues. Antibody blocking studies demonstrated that astrocyte associated FN played a major mechanistic role in directing engineered neurite extension. Our results show that nanometer level surface cues are sufficient to direct nerve outgrowth through an intervening organized astrocyte cell layer. In other studies, we showed that patterned ligands were able to transmit organization cues through multiple cell layers to control the overall alignment of an astrocyte tissue construct, demonstrating how natural scar tissue may develop in situ into potent barriers. In such constructs the spatial organization of astrocyte derived FN maintained its organizational anisotropy throughout the thickness of multilayered astrocyte constructs. These in vitro studies suggest possible roles for such constructs as bridging substrates for neuroregenerative applications.
Collapse
Affiliation(s)
- Fanwei Meng
- The Keck Center for Tissue Engineering, Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
18
|
Mortazavi MM, Verma K, Deep A, Esfahani FB, Pritchard PR, Tubbs RS, Theodore N. Chemical priming for spinal cord injury: a review of the literature. Part I-factors involved. Childs Nerv Syst 2011; 27:1297-306. [PMID: 21170536 DOI: 10.1007/s00381-010-1364-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 12/07/2010] [Indexed: 12/29/2022]
Abstract
INTRODUCTION There are significant differences between the propensity of neural regeneration between the central and peripheral nervous systems. MATERIALS AND METHODS Following a review of the literature, we describe the role of growth factors, guiding factors, and neurite outgrowth inhibitors in the physiology and development of the nervous system as well as the pathophysiology of the spinal cord. We also detail their therapeutic role as well as those of other chemical substances that have recently been found to modify regrowth following cord injury. CONCLUSIONS Multiple factors appear to have promising futures for the possibility of improving spinal cord injury following injury.
Collapse
Affiliation(s)
- Martin M Mortazavi
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AR, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Cohen-Kupiec R, Weinstein S, Kantor G, Peer D, Weil M. IKAP/hELP1 down-regulation in neuroblastoma cells causes enhanced cell adhesion mediated by contactin overexpression. Cell Adh Migr 2011; 4:541-50. [PMID: 20671422 DOI: 10.4161/cam.4.4.12923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A splicing mutation in the IKBKAP gene encoding the IKAP/hELP1 (IKAP) protein was found to be the major cause of Familial Dysautonomia (FD). This mutation affects both the normal development and survival of sensory and sympathetic neurons of the peripheral nervous system (PNS). To understand the FD phenotype it is important to study the specific role played by IKAP in developing and mature PNS neurons. We used the neuroblastoma SHSY5Y cell line, originated from neural crest adrenal tumor, and simulated the FD phenotype by reducing IKAP expression with retroviral constructs. We observed that IKAP – down - regulated cells formed cell clusters compared to control cells under regular culture conditions. We examined the ability of these cells to differentiate into mature neurons in the presence of laminin, an essential extracellular matrix for developing PNS neurons. We found that the cells showed reduced attachment to laminin, morphological changes and increased cell-to-cell adhesion resulting in cell aggregates. We identified Contactin as the adhesion molecule responsible for this phenotype. We show that Contactin expression is related to IKAP expression, suggesting that IKAP regulates Contactin levels for appropriate cell-cell adhesion that could modulate neuronal growth of PNS neurons during development.
Collapse
Affiliation(s)
- Rachel Cohen-Kupiec
- Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
20
|
Gáti G, Morawski M, Lendvai D, Matthews R, Jäger C, Zachar G, Arendt T, Alpár A. Chondroitin sulphate proteoglycan-based perineuronal net establishment is largely activity-independent in chick visual system. J Chem Neuroanat 2010; 40:243-7. [DOI: 10.1016/j.jchemneu.2010.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/01/2010] [Accepted: 07/01/2010] [Indexed: 10/19/2022]
|
21
|
Gervasi NM, Kwok JC, Fawcett JW. Role of extracellular factors in axon regeneration in the CNS: implications for therapy. Regen Med 2009; 3:907-23. [PMID: 18947312 DOI: 10.2217/17460751.3.6.907] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The glial scar that forms after an injury to the CNS contains molecules that are inhibitory to axon growth. Understanding of the mechanisms of inhibition has allowed the development of therapeutic strategies aimed at promoting axon regeneration. Promising results have been obtained in animal models, and some therapies are undergoing clinical trials. This offers great hope for achievement of functional recovery after CNS injury.
Collapse
Affiliation(s)
- Noreen M Gervasi
- Cambridge University Centre for Brain Repair, ED Adrian Building, Forvie Site, Robinson Way, Cambridge CB22PY, UK.
| | | | | |
Collapse
|
22
|
Bizzoca A, Corsi P, Gennarini G. The mouse F3/contactin glycoprotein: structural features, functional properties and developmental significance of its regulated expression. Cell Adh Migr 2009; 3:53-63. [PMID: 19372728 PMCID: PMC2675150 DOI: 10.4161/cam.3.1.7462] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Accepted: 11/19/2008] [Indexed: 12/18/2022] Open
Abstract
F3/Contactin is an immunoglobulin superfamily component expressed in the nervous tissue of several species. Here we focus on the structural and functional properties of its mouse relative, on the mechanisms driving its regulated expression and on its developmental role. F3/Contactin is differentially expressed in distinct populations of central and peripheral neurons and in some non-neuronal cells. Accordingly, the regulatory region of the underlying gene includes promoter elements undergoing differential activation, associated with an intricate splicing profile, indicating that transcriptional and posttranscriptional mechanisms contribute to its expression. Transgenic models allowed to follow F3/Contactin promoter activation in vivo and to modify F3/Contactin gene expression under a heterologous promoter, which resulted in morphological and functional phenotypes. Besides axonal growth and pathfinding, these concerned earlier events, including precursor proliferation and commitment. This wide role in neural ontogenesis is consistent with the recognized interaction of F3/Contactin with developmental control genes belonging to the Notch pathway.
Collapse
Affiliation(s)
- Antonella Bizzoca
- Department of Pharmacology and Human Physiology, Medical School, University of Bari, Bari, Italy
| | | | | |
Collapse
|
23
|
Hung YH, Hung WC. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) enhances invasiveness of lung cancer cells by up-regulating contactin-1 via the alpha7 nicotinic acetylcholine receptor/ERK signaling pathway. Chem Biol Interact 2008; 179:154-9. [PMID: 19027725 DOI: 10.1016/j.cbi.2008.10.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 10/27/2008] [Accepted: 10/28/2008] [Indexed: 02/07/2023]
Abstract
Tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) exhibits potent carcinogenic activity in vitro and in vivo and has been shown to contribute to multiple steps in the tumorigenesis of lung cancer. In this study, we found that NNK up-regulated the expression of contactin-1, a cell adhesion molecule which has been implicated in cell migration, in lowly invasive CL1.0 lung cancer cells in a dose-dependent manner. Reverse transcription-polymerase chain reaction (RT-PCR) analysis and promoter activity assay suggested that NNK directly stimulated contactin-1 gene transcription. Block of alpha7 nicotinic acetylcholine receptor (nAChR) by alpha-bungarotoxin attenuated NNK-induced increase of contactin-1. We also found that NNK activated alpha7 nAChR downstream AKT and extracellular signal-regulated kinase (ERK) signaling pathways in CL1.0 cells. However, only ERK signaling pathway inhibitor PD98059, but not AKT signaling pathway inhibitor LY294002, suppressed the induction of contactin-1 by NNK. Up-regulation of contactin-1 by NNK increased adhesive and invasive abilities of CL1.0 cells which could be effectively inhibited by contactin-1 neutralizing antibody, alpha-bungarotoxin and PD98059. Taken together, we conclude that contactin-1 is a molecule mediator for NNK to promote invasiveness of lung cancer cells.
Collapse
Affiliation(s)
- Yu-Hsuan Hung
- Department of Life Science, National Dong Hwa University, Hualien, Taiwan, ROC
| | | |
Collapse
|
24
|
Pantazopoulos H, Murray EA, Berretta S. Total number, distribution, and phenotype of cells expressing chondroitin sulfate proteoglycans in the normal human amygdala. Brain Res 2008; 1207:84-95. [PMID: 18374308 PMCID: PMC2696935 DOI: 10.1016/j.brainres.2008.02.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 02/07/2008] [Accepted: 02/08/2008] [Indexed: 01/09/2023]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are a key structural component of the brain extracellular matrix. They are involved in critical neurodevelopmental functions and are one of the main components of pericellular aggregates known as perineuronal nets. As a step toward investigating their functional and pathophysiological roles in the human amygdala, we assessed the pattern of CSPG expression in the normal human amygdala using wisteria floribunda agglutinin (WFA) lectin histochemistry. Total numbers of WFA-labeled elements were measured in the lateral (LN), basal (BN), accessory basal (ABN) and cortical (CO) nuclei of the amygdala from 15 normal adult human subjects. For interspecies qualitative comparison, we also investigated the pattern of WFA labeling in the amygdala of naïve rats (n=32) and rhesus monkeys (Macaca mulatta; n=6). In human amygdala, WFA lectin histochemistry resulted in labeling of perineuronal nets and cells with clear glial morphology, while neurons did not show WFA labeling. Total numbers of WFA-labeled glial cells showed high interindividual variability. These cells aggregated in clusters with a consistent between-subjects spatial distribution. In a subset of human subjects (n=5), dual color fluorescence using an antibody raised against glial fibrillary acidic protein (GFAP) and WFA showed that the majority (93.7%) of WFA-labeled glial cells correspond to astrocytes. In rat and monkey amygdala, WFA histochemistry labeled perineuronal nets, but not glial cells. These results suggest that astrocytes are the main cell type expressing CSPGs in the adult human amygdala. Their highly segregated distribution pattern suggests that these cells serve specialized functions within human amygdalar nuclei.
Collapse
Affiliation(s)
| | - Elisabeth A. Murray
- Laboratory of Neuropsychology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Sabina Berretta
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Med. School, Boston, MA, USA
| |
Collapse
|
25
|
Farrar NR, Spencer GE. Pursuing a 'turning point' in growth cone research. Dev Biol 2008; 318:102-11. [PMID: 18436201 DOI: 10.1016/j.ydbio.2008.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 03/05/2008] [Accepted: 03/06/2008] [Indexed: 01/13/2023]
Abstract
Growth cones are highly motile structures found at the leading edge of developing and regenerating nerve processes. Their role in axonal pathfinding has been well established and many guidance cues that influence growth cone behavior have now been identified. Many studies are now providing insights into the transduction and integration of signals in the growth cone, though a full understanding of growth cone behavior still eludes us. This review focuses on recent studies adding to the growing body of literature on growth cone behavior, focusing particularly on the level of autonomy the growth cone possesses and the role of local protein synthesis.
Collapse
Affiliation(s)
- Nathan R Farrar
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1
| | | |
Collapse
|
26
|
Mészár Z, Felszeghy S, Veress G, Matesz K, Székely G, Módis L. Hyaluronan accumulates around differentiating neurons in spinal cord of chicken embryos. Brain Res Bull 2007; 75:414-8. [PMID: 18331908 DOI: 10.1016/j.brainresbull.2007.10.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 10/17/2007] [Indexed: 10/22/2022]
Abstract
One major component of the extracellular matrix is hyaluronan (HA) which is thought to play a crucial role in the development of different organs including the central nervous system (CNS). HA is bound by specific receptors, CD44 and RHAMM, depending on cell types of CNS. However, data are lacking on the relation of HA to different cell populations in developing CNS. To provide new data about the co-localization of HA with the various cellular structures of the developing spinal cord, we studied the distribution pattern of hyaluronan in chicken embryos at Hamburger-Hamilton (HH) stages 8-39. A biotinylated HA-binding complex was used in combination with immunohistochemistry for proliferating and differentiating neurons. The intensity of the HA signal was determined by digital densitometry from histological sections. We found three mediolaterally oriented layers in the HA distribution pattern in stage HH23: (1) a moderate HA signal was detected in the ventricular zone; (2) strong HA accumulation was measured around Lim1,2-expressing cells (differentiating neurons) and early MNR2-expressing neurons (early motoneurons), corresponding to the intermediate zone; (3) a strong pericellular HA reaction was found around the neurons of the marginal zone. Interestingly, the peripheral nerves did not show HA signals. These findings suggest a crucial role of HA during neuronal development. We propose that HA may be involved in cell migration and axonal growth in the developing spinal cord.
Collapse
Affiliation(s)
- Zoltán Mészár
- Department of Anatomy, Histology and Embryology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Aided by mice with multiple deleted brain matrix protein genes, the biochemical analysis of mouse brain matrix molecules indicates a constitutive production of more proteoglycans than can be integrated in multimolecular matrix structures. Possible functions of non-matrix integrated proteoglycans, and aspects of incomplete compensatory mechanisms in knockout mice are discussed.
Collapse
Affiliation(s)
- U Rauch
- Vessel Wall Biology Section, Institute for Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|